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ZUSAMMENFASSUNG I

Zusammenfassung

Geodynamische Ph�anomene reichen von Plattentektonik �uber postglaziale Hebungen

zu Gezeiten der festen Erde, seismischen Eigenschwingungen und Raumwellen und

�uberdecken damit ein breites Spektrum von Zeitskalen und Amplituden. Zu diesen

Vorg�angen z�ahlen auch die Rotationsbewegung der Erde, Schwankungen der Tages-

l�ange, Nutationen und Polschwankungen oder ,,Wobbles\. Allgemein spricht man

von einem ,,Wobble\, wenn im einfachsten Fall ein homogener, starrer, symmetrisch-

er K�orper um eine Achse rotiert, die relativ zu seiner Figurenachse geneigt ist. Dieser

,,Wobble\ ist dann f�ur einen Beobachter, der sich auf dem K�orper be�ndet, als Be-

wegung der Rotationsachse um die Figurenachse wahrnehmbar. Damit verkn�upft

ist eine Nutation im raumfesten System. Hier wird der Konvention gefolgt, in der

die Bewegung der Rotationsachse um den Vektor des Gesamtdrehimpulses des Sys-

tems als Nutation bezeichnet wird [z.B. Rochester et al., 1974]. Bestimmt man die

Charakteristika eines ,,Wobble\ aus Messungen auf der Erde, so kann man auf den

Aufbau der Erde r�uckschlie�en. Das ist Ziel dieser Arbeit.

Hier wird ein Zweischicht{Erdmodell, das aus einem �ussigen Kern und einem

elastischen Mantel aufgebaut ist, betrachtet. Die Begrenzungs�ache der beiden
Bestandteile des Erdmodells bildet eine elliptische Kern{Mantel{Grenze (CMB).
Die Frequenzen der Eigenschwingungsmoden dieses Systems erh�alt man analog zum

kr�aftefreien Kreisel [z.B. Sommerfeld, 1964]. Die theoretische Beschreibung (Kapi-
tel 5) folgt Hinderer et. al [1982] mit der Betrachtung der gravitoelastischen Defor-
mation der rotierenden, hydrostatisch vorgespannten Erde aufgrund eines �au�eren

Drehmoments und der Heranziehung der Euler{Gleichungen zur Drehimpulserhal-
tung. Die resultierenden Bewegungsgleichungen im k�orperfesten Koordinatensystem

(Liouville{Gleichungen) lassen sich aufspalten in den Kern und den Mantel betref-
fende Terme und mit einem St�oransatz l�osen. Den wesentlichen Anteil der Wech-
selwirkung zwischen Mantel und Kern tr�agt die Tr�agheitskopplung �uber den Druck

an der CMB bei [z.B. Toomre, 1974]. Ein einfaches Modell erkl�art das Auftreten
von Tr�agheitskopplung, wenn die Rotationsachse des elliptisch begrenzten �ussigen
Kerns und die Figurenachse des Mantels nicht parallel sind. Dann werden Fl�us-

sigkeitspartikel, die am �Aquator umlaufen, auf eine engere Bahn gezwungen. Es

entsteht ein nichthydrostatischer Druck auf die CMB. Die Erde reagiert als Kreisel

mit einem ,,Wobble\ im erdfesten System und einer damit verkn�upften Nutation im

raumfesten System.

Die Eigenl�osungen des Systems, die Eigenmoden als freie Schwingungen des

genannten Erdmodells erh�alt man, wenn keine �au�eren Drehmomente wirken. Zwei

Rotationsmoden bilden diese L�osungen: der prograde ,,Chandler{Wobble\, der dem

,,Euler{Wobble\ beim Modell eines homogenen, rotierenden Ellipsoids entspricht

und eine retrograde Mode, der ,,Nearly Diurnal Free Wobble\ (NDFW) [z.B. Ro-

chester et al., 1974]. Diese Arbeit beschr�ankt sich auf den NDFW. Der NDFW stellt

zusammen mit einer Nutation im Inertialsystem des Fixsternhimmels, der ,,Free

Core Nutation\ (FCN) [Herring et al., 1986], zwei Auspr�agungen der Mode einer

rotierenden Zweischicht{Erde mit elliptischer CMB dar, die schon letztes Jahrhun-

dert [Hough, 1895] theoretisch vorhergesagt wurde. W�are die CMB sph�arisch und
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g�abe es keine visko{magnetischen Wechselwirkungen, dann w�are die Kernbewegung

vollkommen unabh�angig von der Mantelbewegung. Die Mode NDFW/FCN w�urde

dann nicht existieren.

Die freie Schwingung konnte in der Schwere noch nicht nachgewiesen werden. Je-

doch detektierten Herring und Dong [1994] die frei angeregte Nutation, deren Ampli-

tude um Gr�o�enordnungen st�arker ist, in astronomischen Messungen. Im Druckfeld

der Atmosph�are scheint gen�ugend Energie mit passender r�aumlicher (tesseraler) und

zeitlicher (ganzt�agiger) Verteilung vorhanden zu sein, um eine zuf�allige Anregung zu

erm�oglichen [Herring und Dong, 1994]. Da es sich bei dem NDFW und der FCN um

zwei Auspr�agungen eines physikalischen Ph�anomens handelt, sind die Eigenkreisfre-

quenz des NDFW und die Periode der FCN gekoppelt. NDFW{Frequenzen k�onnen

auch als FCN{Perioden ausgedr�uckt werden und umgekehrt.

Im Unterschied zur freien Schwingung f�uhrt das System Erde bei �au�erer An-

regung erzwungene Schwingungen aus. Die Gezeitenkr�afte von Mond, Sonne und

Planeten im ganzt�agigen Periodenbereich repr�asentieren die periodische Anregung.

Wegen der unterschiedlichen Antwort von �ussigem Kern und elastischem Mantel
auf das anregende Potential existiert eine di�erentielle Rotation zwischen diesen

beiden Bestandteilen der Erde. Diese Relativbewegung kann man in der Gezei-
tenantwort der Erde als Resonanzverst�arkung der Gezeitenadmittanzen nachweisen.
Die Beobachtung der Gezeitene�ekte der festen Erde liefert so Informationen �uber

die Antwort der Erde auf das astronomisch genau ermittelte Gezeitenanregungspo-
tential von Mond, Sonne und Planeten und kann deswegen benutzt werden, um

auf die Struktur des Erdinnern zu schlie�en. Eine Motivation f�ur diese Arbeit war,
da� man mit seismologischen Methoden keine vergleichbare Au�osung im Tiefenbe-
reich der CMB erreichen kann. Gezeiten der festen Erde k�onnen in Deformationen

oder Massenumverteilungen nachgewiesen werden, die zu Schwere�anderungen an der
Ober�ache, Dehnungen der Kruste und Neigungen relativ zum lokalen Lot f�uhren.
Obwohl an der Erdober�ache die Gezeitenschwere�anderungen nur etwa ein Zehn-

millionstel der Gravitation an der Erdober�ache betragen, k�onnen sie besser als
auf 1% aufgel�ost werden. Die Gezeitenkr�afte f�uhren an Orten niedriger Breite zu

Verschiebungsamplituden der Erdober�ache von bis zu 40 cm.

Die Datenbasis zur Bestimmung des NDFW bilden in dieser Arbeit Registrierun-

gen der Gezeiten der festen Erde von hoher Qualit�at, die am geowissenschaftlichen

Gemeinschaftsobservatorium der Universit�aten Stuttgart und Karlsruhe in Schiltach
im Schwarzwald (BFO) aufgezeichnet wurden. Bei den Instrumenten handelt es sich

um das LaCosteRomberg{Gravimeter ET19 mit elektrostatischem Feedback, das
Cambridge{Invar{Strainmeter St3 und das Askania{Bohrlochpendel BLP10 (Kapi-

tel 2 und Appendix A{C). Unter anderem wurde diese Arbeit motiviert durch die

verbesserte Datenqualit�at der Station BFO im Vergleich zu �alteren Registrierungen,
durch die M�oglichkeit der Stapelung von Datens�atzen verschiedener Instrumente,

sowie durch die Verf�ugbarkeit einer genaueren Gezeitenpotentialentwicklung und
eines neuen Ozeangezeitenmodells.

Die Gezeitenanalyse wurde mit dem Gezeitenanalyse{Paket ETERNA durchge-

f�uhrt [Wenzel, 1994b; Wenzel, 1994c; Wenzel, 1996] (Kapitel 3). Als Erdmodell

dient ein elliptischer, gleichf�ormig rotierender K�orper mit �ussigem �au�eren Kern in
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inelastischem Mantel (PREM{Modell [Dziewonski und Anderson, 1981]) mit abge-

platteter CMB ohne Ber�ucksichtigung der Ozeane. Ebenso wie die feste Erde un-

terliegen die Ozeane (Amplituden bis �5 m) und die Atmosph�are den periodischen

Gezeitenkr�aften. Durch die Ozeanauast kann sich die Amplitude um weitere 10 cm

erh�ohen. F�ur die NDFW{Untersuchung werden die E�ekte der Ozeangezeiten auf

die feste Erde (Auastgezeiten) durch Korrekturterme kompensiert (Kapitel 4). Die

Ozeankorrekturen [Agnew, 1995] gehen auf Ozeangezeitenmodelle aus den moderns-

ten Ozean{Altimeterdaten der TOPEX/POSEIDON{Mission zur�uck [Le Provost et

al., 1994; Eanes und Bettadpur, 1995]. Die Reaktionen der Atmosph�are auf die

Gezeitenanregung sind gering (�0:03 hPa), aber gro�e Gezeitenamplituden sind

im Luftdruck aufgrund der tagesperiodischen W�armeeinstrahlung durch die Sonne

[z.B. Chapman und Lindzen, 1970] zu �nden. Wie sich diese globalen Wellen des

Luftdruckes [z.B. Crossley et al., 1995] auf Schweremessungen auswirken, wird in

Kapitel 8 untersucht. Gro�e E�ekte auf die feste Erde und die Instrumentenmassen

werden von wetterbedingten Druckschwankungen aufgrund von Dichtevariationen

der Luftmassen (�30 hPa) produziert. Um diese Wetterein�usse zu unterdr�ucken,
wird in der Gezeitenanalyse auch immer simultan der Luftdruck angepa�t.

Der Resonanzanteil in der Gezeitenantwort wird hier isoliert und in bezug auf

einen harmonischen Oszillator interpretiert [Neuberg, 1987] (Kapitel 5). F�ur die
NDFW{Anpassung werden die Tiden O1, P1, K1,  1 und �1 herangezogen. Die

letzten vier Tiden werden stark von der Resonanz in Amplitude und Phase beein-
u�t, die Tide O1 dient als Referenztide. Das funktionale Modell f�ur die Reso-
nanz entspricht dem von Neuberg et al. [1987] und weiteren Autoren. Es handelt

sich um das Modell eines harmonischen Oszillators mit einer Eigenfrequenz, einem
D�ampfungsfaktor und einer komplexen Resonanzst�arke.

Um aus den Daten ein Modell zu extrahieren, werden die Abweichungen zwi-
schen Daten und Modell minimiert (Kapitel 6). Hier wird die Methode der kleinsten
Fehlerquadrate angewendet. Um das dabei entstehende Gleichungssystem zu l�osen,

wird einerseits die Singul�arwert{Zerlegung benutzt, andererseits wird eine Simplex{
Methode zur Minimierung von Funktionen [Nelder und Mead, 1965] mit Nebenbedin-

gung angewendet. Die Nebenbedingung soll verhindern, da� die D�ampfungskonstan-
te negative Werte annimmt, was physikalisch nicht sinnvoll ist.

Die FCN{Perioden, die in dieser Arbeit bestimmt wurden, sind alle betr�achtlich
kleiner als theoretische Vorhersagen und bisher ver�o�entliche Analysen aus anderen

Datens�atzen. F�ur die Gravimeter{Daten, die die h�ochste G�ute besitzen, wurde die

kleinste Resonanzperiode TFCN = 405:8 � 4:2 siderische d (sid: d) bestimmt. Die
gemeinsame Anpassung von Schwere{ und Straingezeitenparameter an ein Reso-

nanzmodell liefert TFCN = 412:6�4:2 sid: d. Bei allen hier durchgef�uhrten Analysen

liegen die Sch�atzwerte f�ur den D�ampfungsfaktor sehr nah bei 0.

Wegen der Abweichungen der Ergebnisse der FCN{Perioden zu Untersuchungen

anderer Autoren wurde in dieser Arbeit sehr viel Wert auf die Fehlerbetrachtung

gelegt (Kapitel 7). So wird die Fehlerfortpanzung von den Gezeitenadmittanzen in

die NDFW{Parameter detaillierter als bisher untersucht. Einerseits wurden Monte{

Carlo{Simulationen durchgef�uhrt, andererseits wurde gezeigt, wie sich systematische

St�orungen der Gezeitenparameter und Ozeankorrekturen in den Unsicherheiten der
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NDFW{Parameter niederschlagen. So stellte sich heraus, da� die entscheidende

Fehlerquelle bei den Gezeitenparametern lag. Einen breiten Raum nehmen auch

Luftdrucke�ekte und deren Einu� auf die Schweremessungen und letztendlich auf

die NDFW{Parameter ein (Kapitel 8). Aus den Untersuchungen ergab sich, da�

sich die Luftdrucke�ekte nicht ma�geblich auf die NDFW{Periode auswirken.

Theoretische Berechnungen der Resonanz beruhen auf einem Erdmodell, bei dem

sich der Erdkern im hydrostatischen Gleichgewicht be�ndet [z.B. Wahr, 1981]. Die

Mehrzahl der publizierten Beobachtungen zeigt aber eine Frequenzverschiebung weg

von der theoretisch ermittelten Resonanzstelle. Diese Frequenzverschiebung wird

hier als erh�ohte Elliptizit�at der CMB interpretiert [Neuberg, 1987]. Mit Annahmen

�uber die Dichte des Kerns und die Elastizi�at des Mantels f�uhren die beschriebenen

Beobachtungen der Station BFO auf einen um 500 � 700m reduzierten polaren

Kernradius. In der Literatur werden noch andere geophysikalische Beobachtungen

wie Raumwellenlaufzeiten [z.B. Doornbos und Hilton, 1989] und Eigenschwingungen

des gesamten Erdk�orpers zur Absch�atzung der CMB{Topographie verwendet. Hier

wird exemplarisch gezeigt, wie Strukturkoe�zienten, die aus der Aufspaltung von
Eigenschwingungsmoden gewonnen wurden [He und Tromp, 1996; Widmer et al.,

1992(a)], zur Bestimmung der Elliptizit�at der CMB herangezogen werden k�onnen

(Kapitel 9). Die Au�osung f�ur die nichthydrostatische Elliptizit�at der CMB, die aus
Strukturkoe�zienten resultiert, ist sehr viel geringer als diejenige aus NDFW/FCN{
Analysen.
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Abstract

High quality records of earth tides from the Black Forest Observatory (BFO) have

been analyzed to estimate parameters of the Nearly Diurnal Free Wobble (NDFW)

which together with the Free Core Nutation (FCN) represent two di�erent aspects

of the same free mode of the rotating Earth with elliptical core{mantle boundary

(CMB). When the �gure axis of the mantle and instantaneous rotation axis of the

core become misaligned, then torques at the CMB arise which try to realign these two

axes. The Earth reacts as a gyroscope with a wobble in the earth{�xed system and

an associated nutation in the inertial system of space. A direct observation of the free

mode has only recently been reported for the FCN. Until now the intrinsically excited

wobble of smaller amplitude could not be detected in the spectrum of orientation

changes in the earth rotation, but in the Earth's response to tidal forcing evidence

is found for its existence: diurnal tidal waves in close proximity to this eigenmode

in the frequency domain experience a resonant ampli�cation. This resonance in the

observed tidal admittances can be quanti�ed with the help of the harmonic oscillator
model which relates the observed tidal admittances to the parameters describing

the NDFW. With the functional dependence being non{linear the inversion for the
NDFW parameters is performed by a linearized least squares method.

Tidal forces not only act on the solid Earth but also on the world oceans and
the surrounding atmosphere. In turn these two parts of the Earth contaminate the

observations of the solid earth tides. The frequency dependent ocean e�ects are
the direct Newtonian attraction of the sensor mass and the e�ects of deformation
of the Earth due to loading by the periodically shifting water masses. Because

of that ocean load corrections based on the most recent altimeter data from the
TOPEX/POSEIDON mission are applied to the tidal admittances. No signi�cant

inuences on the NDFW parameters with respect to an older, commonly used ocean
load model has been found.

The gravitational reactions of the atmosphere to the tidal forces are rather small,
but there are large tides in the atmosphere for solar constituents due to the radia-

tional energy input from the Sun. Additionally broad{band noise of meteorological
origin due to density variations of air masses has to be corrected for. E�orts are
undertaken to study especially the air pressure{gravity admittance. These investiga-

tions reveal that the inuence of the air pressure{gravity admittance on the NDFW

period is only small.

The gravity and strain data from BFO are of very high quality. For the data

set with the best quality, namely gravity, an equivalent FCN period of TFCN =

405:8� 4:2 sid: d was obtained. The joint inversion of gravity and strain tidal para-

meters results in TFCN = 412:6�4:2 sid: d. All these resonance periods are well below
the majority of previously published values. Since dissipative mechanisms are con-

ceivable besides the resonance period also the quality factor Q has been determined

simultaneously. The Q estimates of this work are very high. Theoretical calculations

for the resonance are based on an earth model in hydrostatic equilibrium. But the

majority of observations cannot con�rm these theoretically determined values for the
resonance period. In this work the shift between the resonance frequency of a non{
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hydrostatically prestressed earth model and the resonance frequency resulting from

observations is interpreted as excess ellipticity of the CMB. For a hydrostatically

prestressed Earth the mean polar radius of the outer core of about 3480 km [Yoder,

1995]. is reduced due to the rotation by 9 km. Under appropriate assumptions the

obtained frequency shift is equivalent to an additional reduction of the polar radius

of the outer core of 500� 700m. In the literature geophysical data of various kind

are used to constrain the CMB ellipticity. As an example it is shown that recent

normal mode splitting analyses for the retrieval of the structure coe�cient c02 cannot

provide comparable tight bounds for the core ellipticity.

Salient in this work is the assessment of the parameter uncertainties. Especially

the error propagation from the noise in the tidal admittances to the NDFW parame-

ters is tried to be assessed more realistically than this has been done so far. Monte

Carlo simulations have been performed and also the e�ects of systematic perturba-

tions are studied. It turns out that the uncertainties in the tidal admittances are

the most serious error source for estimating NDFW parameters.
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Chapter 1

Introduction

Viscoelastic processes within the Earth lead to a wide variety of geophysical phe-
nomena that are characterized by extremely di�erent timescales and levels of stress.
These phenomena include glacial isostatic adjustment as well as the anelasticity

e�ects evident in solid body tides, luni{solar nutations and wobbles.

On the turn of the century observation of the solid earth tides were of consid-

erable interest in understanding the global elastic response of the Earth to applied
forces, as well as providing information on the major subdivision of the Earth into

mantle and core. Since that time the interior of the Earth has been further investi-
gated revealing the elastic structure of its components crust, mantle, outer uid and
inner solid core. Nowadays observations of free oscillations at seismic frequencies

certainly provide more insight in the global radial structure of the planet than tidal
observations. Tidal gravity variations which are only about 10�7 of the gravitational
attraction of the Earth can be resolved with the help of modern instrumentation at

quiet stations to better than 1% [Richter et al., 1995]. Nevertheless it is intriguing
that tidal observations allow to constrain the ellipticity of the uid outer core of

the Earth with a resolution which cannot be attained by other geophysical data [eg.
He and Tromp, 1996; Widmer et al., 1992(a)]. The shape of the interface con�ning

the uid core, the core{mantle boundary (CMB) is of particular interest, since its

topography additionally to thermal and chemical processes near the CMB play a
major role in the planet's evolution, inuencing the magnetic �eld behaviour, chem-

ical cycling in the mantle, irregularities in the rotation and gravitation of the Earth,

and the con�guration of mantle convection.

Any homogeneous, rigid, ellipsoidal, rotating body (which represents a force{

free gyroscope) supports a rotational eigenmode when the �gure axis becomes mis-

aligned with the rotation axis of the body. The resulting motion of the rotation

axis around the �gure axis is called Eulerian wobble. Associated with this motion

in the body{�xed reference frame is the motion of the rotation axis around the axis

of total angular momentum in inertial space, the associated Euler nutation. For a

homogeneous, rigid earth model this wobble would have an eigenperiod of 306 d.

1



2 CHAPTER 1. INTRODUCTION

A more interesting model in view of the Earth is a 2{layer sphere consisting of a

homogenous, incompressible, frictionless, uid core surrounded by a rigid mantle. If

non{mechanical coupling mechanisms between the core and the mantle are excluded

motions of these two earth components are almost independent of each other. A

modi�cation of this model would be the introduction of an ellipsoidal CMB which

gives rise to dynamical coupling between core and mantle. [Lamb, 1932]. This re-

sults in two free modes of rotation. Besides the Eulerian wobble a wobble with

nearly diurnal period comes into existence. A more realistic earth model must take

into consideration the elastic properties of the mantle. If the elastic deformations

are only small then perturbation theory can be used to �nd solutions of the equa-

tions of motion. This model supports also two eigenmodes: the prograde Chandler

wobble (435 d) with its associated nutation and the retrograde Nearly Diurnal Free

Wobble (NDFW) with the associated Free Core Nutation (FCN). The NDFW and

the FCN are two aspects of one free mode which is sometimes in the literature also

called core resonance [eg. Wahr, 1981].

