
International Conference Massively Parallel Processing - Applications
and Development, June 21-23, Delft, The Netherlands.

Local Load Balancing for Data-parallel Branch-and-bound

Dominik Henrich

Institute for Real-Time Computer Systems and Robotics*, Department of Computer Science,
University of Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany, e-mail:
dhenrich@ira.uka.de

Keywords: load balancing, local communication, SIMD architectures, branch-and-bound,
operations research

1. INTRODUCTION

Branch-and-bound (B&B) is a well-known and general combinatorial optimisation
technique that is used especially for NP-hard problems where no special purpose algorithm
is known. Because of the high problem complexity, parallel implementations are required for
speeding up the computations. Algorithms with high and stable efficiency, i.e., utilisation of
the processing elements (PEs), are desired. This can be achieved by load balancing
techniques that intervene if the PE utilisation worsens.

We use a common version of the sequential B&B formulation as a basis for the parallel
algorithm from [8] (see Figure 1). The initialisation is hidden in a function call and is
discussed in detail in [1]. The main data structure, the OPEN set, stores single nodes of the
search tree. Any search strategy (best-first, depth-first, etc.) can be applied. The data-
parallel B&B works quite similarly to the serial algorithm, except that each PE has its own
OPEN set. All PEs execute the main loop of the B&B synchronously: select a node from its
OPEN set, expand it, insert the evaluated successors back into the OPEN set, and update
the incumbent if necessary.

After a couple of iterations, some PEs become idle because their OPEN sets are empty or
their memory space is exhausted. In both cases, nodes of the local OPEN sets have to be
redistributed such that a maximum number of PEs can continue processing. Load balancing is
the task of equilibrating the load as evenly as possible. The easier task of load sharing is to
supply each PE at least with some load. For MIMD computers, many approaches have
already been studied [4]. Recently, parallel B&B has been investigated for SIMD computers.
A global approach is to map busy to idle PEs in a one-to-one-correspondence and to
transfer nodes by global communication. This approach has been applied to the IDA*
algorithm in [6, 7]. Static or dynamic trigger conditions indicate when load balancing is
reasonable (see [3] also).

* This research work was founded by the Deutsche Forschungsgemeinschaft (DFG) with a stipend in the frame of a

"Graduiertenkolleg" of the Computer Science Department, University of Karlsruhe. The work was performed at

the Institute for Real-Time Computer Systems and Robotics, Prof. Dr.-Ing. U. Rembold and Prof. Dr.-Ing. R.

Dillmann.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197598706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

D. Henrich: Local Load Balancing for Data-parallel Branch-and-bound 2

procedure Branch_and_bound(root :node);
set OPEN; /* set for unsolved nodes */
node x, y, /* x, y nodes of search tree */

z; /* z incumbent */
begin

if Solution(root) then z := root;
else z := ø;
Init_B&B(root);
while OPEN contains node x with g(x)<f(z) do

x := Select(OPEN);
for all successors y of x do begin

if Solution(y) and f(y)<f(z) then
z := y;

if not Leaf(y) and g(y)<f(z) then
OPEN := OPEN u {y};

end;
if Trigger(OPEN) then

Balance(OPEN);
end;
if Solution(z) then Return(z);
else Return(failure);

end;

Figure 1: B&B algorithm in Pascal notation

The general drawback of global approaches to load balancing is that, with an increasing
number of PEs, the global communication of nodes will slow down the algorithm. Thus, in
the future, only local approaches seem applicable for massive parallel computers. An
example for asynchronous (semi-) local load balancing is the Gradient Model in [5]. But with
synchronous processing, this model is not suitable for the quick load changes which occur for
tree searches.

A fully local balancing approach is nearest-neighbour-averaging (NNA) (see [10] for a
survey). In every step, the mean load of the PEs and their direct neighbours is determined. If
a PE has more than the mean load, it transfers part of its load to those neighbours with less
than the mean load. The transferred load is proportional to the difference of mean and
neighbour's load. To our knowledge, this approach was not applied to SIMD machines up to
know.

