
Local load balancing according to a simple liquid model

Dominik Henrich

Institute for Real-Time Computer Systems and Robotics
University of Karlsruhe, D-76128 Karlsruhe, Germany

e-mail: dhenrich@ira.uka.de
Abstract

Load balancing is one of the central problems that have
to be solved in parallel computation. Here, the problem of
distributed, dynamic load balancing for massive
parallelism is addressed.

A new local method, which realizes a physical analogy
to equilibrating liquids in multi-dimensional tori or
hypercubes, is presented. It is especially suited for
communication mechanisms with low set-up to transfer
ratio occurring in tightly-coupled or SIMD systems. By
successive shifting single load elements to the direct
neighbors, the load is automatically transferred to lightly
loaded processors.

Compared to former methods, the proposed Liquid
model has two main advantages. First, the task of load
sharing is combined with the task of load balancing,
where the former has priority. This property is valuable in
many applications and important for highly dynamic load
distribution. Second, the Liquid model has high
efficiency. Asymptotically, it needs O(D.K.Ldiff) load
transfers to reach the balanced state in a D-dimensional
torus with K processors per dimension and a maximum
initial load difference of Ldiff. The Liquid model clearly
outperforms an earlier load balancing approach, the
nearest-neighbor-averaging.

Besides a survey of related research, analytical results
within a formal framework are derived. These results are
validated by worst-case simulations in one- and two-
dimensional tori with up to two thousand processors.

1. Introduction

Load balancing is one of the central problems that has
to be solved in parallel computation. Load imbalance
leads directly to processor idle times and to low
exploitation of the potential power of distributed
computing. High efficiency can only be achieved if many
processors are supplied with work and the computational
load is evenly balanced among the processors. This
problem can be divided in two distinct tasks, load
balancing and load sharing. The easier task of load sharing
is to supply each processor with at least some load.
Thereby, the amount of processor load is of no interest as
long as there is load at all. Load balancing is the task of
equilibrating the load as evenly as possible. As a final
goal, every processor should have the same amount of
work.1

For both of these tasks, many approaches have already
been studied. A general taxonomy of load balancing
approaches is given in [Casavant88]. Because the number
of processors in available parallel computing systems
increases quickly, scalable algorithms are required. In

1 The distinction between load sharing and load balancing may
seem rather artificial because balanced load is also shared load,
but it leads to a better insight of the algorithms and for some
applications load sharing is sufficient.

centralized load balancing algorithms the scheduler forms
an bottleneck. Thus, we concentrate on distributed
approaches. Within this category of distributed
algorithms, we additionally distinguish between global
and local methods. With global2 load balancing one
processor may transfer load (or load information) to any
other processor in the system. This transfer of the load
packages is done by sending them through a routing
network. Several global distributed approaches with
asynchronous communication are described, for example,
in [Kumar91, Schabernack92].

The general drawback of global approaches to load
balancing is that, with an increasing number of
processors, the global communication of the load will
slow down the algorithm. Thus, in the future, only local
approaches seem applicable for massively parallel
computers. In this paper, we concentrate on local
distributed load balancing and load sharing methods, where
only communication between a processor and its directly
connected neighbors is allowed. Thus, the communication
via several processors is not admissible.

For the load balancing process, we assume that the
total work consists of single load elements that represent
tasks to be processed. Because in many applications the
size of the tasks is not known in advance, all the load
elements are assumed to be of the same size. Thus, as a
time measure in the load balancing algorithms, the
transfer of one load element is appropriate and any
compression of load is excluded. The number of
communication set-ups transferring several load elements
is not sufficient as time measure for tightly-coupled or
SIMD systems, because the set-up is fast compared to the
communication itself.

For the application process, we assume that the
amount of load is increased and reduced dynamically in
time by generating new tasks and finishing existing ones.
Additionally, the development of load increase and
reduction is not predictable, thus, future load distribution
cannot be foreseen. Such highly dynamic load
distributions are given, for example, in search tree
algorithms such as Branch-and-bound, A*, IDA*, etc.

In summary, the application algorithm with dynamic
load balancing can be viewed as two interlaced, adversary
processes, where the balanced state is unlikely to be
reached. As consequence, an explicit termination criterion
of the load balancing process can be omitted. Another
consequence of dynamic load distribution is that aged load
information is nearly worthless. The older the information
the more likely has the load configuration changed in the
meantime.

2 This interpretation differs from the one in [Casavant88]. There,
local load balancing addresses the scheduling and dispatching of
processes within a single processor, and global load balancing
addresses the load distribution over the total multiprocessor
system.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by KITopen

https://core.ac.uk/display/197598701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Here, we present and evaluate a new local load
balancing approach. Former local load balancing
approaches are reviewed and discussed in Section 2. Then,
the new method is illustrated and a formal framework is
set up in Section 3. Using this framework, the properties
and the efficiency of the method are derived analytically in
Section 4. These analytic results are supported by several
simulation results in Section 5.

2. Related Research

Related methods can be divided into three basic
approaches: the diffusion method, the dimension
exchange, and the nearest-neighbor-averaging. All three
approaches have one property in common, the strict
locality of control and communication. Nevertheless, each
approach uses a different starting point.

2 . 1 . Diffusion Approach

In every step, a fixed fraction of the load difference
between two neighboring processors is exchanged. When
these local operations are used, the load distribution
converges to the global optimum. The efficiency of the
diffusion method depends on a diffusion parameter α
which determines the size of the transferred load fraction.