Since the uid core and the elastic mantle respond di�erently to the luni{solar
tidal force, there exists a di�erential rotation between mantle and core (Fig. 1.1).

This di�erential core{mantle motion leads to resonant elastic deformation which
represents a normal mode of the rotating Earth. A simple way to describe the
characteristics of this mode is the Poinsot representation [eg. Rochester et al., 1974].

The wobble is felt in an earth{�xed system, whereas the nutation can be observed
in the inertial system of space. The deformations result in gravity changes, strains

and tilts observable at the earth surface [eg. Hinderer et al., 1991] and nutations in
space.

The observation of solid earth tides provides information on the Earth's response
to a known force and can therefore be used to constrain certain properties of the
earth interior. From the theory of linear systems we know that the response of

a system to a known input allows to determine the system transfer function. Our
system is the Earth (Fig. 1.2). The input to the system is the accurately known tidal

forcing function by the Moon and Sun and planets [Wenzel, 1994b; Wenzel, 1994c,
Wenzel, 1996] x (t) in the time domain or X(!) in the frequency domain. The system
output, which includes the response of the Earth due to the NDFW is represented by

registrations of for example tidal gravity variations, tidal deformations or nutations

denoted by y (t) in the time domain or Y (!) in the frequency domain. The aim is to
estimate the transfer function H (!) in the vicinity of the core resonance period, in

order to constrain the physical properties in a restricted frequency and space region.
Fitting a theoretic tidal model to the tidal observations results in dimensionless

tidal parameters (the so{called Love numbers) for an elastic Earth and subsequently

allows to isolate the resonant part in the response. With the help of a theoretic model
for the core resonance, namely the damped harmonic oscillator [Neuberg et al., 1987],

the NDFW parameters inherent in H (!) can be determined by an inversion.

In Fig. 1.3 a simpli�ed geophysical scenario with e�ects important for the nearly

diurnal free wobble is depicted. This simple 2{layer earth model with elliptical
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Eigenmode of the rotating Earth due to a uid core con�ned by an

(an-) elastic mantle with ellipsoidal CMB

+

External diurnal tidal forcing

=

Di�erent response of mantle and core to external tidal forcing

,! Di�erential rotation of mantle and core

,! Resonant elastic deformation

,! Resonance in tidal gravity changes, strains, tilts and nutations

#
Constraints on the physics of coupling between mantle and core

Figure 1.1: Synopsis of NDFW or core resonance e�ect.

core{mantle boundary supports the NDFW. The wobble is excited by periodic tidal
forcing of the Moon and Sun. For the transient excitation of the wobble atmospheric
pressure forces (winds) are under discussion [Herring and Dong, 1994]. If the CMB

would be spherical and no coupling mechanisms between core and mantle would exist
they could rotate totally independent and no NDFW would exist. Possible coupling

mechanisms are viscous, electromagnetic and inertial coupling [eg. Toomre, 1974].
Not only the solid Earth, but also the oceans and the atmosphere are subjected
to tidal forces. Their tidal responses together with the solar heating tide [Crossley

et al., 1995] and meteorological e�ects in the atmosphere have to be eliminated.
Therefore the corresponding corrections are applied [eg. Agnew, 1995; Merriam,

1994].

Already a century ago there has been a theoretical prediction of this wobble

[Hough, 1895]. But only in the last twenty years the quality of the instruments

recording tidal signals made a veri�cation possible [Gwinn et al., 1986; Richter and
Z�urn, 1988]. In Neuberg [1987] and Neuberg et al. [1987] a record from the LaCoste{

Romberg Gravimeter ET{19 at the Black Forest Observatory (BFO) was included
in a stack of six gravimeter records from Central Europe to retrieve the parameters

of the NDFW.

The new digital records of this work obtained at BFO (consisting of gravity,

strain and tilt data) should show the improvement of the data which should be

much less noisy and therefore better suited for an analysis for NDFW parameters.
Another motivation for the analysis is the availability of new ocean tide models
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Figure 1.2: Illustration of the extraction of the core resonance from tidal data. On

the upper panel a ow chart known from the theory of linear systems is sketched.
The input to the system is the forcing denoted by X(!). The output is represented
by the response Y(!) =X(!) H(!). The resonance can be determined by the fre-

quency dependence of the tidal admittance function H(!) in the vicinity of !NDFW .
On the lower panel the corresponding time series are found with h(t) representing

the impulse response of the system and � denoting the convolution. The essential
features in this �gure are enormously exaggerated.

after the �rst years of the TOPEX/POSEIDON mission [Le Provost et al., 1995],

promising improved estimates of ocean e�ects on earth tide recordings.

After this introduction of the topic of this work follows the description of the

station BFO and the data collected at this site in Chapter 2. The tidal forcing
is represented by the series expansion of the tidal potential of the Moon, Sun and

planets in Chapter 3. The predictions for tidal gravity changes and deformations on
the earth surface are found by solving the gravitoelastic problem. The correction

of the inuences of oceans and atmosphere including meteorological e�ects are the

topic of Chapter 4. A summary of the theory of the dynamics of the core resonance
which is based on a radially strati�ed reference earth model and Poincar�e ow of
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Figure 1.3: Geophysical scenario showing torques excerted on a simple, rotating
2{layer earth model (consisting of a uid core con�ned by an elliptical container,
the elastic mantle) which are related to the excitation, respectively, the observation

of the nearly diurnal free wobble.

the core is found in Chapter 5. In this context the Poinsot representation for the
NDFW is introduced. Also in this chapter the harmonic oscillator model for the

core resonance with the non{linear dependence of the NDFW parameters resonance
frequency, damping term and complex resonance strength on the reduced tidal ad-

mittances is presented. Di�erent iterative inversion methods for the retrieval of the

resonance parameters are described in Chapter 6. In this chapter also the results
of this work are compared to published NDFW parameters. Additionally in this

work a stack of gravity, strain and tilt tides is performed. The aim is to reduce
besides the statistical errors, the systematic errors in the stack of di�erent types of

data. The uncertainties of the parameters are tried to be thoroughly assessed by

systematic and random modi�cations of the input data to the NDFW analyses in
Chapter 7. Further investigations are performed in order to reveal the inuence of

atmospheric e�ects (Chapter 8). The interpretation of the results obtained in this
work with regard to CMB ellipticity together with estimates from other geophysical

data including normal mode splitting observations are discussed in Chapter 9. After
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the conclusions and outlook in Chapter 10 an appendix with the following contents

is attached: The instrument responses are depicted in Appendix A, the spectra of

the observations in Appendix B and a comparison of the residual data to published

noise models is found in Appendix C.



Chapter 2

Description of station and data

2.1 Station and instruments

The digital gravity, strain and tilt registrations of the station Black Forest Obser-
vatory (BFO) which is situated in the southwest of Germany near the small town
of Schiltach (48.33�N, 8.33�E, 587 m elevation above sea{level, see Fig. 2.1) are the

basis for the NDFW investigations. The station BFO has been built as a joint fa-
cility of the Universities of Karlsruhe and Stuttgart. The instruments are installed

in the granitic basement rock of a disused silber mine. An air{lock inside the mine
in front of the instrument vaults should shield the instruments from direct e�ects of
high frequency atmospheric pressure variations.

In the investigation recordings of the LaCoste-Romberg Gravimeter ET{19 with
electrostatic feedback [Richter et al., 1995], the EW{component of Askania bore-

hole pendulum BLP10 and the Cambridge-Invar-Strainmeter St3 with an azimuth

of N 300�E are used. The gravimeter measures the temporal variation of local ver-

tical accelerations, the Askania pendulum the temporal variation of tilt relative to

the local vertical and the strainmeter the temporal variation of linear strain. The
instrument responses in the magnitude and phase representation of the respective

transfer function are found in Appendix A. Data from this strainmeter and this

Askania pendulum provided some of the best results on torsional free oscillations
after the Macquarie Rise{quake of 1989 [Widmer, 1991;Widmer et al., 1992(b)]. Di-

urnal tidal tilts in NS{direction at the latitude of BFO have very small amplitudes
due to a theoretical node at 45�N, therefore this component was not included in our

analysis. Additionally the local air pressure is registered with the microbarograph

BM{G{06 in front of the air{lock in order to be able to correct air pressure induced
e�ects by gravitation or deformation of the Earth on the other instruments.

7
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Figure 2.1: Topographic map of Central Europe given in Cassini Cylindrical projec-

tion { a compromise between conformal and equal{area projection. The triangles

mark the station BFO and additionally the stations Bad Homburg and Potsdam,

which are of concern in following chapters.



CHAPTER 2. STATION AND DATA 9

2.2 Data processing

The data were digitally recorded with 16 bit resolution at BFO with a sampling

interval of 5 s after low{pass �ltering with an 8{pole/ 25s Butterworth �lter. The

clock of the digitizing computer was kept synchronized to the millisecond with the

DCF 77 time signal. The lengths of the records amount to approximately 13 months

for gravity and tilt and 20 months for strain after the common start on November

23, 1988. The air pressure data in front of the air{lock were recorded and processed

in the same manner as the tidal data. The analysis of tidal measurements for NDFW

parameters requires tidal parameters of highest accuracy. Therefore the raw 5s data

were carefully inspected for spikes and steps which were removed interactively, be-

fore the data were low{passed and resampled at 1{minute intervals. This procedure

was very time{consuming. These data were then further processed with the pre-

processing software PRETERNA [Wenzel, 1994a], �lling gaps in the residuals with

the help of a theoretical tidal model and the simultaneously recorded barometric
pressure. Applying PRETERNA results in a time series resampled at the full hours.

The observations processed in the way described above are shown in the fre-
quency domain in Appendix B. To show the improvement of the data quality at

the station BFO old analog registrations are compared to the new digital data by
means of histograms of residual data from tidal analysis in section 3.2. Additionally
you �nd a comparison of residuals from tidal analysis and published noise models

in Appendix C.
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Chapter 3

Earth tides

Already at the beginning of this century ocean tide observations provided a possi-
bility to estimate the Earth's shear modulus �. From the di�erences of observations
and theoretical calculations on the basis of a rigid earth model a shear modulus com-

parable to the rigidity of steel was found. Nowadays the core resonance veri�ed in
tidal registrations provides the only possibility to gain insight beyond seismological
�ndings into the interior properties of the Earth with this kind of data.

Gravitation represents an inhomogeneous force �eld, so the forces excerted by the

Moon, the Sun and the planets on the extended body of the Earth are dependent on
the distance between the location at the Earth and the celestial body. This results
on one hand in a torque on the rotating Earth tending to tip the Earth's rotation

axis to bring it into a position perpendicular to the ecliptic or the orbital plane of
the Moon respectively. On the other hand di�erential tidal forces arise which cause
deformations and variations in the gravitational potential on the Earth. These

e�ects comprise changes in gravity, tilt relative to the local vertical and strain in
the crust.

The tidal forces of Moon, Sun and planets cause vertical displacements at the
surface of the Earth up to 40 cm, variations in gravity and horizontal accelerations

of 10�6m=s2 and tilts of hundred of nrads respectively at moderate latitudes. Vari-
ations in linear strain are of the order of 50 � 10�9. The loading due to the oceans

can add another 10 cm to the displacement. Just like the solid Earth the oceans
(amplitudes up to �5m and more) and the atmosphere are subjected to periodic

tidal forces. For the NDFW analysis the load e�ects of the oceans on the solid Earth

are a systematic noise signal. With the help of an ocean model these ocean signals
can be estimated and subtracted (Chapter 4). The tides of the atmosphere are small
(�0:03 hPa) compared to meteorological pressure variations (�30 hPa). E�ects of
air pressure variations on gravity are discussed in detail in Chapter 8.

11
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3.1 Theoretical earth tides

In the following tensors and vectors are printed in bold face. For matrices capital

letters are used. The tidal potential due to a massive body can be described in the

following way:

V =
GM

r

1X
n=2

�
R

r

�n
Pn (cos �) (3.1)

with Newton's gravitational constant G, the mass M of the tide{generating body,

the mean radius of the Earth R and the mean distance r between the centre of

gravity of the tide{generating body and an observation point A at the surface of

the Earth, the Legendre polynomials Pn of degree n and the zenith angle � (angle

between the observation point A and the tide{generating body in reference to the

centre of the Earth). Terms of n < 2 do not contribute to di�erential forces within

the Earth, but to the orbital motion (n = 1).

Sometimes it is convenient to express the relative positions of the observer on the
Earth and the celestial body in a combination of geocentric and celestial coordinates.
The geocentric coordinates are the spherical co{latitude � and spherical longitude

�. The celestial coordinates of the tide generating body are the declination � which
means the angular distance north of the celestial equator and local hour angle �

which is de�ned as the di�erence in longitude between A and the tide{generating
body. The potential can then be rewritten:

V =
GM

r

1X
n

�
R

r

�n 1

2n+ 1

nX
m=0

Pm
n (cos �) � Pm

n (sin �) � cos (m� +m�) (3.2)

Pm
n are the associated Legendre functions (eg. p: 10 [Lambeck, 1988]). Due to the

Earth's rotation the hour angle � of the celestial body varies from 0 to 2 � in 24 hours.
Each term of the sum over m in Equation (3.2) has a certain spatial periodicity.

The potential V therefore has a long period term connected to zonal harmonics P 0
n

(m = 0), a diurnal term connected to tesseral harmonics P 1
n (n > m) and a semi{

diurnal term connected to sectorial harmonics P 2
2 (m = n = 2). The variations of

the distributions of the masses at the surface obeying the zonal distribution change
the large polar moment of inertia C, whereas those obeying the tesseral distribution

cause the position of the pole of inertia to change. The latter e�ect is as we see below
essential for exciting the wobble. Sectorial distribution implies neither the �rst nor

the second e�ect. Since R=r is about 1=60 for the Moon and about 1=23000 for the

Sun, for large n terms of higher order m are negligible. For a �rst approximation
it is justi�able to terminate the series expansion at n = 2 with V2 comprising 98%
of V . At the surface of the Earth the tidal forces exerted by the Moon dominate

the ones of the Sun, since as can be seen in Equation (3.2) the larger solar mass is

compensated by the smaller reciprocal distance Earth{Sun compared to the distance

Earth{Moon. The maximum tidal acceleration due to the Moon, the Sun and Venus

(which has the strongest e�ect of the planets) are: 1:37 � 10�6m=s2, 0:50 � 10�6m=s2
and 5:88 � 10�11m=s2 respectively at the surface of the Earth [Wenzel, 1997]. In
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Fig. 3.1 an example of the Tamura [1987] theoretic tidal potential (details see next

section) for the location of BFO is shown. The contributions of di�erent periods to

the tidal potential can even be distinguished in the time domain. Prominent are the

diurnal and semi{diurnal waves which are modulated by the long period fortnightly

and semi{annual waves.

Thus far only the driving forces were described. To determine the response of the

Earth to the forcing potential a description of the Earth's mechanical properties is

needed. The basic relations of elastic deformation in classical continuum mechanics

serve for this purpose (Equations 3.3 { 3.6). The �rst equation relates the linear

momentum of a volume element of density � and velocity v to the applied forces.

�
dv

dt
= F+r � S (3.3)

with the volume force F = rV and a surface force or stress tensor S and where d=dt

denotes the time derivative. The generalization of Hooke's law for a linear isotropic
elastic body is the following linear relation between stress Sij and strain "ij:

Sij = �D �ij + 2�"ij (3.4)

with the cubic dilatation D, the shear and bulk modulus, � and K and the Lam�e
constant � = K � 2�=3 and the Kronecker symbol �ij. The next equation gives the

relation between strain "ij and displacement ui.

"ij =
1

2

 
@ui

@xj
+
@uj

@xi

!
(3.5)

where @

@x
denotes the spatial derivative in cartesian coordinates. Additionally the

equation of continuity must hold:

@�

@t
+r � (�v) = 0 (3.6)

Under the assumption of small tidal deformations and subject to appropriate bound-

ary conditions the gravitoelastic problem given in Equations 3.3 { 3.6 can be solved
with perturbation theory. In spherical coordinates the solutions at the surface for

a spherical, non{rotating, elastic, isotropic earth model (SNREI) with the forcing
tidal volume potential V2 are [eg. Z�urn and Wilhelm, 1984]

ur = h2(�; �)
V2(�; �; t)

g
(3.7)

ut = l2(�; �)
1

g

@V2(�; �; t)

@�
(3.8)

V 0 = k2(�; �) V2(�; �; t) (3.9)

with the radial displacement ur, the tangential displacement ut and the potential

V 0 due to the tidal redistribution of mass. g denotes the gravity acceleration at the
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Figure 3.1: Time series synthesized by Tamura's theoretic tidal potential devel-
opment (next section) for the location of the station BFO in di�erent temporal

resolution. The time series in the upper panel starting at November 23, 1988 is

dominated by the fortnightly waves which are semi{annually modulated. Below a

period of 42 days is extracted. Here besides the fortnightly tidal constituent the

semi{diurnal and diurnal tides are resolved.
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Earth's surface. The proportionality factors between the solutions of the gravito-

elastic problem and the exciting potential of degree n (here n = 2) are the so{called

Love numbers hn; kn and ln. (ln is also designated as Shida number). Alternatively

expressed this means: The Love number hn gives the ratio of the vertical displace-

ment to the uplift of the equipotential surface due to the potential Vn, whereas kn
describes the ratio of the potential due to the tidal redistribution of mass and the

forcing tidal potential and �nally ln is the ratio of angles de�ned by the tidal hori-

zontal displacement relative to the radial distance r and the horizontal component of

the forcing �eld relative to gravity g(r). For the spherically symmetric Earth model

PREM and low degree potentials the respective Love numbers amount to [Wang,

1997]

n hn kn ln
2 0.6032 0.2980 0.0839

3 0.2879 0.0920 0.0147
4 0.1750 0.0414 0.0102

Because of the linearity of the Earth's response the potential and the deformation

possess the same temporal dependence. For a SNREI earth model the forcing and
the response depend both on the same spherical harmonics Pm

n . So far only the
volume forces due to the so{called body{tide were discussed. But normal and shear

forces on the surface also induce deformations. For example ocean and ice load
exert normal forces to the crust. At the CMB pressure is exerted due to the core
rotation around an axis slightly di�erent from the rotation axis (this is due to inertial

coupling which will be discussed in detail in the next chapter). The corresponding
Love numbers are the load Love numbers h0; k0; l0 and the internal pressure Love

numbers ch0, ck0 and cl0. The sources of shear deformation on the Earth's surface
can be electromagnetic coupling forces or horizontal frictional forces arising from
winds and ocean currents. The shear love numbers h00; k00; l00 which are also known

as traction coe�cients are found in Wilhelm [1986].

Each deformational e�ect on the surface of the Earth can be expressed as a
linear combination of Love numbers [eg. Wang, 1997]. This is done below for the

observables investigated in this work on the basis of a SNREI Earth model. The

tidal variation in gravity at the surface of the Earth measured with a gravimeter is

given by

�g = �� @

@r
V (3.10)

with a dimensionless amplitude factor, the so called gravimetric or �{factor

� = 1 + h� 3

2
k: (3.11)

This �{factor is the ratio of tidal gravity variations on an elastic Earth relative to
those on a rigid Earth. The �rst term of � (the one which equals 1) represents the

di�erence between gravitational attraction of the gravimeter mass by the celestial
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bodies and orbital acceleration. This term contains no information about the elastic

properties of the Earth, it is an e�ect of the tide{generating forces. Only the second

and the third term contribute to the Earth's response. The second term h describes

the variation in gravity due to the radial displacement of the gravimeter in the

undisturbed gravity �eld of the Earth (the free air e�ect). The variation of gravity

due to mass redistribution is given by the third term.

Tilt and strain both are measures of deformation, though tilt includes terms aris-

ing from changes in local local accelerations as well. Tilts are de�ned as deections

of the crust with respect to the local vertical. A horizontal acceleration �x causes an

apparent tilt � = �x=g. �N und �E are southward and eastward tilt angles of the

surface due to the horizontal tidal accelerations for a SNREI earth model:

�S = �
1

gR

@

@�
V (3.12)

�E = �
1

gR sin �

@

@�
V (3.13)

For a SNREI earth model the ratio of tidal tilt variations on an elastic Earth relative
to those on a rigid Earth is called amplitude factor � (in the literature often denoted

by ) or tilt diminishing factor. Its representation in Love numbers is:

� = 1� h + k (3.14)

The contributions to � are analogous to the gravimetric factor, only the second and
third terms of � are contributions from the response of the elastic Earth.

Tidal e�ects also incorporate strains within the crust. Linear strain is de�ned

as the ratio �L=L0, where �L is the total change in baseline length and L0 is the
unperturbed length. Strain has second order tensor properties. At the stressfree
surface of the Earth there exist three independent components of the strain tensor.