Here, we present and evaluate a local load balancing approach, especially suited for
data-parallel B&B algorithms on SIMD computers, and compare it with NNA. Therefore, we
introduce a model of equilibrating liquids and apply it to local load balancing in Section 2.
To get more insight on the load balancing process, we separated it from the B&B process and
discuss simulation results in Section 3. The question of when to do load balancing is
answered in Section 4. Experimental results in the scheduling domain show the improvement
by the chosen approach in Section 5.

2. THE LIQUID MODEL

The proposed load balancing method implements a Liquid Model. For this model, a flat
box is filled with a homogeneous liquid. In the balanced state, the liquid has the same height
at any place in the box. If one pours additional liquid into the box at an arbitrary location,
the liquid equalises itself such that the height is again the same everywhere. See Figure 2a for
illustration.

D. Henrich: Local Load Balancing for Data-parallel Branch-and-bound 3

 a

 b

Figure 2: The Liquid Model (a) and its discrete equivalent (b)

This equilibration happens by locally displacing the superfluous liquid to the
neighbourhood. By successive displacements, the liquid equalises itself again. This is a local
mechanism but with global effect, because none of the additional liquid molecules will
"jump" to locations with lacking liquid. The discrete equivalent to the above continuous
model is shown in Figure 2b.

In the load balancing process, the load corresponds to the liquid of the Liquid Model. If
there is a heavy load at some location and a light load at another location, the load should
be transferred from the former to the latter place. Global approaches would detect these
locations and transfer the load directly. Instead, with the Liquid Model, the load is
transferred implicitly. While there are PEs with light loads, heavily loaded PEs shift nodes
to some fo their neighbours and receive nodes from other neighbours. The lightly loaded PEs
only receive nodes but do not give any away. By successive shifting, the load is
automatically transferred to the PEs with low load.

PE i shifts a node ⇔
C0: Li > 0
C1: Li > 1
C2: C1 ∨ [(Li = 1) ∧ (Li-1 > 1)]
C3: C1 ∧ Li ≥ Li+1
C4: C2 ∨ Li ≥ Li+1
C5: C0 ∧ Li ≥ Li+1

Table 1: Different shift conditions
depending on the load Li of PE i

 a

P1 P2 P3 P4 P5 P6 P7 P8

 b
Figure 3: Example of a single load balancing step by
the Liquid Model with shift condition C5 in an ring

When load is balanced according to the Liquid Model (LM), the load is transferred by
successive shifts. By each shift, one B&B node (respectively elementary work part) is
transferred to a direct neighbour. Every PE has to decide whether to shift a node. This is a
local decision and can be driven by different conditions. In Table 1, several conditions for
any topology with a total order are given. The conditions C0 and C1 use only load
information Li of PE i itself. Conditions C2 through C5 use load information of the preceding

D. Henrich: Local Load Balancing for Data-parallel Branch-and-bound 4

or succeeding neighbour. Condition C1 and its extension in C2 guarantee that none of the
busy PEs become idle due to shifting nodes.

An example for one LM step in a ring is given in Figure 3. Thereby, the PEs shift nodes to
their neighbours on their right iff condition C5 holds true. In (a), the initial situation is shown
and the shifts are indicated by arrows. In (b), the result with the "virtually" transferred
nodes is shown. Two effects of the LM can be seen from this example. In the left PE group,
PE 1 through 5, a global transfer by local shifts is performed. Additionally, in the right PE
group, PE 6 through 8, the load is balanced.

Using LM in combination with a B&B algorithm, the transferred nodes are inserted into
the OPEN list after each shift. If the best nodes are always selected for shifting, a global
best-first B&B strategy can then be approximated after several shifts in chordal rings [9].
Though we presented the LM for rings, other PE topologies can be handled as well. In multi-
dimensional topologies, one shift is performed in each dimension. For example, in a 2-
dimensional torus, one shift is made horizontally, the other vertically.