For processor i, let the load Li ∈ R and a set of directly
neighboring processors Δ(i) be given. Thereby it is
assumed that the load consists of very many and very
small load elements, so that a continuous representation
is admissible. By the diffusion method, a load δi(j) is
transferred from processor i to every neighbor j ∈ Δ(i)
with

δi(j) = α (Li – Lj), with α ∈ (0,1) (1)
With δi(j) < 0, the load is transferred in the inverse

direction. In this formulation, truncation errors are not
considered. Every change of state of the processor load Li
by synchronous load balancing can be described by the
following transition equation:

Li(t+1) := Li(t) + ∑
j∈Δ(i)

 δi(j) (2)

For a system with P processors and a total load of L
that is distributed unevenly over the system, the processor
load has to converge to L/P by the diffusion method. In
[Cybenko89], this method is analyzed for the first time.
Assuming a synchronous communication, necessary and
sufficient conditions for the diffusion parameter are given
to ensure convergence. Additionally, the optimal
parameter for hypercubes is found, which enables the
highest convergence rate of load balancing. In
[Bertsekas89], the convergence for an asynchronous
version of the diffusion method is shown, provided that
the communication delay of a link has an upper bound.

Besides the necessary convergence itself, the rate of
convergence is important. In [Boillat90], different
convergence rates for several network topologies are
given. In this analysis, only the number of
communication set-ups is considered, but not the amount
of transferred data. It is shown that in D-dimensional tori
with K i processing units in dimension i, the load
configuration converges asymptotically to a balanced state
with O(D .max{Ki}

2) time. In D-dimensional binary
hypercubes only O(D) steps are necessary. Additionally,
the number of iterations necessary to reach a balanced

state depends on the initial load configuration but this fact
is not considered by the time measure used. In [Xu93], the
optimal diffusion parameter for synchronous load
balancing in D-dimensional tori with K processors per
dimension is derived.

In [Kumar87] a variant of receiver-initiated diffusion
approach named α-splitting is analyzed for unidirectional
rings. When an idle processor with index i + 1 demands
processor i for work then the fraction (1 – α).Li, with 0 <
α < 1, of the total load Li is transferred to processor i +
1. The analysis shows, that for an increasing number P of
processing units, an exponential time effort of β P, with
β = 1/(1 – α), is necessary asymptotically. The time
effort is measured by the number of transfers, independent
of the (continuous) amount of information transferred.
The discrepancy to the results of the former paragraphs is
due to the different initialization of load balancing.

2 . 2 . Dimension Exchange

The dimension exchange is a further local load
balancing method. It is a synchronous approach where
load balancing takes place successively in a single
dimension. See [Willebeek93, Cybenko89, Dragon89]. In
[Cybenko89], a dimension exchange for asynchronous
multiprocessor systems with hypercube topology is
presented, which needs log(P) steps with P processors.
One load transfer includes the communication of multiple
load elements. This approach is suited for problems with
little dependency between the load elements (see [Fox89]).

Comparing dimension exchange and the diffusion
method, each approach is well suited for different
communication models. With the diffusion method,
simultaneous communication with all direct neighbors is
best. For the dimension exchange, one communication at
a time is sufficient. In [Cybenko89], it is shown that the
dimension exchange outperforms the diffusion method in
hypercubes. This holds true for k-ary n-cubes too [Xu93].

2 . 3 . Nearest-neighbor-averaging

The nearest-neighbor-averaging (NNA) is a further,
completely local load balancing method. The idea is to
change the load of each processor such that it is equal to
the mean load of the processor and its neighbors.
Regarding the processor i and the set of its direct
neighbors Δ(i), there is a mean load of ⎯Li(t) = (Li(t) +
∑j∈Δ(i)Lj(t)) / (|Δ(i)| + 1) at time t, where |Δ(i)| stands
for the number of neighbors. After one load balancing
step, at time t + 1, the processor i should have a load of
⎯Li(t). As a transition equation for the load change, the
following formula holds true:

Li(t+1) :=
1

|Δ(i)| + 1

 ⎝⎜
⎛

 ⎠⎟
⎞Li(t) + ∑

j∈Δ(i)

Lj(t) (3)

The NNA can be realized in two different ways. An
asynchronous variant is described in [Willebeek93]. When
a processor is highly loaded then it transfers a portion of
its load to all deficient neighbors. The amount of
transferred load is proportional to the difference of the
mean load and the load of the neighbor. Let the deficiency
of each neighboring processor j ∈ Δ(i) for the processor i
be given by hj = max{0,⎯Li – Lj} and the total deficiency
by H i = ∑ j∈Δ (i) hj. Then, the asynchronous NNA
performs a load transfer δi(j) from processor i to each of
its neighbors j ∈ Δ(i) with

(a)

(b)
Figure 1: The behaviour of the simplified Liquid model (a) and its discrete equivalent (b) when further liquid
resp. load is added

δi(j) = (⎯Li(t) – Li)
hj
Hi

(4)

In the synchronous variant of NNA, the load of every
processor is divided into |Δ(i)| + 1 portions of the same
size. The processor itself and all of its neighbors receive
one load portion. The execution of each load balancing
step satisfies the transition equation in (3). Let the
processor i have a load Li and a set of neighbors Δ(i).
Then, by the synchronous NNA, a load transfer δi from
processor i to each of its neighbors j ∈ Δ(i) is performed
with3

δi =
L i

|Δ(i)| + 1
(5)

The synchronous NNA is analyzed in [Hong90] for
binary hypercubes and in [Qian91] for general hypercubes.
There, it is proven that the load balancing method
converges and that the variation of the load has an upper
bound.

When comparing NNA with the diffusion method in
Section 2.1, the NNA can be recognized as a special case
of the diffusion method. With a diffusion parameter α = 1
/ (|Δ(i)| + 1) the transition equation of the diffusion
method in (2) turns into the one of NNA in (3).

2 . 5 Conclusion

All the presented local load balancing approaches have
one disadvantage in common: They assume a continuous
amount of processor load. Contrasting with that, for the
most applications, a discrete representation of load is
more adequate. Additionally, with massively parallel
computers, one cannot turn to a continuous representation
because the local processor memory is relatively small
and, therefore, the number of load elements is limited. A
continuous representation simplifies the analysis of the
methods but it leads to the load imbalance mentioned in
Section 2.1. Therefore, it is important to design load
balancing mechanisms, which take this problem into
account and, e.g., assume discrete load elements.