These can be expressed through the normal components in north{south and east{
west direction, "NS and "EW , as well as the horizontal shear strain "SE. The linear
strain observed under an azimuth angle � (measured from north to east) can then

be determined by:

�L

L0
(�) = "NS cos

2 � + "EW sin2 � � "SE sin � cos � (3.15)

The relation between the tidal forcing and the response in strain is for a SNREI

earth model given by:

"NS =
1

gR

 
hV + l

@2V

@�2

!
(3.16)

"EW =
1

gR

"
hV +

l

sin �

 
cos �

@V

@�
+

1

sin �

@2V

@�2

!#
(3.17)

"NE =
l

gR

@2

@� @�

�
V

sin �

�
(3.18)
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Also the linear strain can be expressed in Love numbers

�L

L0
(�) = f1 (�; �) h+ f2 (�; �) l (3.19)

where f1 and f2 are functions of the azimuth � of the strain direction and the co{

latitude � [Z�urn and Wilhelm, 1984].

Substituting the Love numbers h and k into Equation 3.11 and 3.14 reveals that

only a small fraction of the observed gravity and tilt signal describes the response of

the elastic Earth. Actually the contribution of the deformable Earth in the �{factor

is only 0.16 respectively 0.30 in the tilt factor:

� = 1 + 0:16 = 1:16 (3.20)

� = 1� 0:30 = 0:70 (3.21)

However, since on a rigid Earth there would be no deformation, the observed strain

signal is to 100 % the response of the Earth.

Gravity tides are hardly inuenced by local e�ects due to cavities, topography
and geological structure. Strain and tilt tides on the other hand are strongly a�ected
by these types of inhomogeneities near the observation site [Harrison, 1985]. Cavities

like mines and tunnels in which instruments are often installed modify the local
strain �eld and cause local strain induced tilts which can be of a similar order to
tidal tilts. These cavity e�ects depend on the strain tensor components and provided

that they are not frequency dependent they should not a�ect this work, since only
di�erential signals are used for the NDFW analysis [Neuberg and Z�urn, 1986].

Even a simple earth model with elastic mantle, uid core and an elliptical bound-
ary (as the only deviation from a SNREI model) between them leads to a frequency

dependence in the Love numbers. This e�ect, the core resonance is the subject of
this work and will be introduced theoretically in the next chapter. In Fig. 3.2 the
theoretical tidal gravity variations at the location of BFO for an earth model as

described in the next section are shown. The frequency range is zoomed gradually
to expose the tidal constituents relevant for the core resonance.

3.2 Tidal Analysis

Tidal analyses were performed with the earth tide analysis program ETERNA, ver-

sions 3.0 up to 3.3 [Wenzel, 1994b; Wenzel, 1994c, Wenzel, 1996]. In the following
the options set in ETERNA are discribed. As tidal potentials the Tamura [1987]

model with 1200 waves and the HW95 [Hartmann and Wenzel, 1995] model with
12935 constituents were chosen. In the Tamura potential the tide{generating forces

up to degree 4 for the Moon, degree 3 for the Sun and degree 2 for the planets Venus

and Jupiter are considered, whereas the HW95 potential (available in ETERNA ver-
sion 3.3) additionally takes into account the e�ects of higher orders for Moon, Sun
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Figure 3.2: Spectra of theoretical gravity tides due to the forcing tidal potential

shown in Fig. 3.1 with an extended series length of thirteen years. Upper panel: The

contributions of the diurnal and semi{diurnal band to the spectrum are prominent.

Middle panel: The diurnal band with the largest wave groups indicated. Lower

panel: highly resolved tidal constituents relevant for the core resonance analysis.

and direct e�ects of the planets Mars, Mercury and Saturn. A series expansion up to

degree n = 6 for the Moon, degree n = 3 for the Sun and degree n = 2 for the planets

leads to an accuracy of 1:4 � 10�12ms�2 rms in the time domain in comparison to a

benchmark series. With ETERNA version 3.2 corrections for the body tide arising

due to latitude variations in connection with polar motion are introduced. Also

measures against the variable length of day are taken in this programme version.

Within the error bars no signi�cant di�erences between the results for the two po-
tential developments in the period range relevant in this work are found. Therefore
usually the Tamura potential is used for reasons of reduced computing time. The

underlying earth model is the PREM model [Dziewonski and Anderson, 1981] with
uid outer core and inelastic mantle. The Love numbers belong to an oceanless,

elliptical and uniformly rotating Earth.

To eliminate the drift and long period waves which are of no concern here, a

high{pass �lter without phase shift, the ETERNA �lter No. 6 with a �lter cut{o�
frequency of 0.8 cpd (half power point), was applied to the data. The spectra of
the gravity, strain and air pressure observations treated in this way can be found

in Appendix B. Simultaneously to the amplitudes and phases of a theoretical tidal
model, the local air pressure was �t to the �ltered data by a least squares method.

The frequencies of the constituents are determined with high accuracy from astro-
nomical observations and therefore they are treated in this inversion as constants.
The results of the ETERNA analyses for all three data sets are shown in Table 3.1.

As reference signals for gravity, tilt and strain have served the vertical and horizontal
accelerations on a rigid Earth and the linear deformations on the PREM model re-

spectively. The gravity results for the largest constituent in the semi{diurnal band,

the tideM2 correspond to older values determined for the location of BFO [Neuberg,

1987].

To show the improvement of the data quality we compared residuals of old analog
[eg. Neuberg, 1987] and our new digital data after the tidal analysis with air pressure

as an additional input channel. In Fig. 3.3 histograms of these residuals are depicted.
The histogram{bin width depends on the amplitude of the largest residual. In the

underlying ETERNA analyses the same �lters and wave group partitioning as in

the former HYCON analysis [Sch�uller, 1986] of analog data were used. The gravity
residuals (standard deviation with the HYCON �lter applied: 0:873nm=s2) show

the most impressive improvement with a variance reduction of 97:5%.

In comparison the well known, excellent data set from the Bad Homburg super-



20 CHAPTER 3. EARTH TIDES

Table 3.1: Observed amplitudes j ~Dj, �{factors and tilt diminishing factors (relative

to the theoretical amplitude on a rigid earth), amplitude factors for strain (relative

to the Wahr{Dehant Model [Wahr, 1981; Dehant, 1987]), phase leads � with respect

to the theoretical signal and the uncertainties �� (estimation from SNR) of the

ETERNA (version 3.0) tidal analysis of BFO digital data. Additionally the standard

deviation (Stdv) of the residuals and the air pressure admittance factor determined

by ETERNA are given.

Wave j ~Dj [nm=s2] �{Factor � [�] ��

O1 353.8 1.14631 0.0564 0.00019

P1 164.8 1.14756 0.2274 0.00041

Gravity S1 4.3 1.26349 8.3113 0.01747
K1 492.4 1.13442 0.2461 0.00013

 1 4.4 1.30456 {2.1076 0.01747
�1 7.1 1.15273 0.2334 0.00959
M2 393.3 1.18404 2.0090 0.00009

Stdv: 0.807 nm=s2 Air pressure admittance � = �3:209 nm=s2=hPa
Wave j ~Dj [10�9] Amp-Factor � [�] ��

O1 6.328 0.97757 {4.1936 0.00319

P1 2.830 0.93963 {4.9979 0.00686
Strain S1 0.130 1.82452 {50.5376 0.29037

K1 7.349 0.80731 {7.1694 0.00227

 1 0.171 2.40561 14.7206 0.29038
�1 0.173 1.33377 {0.1074 0.15956
M2 6.963 1.25410 7.8668 0.00139

Stdv: 0.301 n" Air pressure admittance: � = �0:813 n"=hPa
Wave j ~Dj [nrad] Amp{Factor � [�] ��

O1 18.006 0.76334 {21.5181 0.00219

P1 8.750 0.79741 {22.0880 0.00472

Tilt S1 0.470 1.80443 {104.4383 0.19939
K1 27.397 0.82591 {19.0252 0.00156

 1 0.238 0.90829 {57.4103 0.19940
�1 0.389 0.82225 {31.3693 0.10956

M2 40.482 0.79473 {15.6455 0.00044

Stdv: 0.799 nrad Air pressure admittance: � = �1:732nrad=hPa
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conducting gravimeter [Z�urn et al., 1986] (Fig. 2.1) had a slightly larger standard

deviation, namely 0:956nm=s2. The variance reduction for the strain data is 91:1%.

For the tilt data which show the smallest improvement, we still obtain a variance

reduction of 88:7%. In spite of the fact that at the frequency of O1 the SNR of

strain and tilt is only 1/20, respectively 1/17 of that of the gravity it makes sense to

analyze the former signals too. The reason is that the response of the earth to the

forcing tidal potential contributes only 14% for gravity, but 43% for tilt (Eq. 3.20

and 3.21) and 100% for strain to the total tidal signal. These percentages describe

the geophysical signi�cance of the signal type. If we determine the product of this

geophysical signi�cance and the SNR of the data at the frequency of O1, we obtain

for strain 36%, and for tilt only 21% of the gravity value. This product is a measure

for the uncertainties of the resulting NDFW parameters. Therefore a priori higher

uncertainties for the NDFW results of the tilt data than for the strain data are

expected.
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Figure 3.3: Residual histograms for gravity, strain and tilt. The light shaded bars

represent the unexplained signal after tidal analysis of older analog data whereas

the dark shaded bars belong to the digital data of this work. The bin width depends

on the standard deviation of the residuals.



Chapter 4

Ocean and air pressure correction

Tidal forces not only act on the solid Earth but also on the world oceans and the
surrounding atmosphere. In turn these two parts of the Earth a�ect the measure-
ments of the solid earth tides. Whereas the response of the Earth are the quasi

static body tides, the response of the oceans and the atmosphere is dynamic. The
standard method to correct for their inuences and to reduce the measurements
to the body tide is, to �t the locally observed barometric pressure simultaneously

with the theoretical tides in the tidal analysis. Afterwards the tidal admittances for
individual tides are corrected with the help of ocean load computations. Both these

corrections cannot be considered to be perfect.

4.1 Ocean load correction

The frequency dependent ocean e�ects on a gravimeter and tiltmeter consist of both

the direct Newtonian attraction of the sensor mass and the e�ects of deformation
of the Earth (free air e�ect and potential change) due to loading by the periodically
shifting water masses. On the other hand horizontal strainmeters deployed on the

ground do only register the deformations of the surface due to the loading.

To correct for the small but important inuences of the world oceans the newest

ocean load calculations from Agnew [1996] were applied. As input data for his new
load model [Agnew, 1995] he used a combination of the new ocean tide model CSR 3.0

[Eanes and Bettadpur, 1995] and the purely hydrodynamical ocean tide model from
Le Provost et al. [1994]. The latter model was obtained by �nite{element modeling

and includes many of the shelf areas. The CSR 3.0 model with a grid distance of

0.5� � 0.5� is based upon TOPEX/POSEIDON altimeter data [Le Provost et al.,

1995] in the range of 66�N { 66�S (rectilinear grid in Fig. 4.1). For Agnew's new

load model the loading Green functions (combining load Love numbers for spherical

harmonics) of Farrell [1972] (Gutenberg{Bullen earth model) were convolved with
the tide model described above using a station centered grid with a global grid

23
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Table 4.1: Ocean signals ~L (relative to local potential; lead positive) of relevant

constituents calculated by Agnew [1996] based on the Schwiderski and the CSR 3.0

ocean tide model for the location of BFO. Amplitudes are given in nm=s2 (gravity),

n" (strain) and nrad (tilt), phases in degrees. The values in brackets are not provided

by the models, but derived from the K1 ocean signals by scaling with the amplitudes

of the potential.

Ocean Tide Model

Wave Schwiderski CSR 3.0

Amplitude Phase Amplitude Phase

O1 1.40 171.0 1.517 179.65

P1 0.60 87.4 0.787 93.34

Gravity K1 1.50 68.4 2.287 86.28

 1 (0.01) (68.4) (0.017) (86.28)
�1 (0.02) (68.4) (0.032) (86.28)

O1 0.1002 50.40 0.1448 41.23

P1 0.0841 24.09 0.0883 16.39
Strain K1 0.2524 23.28 0.2779 12.25

 1 (0.0019) (23.28) (0.0021) (12.25)

�1 (0.0036) (23.28) (0.0039) (12.25)

O1 0.350 {146.9 0.3107 {146.69

P1 0.370 56.0 0.4515 51.57

Tilt K1 1.240 48.4 1.4431 44.44

 1 (0.049) (48.4) (0.0112) (44.44)
�1 (0.035) (48.4) (0.0205) (44.44)

distance of 0.5� � 0.5� (centered grid in Fig. 4.1). Since the mass{load Green's

function has very large values in the vicinity of the point load the region near the

station should be specially taken into account. Therefore a local grid with decreased
cell size and interpolated ocean tide model data is used at distances less than 5� to

the station. Cells with more than 50% landmass are not taken into account.

In Table 4.1 the ocean load signals ~LCSR 3:0 based upon the CSR 3.0 tide model

are compared to the ocean load signals ~LSchwiderski determined on the basis of the
older Schwiderski [1980] tide model with a cell size of only 1� � 1�. For this tide

model also the loading Green's functions of Farrell [1972] were used. In most cases

the results agree to within better than 10%. Only the gravity values for K1 di�er
by more than 50% in amplitude. However since the station BFO is located 456 km
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Figure 4.1: Sketch of the ocean model grids. The rectilinear grid represents the grid

of the CSR 3.0 ocean tide model. The asterisk at the center marks the origin of the
stationed{centered grid of the load calculations, i.e. the station BFO.

away from the sea the ocean signals amount only to several parts in hundred of the

body tide (Table 3.1). The di�erent ocean load calculations result in a di�erence in
the NDFW period of less than 0:5%. (See also error estimation with Monte Carlo

simulation, Chapter 7.3).
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Figure 4.2: Spectrum of air pressure observations of about 13 month length at
station BFO. Prominent are the sharp spectral lines due to the the daily heating of

the earth surface and atmosphere. Whereas the harmonics of the solar day are a
global phenomena, the broad{band underground is of local origin.

4.2 Air pressure correction

The gravitational reactions of the atmosphere to the tidal forces are rather small, but
there are large tides in the atmosphere for solar constituents due to the radiational
energy input from the Sun. The gravity, strain and tilt records are contaminated by

broad{band noise of meteorological origin also due to density variations of air masses.
Contributions to this noise are the direct attraction of the gravimeter mass by the

changing air masses and the loading of the surface owing to atmospheric pressure

changes. In the tidal analysis by ETERNA and all other least squares methods there
is no di�erence being made between the broad{band noise and the solar harmonics

(see air pressure spectrum Fig. 4.2). However, as Warburton and Goodkind [1977]
have pointed out, the admittances of gravity with respect to atmospheric pressure

are signi�cantly di�erent for the broad{band background on one hand and distinct

solar harmonics on the other hand. One reason is the fact, that the background
belongs to local e�ects whereas the solar harmonics in the atmosphere have large

contributions from global wave phenomena [eg. Volland, 1988]. Recently other
authors (see Chapter 8) have recon�rmed this admittance di�erence.

Several alternative methods have been developed to treat the barometric effects on
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gravity recordings. Crossley et al. [1995] determine the admittance function between

gravity and local air pressure in the frequency and time domain. They demonstrate

again that the admittance for the solar harmonics is considerably di�erent from

the one for the broad{band meteorologic signal: for Cantley, Canada they found

admittance factors of about �1:7 nm=s2=hPa and �2:3 nm=s2=hPa for the solar

harmonics S1 and S3, respectively, while their broad{band admittance is slowly

rising with frequency and is about {3.5 nm=s2=hPa in the vicinity of the diurnal

tidal band. Merriam [1994] pointed out the importance of the seasonal modulations

of the solar tides. Annual and semi{annual modulations of the thermal tide S1
disturb the waves of P1, K1 and �1,  1, respectively. The salient point is, that these

tides except �1 are used in the NDFW estimation.

Mukai et al. [1995] evaluated near station pressure e�ects on gravity by numerically

integrating air masses. At the same time they took into account regional and global

e�ects by spherical harmonic expansions of meteorological observations. All these

e�orts demonstrate how serious this problem is. Further below (Chapter 8) several

experiments are described which have been performed to study this problem and its
impact on NDFW analysis in more detail.
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Chapter 5

Theoretical aspects of the wobble

Scientists of di�erent �elds use the term nutation di�erently depending on their
subject of investigation. In the classical sense of the word, a nutation is a nodding
up and down motion of the �gure axis of a rotating body. A physicist calls the

motion of the �gure axis of a rotating gyroscope around the vector of total angular
momentum a nutation, no matter if an external torque is acting or not. If you want
to describe the motion of eg. a spinning top in inertial space it is sensible to observe

the �gure axis. Astronomers denote as nutation the motion of the instantaneous
rotation axis around the vector of total angular momentum caused by the varying

components of the luni{solar tidal torque exerted on the Earth's equatorial bulge.
This is because what they observe in the reference system of the �xed stars is the
motion of the rotation axis of the Earth. Geophysicists observe a wobble on the

Earth in a body{�xed reference system. They use the term nutation or sway [Chao,
1985] for the motion of the instantaneous rotation axis around the vector of total

angular momentum that accompanies the wobble [Rochester et al., 1974]. In this
work the last de�nition is adopted.

5.1 A force free gyroscope

The theory of gyroscopes [Sommerfeld, 1964] provides the basic ideas for the descrip-

tion of the motions and deformations of the rotating elliptical Earth: the wobbles
and the nutations. To understand the kinematic behavior of the Earth it is helpful

to consider �rst a simple rigid gyroscope. Without external forcing for a so called
free gyroscope the angular momentum must be conserved:

d H

dt
= 0 (5.1)

The total angular momentumH is de�ned as the dot product of the tensor of inertia

C with the components Cij (see Glossary) and the angular frequency !:

H = C � ! (5.2)

29
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The equilibrium (Equation 5.1) requires that the vector of total angular momentum

stays �xed in space. Furthermore the kinetic energy T of the rotating body must

remain constant:

2T = ! �H = !H cos (!;H) = const: (5.3)

The consequence is that the projection of ! on H is constant. This restriction only

allows the !{vector to describe a cone around the vector of total angular momentum.

Expressed otherwise the tip of the rotation vector of a axi{symmetric body traces a

track in a plane perpendicular to the vector of total angular momentum. This plane

is called invariable plane.

Substituting the angular momentum in Equation 5.1 for the implicit expression in

Equation 5.3, the surface of an ellipsoid in the !{space is given by:

C11 !
2
1 + C22 !

2
2 + C33 !

2
3 + 2C12 !1!2 + 2C13 !1!3 + 2C23 !2!3 = 2T (5.4)

This energy ellipsoid is also called Poinsot ellipsoid [eg. Rochester et al., 1974].
Its principal axes are identical to those of the inertia ellipsoid (which represents

the moments of inertia for arbitray axes through the center of mass). The radii
are di�erent, they amount to 1=

p
Cii. For an axi{symmetric body the �gure axis

coincides with a principal axis of the Poinsot ellipsoid. The surface of the Poinsot
ellipsoid then represents the area where the tip of the !{vector is restricted to move.
This motion of the tip of the !{vector on the surface of the body{�xed Poinsot

ellipsoid on one hand and on the space{�xed invariable plane on the other hand is
only compatible with the Poinsot ellipsoid rolling on the invariable plane (see the

Poinsot representation in Fig. 5.1). Since the contact point of plane and ellipsoid
is instantaneously in rest [Greiner, 1986], the rolling motion contains no slipping
part. Drawing attention to the H{vector, the !{vector and the �gure axis it can be

understood, that the rolling motion consists of the instantaneous rotation vector !
describing one cone (body cone) around the �gure axis and simultaneously a second
cone (space cone) around the vector of total angular momentum (Fig. 5.2). For an

oblate gyroscope which means an axi{symmetric body with C33 > C11 this motion
can be described by the body cone rolling inside the space cone without slipping.

The body cone then represents the wobble and the space cone the nutation. At

every moment the !{vector forms the contact line of the two cones. Equivalently
expressed: the !{vector, the H{vector and the �gure axis are always coplanar. For

an oblate gyroscope like the Earth the !{vector and the �gure axis span a plane
which slowly revolves around the vector of total angular momentum.

5.2 The Earth { a gyroscope

The theoretical fundamentals concerning the di�erential rotational motion of the

Earth's core and mantle { namely the nearly diurnal wobble motion { shall be
sketched in this section. Comprehensive treatment is found eg. in Hinderer et al.

