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Abstract

The present work investigates Gold style algorithmic learning from input-

output examples whereby the learner has access to oracles as additional

information. Furthermore this access has to be robust, that means that

a single learning algorithm has to succeed with every oracle which meets
a given speci�cation. The �rst main result considers oracles of the same

Turing degree: Robust learning with any oracle from a given degree does

not achieve more than learning without any additional information.

The further work considers learning from function oracles which describe

the whole class of functions to be learned in one of the following four

ways: the oracle is a list of all functions in this class or a predictor for this

class or a one-sided classi�er accepting just the functions in this class or a

martingale succeeding on this class.

It is shown that for learning in the limit (Ex), lists are the most powerful

additional information, the powers of predictors and classi�ers are incom-

parable and martingales are of no help at all. Similar results are obtained

for the criteria of predicting the next value, �nite, Popperian and �nite

Popperian learning. Lists are omniscient for the criterion of predicting

the next value but some classes can not be Ex-learned with any of these

types of additional information. The class REC of all recursive functions

is Ex-learnable with the help of a list, a predictor or a classi�er.

�
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1 Introduction

Gold style inductive inference [7, 13] is an abstract model for learning: the learner

receives the course of values f(0); f(1); : : : of a recursive function to be learned and

synthesizes from this information a program for f . This synthesis has to meet certain

convergence requirements. The special model considered in the present paper is that

the learner has in addition access to nonrecursive information on the class S from

which the function f is taken. This information is provided as a function oracle.

But the access to this oracle has to be robust, i.e., ignorant of the actual coding of

this information. So the learner has to cope with every oracle which meets a given

speci�cation. Four types of such speci�cations are used in this paper: (1) the oracle

is a list of all functions in S; (2) the oracle is a predictor which predicts every f 2 S

under the model \next value"; (3) the oracle is a one-sided classi�er which converges

on a function f to 1 i� f 2 S; (4) the oracle is a martingale which succeeds on every

function in S. Learning with additional information has several roots in the literature

which are presented now.

Adleman and Blum [1] as well as Gasarch and Pleszkoch [12] transferred the concept

of using nonrecursive oracles to inductive inference. Such oracles can be very helpful,

for example every high oracle allows to learn all recursive functions in the limit [1].

Also every nonrecursive oracle allows to learn some class �nitely which can not be

�nitely learned without any oracle. But in these models, the machines always depend
on the actual form of the oracle. Indeed Theorem 2.1 shows the following: if a class S

can be learned via a �xed machine succeeding with any oracle inside a given Turing

degree then S can be learned without any help of an oracle. So it is in this context

more suitable to specify the oracles by some structural properties which allow to derive

some information in a uniform way than by their Turing degree.

A second root is the notion of learning with additional information in the way

as introduced by Freivalds and Wiehagen [11]. They presented a model where the

additional information is just a number (and not an in�nite object as an oracle) which

depends on the function f (and not only on the class S). One important result is the

following: they presented in addition to the values of the function an upper bound of

the size of some program of f . This �nite information is already su�cient to learn

the whole class of all recursive functions, REC, in the limit. Jain and Sharma [15]

extended this work.

Baliga and Case [4] modi�ed this setting such that the learner receives as additional

information an index of a higher-order program instead of this upper bound of the

program size. This concept is not so powerful as that of Freivalds and Wiehagen [11],

as it does not allow the inference of REC. But it still permits inference of larger classes

than without any additional information. Jain and Sharma [14] gave as additional
information programs which are de�ned on a \su�ciently large" domain and coincide

with the function f to be learned on their domain.

Case, Kaufmann, Kinber and Kummer [9] considered as additional information an

index of a certain tree such that among other requirements the function to be learned
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is an in�nite branch of it. These trees had to ful�ll certain requirements as having

bounded width; they showed that { depending on the parameters of the tree { the

class REC of all recursive functions is learnable via a team of machines using this

additional information. Furthermore, Merkle and Stephan [19] showed, that there is

a class S which can be learned in the limit only if as additional information an index

of such a tree is provided, on which the function to be learned is an isolated in�nite

branch.

Finally Osherson, Stob and Weinstein [23] already went in the direction of the

present paper by synthesizing learner for a whole class from additional information on

the class S to be learned.

The third root is the work of Angluin [3] whose notion of \minimal adequate

teacher" is some kind of in�nite additional information. The in�nity is given by the

fact that the teacher has to answer each query from a given in�nite query-language

correctly. The answers to the queries are not always unique; e.g., there may be several

ways to select counterexamples to a learner's hypothesis. So the learner has in her

model to be robust in the sense that learning has to succeed with every teacher which

meets the speci�cation. Similarly robust learning in the present paper is modelled by

the in�nite concept of a \minimal adequate oracle".

Main recursion theoretic notions follow the books of Odifreddi [21] and Soare [26].

lN is the set of natural numbers. A;B;C denote subsets of lN and are identi�ed with

their characteristic function: A(x) = 1 for x 2 A and A(x) = 0 for x =2 A. f and

g denote total recursive functions from lN to lN. REC denotes this class of all total

recursive functions and REC0;1 = ff 2 REC : (8x) [f(x) � 1]g. Strings �; �; � 2 lN�

are �nite sequences of natural numbers and binary strings �; �; 
 range over f0; 1g�.