Many of the former local load balancing approaches can
be reduced to the diffusion approach. Additionally, this is
the only approach, which has been analysed to this extend
so far. For several topologies, e.g. K-ary D-cubes, the
NNA implements the optimal diffusion parameter.
Thereby, the time effort grows asymptotically in a
quadratic form, for an increasing network diameter.

3 The communication effort can be reduced down to the difference
between the two opposed load transfers by previous exchange of
load information.

Because NNA represents the best known method analyzed
so far, we will use it for comparisons in Section 5.

In the previous investigations of load balancing
methods, the number of load transfers, i.e.
communication set-ups, has been used as a time measure.
For coarse-grained parallel computers, this is an
appropriate measure, because the set-up time is huge
compared to the transfer time itself. On the other hand, for
the fine-grained massively parallel architectures, this ratio
is inverse. To determine analytically the time effort on
these machines, it is important to consider the amount of
transferred information too. This amount is always greater
than or equal to the number of transfers, because for
communicating one information unit at least one set-up
of the link is necessary. Thus, in the rest of the paper, we
regard the communicated amount instead of the
communication set-ups.

3. The Liquid Model

This section presents a new local load balancing
method. The basic idea is illustrated using both a
continuous and discrete view point. Then, we develop a
formal definition of the model as a basis for our analysis.
Finally, an example showing two basic properties is
given.

3 . 1 . Illustration

The proposed load balancing method implements a
Liquid model. For this model, a flat box is filled with a
homogeneous liquid. In the balanced state, the liquid has
the same height at any place in the box. If one pours
additional liquid into the box at an arbitrary location, the
liquid equalizes itself such that the height is again the
same everywhere. See Figure 1a for a simplified
illustration.

This equilibration happens by locally displacing the
superfluous liquid to the neighborhood. By successive
displacements, the liquid equalizes itself again. This
global effect is achieved by a strictly local mechanism,
because none of the additional liquid molecules will
"jump" to locations with lacking liquid.

The discrete equivalent to the above continuous model
is shown for the one-dimensional case in Figure 1b. This
simplified physical effect can be used for load balancing.
There, the geometry of the box is discretized and every
interval corresponds to one processing unit. The liquid in
the liquid model corresponds to the load in the load
balancing process. The quantization of the liquid height is
represented by elementary load units. For example, in a

Ci,d ⇔ "Processor Pi shifts one load element to Pi+1d
" ⇔

C0: Li > 0 "Pi has load elements to be transferred"

C1: Li > 1 "Pi is not idle after giving away one load element"

C2: C1 ∨ [(L\s\do2(i) = 1) ∧
(Li–1d > 1)]

"Pi is not idle after giving away one load element or receives one load element

from Pi–1d
"

C3: C1 ∧ Li ≥ Li+1d "Pi is not idle after giving away one load element and Pi+1d
 has not more load"

C4: C2 ∧ Li ≥ Li+1d "Pi is not idle after giving away one load element or receives one load element

from Pi–1d
 and Pi+1d

 has not more load"

C5: C0 ∧ Li ≥ Li+1d "Pi has load elements to be transferred and Pi+1d
 has not more load"

Table 1: Formal and verbal description of different instances (C0 to C5) of shift condition Ci,d, which indicates
dependent on the load Li whether processor Pi should shift one load element to its neighbour in dimension
d

tree search algorithm, the nodes of the search tree that still
have to be processed are the single load units.

If there is a heavy load at some location and a light
load at another location, the load should be transferred
from the former to the latter place. Global approaches
would detect these locations and transfer the load directly
by a communication network. Instead, with the Liquid
model, the load is transferred implicitly. While there are
processors with light loads, heavily loaded processors
shift load elements to some of their neighbors and receive
load elements from other neighbors. The lightly loaded
processors only receive load elements but do not give any
away. By successive shifting, the load is automatically
transferred to the processors with low load. The approach
taken here targets for both aims, load balancing and load
sharing. These aims will not be reached in one step, but
asymptotically by several load balancing iterations.

3 . 2 . Formal Model

For a precise description of the liquid model load
balancing method and for the formulation of analytical
statements about the algorithm, the above presented idea
is now formalized. With regard to that, we assume a
general cyclic mesh structure (torus) as the
communication network of the processing units. This
structure is a general topology, which is used, e.g., in
Paragon or MasPar computers. The main advantages are
that it can easily be scaled in the number of processors
and that it is easy to implement.

Given is a D-dimensional, symmetric4 torus with P =
KD processing elements, for a fixed K ∈ N+. The
processor Pi has a unique identity i, which results from
the (cyclic) coordinates of the torus and is given by the D-
dimensional vector i = (i1 , …, iD). The set of all
admissible identifiers of the processing elements is given
by the index set

I := {(i1, …, iD) | ij ∈ {0, …, K–1}
 and j = 1, …, D}

For simplification the indices are taken (mod K), which
means Pi stands for Pi mod K. The access to solely one
dimension d is enabled by the vector 1d that consists of a
1 in the d-th position and in all other positions 0.

4 A symmetric torus consists of an identical amount of elements
(processors) in every dimension. This symmetry is no
precondition of the Liquid Model, but it simplifies the description.

The processor system is inspected only at discrete
points in time t ∈ N . Thus, we regard a series of
successive system states. At every arbitrary point of time
t ∈ N, the load of processor Pi is denoted by Li(t) ∈ N. In
the rest of the paper, the unique time parameter can be
omitted, and the load states refer to the time t, i.e., Li
stands for Li(t).