[1982]. The dynamical e�ects on a simple earth model can be obtained by taking
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Figure 5.1: Poinsot representation [eg. Sommerfeld, 1964]: Poinsot ellipsoid of an

oblate gyroscope rolling on the invariable plane. For an axi{symmetric body the tip
of the !-vector traces circles on both the Poinsot ellipsoid and the invariable plane.
Additionally to the present rotation vector ! (in black color) its variation with time

on the Poinsot ellipsoid is documented by the gray vectors (body cone).

into account the following conditions which are introduced in succession below. To

the right of each arrow the consequence of the respective condition is listed:

� Balance of angular momentums ! Euler wobble

for rotating rigid ellipsoid body

� Elastic body ! Time dependent quantities
� Small deviations ! Perturbation theory can be applied

� 2{layer earth model ! Separation of Liouville Equations
� Ellipsoid CMB and uid core ! Coupling torques between mantle and

core ! Additional eigenmode NDFW

� Coordinate transformation ! Additional angular momentums vanish

The Euler equation describes the change of the angular momentum H of a rigid
body in the inertial system (index I ), when the external torque L is exerted on the
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Figure 5.2: Body and space cones describing wobble and nutation of an oblate,

homogeneous, axi{symmetric gyroscope. The angles of the cones represent the am-
plitudes of wobble and nutation.

body.
_HI = L (5.5)

Instead of considering a motion relative to an inertial system, it is often more con-

venient to express the motion relative to a system K, tied to the rotating body. If
the system K is rotating with a angular frequency ! relative to the inertial system
I, then for a vector � the operator identity

 
d�

dt

!
I

=

 
d�

dt

!
K

+ ! � � (5.6)

is valid. The Euler equation then becomes:

_H+ ! �H = L (5.7)

Solving this equation of motion for a homogeneous, axi{symmetric, rigid body results
in a rotational eigenmode, the Eulerian wobble. If a body with elastic or anelastic

rheology instead of a rigid one is considered, it has to be taken into account that

each individual particle is accelerated relative to the body �xed system K. This

causes the additional angular momentums h. The total angular momentum of a

deformable body is then given by:

H(t) = C(t) � !(t) + h(t) (5.8)

[Munk and MacDonald, 1960]. All quantities in this equation are time dependent.
Substituting this expression for the total angular momentum H in Equation 5.7
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leads to the Liouville equation of motion

d

dt
[C � ! + h] + ! � [C �! + h] = L (5.9)

If the deviations from the rigid Earth are small, then perturbation theory can be

applied and so it is possible to linearize the equation of motion. Every property

of the rigid Earth shall then be represented by a variable �0 and all time varying

(elastic) terms are concentrated in the perturbation term �� (t). Then for every

variable of Equation 5.9 we can write:

� (t) = �0 +�� (t) (5.10)

with�� (t)� �0. For reasons of convenience the axes of the body{�xed coordinate

system are chosen to be parallel to the principal axes of inertia. Then the time{

dependent inertia tensor C of the entire Earth relative to ! is de�ned by

C =

2
64
A + c11 c12 c13

c21 A + c22 c23
c32 c32 C + c33

3
75 (5.11)

A and C being the equatorial, respectively polar moments of inertia of the unde-

formed Earth. Due to the elastic deformation of the mantle the time{varying per-
turbation terms cij are induced with fi; jg = 1; : : : ; 3. The earth rotation vector !
consists of the constant diurnal rotation of the �gure axis with angular frequency 


(with respect to the �xed star system) and much smaller deviations from it, namely
!1, !2 and !3:

! =

2
64

!1
!2


 + !3

3
75 (5.12)

The equatorial components !1 and !2 point into the direction of the Greenwich
meridian, respectively in a direction perpendicular to it (90 � farther east). These

components become �nite for the rotational eigenmodes of the Earth (eg. the
Eulerian wobble for a homogenous body) and are therefore of interest in this work.

On the other hand the polar component of the rotation vector 
 + !3 is parallel to

the �gure axis and has therefore no e�ect on the wobble (see Figure 5.2). The polar
term 2�=(
 + !3) describes only the varying length of day (LOD), which is of no

concern here.

In the next step an earth model with characteristics essential for di�erential

rotation between mantle and core is introduced: a uid core con�ned in an elliptical
cavity given by the mantle1. The di�erential rotation gives rise to a second rotational

eigenmode, the nearly diurnal free wobble. The Liouville equation (5.9) can then be
separated in one equation concerning the core (index C) and another one describing

1The mantle is quasi the container of the uid core.
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Figure 5.3: Body and space cones describing wobble and nutation of a uid core

con�ned in an elliptical cavity. The angles of the cones represent the amplitudes of
wobble and nutation.

the mantle (index M):

d

dt
[CC � ! + hC ] + ! � [CC � ! + hC ] = LC +N (5.13)

d

dt
[CM � ! + hM ] + ! � [CM � ! + hM ] = LM �N (5.14)

(All variables except the rotation vector ! and the coupling torque N appear in
the equations separately for the mantle and the core.) The moments of inertia
must be de�ned individually for these two parts according to Equation 5.11. The

coordinate system K can be �xed to the mantle in such a manner that the additional
angular momentum hM vanish. The corresponding axes are known as Tisserand axes

[Hinderer et. al, 1982].

Since core and mantle respond di�erently to the luni{solar force, there exists a

di�erential rotation between mantle and core. If the CMB would be spherical and

no coupling between core and mantle would exist, the motion of the core and mantle
would be independent of each other. Then no resonant deformation of the CMB

and no di�erential rotation of the mantle and core would take place. The coupling
between mantle and core is represented by the torque N. This variable can comprise

torques of topographic, electromagnetic, viscous, gravitational and inertial origin.

Considering the complete Earth, the coupling torques must vanish (Equation 5.9).
In the following the inuence of the di�erent coupling mechanisms are discussed (see

also Fig. 1.3). Topography of the CMB is not included in the calculation, since it has
not been determined with signi�cance so far [Doornbos and Hilton, 1989]. Only the

diurnal tesseral components in the tidal potential V of the moon and sun contribute
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Figure 5.4: Left panel: in the unperturbed state all axes are parallel. Right panel:
a torque has misaligned the �gure axis of the container and the orbital rotation axis

!orbit. The small arrows represent the force on the mantle excerted by the particle
which orbits in the dashed plane.

to the gravitational torques exerted at the CMB. Turbulence and convection in the

core are neglected. The appreciable part of the mutual inuence between mantle and
core is supposed to be due to inertial coupling. A simple model of inertial coupling
transmitted via pressure is discussed eg. in Toomre [1974]:

Consider a frictionless particle sliding around an oblate ellipsoidal cavity free
of gravity, initially following the equatorial plane. When the axis of the cavity

is turned through a small angle the particle continues to orbit in the original
plane, but as it is now inclined to the equator of the cavity the orbit has

become slightly elliptical. Moreover, the cavity wall is no longer everywhere

perpendicular to the plane of the orbit and since the particle is frictionless it
only experiences a force normal to the cavity wall. This force has a component

perpendicular to the plane of the orbit (see small vectors in Fig. 5.4). These
forces set up at the cavity wall try to realign the �gure axis of the cavity with

the rotation vector of the particle. The result is a torque that causes the orbit

to precess in a retrograde sense about the equator of the cavity.

This mechanism is a simpli�ed analogue of the response of the uid core motion

to a change in orientation of the axis of the CMB. When the �gure axis of the man-

tle and instantaneous rotation axis of the core become misaligned which is possible
due to the tesseral tidal forcing then the mantle tries to impose its shape on the

core. Restoring pressure torques arise at the CMB which try to realign the two
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axes. The Earth reacts as a gyroscope with a wobble in the earth{�xed system and

the associated nutation in the inertial system (5.3). The important simpli�cation in

this model of inertial coupling is neglect of the internal motion in the core2 that is

required to accomodate its shape to an ellipsoidal cavity misaligned with its own ro-

tational axis. With the help of the Love number formalism the reaction of the CMB

(changes in the inertia tensor) to the instantaneous elastic deformation is considered.

Inertial coupling is non{dissipative. But viscous and electromagnetic coupling caused

by tangential forces at the CMB do have a dissipative component. It is convenient

to use only one parameter set to describe those totally di�erent physical phenom-

ena. The dissipative and the frictionless coupling coe�cient K and K 0 describe

viscous and electromagnetic e�ects. Their inuence depends on the conductivity of

the lower mantle, the radial component of the Earth's magnetic �eld, the constant

of induction and the viscosity of the outer core. These e�ects are rather small.

The polar component of the rotation vector is decoupled in the equations and

therefore is not relevant for rotational eigenmodes. Substituting the respective ex-

pressions of the moments of inertia, angular momentums and torques into Equa-
tions 5.9 and 5.13 the di�erential equation system for the equatorial components of

the rotation vector for the whole Earth3 ! = !1+ i !2 and the core !C = !C1 + i !C2
becomes [Hinderer et al., 1982]:
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(5.16)

with the earth radius R. The Love numbers k and ks describe the variation of
potential due to perturbations at the actual frequency and in�nitely slowly (secular).

hC and k0 are Love numbers which describe the static deformation of the Earth

exerted to body and normal forces (Chapter 3). The Love number Ch0 describes the

reaction of the CMB{shape to the pressure �eld of the Poincar�e ow. By q 0 = 
2R=g

the ratio of centrifugal force and gravity at the equator on the surface of the Earth is

expressed. � and �C =
�
CC � AC

�
=CC denote the dynamical ellipticity of the whole

Earth, respectively of the core. The latter variable is crucial for the interpretation
with respect to the shape of the CMB (Chapter 9).

2the so called Poincar�e ow
3This is almost identical to the mantle which is observed at the surface of the Earth.
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5.2.1 Free Wobble

First the rotating Earth without periodic tidal forcing is discussed, since in this case

the freely excited eigenmodes can be obtained. A possible exciting mechanism may

be atmospheric winds excerting frictional and mountain torques on the surface of

the planet. The atmosphere and the Earth's body are tightly coupled. In fact the

strongest axial torques on the solid Earth are from the exchange of angular momen-

tums with the atmosphere. The atmospheric torques are ten times larger than the

core{mantle coupling torque [Merriam, 1990] at periods of a few days. Herring and

Dong [1994] reported that there is more than enough power in the P 1
2 component

of the atmospheric pressure �eld to randomly excite the NDFW rotational mode.

Modeling the possible damping mechanisms may lead to a constraint on the vis-

cosity of the outer core. One contribution in this work is the determination of the

quality factor of the core resonance.

The homogeneous di�erential equation system 5.15 and 5.16 has two solutions. The

�rst is again the Eulerian wobble, which leads for a realistic earth model to the
Chandler wobble with the angular eigenfrequency

!CW = 

A

AM
�

 
1� k

ks

!
(5.17)

The frequency is equivalent to a period of 435 d. This prograde eigenmode is the
only rotational mode a rotating rigid body with an ellipsoid surface would support.

For a rigid earth model the eigenperiod would only be Trigid = 305 d.
The second solution is a retrograde mode, the Nearly Diurnal Free Wobble which is
the topic of this work. Its angular eigenfrequency for our simple model is determined

by

!NDFW = �

"
1 +

A

AM

 
�C � q0

Ch0

2
+K 0 � iK

!#
: (5.18)

The angular frequency is slightly larger than the Earth's rotation 
, since the second

term in angular brackets is small compared to 1. The dynamical ellipticity for an
earth in hydrostatic equilibrium is � 2:5 � 10�3. The term with the Love number
Ch0 describes the change of the dynamical ellipticity due to the instantaneous elastic

deformation of the CMB caused by the NDFW. This term is not small. Sasao et

al. [1980] claim it is 25 % of the leading term �C . The terms describing the visco{

elastic coupling have probably no perceptible inuence on the eigenfrequency, since

the coupling constants K and K 0 are expected to lie both in the range of 10�7.

Connected to each wobble is a nutation in inertial space. The nutation and the

wobble are two manifestations of the same rotational eigenmode. An observer on

the Earth can perceive the wobble part of the mode relative to the earth{�xed
system in variations of latitude. The isolated nutation part of the mode can only

be observed in space relative to �xed stars. It can be veri�ed by variations in the

declination of stars. An observer on the Earth with the reference system of the �xed

stars (see VLBI in Chapter 9) will always perceive a combination of the nutation

and the much smaller wobble (the motion of the rotation axis in space combined
with the deformation of the surface).
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ω

mantle figure axis

FCN

NDFW

H

Figure 5.5: Axes describing wobble and nutation. All three axes intersect with each
other at the center of the Earth. The circle on the surface traces the motion of the

!{axis. The amplitudes (exaggerated in this sketch) of the wobble and nutation are
indicated by double arrows.

Wahr [1981] theoretically determined a period of the FCN of 460 siderial days
(sid: d). Recent numerical calculations of Jiang [1993] with the �nite element method
and full consideration of the Coriolis term resulted in a FCN period of 448:6 sid: d.

Modern observational estimates of the FCN period (see chapter 6.1) are systemati-
cally shorter. Since the moments of inertia of the mantle respectively of the whole
Earth are known with high accuracy, the dynamical ellipticity �C is the only pa-

rameter which can be changed to �t a theoretical model. Excess attening of the

CMB could be explained with a non{hydrostatically pre{stressed Earth and would

allow to reconcile theoretical and observational estimates of the wobble frequency.
The movement of the Earth's rotation axis around the �gure axis of the mantle

describes a cone with the tip at the center of the Earth: the wobble. Simultaneously

the rotation axis moves around the axis of the total angular momentum also describ-

ing a cone: the nutation . The rotational eigenmode as a whole �ts the description of

two cones rolling in each other without slipping (discussed in section 5.1). Since the

wobble and the nutation are two realizations of one eigenmode it is understandable

from the geometric conditions above that between wobble and nutation frequency

there exists a relation:

!wobble = !nutation � 
: (5.19)
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with 
 being the angular frequency of the rotation with respect to the �xed star

system. Furthermore in approximation of small amplitudes a relation between the

amplitudes and frequencies of wobble and nutation holds:

!nutation

!wobble

=
awobble

anutation
(5.20)

Fig. 5.5 shows schematically the relative position of the axes at the surface at a cer-

tain moment in time. The amplitude of the nutation exceeds the wobble amplitude

by far. In reality the di�erences in amplitude is more conspicuous. For modern

earth models the ratio of the amplitudes is about 1=460. Since Herring and Dong,

[1994] found an amplitude of 0:844nrad (equals 5:38mm at the surface of the Earth

for the freely excited FCN from VLBI (see Chapter 9.1) measurements, this implies

an amplitude of the NDFW of 0:002nrad (11:7�m at the surface of the Earth).

The situation for the Chandler wobble is reverse: a large wobble is accompanied by

a smaller nutation. Fig. 5.2 resembles this constellation. The Chandler wobble will

not be discussed any further.
A similar eigenmode will be obtained if the boundary between inner core and outer

core is elliptical as well. The resulting inner core wobble is discussed in Wahr and

De Vries, [1991] and Mathews et al., [1991]. According to their calculations the
inner core mode should have only a negligible inuence on the earth tide response

and small e�ects on the nutation amplitude.

5.2.2 Forced Wobble

When a periodic forcing mechanism exists (see Fig. 1.2) the Earth responds with
forced motions instead of free oscillations. The diurnal tesseral tidal potential V21
has the appropriate temporal and spatial distribution to excite the NDFW. Due to
the diurnal tesseral tides the orientation of the principal axes of inertia is a�ected. In
Equation 5.15 and Equation 5.16 the periodic potential V21 = V0 e

i!t is substituted

for V . Then the response of the Earth becomes with respect to the equatorial
components of the rotations ! = !1+ i!2 = !0 e

i!t, respectively, !c = !C1 + i!C2 =

!C0 e
i!t of the whole Earth and the core [Hinderer et al., 1982]:

!0 =
(! + 
)

�
1� AC q0 h

C

2�A

�
+ 


�
�C + q0

0hC

2

�
! � ~!NDFW

A

AM

3�V0


R2
(5.21)

and

!C0 =
1� q0 h

C

2�

! � ~!NDFW

A

AM

3�V0

R2
(5.22)

These are the amplitudes of the di�erential rotation of the whole Earth and the core.
The term (!� ~!NDFW )�1 indicates a resonant behavior in the rotations (due to the

presence of the eigenmode) for a given angular frequency ! and potential amplitude

V0 near the complex angular frequency ~!NDFW . The predominent core rotation !C0
leads to a uid overpressure at the CMB and consequently to a deformation. This



40 CHAPTER 5. NDFW THEORY

elastic deformation results in a resonant tidal gravity change which is described for

example by a frequency dependent �{factor [Hinderer et. al, 1991]:

� = 1 + h� 3

2
k + 


A

AM

�
h0 � 3

2
k0
� �
�� q0h

C

2

�
! � ~!NDFW

(5.23)

The �rst three terms correspond to the �{factor of a spherical Earth (Equa-

tion 3.11). For frequencies far from the resonance (eg. near tide O1) the fourth term

almost vanishes. For the real Earth the the complex tidal admittances ~D (i.e. the

�{factor for gravity, the amplitude of linear strain and the tilt{diminishing factor

eta) can thus be splitted into the component ~DSNREI representing the spherical

Earth (no frequency dependence) and the resonant component ~R, so that

~D = ~DSNREI + ~R (5.24)

The resonance part ~R can be isolated and interpreted analogously to a classi-
cal harmonic oscillator with eigenfrequency, quality factor and complex resonance

strength.

5.3 The model of the classical harmonic oscillator

In the following the complex tidal admittances as provided by ETERNA after the

ocean load correction are used. For the NDFW �t the tides O1, P1, K1,  1 and �1
are used. The last four waves are strongly inuenced by the resonance. In order to
isolate the contribution ~R of the resonance the tide O1 is used as a reference tide.

Therefore the complex tidal admittance of O1 is subtracted from the complex tidal
admittances of the other tides:

~R (!i) = ~D (!i)� ~D (!O1
) (5.25)

Proceeding in this way at the same time all frequency independent e�ects are elimi-

nated and the inuence of systematic calibration errors (and cavity e�ects on strain

and tilt) is reduced. In the vicinity of the resonance frequency there is also the
purely solar tide S1. This tide is not included in the NDFW analysis because its

SNR is very low and this tide is heavily corrupted by meteorological e�ects (Chap-

ter 8). The functional model for the resonance is the same as used by Neuberg et al.
[1987] and several other authors: a harmonic oscillator with eigenfrequency !NDFW ,

damping factor  and complex resonance strength ~A = A+i B with real part A,

imaginary part B and i=
p�1. The model function ~M is given by:

~M(!) =
~A

!2NDFW � !2 + i!
�

~A

!2NDFW � !2O1
+ i!O1

(5.26)

The unknowns are combined in the parameter vector � = (!NDFW ; ; A;B) with
 = !NDFW=Q and the quality factor Q. In the calculations the near{resonance
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Figure 5.6: Resonant components of the gravimetric factor in BFO gravity data: the

symbols square and triangle belong to the real and the imaginary parts respectively.
The inverted model is represented by the real part (solid line) and the imaginary part

(dotted line) on the basis of the solution vector � = ( 1:005211 cpd (corresponding
to TFNC = 405:5 sid:d ) ; !NDFW=(�5360); �0:58 � 10�3; �0:50 � 10�4). Additionally
the tidal constituents used in the inversion are indicated. The error bars are derived

from standard deviations of the tidal analysis with ETERNA. The error contribution

of ocean{tide loading corrections are neglected here.

approximation represented in real and imaginary part

~M(!) � (! � !O1
) [A (!NDFW � !) +B]

(!NDFW � !)2 + 2
+ i

(! � !O1
) [B (!NDFW � !)� A]

(!NDFW � !)2 + 2

(5.27)
[Neuberg et. al, 1987] is used. An example of the harmonic oscillator model is shown

in Fig. 5.6 in the complex representation of the gravimetric factors. In Fig. 6.1 the

inuence of the quality factor on amplitude and phase of the gravimetric factor is
illustrated at higher frequency resolution. The discussion follows in Chapter 6.4.



Chapter 6

Estimation of the NDFW

Parameters

The inversion problem in this application is the following: determine 4 unknowns
out of 8 data in the case of individual data set inversion. In the stack of gravity,
strain and tilt data the situation is a little improved with 24 data and 8 unknowns.

This is a very poor data basis with a very low number of degrees of freedom, but the
data used are restricted to tides which are signi�cantly a�ected by the resonance.

The problems to solve are overdetermined in the sense that the number of data
exceeds the number of model parameters. This means no unambiguous analytical
solution exists and therefore the data have to be �tted to the model. The function

to be minimized in multiple dimensions is �2, the mis�t between model and data

�2 (�) =
nX
i=1

1

�2i

h
~M(!i; �)� ~R(!i; �)

i2
(6.1)

sampled at the angular frequencies !i. To take into account the data quality which
increases with amplitude, the data are weighted with the reciprocal standard de-
viation �i of the ith tidal constituent. Because of the highly non{linear functional

model (Equation 5.26) it appears useful to compare di�erent optimization strate-
gies. The minimization problem is solved iteratively with local methods in the

two following sections. On one hand an iterated linearized least squares inversion
scheme is performed with singular value decomposition. On the other hand a down-

hill simplex method is applied, which only requires function evaluations, but not

derivatives. The iteration demands an initial model. For this purpose the results of
a previous study [Neuberg, 1987] are chosen. Additionally joint inversions for more
than one data set are performed. In that case the admittances are inverted together

for a common resonance frequency and damping factor but individual resonance

strengths pertaining to the di�erent tidal signals. For a stack the solution vector

becomes � = (!NDFW ; ; A1; : : : ; Al; B1; : : : ; Bl) for l data sets.

In one special inversion series the quality factor is held �xed at in�nity. This is real-

ized by constraining  to zero. The justi�cation is that a very high NDFW Q{factor

42
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is commonly expected. With �xed Q only 2l+1 parameters have to be determined,

this increases the number of degrees of freedom and will result in smaller formal

error bars.

Even in the case of three data sets we have not an exuberant data basis for statistical

conclusions. Therefore emphasis is put on the estimation of the uncertainties of the

parameters in Chapter 7.