Strings are also identi�ed with a partial function: If � = abcc then �(x) equals a

for x = 0, b for x = 1, c for x = 2; 3 and is unde�ned for x > 3. A string � is

pre�x of some other string � (or function f or set A) i� �(x) = � (x)# (f(x) or A(x),

respectively) for all x in the domain of � (which is denoted by dom(�)). � denotes

the pre�x-relation (� � � ). 'e is the e-th partial recursive function w.r.t. some �xed

acceptable numbering. This numbering is also always used as hypotheses space unless

explicitly stated otherwise.

Now an overview on the most important de�nitions from learning theory [7, 13, 22]
is included for the readers' convenience.

Learning functions and classes: A machine learns a class S i� it learns every

function f 2 S according to the given criterion. The classes S contain always

only recursive functions.

Finite Learning (Fin): M learns a function f �nitely if M(�) 2 f?; eg for all

� � f , M(�) = e for some � � f and 'e = f . That means M �rst outputs the
symbol \?" to indicate that it wants to see more data on f and then eventually

decides to make a guess e which has to be correct.

Explanatory Learning (Ex): M learns a function f explanatorily if M(�) = e

for almost all � � f and e is a �xed program for f . That means that M
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�rst outputs some arbitrary guesses and then converges eventually to a correct

program for f .

Popperian Finite Learning (PFin): This is �nite learning combined with

the additional constraint that any output (also for input not belonging to any

function in S) is either the symbol \?" or a program for a total function.

Popperian Explanatory Learning (PEx): This is explanatory learning com-

bined with the additional constraint that any output is either the symbol \?" or

a program for a total function.

Predicting the Next Value (NV): A machine M predicts a function f i� M

is de�ned everywhere and M(f(0)f(1) : : : f(x)) = f(x+ 1) for almost all x.

Now these �ve concepts (Ex, Fin, PEx, PFin, NV) are combined with di�erent types

of oracles. The de�nitions are stated for Ex but it is easy to see how they are adapted

to the other four learning criteria. The general model is, that the learner M receives

the course of values of the function f and in addition has access to a function oracle

describing a certain information on the class S (and so very indirectly also on the

single function f). M accesses the oracle O via queries for O(x) at certain numbers or

strings x. M has to learn every f 2 S with any \minimal adequate" oracle meeting

the speci�cation. Together with the de�nition an overview on the results is given.

List: A class S is in Ex[List] i� there is a machine M such that M equipped

with a function oracle F Ex-learns every f 2 S whenever F is a list of S, i.e.,
S = fF0; F1; : : :g where Fx is the function given by Fx(y) = F (x; y). The most

common inference classes as the class REC of all recursive functions and the

class REC0;1 of all f0; 1g-valued recursive functions are in Ex[List], but there is

also some S =2 Ex[List]. Furthermore every class is in NV[List] but PEx[List],

Fin[List] and PFin[List] are weaker than PEx[List].

Predictor: A class S is in Ex[Predictor] i� there is a machine M such that

M equipped with a function oracle P Ex-learns every f 2 S whenever P is a

device which NV-learns all f 2 S. Predictors are strictly weaker than lists, e.g.,

REC0;1 2 Ex[List]� Ex[Predictor]. Interestingly this is one of the few cases in

inductive inference where a criterion fails for REC0;1 but succeeds for REC, i.e.,

REC 2 Ex[Predictor]. By de�nition, predictors are omniscient for the criterion

NV but on the other hand they are useless for the criteria PFin, Fin and PEx,

i.e., anything learned with a predictor under one of these criteria can also be
learned without any additional help under the same criterion.

Classi�er: A class S is in Ex[Classi�er] i� there is a machine M such that M

equipped with a function oracle C Ex-learns every f 2 S whenever C is a one-

sided classi�er for S. A one-sided classi�er C converges on all f 2 S to 1, i.e.,

(81� � f) [C(�) = 1], and does not converge to 1 on every (also nonrecursive)

f =2 S, i.e. (91� � f) [C(�) = 0]. Classi�ers allow to Ex-learn and NV-learn
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the classes REC and REC0;1 but they are not omniscient for these criteria. For

Fin, PEx and PFin they are useless.

Martingale: A class S is in Ex[Martingale] i� there is a machine M such that

M equipped with a function oracle m Ex-learns every f 2 S whenever m is

a martingale succeeding on S. A martingale is a total function with positive

rational values such that m(�) = 1 and for each � there is a rational number

q with 0 � q < m(�) and a prediction a such that m(�a) = m(�) + q and

m(�b) = m(�)� q for all b 6= a. It turns out that martingales are useless for all

considered learning criteria.

Inside Given Degrees: The oracles in this notion are (other than the previous

ones) independent of S. A class S is robust learnable inside a given degree a of

oracles i� there is a machine M which Ex-learns every f 2 S with any oracle

A 2 a. It is shown that for all common notions of degrees (Turing, tt, wtt, btt,

m) except the notion of 1-degrees this kind of additional information allows only

to learn classes which can already be learned without access to any oracle.