The change of load states is accomplished by shifting
elementary load units between neighboring processors.
The Boolean function Ci,d(t) controls the shift of load
elements. If for one processing unit i the condition Ci,d(t)
holds true, then it shifts one load element to its neighbour
in dimension d. The function Ci,d(t) represents one of the
six conditions C0 to C5 in Table 1. It evaluates the
selected condition for the processing element i
(respectively for its load Li) at time t. Thereby, the one-
dimensional condition is applied in the direction of
dimension d. Thus, the scalar operations within the
conditions refer only to the d-th component of the D-
dimensional vector. For example C5i,d(t) stands for Li >
0 ∧ L(i1,...,iD) ≥ L(i1,...,id+1,...,iD).

The conditions C0 and C1 use load information Li of
only the processor i. Condition C1 and its extension in
C2 guarantee that none of the busy processors become
idle due to shifting load elements. Conditions C2 through
C5 additionally use load information of the preceding
neighbor Li–1d

 or succeeding neighbor Li+1d
. By each of

these conditions an extra mechanism for load balancing in
the frame of the Liquid model is implemented. Because
each processing unit uses the same mechanism, the rules
C0 to C5 are never working together.

As one load balancing step of the Liquid model, the
change of state from time t to time t + 1 is regarded. Such
a load balancing step consists of several substeps.
Therefore, the load state Li of all processors i ∈ I is
changed synchronously in every dimension d = 1, …, D.
Instead of viewing the explicit transfer of the load, here,
we regard the resulting effect. The state change of load
depends only on the direct neighbors within one
dimension. With that, a definition of load balancing
relying only on these shift conditions can be established.

Definition 1: (Liquid model)
A change of state Li(t) → Li(t+1), with i ∈ I, is called
Liquid model load balancing (LM-C, with condition C in
Table 1), if and only if in every dimension d = 1, …, D
the following equation is applied successively:

P(0) P(1) P(2) P(3) P(4) P(5) P(6) P(7) (a)

Li

i

(b)

Li

i
Figure 2: Example of a single load balancing step by the Liquid model with shift condition C5 in a ring of eight
processors P(1) through P(8) (black arrows: real load transfer, grey arrows: "virtually" transferred load). The
load configurations are depicted as processors with load elements on the left and as function graph of the
load Li depending on the processor Pi on the right.

Li(t+1) :=

 ⎩⎪
⎨
⎪⎧

Li(t) + 1, if Ci-1d,d(t) ∧ ¬Ci,d(t)

Li(t) – 1, if ¬Ci-1d,d(t) ∧ Ci,d(t)

Li(t), otherwise

By the above definition, the elementary step of iterative
load balancing following the Liquid model is stated. Now,
the question for the aim and the termination of the load
balancing arises. The goal of every load distribution
method, when aiming to balance the load configuration, is
to obtain the balanced state in as few as possible state
changes t → t + 1 starting from any arbitrary load
distribution Li. In the final balanced state, every processor
load should have reached about the mean load of the total
system. This balanced load configuration can be defined
by the maximum difference between two processors as
follows.

Definition 2: (Balancing)
A load configuration Li, with i ∈ I, in a D-dimensional
torus is called balanced, if and only if for all i ∈ I the
following condition holds true:

|Li – Lj | ≤ D, for all i, j ∈ Ι ◊
The above definition serves as a formal termination

criterion of the load balancing method, which is necessary
for the analysis in Section 4. As long as the condition for
a balanced load configuration is not fulfilled, a successive
application of single balancing steps is necessary. As a
load shifting operation, a procedure Transfer_-
Load(Pi, Pi+1d) is assumed, which transfers one load unit
from processor Pi to processor Pi+1d. With that, we
obtain the following imperative formulation of the load
balancing method of Definition 1.

Algorithm 1: (Liquid model load balancing)
while (|Li – Lj | > D) do

for d = 1, …, D do
for all processors Pi, i ∈ I, do in parallel

if Ci,d then
Transfer_Load(Pi, Pi+1d);

end;
end;

end;

When integrating the Liquid model load balancing
method in a given application algorithm, the formal
termination criterion is not checked. To do so, global
information about the system state had to be computed,
which reduces the scalability of the algorithm. Without
termination criterion, the load balancing mechanism will

not terminate by itself. On the other hand, this property is
not necessary, because the application algorithm and the
load balancing proceed concurrently. Thus, the
termination of the load balancing mechanism is
guaranteed by the application.

3 . 3 . Example

An example for one single Liquid model step in a ring
topology is given in Figure 2. Thereby, every processing
unit shifts one load element to its neighbor on the right
iff condition C5 holds, i.e., if a processor has load
elements and its load is greater than or equal to the load of
its neighbour. Additionally, the processors shift the load
elements in the same direction that is given by the indices
(here, to the right). In (a), the initial configuration is
shown and the future shifts are indicated by arrows. In (b),
the resulting configuration after the shift operation is
given. the arrows indicate the "virtually" transferred load
elements. (A formal definition of the virtual load transfer
is given in Section 4.)

Two effects of the Liquid model can be seen from this
example. In the left processor group, P(0) through P(4), a
global transfer by local shifts is performed. Additionally,
in the right processor group, P(5) through P(7), the load
is balanced.

There are two main differences between the Liquid
model and the former load balancing methods in Section
2. First, with the former methods, none of these global
effects are possible by shifting load elements locally. This
is because if the load of three neighbors is already
balanced, then no load elements will pass this triplet in
one step. Therefore, this balanced triplet forms a burden
for a (virtual) load transfer. Second, the former methods
achieve load sharing only as a side effect of balancing the
load. This contrasts with the Liquid model, where load is
shared among the processors in the first place, and after
that, load balancing takes place. We will investigate the
second effect in greater detail in the following section.

4. Analysis

In this section, we use the framework of the last
section to achieve three basic statements about the Liquid
model. The statements refer to global effects by local
operations, to the convergence to an equilibrated load
distribution, and to the high efficiency of the algorithm.
In the following, both statements are derived formally
only for condition C5, because it results in the most

Shift direction

i

Li

Li

i
Figure 3: Different shapes of ramps in one-dimensional load configurations and the resulting virtual load
transfers by LM-C5 in a one-dimensional ring.

efficient variant (see Section 5). The other conditions C3
through C4 can be treated in the similar way.