There are two main differences between LM and NNA. First, with NNA, none of these
global effects are possible by shifting nodes locally. This is because if the load of two
neighbours is already balanced, then no nodes will pass this pair in one step. Therefore, this
balanced pair form a burden for (virtual) node transfer. Second, the NNA achieves load
sharing only as a side effect of balancing the load. This contrasts with LM, where load is
shared among the PEs in the first place, and after that load balancing takes place. We
investigate the second effect in greater detail in the following section.

3. SIMULATION OF THE LOAD BALANCING PROCESS

The B&B algorithm with dynamic load balancing can be viewed as two interlaced,
adversary processes. The B&B disturbs the load distribution by generating or pruning nodes
of the search tree in an unpredictable way. On the other hand, the load balancing process
tries to re-equilibrate the load by transferring nodes. Investigating solely the balancing
process apart from the B&B algorithm makes the effects more clearly recognisable.

We compare NNA and LM with different shifting conditions in ring simulations of size p.
As the worst case scenario, one PE holds the total load Ltot = c * p, where c > 0 is an
arbitrary integer, and the remaining PEs are idle. Thus, in the perfectly balanced system
state, every PE holds c load elements. Each balancing method is executed synchronously
until the balanced state is reached. For NNA, a synchronous variation of the method in [10]
is used. If a non-integer amount of load should be shifted then the amount is rounded
upwards. This insures that the perfectly balanced system state is actually reached.

In Figure 4, the simulation results with different numbers of PEs are shown. As time
measure, the maximum number of node transfers for each balancing step (with LM that is
one shift) is summed. This measure is reasonable if the start-up time for communication is
short compared to the node transfer time itself. The results show almost linear increase in
time with p for all balancing methods. For NNA, there are polynomial terms involved but
with only small coefficients. Additionally, simulation results not shown here indicate a linear
increase in time with the size Ltot of initial load. For load balancing, NNA is roughly four
times slower than LM. For load sharing, NNA needs about 23 times as long as LM.

In LM, nodes are always shifted, but the load difference to the successor is negative (C3
through C5). Thus, this mechanism gives priority to load sharing. In the worst case, only

D. Henrich: Local Load Balancing for Data-parallel Branch-and-bound 5

20001500100050000
0

20

40

60

80

NNA-balance

LM-C5-balance
LM-C4-balance
LM-C3-balance

#Processors P

Transfers T [*1000]

a 20001500100050000
0

10

20

30

40

50

NNA-share

LM-C5-share
LM-C4-share
LM-C3-share

#Processors P

Transfers T [*1000]

b

Figure 4: Simulation results of load balancing (a) and sharing (b) by NNA and LM for
synchronous processing in the worst case (c = 5)

when all PEs are supplied with a node, is the load balanced. The time consumption of LM
for load sharing is T = p - 1. This explains the huge time difference between LM and NNA
with respect to load sharing. In fact, LM does local load sharing in rings with very short
time, because an ring with p PEs has diameter of p /2.

According to the simulation results, the time for load balancing in the worst case is at
most polynomial. This is not contrary to the analysis in [11], where the local load balancing
according to the α-splitting method needs exponential time in the worst case. An important
difference to our method is that a receiver-initiated method is used, thus, load is balanced
only when the receiving PE is idle. Another difference lies in the measure of time. There, one
transfer (or time unit) includes the communication of multiple nodes. This is reasonable only
with long set-up times for communication. Here, we count each shift of a single node as one
time unit. This is reasonable with modest set-up times, which holds true for most SIMD
machines. Thus, local load balancing is not necessarily a bad choice on SIMD machines.