Now the concepts are presented in detail each in one section starting with the notion

of learning inside given degrees.

2 Robust Learning inside given Degrees

For a given oracle A, the Turing degree of A is the collection of all oracles B which

have the same computational complexity as A, i.e., which are Turing equivalent to A.

There are re�nements of the notion of a Turing degree such as m-degree and 1-degree:

A set A is m-reducible to B i� there is a recursive function f such that A(x) = B(f(x))

for all x. If this f is furthermore one-to-one, then A is 1-reducible to B. A and B

are called m-equivalent, i.e., A and B have the same m-degree, if A is m-reducible

to B and B is m-reducible to A. Similarly 1-equivalence and 1-degrees are de�ned.

Odifreddi [21, Chapter VI] gives an overview on these and other degrees. The following

theorem states that robust learning from an m-degree does not help. The same result

also holds for the degrees given by the reductions btt, tt, wtt and Turing as de�ned

in [21] since each such degree is the union of several m-degrees.

Theorem2.1 Assume that a single machineM Ex[B]-learns (NV-learns) S via access

to oracle B for any B in the m-degree of A. Then S can be Ex-learned (NV-learned)

without any oracle.

Proof (a) for Ex-Learning Let S 2 Ex[B] via MB for all oracles B in the

m-degree of A. W.l.o.g. M is total also for the oracles outside the m-degree of A and

M(�) is computed with oracle access only below j�j { these conditions can be satis�ed

via delaying mind changes [10, Note 2.14]. For any function f let M�(f) abbreviate

M�(f(0)f(1) : : : f(j�j)). There are two cases:
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(i) There is a function f 2 S with (8�) (9� � �) [M�(f) 6= M�(f)]. Now it is

possible to compute inductively binary strings �0; �1; : : : such that for each n and

a0; a1; : : : ; an 2 f0; 1g there are �; � with a0�0a1�1 : : : an � � � � � a0�0a1�1 : : : an�n
and M�(f) 6= M�(f). Here �n is produced by concatenating strings 
k for k =

0; 1; : : : ; 2n+1 � 1 where the 
k are de�ned inductively: if a0a1 : : : an is the binary

representation of k and if � = a0�0a1�1 : : : an
0
1 : : : 
k�1 then 
k is the �rst string

found which enforces M�(f) 6=M�(f) for � = �
k.

It follows that M does not converge for any oracle of the form a0�0a1�1 : : :, in

particular not for B = A(0)�0A(1)�1 : : : which is m-equivalent to A. So the case (i)

does not hold.

(ii) For each function f 2 S there is an � with M�(f) = M�(f) for all

� � �. Now the Ex-learner N for S works as follows: On input f(0)f(1) : : : f(n),

N searches for the �rst string � (according to some enumeration of all strings) such

that M�(f(0)f(1) : : : f(j�j)) =M�(f(0)f(1) : : : f(j�j)) for all strings � � � of length

up to n and outputs M�(f(0)f(1) : : : f(j�j)).

Some �rst string � satis�es the condition at (ii) for the given function f and thus

N converges to the value M�(f). Since there is some oracle B in the m-degree of A

with B � �,MB converges also toM�(f) and M�(f) is the correct value. So N infers

S without the help of any oracle.

(b) for NV-Learning Here M�(f(0)f(1) : : : f(n)) #= y means that the oracle

Turing machine queries only within dom(�) and converges to the output y. Again

there is a case-distinction.
(i) (9f 2 S) (8�) (8n) (9m > n) (9� � �) [M�(f(0)f(1) : : : f(m)) # 6= f(m + 1)].

As in the Ex-case it is possible to construct a computable sequence �0; �1; : : : such that

M makes in�nitely many mistakes during the attempt to NV-learn f for any oracle of

the form a0�0a1�1 : : : and thus there is an oracle which is m-equivalent to A on which

M does not succeed to NV-learn f . So this case does not hold.

(ii) (8f 2 S) (9�) (9n) (8m > n) (8B � �) [MB(f(0)f(1) : : : f(m)) #= f(m + 1)].

Here the learning-algorithm is a bit di�erent to that of the Ex-case but has the same

basic idea. Note that for every input f(0)f(1) : : : f(n) and for every � there is some

� � � such that M�(f(0)f(1) : : : f(n)) # since some oracle in the m-degree of A

extends �. The new inference machine N tries always to extrapolate B from a �nite

amount of information � in the just indicated way and crosses out every � which once

produced an error via moving it into a book-keeping set C.

Let � =2 C be the �rst binary string within a given enumeration which is

not already crossed out. Now let

N(f(0)f(1) : : : f(n)) =M�(f(0)f(1) : : : f(n))

for the �rst � � � where this computation terminates within j�j computa-

tion steps. If it turns out later (when the input f(0)f(1) : : : f(n)f(n + 1)

is processed) that this prediction was wrong then � is crossed out and C

is replaced by C [ f�g.
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Note that at every stage of the algorithm only �nitely many strings are crossed out

and that the � in the algorithm will either converge to some � satisfying (ii) and

therefore make almost always correct predictions or remain at some � before which

hazardedly abstains from making wrong predictions and so keep this wrong � (which

then of course does not matter).