One representative of global effects has already been
illustrated for LM-C5 in Figure 2. The virtual load
transfers occur in the shift direction (here, to the right).
The precondition for that effect is a series of processors
that have exactly one elementary load, some processors to
the right being idle. Another general representative of
global effects is the virtual load transfer in the inverse
shift direction. Thereby, the load of some processor is
reduced by one element and of another processor, with a
smaller index, increased. The load of the intermediate
processors remains unchanged. The latter effect is
explained more precisely in the following definition (see
also examples in Figure 3).

Definition 3: (Virtual load transfer)
Given are two processors Px and Py, with x, y ∈ I and

within a dimension d, i.e., there exists a k ∈ N+ with y =

x + k.1d. A change of a given load configuration Li(t),
with i ∈ I, is called a virtual load transfer between
processors Px and Py, if Lx(t+1) = Lx(t) + 1 and Ly(t+1)
= Ly(t) – 1 under the condition that, for all i = x+1d, …,
y–1d Li(t+1) = Li(t) holds. ◊

Besides global effects by the load balancing method,
global structures can be observed in the load configuration
itself. Because the load balancing method considers
multiple dimensions one by one, only one-dimensional
structures are of interest. A typical structure is given by
the strongly monotone ascent of the processor load in the
shift direction. Such load ascents with maximum length
are called ramps in the following definition (see also
examples in Figure 3).

Definition 4: (Ramps)
The load configuration between two processors Px and
Py, with x, y ∈ I and within dimension d, forms a ramp
if the following four conditions hold true:

(1) there exists a k ∈ N+ with y = x + k.1d and
(2) for all i = x, x+1d, …, y–1d holds Li < Li+1d

and
(3) Lx–1d ≥ Lx and

(4) Ly+1d ≤ Ly ◊

In Figure 3, a series of examples for ramps in one-
dimensional load configurations is depicted. There,
processor load Li is plotted against the processor index i.
The shift direction is to the right. In the upper row, the
slope of the ramps decreases from the left to the right
example. In the lower row, special cases with smallest-
possible ramps in a load plateau are shown (left: jump,
mid: maximum, right: minimum). Additional arrows in
the figure indicate the virtual load transfers. The
relationship between ramps and virtual load transfers is
stated in the following theorem.5

Theorem 1: (Global effects)
Let Li(t) > 0, with i ∈ I. A virtual load transfer between
processors Px and Py, with x, y ∈ I, can be observed after
one load balancing step by LM-C5 if the load
configuration between these two processors forms a ramp.
Proof: The condition (1) of Definition 4 guarantees the
order of the processors Px and Py, which is required by
Definition 3. From conditions (2) and (3) and Definition 1
follows that Px receives an additional load element from
Px–1d

 but does not shift any to Px+1d
, i.e., after one load

balancing step, processor Px has one more element and
Lx(t+1) = Lx(t) + 1 holds. From conditions (4) and (2), it
follows analogously that Py shifts one load element to
Py+1d

 but does not receive any from Py–1d
, i.e., after one

load balancing step, processor Py has one element less
and Ly(t+1) = Ly(t) – 1 holds. For all processors Pj with
j = x+1d, …, y–1d, it follows from condition (2) with i =
j, that Pj does not give away any load, and from condition
(2) with i = j–1d, that Pj does not receive any load. With
that, the load state of processor Pj is unchanged and
Lj(t+1) = Lj(t) holds after one load balancing step. Now
all the requirements of Definition 3 are fulfilled. ◊

5 In this and the following theorems, a load configuration is
assumed, where all processors have at least one load element
(Li > 0, with i ∈ I), i.e., the goal of load sharing has already been
reached. This assumption is not critical, because all processors
are supplied with load elements by the Liquid model in a very
short time (in O(D.K) steps).

A basic precondition for the efficiency of the load
balancing method is that the quality of the load
configuration does not worsen by applying load
balancing. With LM-C5, this conservative behavior can
be guaranteed. The reason is that the maximum or the
minimum of the load is not increased or decreased,
respectively. The following lemma proves this statement.

Lemma 1: (Conservativity)
After the application of one load balancing step by LM-
C5 to a load configuration Li(t), with i ∈ I and Lmax(t) =
max{Li(t) | i ∈ I} with Lmin(t) = min{Li(t) | i ∈ I }
respectively, it holds:

Lmax(t + 1) ≤ Lmax(t) and Lmin(t + 1) ≥ Lmin(t).

Proof . Initially, we consider only a partial step in
dimension d. By the last two cases of the state transition
by LM in Definition 1, the load state of a processor
cannot be increased. The first state change Li(t+1) := Li(t)
+ 1 is performed if Ci,d(t) ∧ ¬Ci+1d,d(t) holds true. With
C5 as a condition, this is equivalent to Li–1d(t) ≥ Li(t) ∧
Li(t) < Li+1d(t). Thus, processor Pi has no more load
than its neighbor Pi+1d after one partial load balance step
in dimension d. With minimal load the argumentation is
analogous. Because the partial steps in all dimensions are
executed successively, their combination to one full load
balancing step does not increase or decrease any maxima
or minima, respectively. ◊

Besides the conservativity referring to the load
configuration, the load balancing method additionally has
to improve the distribution of the load. For iterative
methods, this requires an improvement within a fixed
number of iterations. Otherwise, the efficiency cannot be
guaranteed. For LM-C5, this improvement can be
observed at all left maximum positions or right minimum
positions in load plateaux or valleys, respectively. At
these positions, the behavior is symmetrical, thus we
regard only a left, global maximum position. The
application of a load balancing step can have two
alternative consequences. Either the value in the
maximum position is reduced (see upper row in Figure 3),
(because no other extreme positions can arise
spontaneously, the total number of maximum positions
has been decreased), or the maximum position has moved
for one processor in the inverse shift direction (see lower
row of Figure 3). In the following lemma, the two
alternatives of improvement are derived.