4. LOCAL TRIGGER MECHANISM

In the last section, we have regarded the load balancing process itself. Together with the
B&B process, these two processes are interlaced, i.e. the processes alternate. The question is
now, which process should proceed. With SIMD computers, this question becomes even
more important because when one process is triggered all PEs are forced to execute this
process. In the B&B algorithm, after each iteration, a trigger mechanism tells whether load
balancing is necessary.

In former research, two types of mechanisms for triggering synchronous load balancing
have been used (see [3, 6, 7]). First, the static trigger Sx indicates load balancing if the
number of active PEs A decreases a fixed fraction x of all available PEs p. Thus, A ≤ x * P.
Second, the dynamic trigger DP or DK adapt themselves and indicate load balancing if the
gain by balanced load is greater than the loss necessary for executing balancing. All of these

D. Henrich: Local Load Balancing for Data-parallel Branch-and-bound 6

1000100101,1,01,001

NNA

LM-C5

Frequency f

Iterations I

 1000100101,1,01,001

NNA

LM-C5

Frequency f

Run-Time T

Figure 5: Dependency of iteration number I and run-time T on frequency f

triggers have the drawback of using global information, since in both cases, the number of
active PEs is computed.

Here, we use a periodic trigger Pf. The load is balanced with frequency f, i.e. every 1/f-th
B&B iteration. The trigger makes no use of any global information, therefore it does not
adapt itself to the system state. In SIMD computers, the single instruction stream indicates
when load balancing is performed. Thus, which trigger should be used is dependent on the
performance of the global information retrieval mechanism (reduction).

Using the periodic trigger, one has to determine the frequency of load balancing. For our
problem domain (see Section 5) we have chosen a couple of problem instances and solved
them with different trigger frequencies. The mean iteration number and the mean run-time are
shown in Figure 5 (unscaled). As expected, the number of iterations decreases with
increasing frequency and approaches the optimum. The overall run-time has a minimum. For
NNA and LM the frequencies fNNA = 0,125 and fLM = 1 shift per iteration are optimal.
Certainly, the optimal frequencies rely on the fraction of communication and calculation
time.

5. EXPERIMENTAL RESULTS

To show the efficiency of the LM, a scheduling application domain is used. We solve
problems of the following NP-hard scheduling problem. Given: a fixed number of elementary
jobs with different processing times that operate on identical machines. The single job is not
preemptable and there are no precedence relations between the jobs. The optimisation
problem is to find the sequence of jobs on each machine that minimises the total processing
time (makespan) of the system.

Before the main loop of the data-parallel B&B is entered, the Selective Initialisation from
[1] is executed efficiently supplying the PEs with nodes. The search itself uses a depth-first
strategy. After every B&B-iteration, one of the above load balancing methods is invoked, as

D. Henrich: Local Load Balancing for Data-parallel Branch-and-bound 7

NNA LM-C0 LM-C1 LM-C2 LM-C3 LM-C4 LM-C5
0

1

2

3
Mean # Iteration [*1000]

 NNA LM-C0 LM-C1 LM-C2 LM-C3 LM-C4 LM-C5
0

100

200

300

400

500
Mean Run-Time in [sec]

Figure 6: Mean number of iterations I and mean run-time T of B&B with different load
balancing methods.

indicated in Figure 1. To ensure a fair comparison, the number of nodes searched must
remain constant with different load balancing methods. Therefore, all solutions are searched
and a predefined pruning threshold (first heuristic incumbent) is used.

For the experiments, we used the MasPar SIMD machine MP-1 with 16384 PEs arranged
in a two-dimensional torus. Altogether, 20 problem instances with 106 up to 108 expanded
nodes were solved [2]. In Figure 6, the mean number of B&B iterations and the mean run-time
are plotted for different local load balancing methods. In the periodic trigger, the minimal
frequencies fNNA and fLM from Section 4 are used.