For the criteria Fin, PEx and PFin the same result holds also with 1-degrees in place

of m-degrees.

Theorem 2.2 Assume that a single machine M PEx[B]-learns S via access to oracle

B for any B in the 1-degree of A. Then S can be PEx-learned without any oracle.

The same result holds also for the criteria Fin and PFin.

Proof First it is necessary to note that each �nite binary string can be extended to

a set in the 1-degree of A since A is not recursive and therefore in�nite and coin�nite

{ otherwise one could �x A and replace queries to the oracle by computations. Now

let S be PEx-learnable via uniform access to some oracle in the 1-degree of A via a

machineM . The set

E = fMB(�) : B �1 A and � 2 lN�g = fe : (9� 2 f0; 1g�) (9� 2 lN�) [M�(�) = e]g

is an enumerable set of indices: since M uses for any output only a �nite pre�x of

B, the search can go over all binary strings instead over all oracles 1-equivalent to A.

Since any such string can be extended to an oracle 1-equivalent to A, each index in

E is an index of a total recursive function. On the other hand, E contains all guesses

MA(f(0)f(1) : : : f(n)) for each f 2 S. SinceM learns S from oracle A, E contains for

each f 2 S and index. Thus E is an enumerable set containing only indices of total

recursive functions and for each function in S there is an index in E. It follows that

S is PEx-learnable.

The proofs for the criteria Fin and PFin are based on the same idea. For each �

de�ne { similarly to above { the sets

E(�) = fM�(�) : � 2 f0; 1g�g

G(�) = [��� Ej�j(� )

where the Es(� ) are a recursive enumeration of the E(� ) uniform in � . The algorithm

outputs \?" until it reaches some � � f such that G(�) is not empty. Then the

algorithm outputs some e 2 G(�) and abstains from any mind change. This �rst

guess is computed relative some �nite binary string � and since some B �1 A extends

�, the output must be a correct index for f provided that f 2 S. Furthermore in the

case PFin e has to be a total index, also if � does not belong to any f 2 S. So again

it follows that uniform access to 1-degrees does not support learning for the criteria

Fin and PFin.

Some 1-degrees are also trivial for Ex-learning and NV-learning. For example the

1-degree of a cylinder A (which satis�es A(hx; yi) = A(hx; 0i) for all pairs hx; yi). But
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if A is su�ciently thin then the class REC of all recursive functions can be Ex-learned

and NV-learned uniformly relative to every B �1 A by a single machineM .

Theorem 2.3 If the principal function pA of A dominates every recursive function

f 2 REC then there is a machine M which Ex-learns REC relative to any oracle B

in the 1-degree of A. The same holds for NV.

Proof Recall that the principal function pA of A assigns to each x the x-th element

of A. It can be shown that for each B �1 A, the principal function pB of B also

dominates every recursive function: B = ff(x) : x 2 Ag for some recursive bijection f

and if pB would not dominate the recursive function g then pA would also not dominate

the recursive function n! maxff(m) : m � g(n)g.

Now the following algorithm MB Ex-learns all recursive functions g: On input

� � g of length n, MB �rst computes x = pB(n). Then MB searches for the least

e such that 'e(y) #= �(y) within x computation steps for all y 2 dom(�). If MB

�nds such an e below n then MB outputs this program e. Otherwise MB outputs the

symbol \?" to indicate that MB could not make up its mind because of either too few

data or too few computation time.

MB converges to the minimal index e of g: Since the principal function pB domi-

nates the computation time of 'e, the learner M
B outputs almost always either e or

an index below e. The second case only occurs �nitely often because there are only

�nitely many indices i < e and each 'i either diverges or computes a value di�erent

form f on some xi. So for all x > x0 + x1 + : : :+ xi�1, M
B does no longer output a

value below e and thus converges to e.

The modi�cation from Ex-learning to NV-learning is thatMB in place of outputting

e simulates 'e(n + 1) for x computation steps and outputs the result if it is found

within x steps. Otherwise it outputs 0. Since pB dominates the computation-time

of 'e whenever 'e is total (and in particular equals f) the procedure predicts almost

always every recursive function. Note that M must be total only for oracles B �1 A

and may diverge on others, in particular on oracles represented by �nite sets.

This proof gives the nice (and already well-known) fact that whenever a dominating

function can be computed from the oracle then REC can be learned under the criterion

Ex using this dominating function. This function needs not to be the same for all

permitted oracles but each permitted oracle must give a dominating function via the

same algorithm. The construction will be used in several proofs below.

3 Lists

Angluin [2] discovered that it is very much easier to learn a class of languages if it is

a uniformly recursive family of functions (in her case: sets) whose index is known to

the learner. Jantke [16] introduced within this model the intensively studied notions
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of monotonic inference and Zeugmann [28] gives an overview on these studies.

In the present work such a uniformly recursive computation procedure is replaced

by an oracle which consists of a list of all functions in S. It is investigated how much

such an oracle supports learning.

For a given array F let Fx denote the function Fx(y) = F (x; y). Such an array F

is a list for a class S i� S = fFx : x 2 lNg, so a list for S contains just all functions

in S (but no nonmembers of S). First it is shown that some famous classes can be

learned using a list.