Lemma 2: (Improvement)
Given is a non-balanced load configuration Li > 0, with i
∈ I and Lmax = max{Li | i ∈ I}}. After a load balancing
step using LM-C5, every maximum position m ∈ I at the
left end of a plateau (Lm (t) = Lm a x (t) and
Lm–1d(t) < Lmax(t), for one d) is either:

(1) reduced in its value for one load unit:
Lm(t+1) = Lmax(t) – 1 and Lm–1d(t+1) < Lmax(t) or

(2) moved left for one processor element:
Lm(t+1) = Lmax(t) – 1 and Lm–1d(t+1) = Lmax(t)

Proof . Because the load configuration Li(t) is not
balanced, there always exist a dimension d and an index m
∈ I with Lm = Lmax and Lm–1d < Lm. With that, Pm
forms the upper (right) end of a ramp of Definition 4. Let

Pn, be the corresponding lower (left) end. Thus, Lm – Ln
indicates the load difference of the ramp.
Case 1. If Lm–2.1d < Lm–1d or Lm–1d + 1 < Lm holds,
then the load difference is greater than one. According to
Theorem 1, one load element has been transferred virtually
from Pm to Pn after one load balancing step. Because
Lm(t+1) = Lm(t) – 1 holds, Lm is no longer as high as
the previous maximum height, i.e., Lm(t+1) < Lmax(t).
Because the load difference is grater than one, no other
global maximum at the lower end of the ramp can arise
and, thus, condition (1) is satisfied.

Case 2: Let Lm–2.1d ≥ Lm–1d and Lm–1d+1 = Lm. The
direct neighboring processor Pm–1d forms the left end of a
ramp and the load difference of the ramp is equal to one.
According to Theorem 1, the maximum position Pm is
virtually transferred to Pm–1d with Lm(t+1) = Lm(t) – 1.
Because of the small load difference, a new global
maximum position arises at Pm–1d after the load transfer,
i.e., Lm –1d(t+1) = Lmax(t). The former maximum
position of Pm has moved left to Pm–1d and condition (2)
is satisfied. ◊

In Case 2 of the lemma, the extreme value positions
cannot be reduced because there is a load difference of only
one element in the ramp. E.g., if a ring of processors
with a load ramp of height one is part of a two-
dimensional torus, then a orthogonal ring may have such
a ramp, too. Thus, the number of total load difference in
the torus is increased by one. If we regard higher-
dimensional topologies then the total load difference,
which will not necessarily be reduced by LM-C5,
increases with the number of dimensions. This is because
the extreme positions may cycle on different rings. An
example of this situation is given in Figure 4a.

1 1 2
1 1 2
2 2 3

1 1 2
1 1 2
2 2 3

2 2 3
2 2 3
3 3 4

 (a)

1 1 1
0 1 2
1 1 1

 (b)
Figure 4: In (a) an example of a balanced load
configuration in a 3-dimensional torus, with total load
difference of 3 elements is given. In (b) a balanced 2-
dimensional torus with an unbalanced ring is shown.

On the other hand, if the total load difference in a D-
dimensional torus is greater than D, the difference will be
reduced by LM-C5. This fact is shown in the next
theorem. Before that, the relation of balanced torus and
their embedded rings is pointed out.

Lemma 3: (Balance)
Given is a D-dimensional torus. If all existing rings are
balanced then the torus is balanced, too.
Proof . Let all rings in the D-dimensional torus be
balanced (according to Definition 2) and let x, y ∈ I be
two arbitrary processors. Then, each path from x to y
leads via at most D pairwise orthogonal rings. Each ring
contains a load difference of at most one load element
because they are balanced. Thus, the load difference
between processor x and y sum up to at most D load

elements. This argument holds for all processor pairs x, y
and, therefore, the torus is balanced. ◊

The reverse implication does not hold because two
extreme positions x and y in a D-dimensional torus, with
1 < |Lx – Ly | ≤ D , may belong to the same ring. See
Figure 4b for a counterexample. Together with the in
Lemma 2 derived possibilities for improvement, this
lemma is used to show that an overall balancing of the
disturbed load is reached.

Theorem 2: (Convergence)
A unbalanced load configuration Li > 0, with i ∈ I in a
D-dimensional torus, will converge to a balanced
configuration when LM-C5 is applied.
Proof. As long as the torus is not balanced, there exist at
least one unbalanced ring with load difference greater than
two elements (Lemma 2). Applying Lemma 3 to this
ring, then, in every load balancing shift, either a global
extreme position is reduced, which is the trivial case, or is
is moved, which we will regard further. Without loss of
generality, we can asume that the extreme position is a
maximum. Because this ring has a load difference greater
than two elements, there exist a corresponding (local)
minimum position, which will move in the inverse
direction. Thus, the distance of the extreme positions is
reduced regarding to the dimension of the ring. (Here, the
distance in the ring is measured in the move direction, i.e.
the extreme positions may diverge at first.)
After a shift in another dimension these two extreme
posisions may not belong to the same ring anymore.
Still, there exist another unbalanced ring in which the
distance is further reduced according to the above
arguments. This process repeats until the maximum is
reduced due to Case 1 of Lemma 2 and there is no
unbalanced ring in the torus anymore. Hence, the load
configuration of the torus is balanced. ◊

With that, the following upper bound for the necessary
time effort of the LM-C5 can be set-up.