6.1 Linearized least squares method

Minimizing the residuals (Equation 6.1) is obtained by setting the partial derivatives

with respect to the parameters �j identical zero [Draper and Smith, 1966]:

@�2

@�j
= 0 (6.2)

In the following the ~ symbol for complex variables is omitted for the sake of
convenience. To be able to obtain a least squares solution the non{linear model

function 5.27 must be linearized. For this purpose a Taylor series expansion of
M(�) about the point �0 is carried out. When the expansion is curtailed at the �rst
derivative, then

M(�) �M(�0) +
mX
j=1

 
@M

@�j

�����
�0

��j

!
(6.3)

With the initial value �0 being close to the solution �, Equation 6.3 is a reason-

able approximation for M(�). Then the so called normal equations result from
Equation 6.2 : �

HTWH
�
�� = HTb (6.4)

with the components of the data kernel matrix

Hij =
@Mi

@�j

�����
�0

(6.5)

the data vector b consisting of the components

bi = Wii (Ri �Mi) (6.6)

the improvements of parameters �� and �nally the weights stored in the diagonal

matrix W with the non{vanishing elements Wii = 1=�2i . In matrix formulation the
linear system of equations to be solved can be stated by:

�� = G�1z (6.7)

with

G = HTWH (6.8)
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and

z = HTb (6.9)

To solve the equation system iteratively a singular value decomposition is used.

The initial parameter values have to be improved upon by the vector of model

improvements �� and then the resulting � have to replace the initial values in the

subsequent iteration step:

� = �0 +��: (6.10)

This iterative process has to be repeated until the solution converges, i.e. until in

successive iterations k and k + 1: �������k+1��k
� 1

����� < �

with � = 10�6. For the uncertainty ���j of a parameter ��j determined out of n

data Ri applies in general [Bevington, 1969]

���j =

vuut nX
i=1

�2i

 
@��j

@Ri

!2
(6.11)

A detailed discussion follows in Chapter 7.

6.2 Singular value decomposition (SVD)

Although least squares problems can be formally overdetermined it is possible that

they are underdetermined in the sense that ambiguous parameter combinations exist
[Press et al., 1992]. In SVD routines combinations of basis functions irrelevant to
the �t will be driven down. SVD �nds solutions when other methods fail. Another

criterion to use this algorithm for matrix inversion is that it dispenses with invert-
ing the symmetric form GTG and therefore one source of numerical uncertainty is

avoided.
Any n �m matrix G (rows n � columns m) can be expressed as the product of a
column{orthogonal n �m matrix U, a positive de�nite m �m diagonal matrix �

and an orthogonal m�m matrix V [Press et al., 1992]:

G = U �

2
6664
�1

�2
: : :

�m

3
7775 �VT (6.12)

The elements of �, the �j are the non{negative roots of the eigenvalues of GTG.

They are called singular values. The inverse of G is represented by:

G�1 = V �

2
6664
1=�1

1=�2
: : :

1=�m

3
7775 �UT (6.13)



CHAPTER 6. PARAMETER ESTIMATION 45

For the decomposition �rst the matrix G has to be transformed with the help of

Householder algorithm into upper bidiagonal form, and then the actual decomposi-

tion with a QR procedure is performed [Wilkinson and Reinsch, 1971].

This decomposition can always be done even when the matrix is singular. Numer-

ical instabilities can arise when the condition number which is formally de�ned as

the ratio of largest singular value to the smallest one becomes too large. This is

the case when there are very small but nonzero singular values. Then the matrix

is ill{conditioned. In order to avoid this problem the reciprocals of singular values

are set to zero when the corresponding condition number becomes larger than 103.

This means deleting n� p equations of the equation system which are corrupted by

roundo� errors. In doing so no useful information gets lost. The SVD solution

�� = Vp�
�1
p UT

p z (6.14)

is better in the sense of smaller residuals than those gained by many other methods.

6.3 Nelder{Mead simplex method

Also a simplex method [Nelder and Mead, 1965] for minimizing the multi{dimensional
function 6.1 is applied. This iteration algorithm should not be confused with the

simplex algorithm of linear optimization. This method may converge slowly, but
has the advantage of only requiring function evaluations. No partial derivatives
with the connected numerical inaccuracies resulting from the linearized functional

dependence between data and model have to be evaluated. Also the data has not to
be weighted for reasonable results. For numerical calculations the FORTRAN rou-
tine AMOEBA [Press et al., 1992] was implemented. The name of the used routine

is characteristic for its proceeding: a geometric �gure, the simplex, 'ows' (moves
like an amoeba) in the m{dimensional model space to the functional minimum by

assimilating to the topography of the environment.
A simplex consists of m + 1 vertices in m dimensions plus all their interconnect-
ing line segments and faces enclosing a m{dimensional volume. In two dimensions a

non{degenerate simplex is given by a triangle, in three dimensions by a tetrahedron.
In this context degeneration means that a simplex con�nes a vanishing volume.

The function minimum (here the minimum of mis�t) is found after a series of geo-
metric transformations. The vertex with the largest function value is reected at the

subspace of the remaining vertices. So the vertex reaches a place of lower niveau.

Simultaneously to the reections elongations and contractions are possible. In do-
ing so the simplex assimilates step by step to the topography of the m{dimensional
space. In the 3{dimensional vector space possible transformations comprise: elonga-

tion of the simplex along inclined planes, reversion of the direction of motion, when

the simplex runs perpendicularly into a valley and contraction of the volume in the

vicinity of a minimum. These transformations lead the simplex downhill into the

minimum of the �2{plane.

The parameters of Neuberg [1987] make up one vertex of the initial simplex. The
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other m vertices of this simplex can be constructed by:

�k = �0 + �k with �k � 1

Although anticipating the parameter results, it must be mentioned that in the

Nelder{Mead method a positivity constraint for the quality factor has been incorpo-

rated to suppress negative values. The reason is that a negative quality factor does

not match the physical model of a damped harmonic oscillator. But on the other

hand a high negative Q = != corresponds to a damping factor in the vicinity of

zero. Within the error bars a distinction of the sign may then not be possible. This

constraint is only applied to secure the reliability of the results. It is carried out by

putting a penalty on negative Q during the iteration. Every time the function value

for a parameter vector with negative Q shall be evaluated, the penalization means

assigning to the mis�t (Equation 6.1) an a priori high value.

It is well known that local methods are not able to distinguish between local and

global minima. The least what can be done is to restart the procedure with one

vertex being the claimed minimum to make sure that it returns to this point.

6.4 Inversion results

In the case of SVD the model �t is weighted by the standard deviations of the
tidal parameters from the tidal analysis. It must be mentioned that the inuence
of uncertainties in the ocean corrections and the O1 error inuences are not taken

into account here (this will be accomplished in the next chapter). In the simplex
inversion no weighting of the tidal parameters at all is performed.

The results for the NDFW parameters of di�erent inversions and their formal
errors from the least squares estimation are listed in Table 6.1. In all cases the start-

ing values for the parameters were the solutions of Neuberg [1987]. The information
on the kind of inversion is found in the �rst column: the abbreviation of the data
type, positivity constraint applied (�) or not, Q �xed (y) or not. The resonance

periods TFCN determined in this work are all considerably smaller than theoretical

predictions and results from most other data sets. The gravimeter data which have

the highest quality lead to the smallest resonance period, whereas the largest reso-

nance period of the di�erent inversions is reached by the least signi�cant tilt data
set. The resonance periods of this work span a range of 403� 420 siderial days. A

selection of important published NDFW results is listed in Table 6.2 where the FCN

periods vary only in the interval 430� 437 siderial days. The theoretic calculations
even predict a resonance period between 449 � 474 siderial days. The signi�cance

of these theoretically determined parameters is discussed in Chapter 9. The reso-
nance period for the stack of the three data sets with unconstrained Q happens to

be coincidentally the arithmetic mean of the three individual periods. Nevertheless

for this case the inuence of the tilt data seems to be negligible, since the NDFW
parameter results are similar to the stack of gravity and strain alone. In general it
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Table 6.1: Resonance parameters and their standard deviations. G, S and T are

abbreviations for gravity, strain and tilt, respectively. The � symbolizes the appli-

cation of a positivity constraint in the Nelder{Mead simplex method. Whereas all

the other analyses are calculated by the SVD algorithm. Additionally the y symbol
indicates an inversion with �xed in�nite Q.

TFCN [sid :d]  � 10�3 [d�1] Q A � 10�3 B � 10�3

G 405.5 � 13.6 �1:17 � 1.03 �5360 � 4720 �0:58� 0:02 �0:03� 0:02

G� 413.4 0.00041 1:6 � 107 �0:58 �0:05
Gy 410.0 � 10.4 0 1 �3:43� 0:31 0:04� 6:57

S 410.6 � 7.0 1.24 � 0.52 5070 � 2150 �6:13� 0:12 0:85� 0:12

T 420.2 � 54.1 0.89 � 3.85 7100 � 30750 1:01� 0:27 1:85� 0:27

Stacks

G �0:57� 0:02 �0:04� 0:02

S
412.3 � 10.6 �0:61� 0.78 �10293 � 13200 �6:14� 0:22 �0:50� 0:22

G� �0:41 0.13

S
403.4 0.24 25980 �6:25 {0.67

Gy �3:41� 0:21 0:04� 4:19

S
412.9 � 8.7 0 1 �36:74� 2:39 �0:88� 4:19

G �0:57� 0:02 �0:04� 0:02

S 412.7 � 9.7 �0:53 � 0.72 �11900 � 16000 �6:13� 0:21 �0:51� 0:21
T 1:10� 0:12 1:73� 0:12

G� �0:42 �0:14
S 407.6 0.44 14200 �6:74 �0:05
T 1.03 1.77

cannot be expected that the stack results are the mean value of the individual results

with reduced parameter uncertainties, since the underlying inversion in those two
cases is totally di�erent: the number of parameters varies, the correlation between

the parameters is di�erent (see Section 7.1) and last but not least, the inversion
problem additionally is non{linear. In the discussion of the con�dence regions in

the next chapter parameter correlation is also a topic.

The high quality gravity data demand a negative damping factor  in the vicinity
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Figure 6.1: Di�erent models of the reduced complex tidal admittance (resonant

component of the complex gravimetric factor) in magnitude and phase representa-
tion. The limits of the phase variations do not reach 0 and 180 degrees, because
the underlying formula is a near{resonance approximation with reference to tide O1.

The graphs correspond to the parameter vectors � = ( 1:005211 cpd (corresponding
to TFNC = 405:5 sid:d ) ; !NDFW=Q; �0:58 � 10�3; �0:50 � 10�4) with Q{values as

indicated in the boxes.

of zero. With 2� error bars the sign of this  is not signi�cant. Physically a negative

 or Q is not reasonable, since no ampli�cation mechanism can be assumed for the
harmonic oscillator model of the last chapter. In general the information on the sign

of Q is only inherent in the phase of the tidal parameters. The amplitude is not

sensitive to the sign of Q (see Fig. 6.1). The sign of Q is mainly controlled by the

tide  1 and its uncertainties. This tidal constituent is closest to the resonance (see

Fig. 5.6) and therefore �xes the phase of the oscillator and hence the sign of Q. The

inuence of the sign of Q on the amplitude factors can be seen in Fig. 6.1. The sign

of the derivative of the phase with respect to frequency is inverse to the sign of the Q

for �niteQ values. In the �t an a priori in�niteQ leads to higher resonance strengths

(Table 6.1). This can be explained as follows. An oscillation with a high quality

factor corresponds to a sharp spectral line whereas with a smaller Q its spectral
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Table 6.2: Published NDFW results. The �rst three rows of the table belong to the-

oretical calculations, whereas the other parameters correspond to gravity, strain and

nutation observations. In brackets the con�dence region of the respective parameter

is given. (This table also serves as legend to Fig. 7.14.)

Abbr. TFCN [sid: d] Q Publications

W 466.9 Wahr [1981)

WB 473.8 78100 Wahr & Bergen [1986]

J 448.5 1 Jiang [1993]

NHZ 431.0 (425.0 { 437.0) 2758 (2222 { 3249) Neuberg et al. [1987]
RZ 431.2 (427.6 { 433.8) 3120 (2797 { 3443) Richter & Z�urn [1988]

GH 433.2 (431.2 { 435.2) 16129 (12195 { 23809) Gwinn et al. [1986]

S 432.9 (421.9 { 444.4) 5200 (2700 { 7700) Sato [1991)
CW 437.0 (422.7 { 452.2) 5722 (3035 { 49869) Cummins & Wahr [1993]

ST 436.7 (422.2 { 452.3) 6000 (3240 { 1) Sato et al. [1994]
M 430.0 (427.0 { 434.0) 7000 (5500 { 10000) Merriam [1994]

F 430.7 (429.7 { 431.7) 2080 (1640 { 2520) Florsch et al. [1994]

DDH 433.9 (433.2 { 434.6) 33000 (27000 { 43000) Defraigne et al. [1995]
JS 431.0 (425.5 { 436.0) 2000 (1900 { 2100) Jiang & Smylie [1995]

representation is a broad spectral peak with increased amplitudes at the anks.

The resonance strengths are �tted to compensate for this amplitude di�erence. The
amplitude and consequently the SNR of  1 is low and since the uncertainty is

determined from the SNR the uncertainty has to be high. The disturbances of this
tidal constituent are suspected to be of oceanic or meteorologic origin. As can be
seen in Chapter 8 the barometric inuence is not as high as expected. Consequently

the main inuence is due to the ocean. But the ocean correction has only been done
with a scaling of the amplitudes in correspondence to the K1 ocean correction. This

is certainly wrong, but for  1 and �1 no individual ocean correction calculations

were available for this work. In the future also ocean corrections for small tides
should be determined individually from ocean surface observations. When Q is

kept constant, the formal errors of the resonance periods decrease as expected. In

conclusion the quality factors determined in this work range between �11000 and
�5000 respectively 5000 and +1. Independent of the sign of the quality factor the

real and imaginary part of the resonance strength are negative and the imaginary
part is about one order of magnitude smaller than the real part in the unconstrained

cases.

Other authors, eg. Neuberg et al. [1987]; Cummins and Wahr [1993] as well as

Merriam [1994] found also a real part of the resonance strength about 6 � 10�4 and
an imaginary part of 10�5 or less. The strain resonance strength of (�0:00723 + i

0.82) �10�3 from Neuberg et al. [1987] is similar to the one of this work. Sato's [1991]
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real part of the resonance strength is a factor 20 smaller than the one of this work

and the imaginary part even more so.

Due to the appreciable di�erences in the resonance periods between the result

of this work and other publications in the next chapter the con�dence intervals of

the parameters are investigated thoroughly. The judging of the di�erent results are

also postponed to the next chapter.



Chapter 7

Con�dence intervals for the

NDFW parameters

In the inversion of an individual data set 4 unknowns are estimated from 8 data,
while in the stack the situation is a little improved with 8 unknowns being esti-
mated from 24 data. This is not exuberant for statistical conclusions. However,

formally under the condition of uncorrelated and normally distributed measurement
errors, the estimated uncertainties ���j of the parameters can be calculated from

the covariance matrix C [Press et al., 1992] composed of

Cjk = cov (��j;��k) = Gjj
�1 (7.1)

(see system of linear equations 6.13). The uncertainty of parameter �j is given by

the diagonal element Cjj of the least squares solution in the �nal iteration [Press et
al., 1992]:

���j =
q
Cjj (7.2)

These uncertainties are very strongly dependent on the �nal mis�t. Their values are
given in Table 6.1. For the �2 �t by singular value decomposition the formal errors
can be extracted from the matrix V (see Equation 6.12) and the singular values �i
[Press et al., 1992]

Cjk =
pX
i=1

Vji Vki

�2i
(7.3)

The columns of V represent vectors which coincide with the principal axes of the

error ellipsoid of the estimated parameters �. The length of the semi{axes of the

error ellipsoid in p dimensions is given by the reciprocal singular values. Eq. 7.3
is only strictly valid if the measurement errors are normally distributed and un-

correlated. The normality assumption cannot be veri�ed with a small number of
8 or at most 24 data points. The non{linear functional dependence between tidal

admittances and resonance parameters implies that the error ellipsoids are only a

linear approximation valid in some vicinity of the solution. The break{down of
the linear approximation (Eq. 6.3) is characterized by the deviation of the contour

51
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lines from their elliptic shape what can be seen in Fig. 7.1. Furthermore the non{

linearity of the problem makes it di�cult to analytically propagate the exact form

of the noise distribution in the measurements1 into con�dence intervals for the res-

onance parameters. While the standard error of the tidal measurements may be

normally distributed (Fig. 3.3) the uncertainties of the estimates of the resonance

parameters do not necessarily have to show this property as well. The con�dence

regions for a certain error probability � cannot be determined exactly, but only as

an approximation.

Additionally there surely exists a correlation between wobble frequency (the

nutation period TFCN respectively) and real part of the resonance strength A as

well as between the damping term  and the imaginary part of the resonance strength

B whereas resonance frequency and damping term are found to be not correlated

[Z�urn and Rydelek, 1991]. This is veri�ed in the next section by determining the

mis�t (Eq. 6.1) for each parameter combination in a restricted area in the parameter

space in the vicinity of the least squares solution.

Since the amount of data is so small in the two subsequent sections a large

number of synthetic data sets are simulated by adding deterministic and random
errors to the tidal parameters, respectively, the load corrections. For each of these
synthetic data sets the same procedure of NDFW parameter estimation is performed.

From these simulated parameters statistical properties for the true data set could
be derived.

7.1 Variances from F{statistics

There is a simple method to �nd the resonance parameters and improved uncer-
tainties (over formal errors) without any linearization. A limited volume of the

p{dimensional parameter space can be scanned for every parameter combination �

which represents a resonance model. From the mis�t �2 (�) according to (2) an F{
statistic can be computed, although F{tests are not strictly valid in the non{linear

situation:

F (�) � n� p

p
� �

2 (�)� �2 (�min)

�2 (�min)
; (7.4)

with n being the number of data, p the number of parameters and �min the parameter

vector pertaining to the least squares minimum. From the statistical F{distribution
[eg. Abramowitz and Stegun, 1968] we can determine F (p; n � p; 1 � �) for an

error probability �, respectively an (1 � �) � 100% approximate con�dence region.

The contours are correct con�dence contours, and it is only the probability level
which is approximate. Comparing F{values as functions of � with the empirical

ones for di�erent parameter combinations allows to obtain the con�dence regions
for F (�) = const. in the parameter space. The corresponding contour lines can be

1here, uncertainties of tidal estimates
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Figure 7.1: Projection of the approximate F{values resp. con�dence regions onto

the resonance period versus damping factor plane for gravity (upper panel), strain

(middle panel) and tilt (lower panel). The F{values belong to the F (4; 4; 1� �) {

distribution. In the plot the 95% con�dence contours are labeled.
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Table 7.1: 95% approximate con�dence intervals determined by F{statistics

F(4, 4, 1� 0:95) [Abramowitz and Stegun, 1968] from Fig. 7.1.

�TFCN [sid:d] � � 10�3 [d�1]
Gravity �40: �3:2
Strain �17: �1:4
Tilt �107: �8:5

found by projecting the extremal values of their contour lines from the 4D{parameter

space onto the subspace of interest, eg. onto the {TFCN{plane [Z�urn and Rydelek,

1991]. Fig. 7.1 shows these contours for selected F{values for the three data sets

of gravity, strain and tilt. The 95% con�dence bounds found in these planes for
TFCN and  are listed in Table 7.1. In contrast to linear models with their error
ellipses, the con�dence level contours in the non{linear case, beyond the region in

the parameter space where the Taylor series approximation is valid, may be very
complicated: eg. the con�dence regions based on gravity data for small error proba-

bilities � become kidney{shaped (Fig. 7.1 top). Consistent with the standard errors
of the last section, we �nd the smallest bounds for strain (Fig. 7.1 center), namely
�TFCN = �17 d and � = � 1:4 � 10�3d�1. For all data sets the contours are ap-

proximately concentric ellipses which are for gravity and tilt aligned with the axes.
Alignment of the contours to the coordinate axes is an indication for uncorrelated

parameters. Only very slight correlation in the strain data is visible (very weak
functional dependence of  on TFCN or vice versa). The smaller the correlation the
more realistic the estimated parameter values should be. The largest uncertainties

are again found for the estimated parameters for tilt data (Fig. 7.1 bottom). Their
90% con�dence contour is deformed due to a mis�t maximum at TFCN= 365 d. In
the joint inversion (stack) the parameter space is di�erent to individual inversions,

since more unknowns have to be determined. The increased number of parameters
in the joint inversion has the drawback that di�erent parameter dependencies may

exist and that parameters may be correlated di�erently. Defraigne et al. [1994]
found a reduced parameter correlation in the case of stacked data sets with respect

to individual data sets. In the following the parameter correlation for individual

and joint data sets is compared. As an example the subspace spanned by TFCN and

resonance strength A is considered. In Fig. 7.2 the F{values for gravity and strain

in this parameter plane are depicted. The elongated asymmetric contours show a
slope relative to the coordinate axes. This implies a correlation between TFCN and

resonance strength A for both gravity (upper panel) and strain (lower panel). Cor-

relation means that the parameters cannot be estimated independently [Draper and

Smith, 1966]. The oblique, elongated2 con�dence contours of the individual data sets

2not closed in the range given
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Figure 7.2: Con�dence regions in terms of F{values projected onto the resonance
period versus resonance strength A plane. The F{values belong to the F(4, 4, 1��){
distribution. In the upper panel the situation is shown for gravity, in the lower panel

for strain.

deform into closed contours resembling leaves in the stack of gravity and strain data

(Fig. 7.3 lower panel). So the con�dence region for the resonance period becomes
smaller in the stack of both gravity and strain data. Their con�dence contours look

similar, although the ranges di�er. The stack of gravity and strain leads to a vis-

ible reduction of the correlation between the strain resonance strength A and the

resonance period (Fig. 7.3 lower panel). The minimum of the mis�t surface in the

A { TFCN parameter space seems to be atter since the contour corresponding to
the error probability of 50% is not resolved.
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7.2 Propagation of deterministic errors

In the work of most other authors uncertainties in the resonance parameters are

determined from the covariance matrix of the �nal iteration in the linearized least

squares NDFW analysis. These uncertainties are very strongly dependent on the

�nal mis�t. The only way, by which the formal uncertainties (a measure of SNR) of

the tidal parameters enter such an analysis is by the weights used in the inversions for

NDFW parameters [eg. Neuberg, 1987]. If, say some data with low SNR happen to
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have a very small mis�t in the NDFW solutions, this low SNR would not be reected

in the uncertainties of the NDFW parameters, while data with high SNR could have

a larger mis�t and therefore would look inferior in the NDFW estimation. Neuberg

et al. [1987] used a Monte Carlo method to assess the error propagation from the

poorly known errors in ocean load corrections into the NDFW parameters. In the

following the propagation of errors in the tidal analysis into the NDFW solutions is

studied in similar ways. The approach will be to add an error term to the observed

reduced complex tidal admittances ~R (de�ned by 5.25) and investigate the changes

in the NDFW results. In this section this is done in a systematic manner and in the

next section a statistical method, namely the Monte Carlo method is applied.