A folklore result is that every uniformly recursive class can be learned w.r.t. its

enumeration as hypothesis space. Some anonymous referee of the European Conference

on Computational Learning Theory 1997 pointed out to the authors that this proof

transfers to the setting of learning lists: if the entries to the rows of the list are used

as hypothesis space then every class S can be learned in the limit with help of a list.

Furthermore Case, Jain and Sharma [8] introduced learning w.r.t. limiting programs

as a space of hypothesis and showed that they increase the learning power. This is

still true for learning with lists as additional information. Nevertheless in the present

work only the restricted version is considered where the learner still has to use the

given acceptable numbering 'e as hypothesis space for learning from lists under the

criteria Ex, PEx, Fin and PFin.

Theorem 3.1 The classes REC of all recursive functions, REC0;1 of all f0; 1g-valued

recursive functions, S0 = ff : (9e) ['e = f ^ 0e1 � f ]g of all self describing functions,

S1 = ff : (81x) [f(x) = 0]g of all functions with \�nite support" and S0 [ S1 are in

Ex[List], i.e., they are learnable in the limit from a list.

Proof S0 and S1 are in Ex, so it remains to show the other three results. The proof for

REC is based on the fact that every high oracle allows to infer all recursive functions

[1] and the result for REC0;1 uses a construction of Jockusch [17].

If F is a list for REC then the function h(x) = F0(x)+F1(x)+: : :+Fx(x) dominates

each Fy and therefore all recursive functions. Arguing as in Theorem 2.3, REC can be

Ex-learned using the dominating function h obtained from the given list F of REC.

Similarly it is shown that S0[S1 2 Ex[List]. As above, a function h is constructed
which dominates every function in S0[S1. This function indeed dominates all recursive

functions and thus enables to learn every subset of REC, in particular S0 [S1. So the

domination property remains to be shown:

Note that a self describing function codes its index, i.e., there is an e such that

0e1 � f and f = 'e. For any total recursive function 'e let 's(e;a)(x) = 0 for x < a,

's(e;a)(a) = 1 and 's(e;a)(x) = 'e(x) for x > a. The recursion-theorem states that

there is an a with 's(e;a) = 'a, so one of these functions is self describing and in

S0 [ S1. Thus h dominates this 'a and also the �nite variant 'e of 'a.

The case REC0;1 is more di�cult, since no dominant function can be computed

from a list of REC0;1. But the following method from [17] can be applied: Let  be a

9



f0; 1g-valued function which has no recursive extension. Now de�ne via dovetailing

'g(i)(x) =

8><
>:
0 if 'i(y) converges for all y � x;

 (x) if  (x) converges before the condition above is satis�ed;

" otherwise.

The function 'g(i) has a recursive f0; 1g-valued extension i� 'i is total. Now the

inference-algorithm always outputs the i from the least pair hi; ji such that the input

f(0)f(1) : : : f(x) is compatible with 'i;x and that 'g(i);x is extended by Fj. Such a

pair hi; ji exists, since each f0; 1g-valued total recursive function has an index i and

then the function 'g(i) is also total and recursive and equals some Fj. Furthermore

all false pairs hi; ji are thrown out since either 'i(x)# 6= f(x) for some x or 'g(i) has

no extension within the list of all f0; 1g-valued recursive functions and in particular

di�ers from Fj.

Theorem 3.2 There are two classes S2; S3 2 PFin[List] such that their union S2[S3
and their di�erence S2 � S3 are not in Ex[List].

Proof Let S3 contain all constant functions. The class S2 is de�ned using a construc-

tion from [18, Theorem 7.1]. This theorem shows that there is a family 'g(i) and an

array A of low Turing degree such that

� range('g(i)) = f0; 1g and 0i1 � 'g(i);

� For all i there is at most one x with 'g(i)(x)" ;

� Ai extends 'g(i) and is recursive;

� The class S4 = fAi : i 2 lNg is not Ex-learnable relative to A.

Now let S2 contain all functions in S4 plus all constant functions of the form f(x) =

hi; ji + 2 where (8j � i) ['g(i)(j)# ]. The following four observations hold:

� S2 2 PFin[List]: Learning a function f 2 S2, the learner M checks whether

f(0) > 1. If so, the function is a constant function and M outputs a total index

for it. If not, M outputs \?" until an i is known with 0i1 � f and a j is found

such that the function h with h(0) = hi; ji + 2 is in the list. Then the function

'g(i) is total beyond j and M outputs the index g0(i; j) of

'g0(i;j)(x) =

(
f(x) if x � j;

'g(i)(x) otherwise;

where f is the function on the input. Only its �rst j values are necessary, but

the j can depend on the concrete form of the list. By the choice of the constant

functions in S2 and the fact that the list contains exactly those functions which

belong to S2, the algorithm always outputs exactly one total program and this

one is correct if the data belongs to some f 2 S2.
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� S3 2 PFin[List]: This follows directly from the fact, that a constant function f

is known after seeing the value f(0).

� S2 � S3 =2 Ex[List]: S4 = S2 � S3 and A is a list for S4. By the choice of A and

S4, the class S4 can not be learned with A-oracle, in particular not under the

criterion Ex[List] since the list presented can be exactly A.