Theorem 3: (Efficiency)
For balancing an unbalanced load configuration Li > 0,
with i ∈ I and Ldiff = max{|Li – Lj|, i, j ∈ I}, in a

symmetrical, D-dimensional torus with P = KD

processors, K ∈ N, a maximum time effort T (measured
in shifts) by LM-C5, is necessary of:

T = O(D . K . Ldiff)

Proof. It is sufficient to prove, that the global maximum
is reduced for at least one load element after O(D.K) load
balancing steps, i.e., Lmax(t + O(D.K)) < Lmax(t) holds,
with Lmax = max{Li | i ∈ I}. For that, the set of global
maximum positions is regarded. Let m ∈ I with
Lm = Lmax be such a position.
Case 1. Let (Lm–1d < Lmax–1) or (Lm–1d

 = Lmax–1 ∧
Lm–2.1d

 < Lm–1) for one dimension d. According to
Lemma 2 (Case1), the maximum position m is removed
by one load balancing step.
Case 2. Let (Lm–1d = Lmax–1 ∧ Lm–2.1d

 ≥ Lmax–1).
According to Lemma 2 (Case2), the maximum position
m moves left onto m – 1d in dimension d by one load

balancing step. The Manhattan distance of the maximum
position to the nearest position n with Ln ≤ Lmax – 2 is
at most D .K in a torus with unidirectional links.
According to Theorem 2, this distance will be reduced by
moving both extreme positions in inverse directions.
Thus, at most D .K /2 steps are necessary until the
maximum position is equilibrated.
Case 3. Let Lm–1d = Lmax. The position m will not
move before all additional maximum positions lying
directly to the left of m have been moved and Lm–1d <
Lmax holds true. In the worst case, K – 2 positions have
to move. After that, for position m, Case 1 or 2 is
appropriate.
In all cases, at most O(D.K) load balancing steps are
necessary to remove the maximum position m. Because
this position is representative for all existing maximum
positions and all positions are processed in parallel,
Lmax(t + O(D.K)) < Lmax(t) holds. With the maximum
load difference Ldiff, the theorem is proven. ◊

The last theorem shows that local load balancing can
be efficient. Contrasting with NNA in Section 2, the
Liquid model shows only linear time effort in the single
parameters using a tori as interconnection network.6 The
NNA as special case of the diffusion approaches needs
quadratic time depending on the maximum number of
processing units per dimension. Comparing LM-C5 with
the dimension exchange in hypercubes, the LM-C5 has
the same asymptotical time effort, which has a
logarithmic form.

When examining the analytical results of LM-C5 and
other load balancing methods, please note that two
different time measures have been applied. The linear time
effort of LM-C5 is measured in the amount of
communicated data. The time effort of NNA or of the
dimension exchange is measured in the number of
communication set-ups. The data amount is always
greater or equal to the number of set-ups, because for
transferring a single data unit at least one set-up of the
connection is necessary. Thus, the comparison of the two
different time measures is justified.

5. Simulation results

The application algorithm with dynamic load balancing
can be viewed as two interlaced, adversary processes. The
application algorithm disturbs the load distribution by
increasing or reducing the load in an unpredictable way.
On the other hand, the load balancing process tries to re-
equilibrate the load by transferring load elements.
Investigating solely the balancing process apart from the
application algorithm makes the effects more clearly
recognizable. Because the nearest-neighbour-averaging
method (NNA) implements the optimal diffusion
parameter of the diffusion approaches in several
topologies, we use this method for comparison.

We compared NNA and LM with different shifting
conditions in ring simulations of size P. As the worst
case scenario, one processor holds the total load Lsum =

6 For the common topologies, either the number of processors K per
dimension or the dimension D itself grows with the topology size,
but not both simultaneously.

20001500100050000

NNA-balance

LM-C5-balance
LM-C4-balance
LM-C3-balance

Processors P

Transfers T [*1000]

0

20

40

60

80

(a) 20001500100050000
0

10

20

30

40

50

NNA-share

LM-C5-share
LM-C4-share
LM-C3-share

Processors P

Transfers T [*1000]

(b)
Figure 5: Simulation results of load balancing (a) and load sharing (b) by the nearest-neighbour-averaging
(NNA) and the Liquid model (LM) for synchronous processing in a ring for the worst case (c = 5)

c.P, where c > 0 is an arbitrary integer, and the remaining
processors are idle. Thus, in the perfectly balanced system
state, every processor holds c load elements. Each
balancing method is executed synchronously until the
balanced state is reached. For NNA, a synchronous
variation of the method in Section 2.3 is used. If a non-
integer amount of load should be shifted, then the amount
is rounded asymmetrically. When transferring to the right
and to the left, it is rounded upwards and downwards
respectively. This insures that the perfectly balanced
system state is actually reached and not only "ramps" turn
up.

As time unit T , the number of shifts executed
synchronously is used. Because NNA generally needs
more than one shift per logical load balancing step (one
NNA iteration), the maximum number of load transfers
per single load balancing step is summed. In the LM, this
corresponds to exactly one shift. This time measure is
reasonable, especially if the set-up time for
communication is short compared with the transfer time
itself. This case holds especially for the tightly-coupled
systems regarded here.

In Figure 5, the simulation results for different
numbers of processors are given. The results show an
almost linear increase in time with P for all balancing
methods. When numerically fitting analytical functions to
the results, quadratic components with small coefficients
can be recognized only for NNA. For load balancing,
NNA needs about four times longer than LM within our
range of processor numbers. For load sharing, the
difference is worse – NNA is 23 times slower than LM.

With LM, the load elements are always shifted, unless
the load difference to the successor is negative (C3
through C5). Therefore, load sharing has priority
compared to load balancing. In the worst case (see above),
only when all processors are supplied with a load the load
balancing phase begins. The time effort of LM for load
sharing amounts to T = P – 1, measured in necessary
shifts. This explains the huge difference between LM and
NNA for load balancing.

Additionally, simulation results not shown here
indicate a linear increase in time with the size Lsum of
initial load.