The different shift conditions mentioned in Table 1 show very different behaviour in the
experimental results of Figure 6. All three conditions performing only the load sharing task
(C0-C2) are far off. In contrast, the LM using any shift condition including load balancing
(C3-C5) are very efficient. All of them outperform the NNA method.

6. CONCLUSION

The realisation of the Liquid Model leads to a scalable and efficient dynamic load
balancing technique. This is ensured by the strong locality of the algorithm in combination
with the ability for global balancing effects. As it has been shown for the ring and the 2-
dimensional torus, it is expected to be suitable and efficient for various other topologies.

Besides the simplicity of the presented algorithm, the main advantage lies in the
combination of load sharing and load balancing. The most simple version following both the
sharing and the balancing task (C5) yields the best overall run time. The Liquid Model gives
high priority to the sharing task before balancing is performed. Especially for Branch-and-
bound, this prioritisation proves to be efficient. But this property is useful in far more
applications than only Branch-and-bound algorithms.

D. Henrich: Local Load Balancing for Data-parallel Branch-and-bound 8

The Liquid Model has outperformed a former local load balancing approach, Nearest-
Neighbour-Averaging (NNA). None of the above two properties are reached by the NNA
algorithm. It does not have such global effects when executing only a single local operation,
and NNA performs load sharing only as a consequence of balancing.

The Liquid Model is independent of the trigger used to initiate load balancing. The
introduced periodic trigger does not use any global information and is therefore non-
adaptive. The choice of the best trigger mechanism relies on the fraction of the
communication and computation speed.

Future research should investigate the applicability of the LM in asynchronous processing.
On common MIMD machines, the fraction of set-up time to communication time is greater
than on SIMD machines. The periodic trigger has to be adapted and this will certainly
change the overall run-time behaviour. Additionally, the Liquid Model should be tested in
other problem domains of the parallel Branch-and-bound.

REFERENCES

1. Henrich D., 1993, "Initialization of parallel branch-and-bound algorithms", Workshop
on Parallel Processing in Artificial Intelligence (PPAI-93), Aug. 28., Chambery, France.

2. Henrich D., 1994, "Paralleles Branch-and-bound und Scheduling", Universität
Karlsruhe, Fakultät für Informatik, Interner Bericht 1994,11. - in preparation

3. Karypis G., Kumar V., 1992, "Unstructured tree search on SIMD parallel computers",
Technical Report, Department of Computer Science, University of Minnesota,
Minneapolis, April 1992.

4. Kumar V., Ananth G. Y., Rao V. N., 1991, "Scalable Load balancing techniques for
parallel computers", Technical Report 91-55, Department of Computer Science,
University of Minnesota.

5. Lin F. C. H., Keller R. M., 1987, "The gradient model load balancing method", IEEE
Transactions on Software Engineering, vol 13, no 1, pp 32-38.

6. Mahanti A., Daniels C. J., 1993, "A SIMD approach to parallel heuristic search",
Artificial Intelligence, vol 60, no 2, pp 243-282.

7. Powley C., Ferguson C., Korf R. E., 1993, "Depth-first heuristic search on a SIMD
machine", Artificial Intelligence, vol 60, no 2, pp 199-242.

8. Roucairol C., 1988, "Parallel branch-and-bound algorithms - An overwiew", Proc. of the
Int. Workshop on Parallel and distributed Algorithms, Gers, France, pp. 153-163.

9. Wah B. W., Ma Y. W. E., 1984, "MANIP - A Multicomputer Architecture for Solving
Combinatorial Extremum-Search Problems", IEEE Transactions on Computers, vol C-33,
no 5, pp 377-390.

10. Willebeek-LeMair M. H., Reeves A., 1993, "Strategies for dynamic load balancing on
highly parallel computers", IEEE Trans. on Parallel and Distributed Systems, vol 4, no 9.

11. Kumar V., Rao N., "Paralllel depth first search - Part II - Analysis", Int. Journal of
Parallel Programming, vol 16, no 6, 1987.