� S2[S3 =2 Ex[List]: There is also an A-recursive array for S4[S3 = S2[S3. Since

S4 =2 Ex[A], the same holds for the superclass S2 [ S3 and so this class can also

not be learned with the help of a list. Indeed the point is that by the union the

particular information, from where on a function 'g(i) is total, is overwritten.

These observations give directly the theorem.

A direct corollary is, that the class S2 can be learned under the criteria PFin[List],

PEx[List], Fin[List] and Ex[List], but not under the criteria PFin, PEx, Fin or Ex. So

lists are really a help for several learning criteria.

4 Predictors

Barzdins [5] and Blum and Blum [7] introduced the learning criterion NV where the

learner has to interpolate the next value from the previous ones. In this section it

is investigated to which extent such a predicting device can be uniformly translated

into a learner for one of the other four criteria. Formally, a total device P is called a

predictor for S i�

(8f 2 S) (9x) (8y > x) [P (f(0)f(1) : : : f(y)) = f(y + 1)];

i.e., if it predicts each function f 2 S at almost all places y + 1 from the data

f(0); f(1); : : : ; f(y). Any list can be turned into a predictor as follows: Let F be

a list and de�ne

P (a0a1 : : : ay) =

8><
>:
Fx(y + 1) for the �rst x � y with

Fx(0) = a0; Fx(1) = a1; : : : ; Fx(y) = ay;

0 if there is no such x � y.

This translation is not reversible: a predictor may also predict functions outside the

class S to be learned and so hide the information which functions belong to S and which

not. The translation from lists to predictors has the following immediate application.

Theorem 4.1 S 2 NV[List] for all S � REC, i.e., lists are omniscient for NV.

While lists help under all inference-criteria, predictors are no longer helpful for PFin,

Fin and PEx. This is due to the fact, that every �nite modi�cation of a predictor

is again a predictor and so the inference machine has to ful�ll the requirements for
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these three learning criteria also under all �nite modi�cations of the predictors. Then

it follows by an easy adaption of the proof of Theorem 2.2 that the criteria are not

supported by predictors as additional information.

Theorem 4.2 PEx[Predictor] = PEx, Fin[Predictor] = Fin and PFin[Predictor] =

PFin.

While predictors are omniscient for NV-learning (by de�nition) and trivial for Fin,

PFin and PEx, they are intermediate for Ex-learning. In particular the natural class

REC is learnable by predictor while the also natural class REC0;1 is not.

Theorem 4.3 REC 2 Ex[Predictor] and REC0;1 =2 Ex[Predictor].

Proof The �rst result is due to the fact that a dominating function can be computed

using a predictor. For each � the predictor P de�nes inductively a total function f�
via extending the string � by P :

f�(n) =

(
�(n) for n 2 dom(�).

P (f�(0)f�(1) : : : f�(n� 1)) for n =2 dom(�).

Let �0; �1; : : : be an enumeration of all strings. Now

g(x) = f�0(x) + f�1(x) + : : :+ f�x(x)

is uniformly recursive in the given predictor P and dominates every recursive function.

As in Theorem 2.3 it follows that REC can be learned in the limit using this g obtained

from P .

The construction fails in the case of REC0;1. Indeed there is a low oracle predicting

all f0; 1g-valued functions. This oracle gives a predictor, but the predictor is not

su�ciently powerful to learn REC0;1 in the limit since this requires a high oracle

[1, 10].

5 Classi�ers

A one-sided classi�er C [27] assigns to every string � a binary value. C classi�es S i�

(8f) [f 2 S , (81� � f) [C(�) = 1] ]:

Note that the quanti�er also ranges over nonrecursive functions, i.e., C must not con-

verge to 1 on any nonrecursive function. Two-sided classi�cation requires in addition,

that C converges on the functions outside S to 0. So one-sided classes are the �
(s)

2 -clas-

ses and two-sided classes are the �
(s)
2 -classes according to the notation of Rogers [20,

Chapter 15.1]; they are also called �0
2-classes and �0

2-classes. There are classes of

recursive functions, which have no two-sided classi�er, even not relative to any oracle,
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e.g., REC and S1 [6, 20, 27]. On the other hand, every countable class has a (not

necessarily recursive) one-sided classi�er. So the concept of one-sided classi�cation is

more suitable. One-sided classi�ers still do not help the criteria PEx, Fin and PFin

via the same argument as in the case of 1-degrees and predictors. So the following

theorem is stated without proof, since the one for Theorem 2.2 could be adapted with

minor changes.

Theorem 5.1 PEx[Classi�er] = PEx, Fin[Classi�er] = Fin and PFin[Classi�er] =

PFin.

Reliable inference means, that a machine converges on a function f i� it learns this

function. The next theorem shows, that every class S learnable in the limit using a

classi�er can even be learned reliably using this classi�er.

Theorem 5.2 Ex[Classi�er] = REx[Classi�er].