In Figure 7, the simulation results of LM in a squared,
two-dimensional torus are depicted for an increasing
number of processors. In (a), the worst case with Lsum =
c.P load elements on only one processors is assumed (c =
5) as initial load distribution. For the last three conditions
(C3 through C5), identical numbers of iterations are
necessary to reach the balanced state. In (b), the initial
load was uniformly ranomized among 0 and 100 load
elements. As above, the results show an only linear time
dependency of LM on the number of processors.

To show the efficiency of the LM, NP-hard scheduling
problems are used as an application domain in
[Henrich94, Henrich95]. For the experiments, we used the
MasPar SIMD machine MP-1 with 16384 processors
arranged in a two-dimensional torus. Altogether, 20
problem instances with 106 up to 108 expanded nodes of
the search tree were solved. The different shift conditions
mentioned in Table 1 show very different behavior in the
experimental results. All three conditions performing only
the load sharing task (C0 through C2) are average. In
contrast, the LM using any shift condition including load
balancing (C3 through C5) are very efficient. All of them
outperform the NNA method.

6. Summary

The realization of the Liquid model leads to a series of
scalable and efficient dynamic load balancing techniques
(LM-C3 through LM-C5). This is ensured by the strong
locality of the algorithm as well as by exploiting the
feature of tightly-coupled processing units. As it has been
proven for multi-dimensional tori and simulated for the
ring and the 2-dimensional torus, it is expected to be
suitable and efficient for various other topologies.

Besides the simplicity of the presented algorithm, the
main advantage lies in the combination of load sharing
and load balancing. The most simple version, following
both the sharing and the balancing task (C5), yields the
best overall run time. The Liquid model gives high

1500010000500000
0

2

4

6

8

10

LM-C5-share

LM-C3/4/5-balance

LM-C4-share

LM-C3-share

Processors P

Shifts T [*10000]

(a) 10 510 410 310 210 110 0
0

100

200

300

400

Minimum
Maximum
LM-C3/4 / 5-balance

Processors P

Shifts T

(b)
Figure 7: Simulation results of load balancing and sharing by LM in a 2-dimensional torus for the worst case (a)
and for a uniform random distribution (b).

priority to the sharing task before balancing is performed.
Especially for algorithms with highly dynamic load
distribution, as e.g., tree search techniques, this
prioritization demonstrates to be efficient. But this
property is useful in many more applications.

The Liquid model has outperformed a former local load
balancing approach, nearest-neighbor-averaging (NNA).
None of the above two properties are reached by the NNA
algorithm. It does not have such global effects when
executing only a single local operation, and NNA
performs load sharing only as a consequence of balancing.

Acknowledgement

This research work was supported by the Deutsche
Forschungsgemeinschaft (DFG) with a stipend by the
"Graduiertenkolleg" of the Computer Science Department,
University of Karlsruhe. The work was performed at the
Institute for Real-Time Computer Systems and Robotics,
Prof. Dr.-Ing. U. Rembold and Prof. Dr.-Ing. R.
Dillmann. I want to thank Alf-Christian Achilles and
Peter Sanders for proofreading an earlier version of this
paper.

References

[Bertsekas89] Bertsekas D. P., Tsitsiklis J. N.,
1989, "Parallel and Distributed Computation:
Numerical methods", Prentice-Hall, Englewood
Cliffs, NJ, pp 519-526.

[Boillat90] Boillat J. B., 1990, "Load balancing and
poisson equation in a graph", Concurrency: Practice
and Experience, vol 2, no 4, pp 289-313.

[Casavant88] Casavant T. L., Kuhl J. G., 1988,
"A taxonomy of scheduling in general-purpose
distributed computing systems", IEEE Transactions
on Software Engineering, vol 14, no 2, pp 141-154.

[Cybenko89] Cybenko G., 1989, "Load balancing
for distributed memory multiprocessors", Jour.
Parallel Distributed Comput., vol 7, pp 279-301.

[Dragon89] Dragon K. M., Gustafson J. L., 1989, "A
low-cost hypercube load balance algorithm", Proc.

4th Conf. Hypercubes, Concurrent Comput. and
Appl., pp 583-590.

[Fox89] Fox G. C., 1989, "Parallel computing
comes of age: Supercomputer level parallel
computations at Caltech", Concurrency Practice
Exper., vol 3, no 5, pp 457-481.

[Henrich94] Henrich D., 1994, "Local load balancing for
data parallel branch-and-bound", Int. Conf. Massively
Parallel Processing, June 21-23, Delft, The
Netherlands.

[Henrich95] Henrich D., 1995, "Lastverteilung für
feinkörnig parallelisiertes Branch-and-bound",
Dissertation, Universität Karlsruhe.

[Hong88] Hong J.-W., Tan X.-N., Chen M., 1988,
"From local to global: An analyzis of nerarest
neighbor balancing on hypercube", Proc. 1988 ACM
Symp. on SIGMETRICS, pp 73-82.

[Kumar91] Kumar V., Ananth G. Y., Rao V. N.,
1991, "Scalable Load balancing techniques for parallel
computers", Technical Report 91-55, Department of
Computer Science, University of Minnesota.

[Qian91] Qian X.-S., Yang Q., 1991, "Load
baalncing on generalized hypercube and mesh multi-
processors with LAL", Proc. 11th Int. conf. on
Distributed Computing Systems, pp 402-409.

[Schabernack92] Schabernack, 1992, "Lastausgleichs-
verfahren in verteilten Systemen - Überblick und
Klassifikation", Informationstechnik it, vol 34, no 5,
pp 280-295.

[Willebeek90] Willebeek-LeMair M., Reeves A. P.,
1990, "Local vs. global strategies for dynamic load
balancing", Proc. Int. Conf. on Parallel Processing,
vol 1, pp 569-570.

[Xu93] Xu C. Z., Lau F. C. M., 1993, "Optimal
parameters for load balancing using the diffusion
method in k-ary n-cube networks", Information
Processing Letters, vol 47, pp 181-187.