Here a deterministic complex error is added to the complex tidal admittance
~R (!i) of each tide. The magnitude is always one standard deviation � of the admit-

tance determined by ETERNA, but the phase is varied in 60� steps (0�, 60�, 120�,

180�, 240�, 300�). The unperturbed value is used as well. The disturbed admittances

line out hexagons for each tide in the complex plane. All combinations for the �ve

tides make up 75 experiments. With this method a volume in the NDFW{parameter
space which results from the propagation of 1� errors in the tidal estimates is de-

�ned. Another aim is to identify, which tidal constituent of each physical observable
causes the largest deviations from the unperturbed solutions. Figs. 7.4 { 7.6 show
the results of these computations in the TFCN{  plane for gravity, strain and tilt.

Each symbol in Figs. 7.4 a, 7.5 a and 7.6 a identi�es the solution found for a certain
combination of perturbations. For all three data sets the results split into 7 distinct

groups (the 7th group in the case of tilt lies outside the range of the diagram). The
pattern in each group is very dense with a fairly sharp elliptical to slightly hexagonal
boundary. In order to better understand these patterns 30 cases are run, where only

one tide was perturbed at a time. Figs. 7.4 b, 7.5 b, 7.6 b and 7.4 c, 7.5 c and 7.6 c
show the results of these computations at di�erent resolutions. The perturbed tide
is identi�ed in each case by its symbol (O, P, K,  , �). The asterisk marks the

solution for the unperturbed case. The parameter range of Figs. 7.4 c, 7.5 c and 7.6
c is identi�ed by a rectangle in Figs. 7.4 b, 7.5 b and 7.6 b. Figs. 7.4 d, 7.5 d and

7.6 d show the reduced complex tidal admittances ~R (!i) with the standard errors
from the ETERNA analysis and the determined resonance model ~M (!) (de�ned by

5.27).

First the gravity and strain data are discussd (Figs. 7.4 a { 7.5 d). Obviously
the separation into distinct groups is caused by the perturbation of  1.  1 is also

responsible for the asymmetry in the locations and the di�erent sizes of the clouds.

This is not surprising regarding ~R in the complex plane (Figs. 7.4 d and 7.5 d).

The resonance model ~M (!) in the complex presentation appears as circle through

the origin [Goodkind, 1983]. Every point on the circle corresponds to a distinct
frequency. Since ~M (!) has O1 as reference tide (Equation 5.27), the origin of the

circle represents the frequency of O1.  1 has the largest standard deviation and if

the admittance is displaced in the complex plane by a phasor of length one � this

has a signi�cant inuence even though its weight is small. In connection with the

sign of the damping factor for gravity it must be remarked here the following: if the
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Figure 7.4: (a) { (c) NDFW{solutions in the TFCN{ parameter plane with deter-

ministic error perturbations on the gravimetric factor. Each plus sign, each letter

and the asterisk symbolize an individual solution. (d) shows the observed reduced
complex tidal admittances ~R at the frequencies of the tides P1, K1,  1 and �1 and

reduced complex tidal admittances ~M(!) for continuous frequency ! pertaining to

the parameters of the unconstrained least squares solution in Table 6.1.
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Figure 7.5: (a) { (c) NDFW{solutions in the TFCN{ parameter plane with deter-

ministic error perturbations on the strain amplitude factor. Each plus sign, each

letter and the asterisk symbolize an individual solution. (d) shows the observed
reduced complex tidal admittances ~R at the frequencies of P1, K1,  1 and �1 and

the reduced complex tidal admittances ~M(!) for continuous frequency ! pertaining

to the parameters of the least squares solution in Table 6.1.
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 1{admittance is shifted three standard deviations it can reach the �rst quadrant.

Hence it is understandable that the resonance �t then leads to a larger resonance

circle which is reected at the real axis. This in turn corresponds to a smaller,

positive damping factor.

Although �1 is closer to the resonance frequency than P1 and has the second largest

uncertainty, it apparently has a minor inuence on the spread in the solution space.

The tide P1 has the second largest inuence in the case of gravity. The inuence

of a tide appears to be determined by proximity to the resonance frequency and

its uncertainty or weight. As the di�erences between gravity and strain results

here show, the distributions of the reduced tidal admittances in the complex plane

have a strong inuence on the sensivity and stability of the results for the NDFW

parameters. The maximum uncertainties resulting from these perturbations are

summarized in Table 7.2. In contrast to our previous estimates, here the gravity

data have the smallest error bounds. The explanation is, that although the gravity

�t is worse than the strain �t, the spread in the solution space is less, since the

standard deviations of the �{factors are smaller than for the strain admittances.

From Fig. 7.6 it is obvious that the situation is strikingly di�erent for the tilt

data. It was expected that these data despite their good quality will be less useful
for the NDFW analysis because of their lower (compared to gravity and strain
data) geophysical signi�cance. This has been clearly veri�ed here. The tilt data

incorporate a rather large cavity e�ect [Neuberg, 1987] as can be seen from the
reduced complex tidal admittances ~M (!i) in Fig. 7.6 d. However, this should not

have any inuence on the NDFW parameters TFCN and , since only the resonance
strength should be a�ected [Neuberg and Z�urn, 1986; Z�urn et al., 1988], unless the
ocean corrections are erroneous. This data set is also discussed in the analysis here

to demonstrate the consequences for slightly inferior data. Fig. 7.7 a shows an
extended range of the parameter space compared to Fig. 7.6. The transformation
of Fig. 7.7 a into the frequency domain is represented in Fig. 7.7 B. In the fNDFW{

 plane there are two distinct groups each containing close to one half of the total
75 solutions. The unperturbed case lies in the group with small spread (also, but

not fully shown in Fig. 7.6 a), which is close to the solutions from my other data
sets. The other group shows extremely large spread and is very far away from the
expected values for TFCN and . It consists of a number of hexagonal patterns with

di�erent sizes superimposed on each other. This second group splits into two in the

TFCN{  plane, due to the relation between TFCN and fNDFW :

TFCN =
1

fFCN
=

1

fNDFW � 


with 
 being the Earth's rotation rate in cycles per siderial day. The solutions spread

out enormously in the FCN period, while TFCN= 0 is obviously not reached. The

separation into two groups is here caused by disturbing  1 and P1, as is suggested by

Figs. 7.6 b and 7.6 c and which was veri�ed by additional checks. The location of the
unperturbed P1 in the complex plane (Fig. 7.6 d) is so unfavourable that in adding

perturbations two di�erent classes of solutions of about the same size are created.
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Figure 7.6: (a) { (c) NDFW{solutions in the TFCN{ parameter plane with deter-

ministic error perturbations on the tilt diminishing factor. Each plus sign, each

letter and the asterisk symbolize an individual solution. (d) shows the observed
reduced complex tidal admittances ~R at the frequencies of P1, K1,  1 and �1 and

the reduced complex tidal admittances ~M (!) for continuous frequency ! pertaining

to the parameters of the least squares solution in Table 6.1.
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Figure 7.7: NDFW{solutions with deterministic error perturbations on the tilt di-
minishing factor: (a) sector of TFCN{ plane and (b) total range of fNDFW{ plane.
Each plus sign symbolizes an individual solution.

Table 7.2: Resonance parameters and uncertainties from the estimation with deter-

ministic errors (tilt: only one half of the solutions is considered).

�TFCN [sid:d] �TFCN [sid:d] � � 10�3 [d�1] � � 10�3 [d�1]
Gravity 405.6 �5:5; + 7:0 {1.17 �0:4
Strain 410.7 �10:0; + 14:0 1.24 �0:8
Tilt 406.7 �9:0; + 29:0 0.45 �1:2;+2:8

The resonance circles of one class have a resonance frequency near 1:0029 cpd (cycles

per solar day) and a small radius that corresponds to a large damping factor. These
circles do not approach  1. The other class contains circles which have resonance

frequencies near 1:005 cpd, large radii, or respectively small damping factors and lie

in the vicinity of the admittance of  1. In Table 7.2 only the solutions of the latter
class are mentioned, since those of the �rst class are not meaningful at all.
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7.3 The Monte Carlo simulation

Estimating parameters means to determinine parameters close to the true parame-

ter set hidden from the experimenter. The experimenter only knows one realization

of the parameter set, say �
e which is corrupted by random measurement errors3

(deterministic errors are neglected here for simpli�cation, they are discussed in sec-

tion 7.2). We can also put it that way: The parameter set �e is only one member

drawn from a probability distribution in the m{dimensional space of all possible pa-

rameter sets ��. Additionally to the actual data set synthetic data sets are simulated.

The true parameter set is statistically realized with di�erent random measurement

errors (here: uncertainties of tidal parameters).

With the knowledge of the actual distribution law of the measurement errors a

large number of data sets can be Monte Carlo simulated from a particular model (the

least squares �t solution). These synthetic data can then be subjected to the actual

�tting procedure, so as to determine both, the parameter probability distribution
(Figs. 7.11, 7.12 and 7.13) and the accuracy with which the model parameters are

reproduced by the �t.

Since the actual distribution law of the measurement errors is not known, it is
assumed that the noise on the tidal estimates and load corrections can be described
as independent complex random variables �T ide and �Load with a given probability

distribution.

The general procedure of a Monte Carlo simulation can be divided into three

steps. Transfered to the speci�c problem of this work this means:

1. Construct a distribution function for the error terms �T ide and �Load as follows:
Let ~"T ide (!i) be a realization of �T ide with normally distributed amplitudes,
zero mean, the known variance �2j from the tidal analysis and uniformly dis-

tributed phase. The random variable �Load with its realizations ~"Load (!i) is
chosen to have uniformly distributed amplitudes as well as phases. The am-

plitudes amount at maximum to 10 %, 20 % and 40 % of the load corrections

(see dimensionless load factors in Table 7.3).

2. Add to the observed reduced complex admittance ~R (!i) (de�ned by Equa-
tion 5.25) of each tidal wave a complex error term with the probability distri-

bution mentioned in (1) :

~RMC (!i) = ~R (!i) + ~"T ide (!i) (7.5)

respectively, add to each complex ocean load correction ~L (!i) (see Table 4.1

CSR 3.0) the corresponding error term:

~LMC (!i) = ~L (!i) + ~"Load (!i) (7.6)

3to avoid confusion and to distinguish between the estimation of tidal and NDFW parame-

ters, the estimated tidal parameters are in this section considered as `measurements' and their

uncertainties are therefore called `measurement errors'.
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Figure 7.8: Histogram of the distribution of random generated K1 ETERNA errors

~"T ide for the constituent K1 in the complex plane as input to the Monte Carlo
simulations.

with i = 1; : : : ; 5.

3. Repeat the second step a 1000 times and subsequently determine the NDFW

parameters (Equations 6.7 and 6.14) and compute from this random sample
the Monte Carlo means �TFNC and � and variances �T and �.

Under the assumption of high SNR4 the synthetic constructed ETERNA errors

follow a 2{dimensional normal distribution (Fig. 7.8). Since nothing is known about

the accuracy of the ocean load correction, the error distribution described under

item (1.) is one reasonable possibility among others. This distribution (Fig. 7.9)

is a compromise between a normal and an uniform distribution. Here the extremal

error is varied, whereas Neuberg et al. [1987] only used the pessimistic value of 40%

of the load correction.

It must be mentioned that the ocean corrections for the small amplitude tides

4this requirement is surely met for every tidal constituent used, although there are large di�er-

ences in the signal amplitudes of eg. K1 and  1
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Figure 7.9: Histogram of the distribution of random generated K1 ocean load errors

~"Load (40 %) for the constituent K1 in the complex plane as input to the Monte
Carlo simulations.

 1 and �1 are derived from the tide K1, because no individual models are available

for them for BFO. Therefore the corrections for K1 are scaled with the amplitude of
the  1, respectively, �1 constituent. Equivalent scaling was performed to simulate

the random ocean load errors. Due to the larger amplitudes, the synthetic ocean

errors for the constituents P1 and K1 are about a factor of 100 larger than the
corresponding errors for the tides  1 and �1 (examples for K1 and  1 on the lower

panel of Fig. 7.10). The random ETERNA error is scaled relative to the uncertainty

from the tidal analysis. which is represented by the mean SNR in the diurnal tidal
band. Expressed in admittances (eg. �{factors) this would result in larger values for

the tides  1 and �1 compared to the tides P1 and K1. But the tidal amplitudes of
all the errors are the same for the respective constituent. This means that the least

con�dent constituent  1 has the same weight in the error analysis like the tide with

the highest SNR, namely K1. This is important, since  1, the constituent closest to
the resonance frequency has an important inuence in the parameter �t (shown in

the last section).

Since the inuences of uncertainties of the tidal admittances and ocean load
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Table 7.3: Resonance period TFCN , damping factor  and their uncertainties from

Monte Carlo perturbations on tidal admittances and ocean load corrections are

listed. The symbol y marks an inversion with �xed Q =1.

Type of ETERNA Load factor �TFCN �T � � 10�3 � � 10�3
signal perturb. [�] perturb. [sid.d] [sid.d] [d�1] [d�1]

0.1 405.6 0.8 -1.2 0.1

0.2 405.6 1.6 -1.2 0.1

0.4 405.5 3.3 -1.2 0.2

Gravity 1 405.6 3.8 -1.1 0.2

1 0.1 405.8 4.2 -1.1 0.2

1 0.2 405.8 4.2 -1.2 0.2
1 0.4 405.9 5.0 -1.2 0.3

0.1 410.6 0.4 1.2 0.0
0.2 410.7 0.9 1.2 0.0

0.4 410.7 1.8 1.2 0.1

Strain 1 410.6 6.3 1.2 0.5

1 0.1 410.7 6.3 1.2 0.5
1 0.2 410.6 6.3 1.2 0.5

1 0.4 410.7 6.5 1.2 0.5

0.1 484: 190: 3: 8:

0.2 620: 456: 8: 12:
0.4 812: 944: 10: 12:

Tilt 1 1320: 1900: 18: 11:

1 0.1 1330: 2000: 18: 12:
1 0.2 1360: 2165: 18: 13:
1 0.4 1460: 2950: 18: 15:

0.1 412.3 0.6 -0.6 0.1
0.2 412.4 1.2 -0.6 0.1

Gravity 0.4 412.7 1.5 -0.6 0.2

and 1 412.4 3.9 -0.6 0.2

Strain 1 0.1 412.5 4.0 -0.6 0.3
1 0.2 412.6 4.2 -0.6 0.3

1 0.4 412.8 4.9 -0.6 0.3

Gravity y 1 410.2 3.6 0

Gravity y
and 1 413.2 3.9 0

Strain
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Figure 7.10: Comparison of random generated (ETERNA and ocean load) errors
~"T ide and ~"Load of tides K1 to  1 in the complex plane as input to the Monte Carlo

simulations.

corrections should be investigated, it seems e�cient to perform three separate sim-

ulations. These are: adding an error term to the tidal constituents, adding an error

term to the load corrections and a combination of both perturbations. This means
each individual data set is run through 7 di�erent Monte Carlo simulations. Ad-
ditionally this method is applied for stacks of gravity and strain data. From the

results listed in Table 7.3 it is found that the uncertainties which are due to the load

corrections are small compared to the inuences of the error estimation for the tidal

parameters (which are based on SNR of tidal measurements). This is a new result,

because these errors have so far not been considered correctly by previous investi-

gations (eg. see Table 6.2) analyzing for NDFW parameters. A similar analysis on



68 CHAPTER 7. CONFIDENCE INTERVALS

400

410

420

TFCN
 [sid. d]

-0.002

-0.001Damping factor

10
20

30
40

50
60

70

N
um

be
r 

of
 s

ol
ut

io
ns

10
20

30
40

50
60

70

N
um

be
r 

of
 s

ol
ut

io
ns

Figure 7.11: Histogram of NDFW gravity results in the damping factor { resonance

period plane from Monte Carlo simulations (~"T ide = 1� and ~"Load = 0).

nutation results would therefore be extremely interesting. The results of the previ-
ous section can be con�rmed: There exists an asymmetry in the distribution of the
obtained resonance parameters (Figs. 7.11, 7.12 and 7.13). The Monte Carlo results

of gravity and strain and their stack are in good agreement with the unperturbed

least squares solution. The tilt parameter estimates con�rm the results of the last

section. No reasonable, signi�cant solution can be found. Even the smallest pertur-
bation results in a parameter set far o� the least squares solution in the parameter
space.

The stack with a priori in�nite Q leads to almost identical resonance periods as

the inversions with free Q, whereas in the individual inversions for gravity in this

two cases a di�erence of 4:6 sid: d in the resonance period is found. Results of this

section together with the results of other authors are depicted in Fig. 7.14 in the

TFCN{  plane.

For reasons of comparison and in order to show the signi�cance of the Monte
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Figure 7.12: Histogram of NDFW strain results in the damping factor { resonance

period plane from Monte Carlo simulations (~"T ide = 1� and ~"Load = 0).

Carlo simulations a Monte Carlo analysis with the Bad Homburg gravity data [Z�urn
et al., 1986] is also performed. With a period of the FCN of 437:0 �7:4 siderial days

and a Q{factor of 6300�2200 the uncertainties are approximately twice respectively
18 times the BFO ones. This implies that the BFO data �t better to a NDFW model

than the Bad Homburg data. It must be mentioned here that in the limited diurnal
band the noise in the BFO gravity data is higher than in this Bad Homburg record,

while the overall standard deviation of the BFO gravity residuals is smaller than

the one of the Bad Homburg data. Furthermore the Monte Carlo uncertainty of the
Bad Homburg resonance period is more than twice as large as the uncertainty from
the least squares �t.

The correlation of parameters (but not the correlation of observations) is implic-

itly considered in the Monte Carlo simulations, since with the statistic perturbations,
all solutions in the total m{dimensional parameter space are included for the Monte

Carlo estimates. The projection of the solutions onto the TFCN{ space is found in
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Figure 7.13: Histogram of a stack of gravity and strain of NDFW results in the

damping factor { resonance period plane from Monte Carlo simulations (~"T ide = 1�
and ~"Load = 0).

Fig. 7.14.

The Q{factor depends heavily on the tidal constituent closest to the resonance

which unfortunately happens to be also the smallest (least SNR) constituent (Fig. 5.6).

The estimated Q is negative (and distinguishable from positive values) and since

there is no physical explanation for a negative Q, systematic and/or random er-

ror inuences could be responsible. The uncertainty of the phase of the tide  1

together with the  1 ocean correction which is only very poorly estimated is sus-
pected to be the systematic error source. The inversion with �xed in�nite Q shows

that the amount of the Q{factor can be changed unlimited to higher values. This

will be compensated by higher values of the resonance strength in the �t, so that

the resonance period and its uncertainty remain almost unchanged with respect to

the unconstrained inversion. In conclusion the Monte Carlo method does not allow

to �nd a signi�cant Q{value di�erent from in�nity and conseqently a  which is
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Figure 7.14: Resonance parameters TFCN and  determined in this work (labeled

with P) and from other authors. The P{results are obtained by Monte Carlo sim-

ulation (section 7.3, ~"T ide = 1� and maximum ~"Load = 0:2 ~L). The P{stack consists

of gravity and strain data. In Table 6.2 the other used abbreviations are assigned

to the underlying publications.
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signi�cantly di�erent from 0.



Chapter 8

Investigations of air pressure

The following investigations are restricted to gravity data. The standard procedure,
at least with gravity data, to take meteorologic e�ects into account is to simultane-
ously �t in the time domain the tidal model and the local air pressure to the data.

This leads to a constant real regression coe�cient for the entire frequency range.
The gravity data contain two contributions at the S1{frequency and its neighbour-
hood: the S1 gravity tide, which is rather small and the e�ect of air pressure at

S1 (see air pressure spectrum Fig. 4.2) which, with high probability, is seasonally
modulated. In addition other daily inuences could be present. The minimum mea-

sure to avoid contamination of the tides P1, K1,  1 and �1 by unmodeled e�ects in
S1 is to assign to S1 a separate group in ETERNA. To this mixture the harmonic
theoretical tide S1 and the overall air pressure is �tted. If, �rstly the modulation

of the S1 in air pressure and its e�ect on gravity would be identical and if secondly
the broad{band regression coe�cient would be equal to the one for S1, no problem

would arise. However, if one or both of these conditions are violated, leakage to the
neighbouring lines relevant for NDFW analyses will occur. From previous work [eg.
Crossley et al., 1995] it is clear that the second condition is violated, while we do

not know much about the modulations.