Proof The criterion Ex is more general than REx, thus it is su�cient to show only

the direction Ex[Classi�er] ! REx[Classi�er]. Let S 2 Ex[Classi�er] via a classi�er

C and an inference-machineM . Furthermore let pad be an injective padding-function

such that 'pad(i;j) = 'i for all i and j. The new REx-learner N uses pad to enforce a

mind change whenever C takes the value 0 (let M(�) = a for some 'a =2 S):

N(�)=pad(M(�); � ) for the longest � �� with C(� )=0_M(� ) 6=M(�).

N is a reliable inference algorithm for S: If f 2 S, then C converges on f to 1 and

M converges to some index e with 'e = f . There is a smallest � � f which satis�es
C(�) = 1 and M(� ) = M(�) = e for all � with � � � � f . Thus the N converges to

pad(e; � ). If f is not in S then there are in�nitely many � � f with C(� ) = 0. For all

these � , N takes the value pad(M(� ); � ) and all these values are di�erent, i.e., N does

not converge. It follows that S is learned via the reliable machine N .

The next Theorem uses { as the corresponding Theorem 3.1 for lists { Jockusch's

construction [17] in order to show that every class containing all f0; 1g-valued self

describing functions is learnable using a classi�er.

Theorem 5.3 If REC0;1 \ S0 � S then S 2 Ex[Classi�er].

Proof Let  be a f0; 1g-valued partial recursive function without any total recursive

extension. By Jockusch's construction [17] there is a recursive function g such that

the functions 'g(n;m) satisfy the following requirements:

� 0m1 � 'g(n;m) and range('g(n;m)) = f0; 1g;

� If 'n is total so are all functions 'g(n;m);

� If 'n is partial then 'g(n;m)(x)#=  (x) for almost all x 2 dom( ).

By the recursion theorem with parameters [26, II.3.5] there is a recursive function h

such that 'h(n) = 'g(n;h(n)) for all n. Note that every function 'h(n) is self describing
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and that 'h(n) is total i� 'n is. Furthermore, 'h(n) is either total or has no total

recursive extension at all.

It can be computed e�ectively in the limit from any classi�er C for S whether the

function 'h(n) is total or not: To see this let �s be the longest pre�x of the function

'h(n)(0)'h(n)(1) : : : such that all its values are calculated within s stages. An extension

� � �s is said to be consistent with 'h(n) ('h(n);s) i� for every x 2 dom(� )\dom('h(n))

(x 2 dom(� ) \ dom('h(n);s)), the values � (x) and 'h(n)(x) coincide. Consider the

following sequence, which is uniformly recursive in the parameters s and n.

as =

8>>><
>>>:
1 if there is an extension � 2 f0; 1gs+1 of �s

which is consistent with 'h(n);s and which satis�es

C(�) = 1 for all � with �s � � � � ;

0 otherwise.

If 'n is total, then 'h(n) is total and C converges on 'h(n) to 1. If s is su�ciently large,

then �s is su�ciently long and the string � = 'h(n)(0)'h(n)(1) : : : 'h(n)(s) satis�es the

requirements. � extends �s. � is obviously consistent with 'h(n);s. C(�) = 1 for all �

between �s and � . So the as converge to 1.

If 'n is partial, then 'h(n) has no recursive extension and C does not converge to 1

on any f extending 'h(n). Let � be the longest pre�x of 'h(n) such that all its values

are de�ned. Now consider the following binary tree T�:

A binary string � is in T� either if � � � or if � extends �, � is consistent

with 'h(n) and M(�) = 1 for all � between � and � .

Since C does not converge to 1 on any f extending 'h(n), the binary tree T� does not
have any in�nite branch f . So the tree T� is �nite and there is some x bounding the

length of every string in T�. Let s > x be a stage such that for all y � x the value

'h(n)(y) is calculated within s steps whenever it is de�ned. Now �s = �. Furthermore

whenever � =2 T� there is either some � between �s and � with C(�) = 0 or there is

some y with � (y)# 6= 'h(n)(y)# . If the �rst case does not hold, then it follows by the

construction of T� that the second case holds for some y � x. So � is also inconsistent

with 'h(n);s. It follows that as = 0 since as is not 1 via any � 2 f0; 1gs+1. The as
converge to 0 in this second case.

So it can be computed in the limit using C which functions 'n are total and this

computation does not depend on the particular form of C. The learner M uses this

information for the following construction: At every stage M outputs the �rst e which

is at stage j�j assumed to be total and for which 'e;j�j is consistent with the data �

seen so far, i.e., which satis�es 'e;j�j(x) = �(x) for all x 2 dom('e;j�j) \ dom(�).

This result also holds for NV-learning (after modifying the last part of the proof above).

Any list can be transferred into a one-sided classi�er: The classi�er determines for

every � the smallest index e � j�j such that � � Fe. If this index for �a is greater

than that for � or if �a does not have such an index, then the classi�er outputs 0.

Otherwise it outputs 1. The algorithm can be easily veri�ed. So everything which can

be learned from a classi�er can also be learned from a list.
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Theorem 5.4 Ex[Classi�er] � Ex[List].

So both concepts Ex[Classi�er] and Ex[Predictor] are weaker than Ex[List]. The next

theorem shows that they are incomparable and thus both concepts are strictly weaker

than Ex-learning from a list.

Theorem 5.5 Ex[Classi�er] and Ex[Predictor] are incomparable.