Below the behaviour of S1 in air pressure is investigated, but �rst the dependence

of the resonance parameters on the admittance between gravity and air pressure is
studied.

8.1 Air pressure{gravity admittance

The local air pressure record multiplied by a priori admittance factors is subtracted

and the resulting series are submitted to the tidal analysis without air pressure as
additional input. Afterwards ocean corrections have been applied and the NDFW

analysis have been performed in each case.

Fig. 8.1 shows the variation of the resulting �{factors as functions of these a priori

73



74 CHAPTER 8. AIR PRESSURE INVESTIGATIONS

1.144

1.146

1.148

δ 
of

 O
1

1.146

1.148

δ 
of

 P
1

1.2

1.3

δ-
F

ac
to

r 
of

 S
1

40

60

S
N

R
 a

t S
1

1.134
1.135

δ 
of

 K
1

1.28

1.30

1.32

1.34

1.36

δ-
F

ac
to

r 
of

 ψ
1

1.12

1.14

1.16

1.18

δ-
F

ac
to

r 
of

 φ
1

-6 -4 -2 0

Air Pressure - Gravity - Admittance Factor [nm/s2/hPa]

Figure 8.1: Inuence of a priori air pressure{gravity admittance factors on the �{

factors of O1, P1, S1, K1,  1 and �1 (before ocean load correction). The range of

the admittance{factor found by Crossley et al. [1995] is shown as shaded area. In

the third panel additionally the respective SNR of S1 is depicted by squares.
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admittances in the interval between �7: and 0 nm=s2=hPa. In order to reveal

even faint features, the interval is chosen that large. All relevant �-factors show

nearly linear trends with the admittances. The maximum variations are: 0.08%

for O1, 0.02% for P1, 11.85% for S1, 0.02% for K1, 0.73% for  1 and 1.55% for

�1. According to Merriam [1994] these tidal constituents could all be strongly

inuenced by the barometric pressure due to seasonal modulations in the S1 air

pressure variations and because of that their �{factors could be inuenced by the

simpli�ed barometric pressure corrections. These e�ects are not as dramatic as

expected, except for S1. However, surprisingly enough O1 is inuenced by almost

0.1%. The upper panel of Fig. 8.2 shows for the same range of air pressure{gravity

admittances the FCN period obtained with both constrained and unconstrained Q.

If a positivity constraint for the quality factor (+ symbols) is applied, the period

of the FCN varies with the admittance by about 4.2 sid.d (Fig. 8.2 lower panel).

Without constraint ({ symbols) the range of the period variation is similar. But

whereas with decreasing magnitude of the admittance factor the period of the FCN

becomes longer for positive Q, for negative Q the behaviour of the FCN period
is in the opposite way. When the admittance is limited to the interval [{3.5, {
1.7] nm=s2=hPa (shaded area), which is indicated by Crossley et al. [1995]( for

the local broadband background, whereas the the e�ective admittance of the large{
scale harmonics of the solar heating tide are between {1 and {3 nm=s2=hPa), the
di�erence in period amounts only to 1.5 sid.d in both cases. All tidal constituents

used in the NDFW analysis have their minimal errors demonstrated by the SNR at
about {3.0 nm=s2=hPa. As a proxy for all waves, the SNR is shown for S1 (Fig. 8.1

second panel). The minimum of the root mean square (rms) of the post�t residuals
by ETERNA is located at a regression coe�cient of �3:2�0.01 nm=s2=hPa (Fig. 8.2
upper panel). This is a mean value in the frequency range from 0.5 to 12 cpd and

therefore does not necessarily have to be the minimum of the diurnal band. But in
the case here the two values coincide.
In the middle panel of Fig. 8.2 the variance reduction achieved by the NDFW �t

is shown. It is calculated in terms of the resonant part of the �{factors ~R in the
following way : 

1� residual sum of squares (with reference to NDFW solution)

total sum of squares

!
� 100%:

Two types of variance reductions are compared, the `weighted' and the `unweighted'
variance reduction. `Weighted' means that each residual is weighted with the in-

verse of one standard deviation of the respective tidal constituent (from tidal analy-

sis). The trend in the �-factors leads to higher `unweighted' variance reductions
(light shaded square in Fig. 8.2 middle panel) for increasing magnitude of the air
pressure{gravity admittances. But unfortunately the larger the di�erence to the

rms{admittance, the smaller is the SNR. The `weighted' variance reductions (dark

shaded square) vary only negligibly (notice the di�erent scaling). The signal to

noise ratio of the tidal analysis seems to be the only criterion to judge the di�erent

admittances. Of course, we cannot be certain, that the true admittance is included

in the range of these models. But on the other hand the investigation unexpectedly
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Figure 8.2: Upper panel: root mean square value of the tidal residuals from

ETERNA, middle panel: `weighted' (dark shaded square) and `unweighted' (light

shaded square) variance reduction by the NDFW analysis; lower panel: Inuence of
a priori air pressure{gravity admittance factors on the period of the FCN. The signs

plus and minus indicate the usage of the constraint for Q (see text).

has revealed that the inuence of the air pressure{gravity admittance is less than

the inuence of perturbations of the tidal constituents (Chapters 7.2 and 7.3). In

the same context the behaviour of S3 has been investigated in the next section.
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8.2 Possible modulations of S1

In the ter{diurnal band the nearest tidal gravity wave M3 is su�ciently far away

from S3. So the transfer of a harmonic pressure signal to gravity can be studied

without disturbing interactions from other constituents. To reveal the properties

of a harmonic signal the graphical representation of the discrete Fourier transform

is used for a speci�c test{frequency in the complex plane, also known as `phasor

walkout' [Z�urn et al., 1995; Z�urn and Rydelek, 1994]: Each individual contribution

to the transform can be understood as a vector in the complex plane. The graphical

summation of these individual vectors uncovers the temporal evolution of their con-

tribution to the Fourier transform at the test{frequency. A continuing propagation

of the vectors into a certain direction indicates a phase{coherent harmonic signal.

Phasor walkouts with the frequency of S3 for our air pressure data (Fig. 8.3 a)

and gravity residuals for di�erent air pressure{gravity admittance factors (Fig. 8.3 b)

have been performed. As earlier in this section to obtain the residuals for the diurnal
tides the local air pressure record multiplied by a priori admittance factors has been

subtracted and a tidal analysis without air pressure as additional input has been
performed. Prominent are the phase reversals in April 1989 and about half a year

later in the air pressure and some of the gravity residual walkouts. These reversals
can be simulated easily by modeling the diurnal, seasonally modulated heating of the
atmosphere due to the radiational energy input from the Sun. The synthetic time

series of air pressure then consists during the winter season of short periods of low
amplitude which are continuously increasing in length and amplitude towards the

summer season. During night time the pressure is assumed to remain constant. A
phasor walkout with the described time series subjected to a test frequency of 3 cpd
shows the prominent phase reversals (Fig. 8.4). Already Chapman and Lindzen

[1970] found a decreasing amplitude of S3 in air pressure at the equinoxes with
connected phase reversals. These phase reversals of S3 in air pressure could also
be traced to gravity. In Fig. 8.3 b the walkouts in gravity residuals with the cor-

responding air pressure{gravity admittance are depicted. The starting points are
moved for reasons of presentation. The best estimate for the admittance is reached

when no coherent signal is left in the residuals. Then the walkout degenerates to
`random walk'. This is the case for an admittance factor of 2 � 0:25nm=s2=hPa.
For higher negative factors the barometric e�ect is over{corrected and the air pres-

sure signal dominates the gravity residuals. We do not know, if there is a physical

justi�cation to transfer this admittance to the diurnal band and especially to S1. If
so, a S1 corrected for meteorologic e�ects could be used as another input tide in the

resonance �t. The admittance factor of 2 is not in conict with the Crossley values
and would result in a FCN period of 414:2 sid: d. Further below it is shown, that

the modulation of S1 in air pressure di�ers strongly from the modulation of S3 and

its modulation cannot easily be traced in the gravity data.
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(vertical axis: time elapsed after start) and (b) ETERNA gravity residuals with

a priori air pressure{gravity admittance factors as indicated.
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and  1 (1:00547 cpd).
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To study the behaviour of S1 phasor walkouts for its frequency have also been

performed. In Fig. 8.5 the walkouts for S1 for air pressure records at BFO and

Potsdam (52.381�N, 13.068�E, 81 m elevation) are compared. Both walkouts clearly

demonstrate that the S1 oscillation is not excited all the time or that its phase varies

frequently with time. There is only a 86 days period from May 6, 1989 to July 31,

1989 when S1 is dominant and has relatively constant phase. Siebert [1961] found

a latitude dependent amplitude of the global solar tide S1 in air pressure measured

on the ground. According to his results the amplitude of S1 at Potsdam should be

79% of the one at BFO. But a S1 amplitude for the 398 days series at Potsdam

(0:1635 hPa) is found which is 2.65 times the one at BFO (0:0617 hPa). This can

also be seen in the phasor walkouts. The magnitude of the Fourier transform in

this presentation is the vector from the origin of the walkout to the end point. But

when meteorological quantities from two stations are compared also the di�erent

latitude, altitude and environment have to be taken into account. The topographic

setting of the two station is totally di�erent, BFO is located in a mountain range

of South-West-Germany, whereas the station Potsdam is situated in the northern
German plains (Fig. 2.1).

For better resolution of the diurnal tidal band also air pressure readings of 16
years length from Potsdam have been Fourier transformed. In this times series the
398 days period (Fig. 8.5 b) is included. In the 16 years series the S1 amplitude

is estimated to 0:059 hPa which is close to the BFO value. The phasor walkout
for S1 reveals that in the short time period S1 is more dominant than in the long

series on average. The annual modulations of S1 at the frequencies of P1 and K1

attain 5/6 respectively 2/3 of the amplitude of the diurnal carrier frequency, whereas
semi{annual modulations at the frequencies of �1 und  1 do not emerge from the

background noise.

Summarizing, the S1 in air pressure behaves strongly non{harmonic, and could

be additionally annually modulated like the S1 at Potsdam. But the behaviour of
the S1 signal in gravity does not have to be equal to the signal in air pressure.

Nevertheless it appears that the inuence of air pressure on the FCN period is less
than the inuences resulting from the uncertainties of the tidal parameters.
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Chapter 9

Interpretation with respect to

CMB ellipticity

With the results of the NDFW analysis of the last two chapters at hand the �nal step
is to interprete the obtained parameters. The resonance frequency determined in
this work and the publications in Table 6.2 have a prominent, but di�ering NDFW

frequency shift in common (corresponding to 60 sid: d at most and 30 sid: d respec-
tively), which leads to higher frequencies compared to an earth model in hydrosta-

tic equilibrium [Wahr, 1981; Dehant, 1987]. The �gure of hydrostatic equilibrium
is represented by surfaces of uniform density and uniform elastic properties, given
by balancing gravitational and centrifugal forces in the absence of external forcing.

This results in a di�erence of the polar and equatorial radius of the uid core of
about 9 km (moments of inertia from Dickey [1995], see Glossary) on the basis of
a mean uid core radius of 3480 km (PREM [Yoder, 1995]). Neuberg et al., [1990]

investigated the relative importance of the terms in equation 5.18 with regard to
the frequency shift. The individual terms have the following implications:

� A higher dynamic ellipticity of the CMB with respect to the hydrostatic case

would lead to stronger inertial coupling and consequently to a higher NDFW
frequency. With excess attening of the CMB by a few hundred meters it is
possible to explain the total amount of the frequency shift.

� The e�ect of elasticity of the mantle (compared to rigid behaviour) is the

instantaneous elastic reaction of the shape of the CMB to the pressure �eld

due to the NDFW. The small uncertainty in the average of the seismologically

determined elasticity of the mantle can only explain approximately 1/10 of the

frequency shift. Anelasticity of the mantle would even decrease the NDFW

frequency.

� Although core viscosity is only poorly constrained no value within the extreme

estimates can explain more than a small fraction of the frequency shift.

83
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� Substituting one extreme estimate of the electromagnetic coupling by the other

extreme shows only negligible e�ects on the resonance frequency.

In conclusion they found that the shift in the NDFW frequency can most easily be

explained with excess ellipticity of the CMB. For an Earth in hydrostatic equilibrium

the decrease of the ellipticity of the Earth's strati�cation with depth is a consequence

of increasing density. So the dynamical ellipticity under the equilibrium assumption

is about 1=299 for the free surface, whereas at the CMB it is reduced to about 1=389

[Dickey, 1995]. Flattening of the CMB beyond the hydrostatic equilibrium �gure

provides important constraints for viscosity in the mantle and thus mantle convec-

tion [Forte et al., 1994]. The core resonance is not inuenced by possibly existing

topography (where the term topography is here restricted to structure of harmonic

degree higher than l = 2), what implies in turn that topography cannot be deduced

from NDFW data. E�ects of all other possibilities listed above are neglected in the

following. Then from equation 5.18 follows:

��NDFW = �
 A

AM
��C (9.1)

The excess attening ��C can be expressed in terms of moments of inertia:

��C =
�CC

AC
� CC�AC

(AC)2
� �CC ��AC

AC
(9.2)

A deviation from the hydrostatic �gure of the core represented by R0 (�) results in
the following corresponding perturbations in the moments of inertia:

�CC =

2�Z
�=0

�Z
�=0

�0R0
4 (�)�RC sin3 � d� d� (9.3)

�AC =

2�Z
�=0

�Z
�=0

�0
h
R0

4 (�)� R0
4(�) sin2 � cos2 (�� �0)

i
(9.4)

� sin ��RC d� d�

with � and � being co{latitude and longitude. The dynamical attening is thus

dependent on the density �0 of the core at the CMB and the aspherical or non{
hydrostatic �gure of the core represented by the function �RC (�; �) which can be
described by spherical harmonics �Pm

l (�):

�RC (�; �) =
LX
l=0

lX
m=0

[Cm
l cosm� + Sml sinm�] �Pm

l (�) (9.5)

with the coe�cients of the spherical harmonic expansion Cm
l and Sml and the nor-

malization

�Pm
l (�) =

"
(2� �m0) (2l + 1)

(l �m)!

(l +m)!

# 1

2

Pm
l (cos �) (9.6)
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The deviation of the polar radius from an earth model in hydrostatic equilibrium is

then represented by �RC (� = 0�; �). It can be shown that the coe�cient C0
2 is the

most sensitive with respect to CMB ellipticity [Neuberg, 1987]. The relevant part of

�RC (�; �) reduces then to

�RC (�) = C0
2
�P 0
2 (�) (9.7)

Neuberg [1987] found a perturbation of the polar core radius �RC (� = 0�) of �250
and �350m for an elastic and anelastic mantle respectively. This was achieved

by forward modelling. For a constant density �0 (valid for the core at the CMB)

and variable C0
2 Equation 9.3 and subsequently Equation 9.2 were solved and the

obtained �C were compared to the result from the NDFW analysis. Since the

frequency shift of this work is about twice as large, as the one of Neuberg [1987],

under equivalent prerequisites a value for �RC (� = 0�) of �500 to �700m must be

expected.

9.1 CMB ellipticity from other geophysical data

Other observations which allow to constrain the ellipticity of the CMB come from
three main areas:

� Nutation observations. As is explained in Chapter 5.2 the core resonance
has two manifestations the wobble and the nutation. NDFW and FCN are
two aspects of the same rotational mode of the Earth. The nutation of the

rotation axis in space can be veri�ed by astronomical measurements with VLBI
(explained in the box below) [eg. Herring et al., 1991]. Gwinn et al. [1986]

determined a resonance period of 433:2 sid: d with small error bars of 2 sid: d
which they interpreted as �RC (� = 0�) = �328� 76m.

� Travel{time residuals of seismic body{waves that have interacted with the

CMB. Morelli and Dziewonski [1987] investigated phases of waves reected

at the core (PcP) as well as waves refracted through the CMB (PKP). Their

insigni�cant results suggest a diminished ellipticity of the CMB. Doornbos and
Hilton [1989] additionally used reections from the bottom side of the core

(PKKP phases), this resulted in reduced topography relative to the former,

but a �RC (� = 0�) of �1480m. Travel-times of body-waves are mostly

suited to constrain CMB topography at intermediate and short wavelengths

(equivalent to harmonic degree l > 2) due primarily to the highly uneven

sampling of the CMB by the associated ray{paths. This implies a potential

for aliasing of short wavelength topography into estimates of long wavelength

topography. The most important point is that the observable phase with the

shortest wavelength is at least an order of magnitude larger than the expected

reduction of the polar core radius.
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� Splitting of seismic free oscillations as summarized with so called structure

coe�cients are best suited to constrain long wavelength structure (l = 2).

One reason is that normal modes are standing waves which involve the entire

globe. The components of a multiplet with low harmonic degree l is inuenced

by the whole earth structure and not just by the structure underneath the great

circle connecting source and receiver as with body{waves and high{frequency

surface waves. A detailed examination follows in the next section.

A possible explanation for the excess ellipticity of the core could be dynamic

stresses exerted on the CMB by the thermal convective ow of the mantle. Un-

der this assumption Forte et al. [1994] have performed viscous ow calculations

to determine the CMB topography. Combining data sets of di�erent origin may

compensate the de�ciencies of systematic e�ects in individual data sets. Their basis

was a 3{dimensional elastic structure derived from seismic data, including normal

mode splitting estimates and geodynamic data consisting of long{wavelength free{

air gravity anomalies and FCN periods. Excess attening of the CMB equivalent to
�RC (� = 0�) = 190m is consistent with their data.

Very Long Baseline (Radio) Interferometry (VLBI)

With very long baseline interferometry the temporal behavior in orientation

of terrestrial baselines relative to extragalactic sources of radiowaves can be
investigated.

Radio interferometry demands precise timing of radio signals from distant
stellar sources at widely spaced earth{bound receivers. The observed data,
dual{frequency{band interferometric group delays, allow then to determine

the positions of the sources. Since the sources are assumed to be known and
�xed in space, the temporial variation in baseline orientation can therefore

be estimated. Knowing that a large part of the changes in orientation of the
baselines are due to rotational motions, the nutation of the Earth's rotation
axis can then be deduced from this kind of data.

9.1.1 Normal mode splitting and CMB ellipticity

In this subsection the resolving power of normal mode splitting data with respect

to CMB ellipticity is investigated.

Free oscillations including spheroidal and toroidal normal modes are excited by

large earthquakes and supply information to constrain the large{scale mechanical
structure of the Earth. Observations of normal mode frequencies allow to infer

details of the density distribution inside the Earth. The radial eigenfunctions of

di�erent modes are sensitive to di�erent depth regions of the Earth. Modes which
are sensitive to the deep interior of the Earth, the core region, have a typically high
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quality factor and a low harmonic degree l. These modes sample the Earth like

PKIKP phases.

The frequency !k of a spheriodal normal mode nSl or toroidal normal mode nTl

(with angular degree l and overtone number n which represents the nodes of the ra-

dial eigenfunctions) is degenerate for a spherically symmetric, non{rotating Earth.

Rotation and hydrostatic ellipticity remove this degeneracy. So the degenerate mul-

tiplet splits into 2l + 1 singlets with the frequencies !m

!m = !k
�
1 + a +mb +m2c

�
(9.8)

where m = �l; : : : ; l, a and c are ellipticity splitting parameters and b is the ro-

tational splitting parameter. The multiplet degenerate frequency !k represents the

properties of a spherically averaged Earth, whereas the singlet frequencies of the

split multiplet are non{linearly related to aspherical earth structure.

The splitting characteristics for an earth model with general asperical structure

of the kth multiplet in representation of the m singlets are described by the splitting
matrix

Hk
mm0 = !k

�
a +mb +m2c

�
�mm0 +

X
s

mm0

s kc
t
s (9.9)

where mm0

s represent 'selection rules' [eg. Widmer, 1991] which limit the kind

of aspherical structure to which an isolated multiplet is sensitive. Normal{mode
splitting due to rotation and hydrostatic ellipticity may be calculated for a reference
earth model. The remaining signal in observations is then due to 3{dimensional

earth structure. For small perturbations the structure coe�cient kc
m
l of the kth

multiplet and for structure of harmonic degree l and azimuthal order m is linearly

related to earth structure [Woodhouse and Dahlen, 1978]. Both volumetric and
boundary perturbations contribute to the complex structure coe�cient

kc
t
s =

RZ
0

h
kRs (r) ��

t
s (r) +kKs (r) ��

t
s (r) +kMs (r) ��

t
s (r)

i
r2 dr

�X
i

r2i h
t
si kB si (9.10)

with the volumetric perturbations of density, bulk and shear modulus ��ts, ��
t
s and

��ts respectively. R is the radius of the Earth. The boundary perturbations are

represented by htsi. The kernels kRs (r), kKs (r), kMs (r) and kBsi can be computed
[Woodhouse and Dahlen, 1978] for a given reference earth model. They describe the

sensivity of a mode to the corresponding perturbation as a function of depth.