Proof Since REC0;1 2 Ex[Classi�er] � Ex[Predictor], only the other noninclusion

remains to be shown: Ex[Predictor] 6� Ex[Classi�er]. The class to witness this nonin-

clusion is the union of the following two classes:

� The class S4 from Theorem 3.2.

� The class S5 = f�e : e � 0g\REC of all total step-counting functions. Thereby

�e(x) is de�ned as the time to compute 'e(x) if 'e(x) #; otherwise �e(x) is

unde�ned.

The class S4 has a list relative to some low oracle A and therefore it also has a
classi�er relative to A. S5 even has a recursive one-sided classi�er C: The uniform

graph G = f(x; y; e) : �e(x) #= yg of all step-counting functions is decidable. There

is a one-sided computable classi�er C such that C(f(0)f(1) : : : f(n)) = 0 i� n = 0 or

an = maxfi � n : (8j � i) (9x < n) [(x; f(x); j) =2 G]g > an�1

where an�1 is de�ned analogously; C(f(0)f(1) : : : f(n)) = 1 otherwise. So the union

of S4 [ S5 has a classi�er of degree A, but as already mentioned in Theorem 3.2,

S4 and every superclass can only be learned from oracles of high degree. Therefore

S4 [ S5 =2 Ex[Classi�er].

On the other hand, ifM is a predictor for S5 thenM must predict the computation-

time for each function 'e almost everywhere. So uniformly in M some function dom-

inating all computation-times can be calculated and using this function it is possible

to infer every recursive function { in particular every function in S4 [ S5.

A direct corollary is, that whenever M is a predictor for S5, then a dominating and

therefore nonrecursive function can be computed relative to M . In particular S5 has

no predictor which uses only the computable above constructed classi�er as oracle and

thus S5 =2 NV[Classi�er].

Theorem 5.6 The class S5 of all total step-counting functions is not in NV[Classi�er].

6 Martingales

A martingale calculates the gambling-account of someone who always tries to predict

the next value of a function. In each round the gambler places an amount q on some

15



number a, i.e., for each string � there is a rational number q, 0 � q < m(�), such that

m(�a) = m(�) + q for some a and m(�b) = m(�)� q for all b 6= a. The gambler wins

on a function f i� the martingale takes on pre�xes of f arbitrary large amounts of

money. m is a martingale for S i� m wins on every function f 2 S. The interested

reader �nds more on martingales in Schnorr's book [24].

Theorem 6.1 If S 2 Ex[Martingale] then S 2 Ex. The same holds for all other

inference criteria. In short: martingales do not help.

Proof There is a martingale m �T A for some 1-generic set A �T K which wins on

every recursive function { indeed every set A of hyperimmune degree is suitable. Let

g �T A be a monotone function which is not dominated by any recursive function.

Now the strategy of m is the following:

Let � be the input, x = j�j and a = f(x) be the value to be predicted.

Now look for the least e � x such that 'e(y) converges to �(y) for y =

0; 1; : : : ; x� 1 and 'e(y) also converges to some value a within g(x) steps.

If there are such an e and a then bet q = m(�)

2
on a and otherwise do not

bet (q = 0).

This martingale succeeds: Let e be the least index of f . g is not dominated by

h where h(x) is the time to compute all values 'e(0); : : : ; 'e(x). There are even

in�nitely many x with g(x) > h(3x + 3e). For these x, the martingale m bets for

y = x; x+ 1; : : : ; 3x+ 3e on either 'e(y) or 'j(y) for some j < e. It happens for each

j < e at most once that m bets on 'j(y) and 'j(y) 6= 'e(y), so this phenomenon

produces in total at most e wrong bets. On the other hand, 'e(y) is computed within

g(x) � g(y) steps and so whenever m takes no value 'j(y) with j < e then it predicts

the value 'e(y). So at least 2x + 2e of the predictions between x and 3x + 3e are

correct and m(f(0)f(1) : : : f(3x + 3e)) � (9
8
)x+e. Since this holds for in�nitely many

x, m succeeds on g and so m succeeds on every recursive function.

If now S 2 Ex[Martingale] then S can also be learned via any oracle relative to

which such a martingale exists. In particular S can be inferred relative to a low

1-generic oracle and thus S can be learned in the limit without any oracle [25]. So

martingales do not help for learning in the limit. The same holds for learning under

the criterion NV.

As in the case of predictors and classi�ers, each �nite part of any martingale can

be extended to a martingale for S. The set of all such �nite parts is enumerable and

therefore the arguments from Theorem 2.2 can be used to show that martingales do

also not help to learn under the criteria Fin, PFin and PEx.

So martingales are on the bottom of the inclusion-structure of these four types of

additional information as it is summarized in the following theorem.

Theorem 6.2 The inclusion-structure of the four types of additional information with

respect to the learning criteria Ex and NV are given by the following diagrams.
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Ex-learning

Predictor

List

Classi�er

Martingale = Trivial
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NV-learning

List = Predictor = Omniscient

Classi�er

Martingale = Trivial

6

6

For the criteria Fin, PFin and PEx only lists provide some help while the other three

types of additional information are trivial, i.e., do not increase the learning-power.
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