For a simple estimation only the inuence of boundary perturbations is con-

sidered. The variation in the structure coe�cient is then only dependent on the

topography of the considered ith interface. Here the only interface of interest is

the CMB with exclusively its second degree harmonic structure (l = 2). Otherwise

mantle and core are homogenous. The structure coe�cient for the kth multiplet

due to a boundary perturbation h02 at the CMB is then

kc
0
2 = (RC)2 h02 kB2 (9.11)
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The CMB topography h02 corresponds to a deviation of the polar core radius of

�RC (� = 0�) = h02 Y
0
2 (�) (9.12)

with the fully normalized second degree spherical harmonic

Y 0
2 (�) =

s
5

4�

�
3

2
cos2 � � 1

2

�
(9.13)

The kernels kB2 are calculated for the spherical symmetric earth model 1066A

[Gilbert and Dziewonski, 1975]. For a �xed hypothetical h02 it is possible to predict

the structure coe�cients for this earth model for every mode. Here a perturbation

of the second zonal degree CMB topography h02 = 400m which is equivalent to a

reduction of the polar core radius j�RC j (� = 0�) = 252m is chosen. This boundary

perturbation represents an intermediate value from the literature and should yield

a reasonable estimate for the second degree harmonic structure coe�cient.

In Tables 9.1 and 9.2 (column iv) a summary of published c02 structure coe�cients
estimated for normal modes excited by the Macquarie Rise 1989, the Great 1994

Bolivia and Kuril Islands earthquakes [He and Tromp, 1996; Widmer et al., 1992(a)]
are listed. All these modes display �nite energy densities at the CMB and addition-
ally possess non{vanishing energy densities at the surface to be observable. The

corresponding predicted structure coe�cients for a CMB topography of h02 = 400m
according to Equation 9.11 are compared.

Although for a large number of 66 core sensitive modes the structure coe�cient
c02 could be estimated, the combined information contained in these coe�cients still

cannot compete with the tight constraints that are being placed on the CMB elliptic-
ity by estimates of the NDFW/FCN period. The estimated structure coe�cient c02
exceeds the theoretically predicted value c400m for almost all modes by several orders
of magnitude. From Equation 9.11 it follows that the observed modes in Tables 9.1
and 9.2 prefer larger h02 CMB topography. In no case does the expected signal of a

CMB ellipticity equivalent to h02 = 400m exceed the observational uncertainty. The
results of this normal mode analysis do not seem to be appropriate to constrain an

excess ellipticity of the CMB with a resolution comparable to observations of the

core resonance in tides and nutations.
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Table 9.1: Summary of mode constraints for ellipticity of the CMB. The individual

columns are: (i) mode name, (ii) CMB boundary kernel (RC)2B2. The column

labeled c400m gives the predicted c02 structure coe�cient for a hypothetical CMB

topography h02 = 400m. Column (iv) gives the observed structure coe�cients with

observational uncertainties (column (v)). Column (vi) gives the h02 CMB topography

needed to produce the observed structure coe�cients (column (iv)), assuming an

otherwise homogeneous mantle and core. Finally column (vii) gives the ratio of the

c02 structure coe�cient predicted for h02 = 400m over the observational uncertainty.

Mode (RC)2B2 c400m c02 � h02 jc400m=�jh
�Hz

km

i
[�Hz] [�Hz] [�Hz] [km] [%]

0S3 -0.035 -0.014 0.83 0.69 -24 2.0

0S4 -0.133 -0.053 1.92 0.41 -14 13.0

0S5 -0.210 -0.084 1.92 0.38 -9 22.0

0S6 -0.255 -0.102 1.44 0.35 -5 28.9

0S7 -0.260 -0.104 1.17 0.29 -4 35.7

0S8 -0.220 -0.088 1.18 0.37 -5 24.1

0S9 -0.150 -0.060 -1.54 0.42 10 14.2

0S10 -0.087 -0.035 -2.89 0.48 33 7.2

1S2 -0.052 -0.021 -0.09 1.15 1 1.8

1S3 -0.020 -0.008 0.14 0.35 -7 2.3

1S4 -0.003 -0.001 0.60 0.65 -317 0.1

1S5 0.020 0.008 0.75 0.78 38 1.0

1S6 0.020 0.008 2.23 1.39 113 0.6

1S7 -0.050 -0.020 3.51 1.18 -71 1.7

1S8 -0.180 -0.072 4.84 1.06 -26 6.8

1S9 -0.345 -0.138 6.52 1.66 -18 8.3

1S10 -0.505 -0.202 7.46 2.08 -14 9.7

2S3 -0.050 -0.020 8.59 0.29 -173 6.7

2S4 0.013 0.005 0.49 0.94 39 0.5

2S5 0.035 0.014 2.35 2.38 69 0.6

2S6 0.020 0.008 -1.32 1.08 -67 0.7

2S8 0.010 0.004 -2.23 0.72 -211 0.6

3S1 -0.245 -0.098 0.33 0.29 -1 33.4

3S2 -0.125 -0.050 14.54 0.67 -116 7.4

3S8 0.188 0.075 5.26 1.50 28 5.0

4S1 -0.130 -0.052 1.43 0.51 -11 10.1

4S2 0.025 0.010 0.02 0.46 1 2.1

4S3 -0.015 -0.006 0.32 0.43 -23 1.3

4S4 0.165 0.066 -0.17 1.36 -1 4.9

5S3 0.182 0.073 2.75 1.62 15 4.5

5S4 -0.065 -0.026 -0.38 0.49 5 5.3

5S5 -0.080 -0.032 -0.27 0.67 3 4.8
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Table 9.2: Continuation of previous table.

Mode (RC)2B2 c400m c02 � h02 jc400m=�jh
�Hz

km

i
[�Hz] [�Hz] [�Hz] [km] [%]

5S6 -0.063 -0.025 -0.44 0.67 6 3.8

5S7 -0.003 -0.001 -1.11 0.69 727 0.1

5S8 0.125 0.050 0.84 1.33 6 3.7

5S12 0.080 0.032 4.86 1.53 60 2.1

6S3 -0.242 -0.097 17.59 0.95 -72 10.2

7S4 0.282 0.113 4.70 2.59 16 4.4

7S5 -0.140 -0.056 5.99 0.66 -43 8.4

7S6 -0.280 -0.112 2.83 0.85 -10 13.1

7S7 -0.133 -0.053 4.46 0.99 -33 5.3

8S1 -0.175 -0.070 3.86 0.22 -22 31.1

8S5 -0.205 -0.082 13.92 0.89 -68 9.2

8S7 0.430 0.172 5.95 0.81 13 21.3

9S3 -0.233 -0.093 13.08 1.49 -56 6.3

9S14 0.040 0.016 0.24 2.16 6 0.7

11S4 -0.328 -0.131 16.86 0.32 -51 40.8

11S5 -0.302 -0.121 13.18 1.13 -43 10.7

12S8 0.028 0.011 1.18 1.07 43 1.0

12S12 -0.393 -0.157 6.73 1.72 -17 9.2

13S1 -0.310 -0.124 19.80 1.53 -63 8.1

13S2 -0.328 -0.131 23.04 0.53 -70 24.6

13S3 -0.383 -0.153 14.31 0.50 -37 30.9

16S5 -0.212 -0.085 26.61 0.99 -124 8.6

16S7 -0.390 -0.156 14.65 2.12 -37 7.3

17S1 -0.542 -0.217 -2.84 4.21 5 5.1

17S12 -0.388 -0.155 15.09 8.24 -39 1.9

17S13 -0.757 -0.303 12.41 1.47 -16 20.6

18S3 -0.427 -0.171 18.82 0.95 -44 18.0

18S4 -0.435 -0.174 22.74 0.90 -52 19.4

21S6 -0.440 -0.176 30.56 3.36 -69 5.2

21S7 -0.605 -0.242 26.18 3.94 -43 6.2

21S8 -0.603 -0.241 25.36 3.44 -42 7.0

23S4 -0.632 -0.253 24.35 1.84 -38 13.8

23S5 -0.700 -0.280 22.99 1.84 -32 15.2

27S1 -0.828 -0.331 24.97 3.97 -30 8.3
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Conclusions and outlook

The purpose of this work was to determine the characteristics of the core resonance.
This was accomplished by analyzing di�erent kinds of tidal registrations with re-
spect to tidal admittances. After applying ocean load corrections based on the new

altimeter data from the TOPEX/POSEIDON mission to the tidal parameters, a
linearized least squares inversion has then been performed with the resonant part
of the tidal parameters for the retrieval of the NDFW parameters. Inversions have

been performed with digital gravity, strain and tilt measurements at the station
BFO. Two of the data sets analyzed here, gravity and strain, are of very high qual-

ity and are therefore well suited for retrieval of NDFW properties from them. The
tilt data do not belong into this class, as is demonstrated by the insigni�cant core
resonance results for tilt observations. Probably the noise level is simply too high for

the small geophysically relevant signal, while in the case of strain the higher noise
is compensated by the higher geophysical signi�cance (Equation 3.21 in Chapter 3)

or cavity e�ects are not frequency independent.

For the data set with the best quality, namely gravity, an equivalent FCN period

of TFCN = 405:8� 4:2 sid: d was obtained. The stack of tidal parameters of gravity
and strain results in TFCN = 412:6�4:2 sid: d. In this joint inversion (similar to the

other cases) reasonable resonance strengths of A = �0:57� 0:17 and B = �0:04�
0:17 for gravity, and A = �6:14�0:22 and B = �0:50�0:22 for strain, respectively,
could be determined (Tables 6.1 and 7.3). AllQ estimates of this work are very high

and lie in the ranges of �5000 to �11000 and 5000 to +1, respectively. Very high

Q are also typical for FCN analyses of VLBI data. However, the FCN periods of the
di�erent analyses fall in the range 405 to 413 sid: d, well below the results (> 1 �)

of other authors from tidal and nutational data sets. Comprehensive statistical
investigations have been undertaken, because the resonance period estimated in

this work di�ers signi�cantly from the majority of other publications. Particularly

investigated was the error propagation from the measurements to the uncertainties
in the parameters. It turns out that the uncertainties in the tidal admittances

are the most serious error source in our data sets, and also in the well known

excellent Bad Homburg gravity data. Therefore it can be safely concluded, that
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this is the case for all tidal data sets. Considering the small standard deviation of

2sid: d for the nutation results for TFCN by Gwinn et al. [1986] it appears, that the

tidal measurements cannot compete with nutation measurements by VLBI for the

accuracy of NDFW parameters. However, we really cannot judge the quality of this

low error estimate.

Special e�orts were undertaken to study the air pressure{gravity admittance. In

the presented NDFW inversions the air pressure inuence does not appear to be as

crucial as generally expected, so the largest uncertainties are contributed by the tidal

admittances. The correction for air pressure e�ects in the diurnal band is crucial,

but yet there is no perfect method to deal with this. Modulation of S1 in barometric

pressure is clearly present and it is, for a given data set of a few years at most,

not necessarily a clear seasonal modulation in the latitudes of BFO and Potsdam.

Studies of S3 do not help for S1 either. The modulation leads to systematic e�ects in

the tidal admittances for sure due to leakage from an imperfectly modeled S1 to the

neighbouring tides. However, from our results it appears that these e�ects probably

are drowned in the uncertainties due to the noise in the raw tidal data.
Putting it all together we have a strongly non{harmonic S1 in air pressure, which

could be additionally annually modulated like the S1 at Potsdam. But the behaviour
of the S1 signal in gravity does not have to be equal to the signal in air pressure.
Nevertheless it appears that the inuence of air pressure on the FCN period is less

than the inuences resulting from the uncertainties of the tidal parameters.

The most recent ocean load corrections on the basis of the TOPEX/POSEIDON

mission did not improve the NDFW parameter estimate. No signi�cant e�ect on
the parameters could be detected. Schastok [1995] remarked that past estimates of

the ocean's e�ects on nutations could conceivably have overlooked non{negligible
contributions from higher order ocean{tide harmonics. If such contributions would
turn out to be important, there would be presumably implications for the nutation

results, since a crucial point in all FCN/NDFW studies are the ocean corrections to
the observed amplitudes and phases.

It must be mentioned that the ocean correction for the small amplitude tides  1

and �1 are derived from the tide K1, because for BFO no individual models were

available. Therefore corrections for K1 are scaled with the amplitude of  1 and �1,
respectively. The same was done for the generation of the random ocean load errors.

This results consequently in larger ocean errors for the tidal constituents P1 and K1.

The random ETERNA error (error of tidal analysis) is scaled with respect to the
parameter uncertainty from the tidal analysis. So the random ETERNA errors of

 1 and �1 are the largest. This is important, since the constituent closest to the
resonance frequency has the largest inuence.

With some errors being large, the linear approximation of the model function

breaks down, and this exhibits the need for an error estimation beyond standard
errors. The Monte Carlo method allows to propagate the errors (exact formula-

tion: the uncertainties) of the tidal estimates into the uncertainties of the NDFW

parameters without any linearization approximation, which for instance is implied
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by using the analytical solution with Taylor series expansion. The analytical error

propagation has a poor data basis, whereas the Monte Carlo simulations provide a

su�cient basis for statistical error considerations. Last but not least, by estimating

uncertainties from Monte Carlo simulations, correlations between parameters have

implicitly been taken into consideration in projecting all simulation results onto the

subspace of interest. All this makes the Monte Carlo simulations the best applicable

method for retrieving more conservative parameter estimates.

The inversion with �xed in�nite Q shows that its amount can virtually be

changed unlimited to higher values. This will be compensated by higher estimates

of the resonance strength in the �tting procedure. So the resonance period and

its uncertainty remain una�ected with respect to the unconstrained inversion. In

conclusion, there are similar results for free and in�nite �xed Q in the resonance pe-

riod. The Q{factor depends heavily on the tidal constituent closest to the resonance

period which unfortunately happens to be also the smallest constituent with respect

to SNR. This leads to parameter estimates for Q which do not seem to be reason-

able. The estimated Q{factor is negative and distinguishable from positive values.
Without physical justi�cation for a negative Q{factor, the existence of systematic

error inuences may be the explanation. The phase of the tide  1 together with
the  1 ocean correction, which is only a very poor estimate as mentioned before, is
suspected to be a signi�cant error source. With systematic errors of this kind being

unknown up to now, they could not be considered in previous publications of other
authors. But systematic e�ects due to the missing of an individual model for the

load e�ect of  1 must appear globally. So it would be useful to apply a similar error
analysis to all kind of tidal data used to constrain the CMB ellipticity and to make
every e�ort to develop an individual model for the ocean correction of the tide  1.

Concerning the imperfect ocean corrections the station BFO has the advantage of
the large distance to the oceans compared to other stations.

It is now common practice to interpret the lower observational values of the
resonance period with reference to the hydrostatic value as increased ellipticity of

the core{mantle boundary. Since in this work the frequency shift is about twice
the frequence shift of Neuberg et al., [1990], consequently the amount of ellipticity
increase must be about twice the value they obtained, namely 500 to 700m with

the extremal values for elastic and anelastic mantle, respectively. Normal mode
splitting analyses for the retrieval of the structure coe�cient C0

2 which is sensitive
for the ellipticity of the core do not produce signi�cant estimates. Therefore the

estimation of the ellipticity of the core is best performed by core resonance analyses
of tides or nutations.
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Glossary of notations

Abbreviations

Symbol Meaning

A equatorial moment of inertia, real part of resonance strength

AC ; AM equatorial moment of inertia of core or mantle

AT Matrix A transposed

�, �C dynamical ellipticity of whole Earth or core

� error probability

B imaginary part of resonance strength

� parameter uncertainty

C covariance matrix

cts structure coe�cient
Cm
l coe�cient of spherical harmonic expansion

C; CC ; CM polar moment of inertia of the whole Earth, core or mantle
D dilatation, complex tidal admittance
� tilt, parameter uncertainty

� �{factor
"ij strain tensor

" parameter uncertainty
fNDFW resonance frequency
G gravitational constant

g gravity
 damping constant
F volume force

h02 boundary perturbation
� spherical co{latitude

� solution vector
hn; kn and ln Love numbers
K bulk modulus

� Lam�e constant, spherical longitude, singular value

M (!j ) model of harmonic oscillator

M mass of tide generating body

� shear modulus
r nabla operator

! angular frequency

!NDFW angular resonance frequency
Pn Legendre polynomials

Pm
n associaled Legendre functions
Q quality factor
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Continuation of Abbreviations

Symbol Meaning

R; RC mean radius of the Earth or core

R0 (�) hydrostatic �gure of the core

�RC (�) deviation from the hydrostatic �gure of the core

S stress tensor

Sml coe�cient of spherical harmonic expansion

nSl spheriodal normal mode

� standard error

nTl toroidal normal mode

TFCN resonance period

t time

u displacement

V tidal potential
�2 mis�t
� azimuthal angle

Constants

1 siderial day = 0.99726958 solar days

G = 6:6732 � 10�11m3kg�1s�2 (Gravitational constant)
Mantle (C � A)=C = 1=298:69 = 0:003351

Core (C � A)=C = 1=389:10 = 0:002571 (PREM)

RC = 3480 km (PREM)

i =
p�1

Expressions

1 for i = j

�ij = f Kronecker symbol

0 for 6= j

Cij =
R
V

� (xkxk�ij � xixj) dV components of the tensor of inertia

1[Dickey, 1995]
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Appendix A

The instrument responses

The transfer functions of the instruments LaCoste{Romberg gravimeter ET{19, the
Askania borehole pendulum BLP10 and the Cambridge{Invar strainmeter St3 from
the station BFO are shown in Fig. A.1 in the frequency range of 10�3 to 105 cpd in the

representation of amplitude and phase. A pole and zero representation is published
on the Internet at URL http://www{gpi.physik.uni{karlsruhe.de/pub/widmer/BFO.
The instrument responses of all the instruments include the response of the analog

anti{aliasing �lter. In the case of the strainmeter (as well as barometer though not
shown here) the frequency dependence is totally dominated by this �lter.

Because of the plateau in the relevant diurnal period range, the transfer functions
can be assumed to be constant. Then for the calibration of the instruments only a

speci�c calibration constant has to be applied in each case.
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Figure A.1: Transfer functions of the LaCoste{Romberg gravimeter ET{19, the

Askania borehole pendulum BLP10 and the Cambridge{Invar strainmeter St3. The

left column shows the amplitude transfer functions in digital units per m=s2 and
digital units for strain. On the right column the phase transfer functions in degrees

are shown. The phase is allowed to reach multiples of 2�.



Appendix B

Tidal observations

In Fig. B.1 the spectra of the high{pass �ltered time series of gravity, strain and
tilt are shown. The corresponding time series registered by the LaCoste-Romberg
Gravimeter ET{19 with electrostatic feedback, the Cambridge-Invar-Strainmeter

St3 (azimuth N 300�E) and the Askania borehole pendulum BLP10 (EW{component)
are the input to the tidal analysis with the ETERNA program. The long period
contributions, of whatever origin, Earth response or instrument drift have been sup-

pressed by the ETERNA high{pass �lter no 6 in all data sets. Clearly distinguish-
able are the diurnal, semi{diurnal and ter{diurnal tidal bands. The simultaneously

recorded air pressure with its prominent spectral lines due to the harmonics of the
solar day has already been shown in Fig. 4.2.
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Figure B.1: Highpass �ltered spectra of gravity (� 13 month), strain (� 20 month)
and tilt (� 13 month) observations from station BFO.



Appendix C

Comparison with Noise Models

To classify the quality of the data used in this work in a broad context, additionally
to the comparison to older data sets from the station BFO ( 3.2) the residuals
after the tidal analysis are compared to published noise models. In Fig. C.1 and

Fig. C.2 the residuals after the tidal analysis are shown in the representation of power
spectral densities with each spectral datum representing a mean over 21 elementary
bandwidths. The origin of the data is visible in the texture of the graph. So in each

case the solid squares depict the noise model. The continuous curves represent the
residuals when the air pressure is �tted and removed in the tidal analysis, whereas

the dashed lines corresponds to tidal analyses without measures for air pressure
inuence due to meteorologic or thermal e�ects. In all cases the noise reduction due
to the subtraction of air pressure is prominent. The largest e�ect is demonstrated in

gravity. Also, in the range [� 1� 5 cpd ] the BFO gravity residuals are signi�cantly
smaller than the mean value of a selection of stations represented by the noise model.

In Fig. C.1 the gravity residuals are compared to the New Low Noise Model (NLNM)
[Peterson, 1993]. For this model registrations of 75 stations from di�erent global
seismograph networks were compiled. The noise model for strain and tilt is based on

the best data from the NW laser strainmeter and the long uid tiltmeter at Pi~non
Flat Observatory [Agnew, 1986] (Fig. C.2).

The noise sources in this frequency range are assumed to be thermoelastic defor-
mations, pore pressure changes, joint deformation related to ground water motion

and air pressure changes. Diurnal and seasonal temperature variations, rainfall and
uctuations in the ground{water table may also strain and tilt the crust and produce

periodic noise. The roll{o� at low frequencies in the tidal residuals is caused by the

high{pass �lter in ETERNA (Chapter 3.2) and therefore has no signi�cance.
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Left{hand side:

Figure C.1: Residuals from tidal analysis at station BFO. Upper panel: Power

spectral density of gravity residuals (LaCoste{Romberg gravimeter ET{19), lower

panel: power spectral density of strain residuals (the Cambridge{Invar strainmeter

St3). The solid square symbols belong to the respective noise models.
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Figure C.2: Residuals from tidal analysis at station BFO. Power spectral density

of tilt residuals obtained by the tidal analysis of the registrations of the Askania
borehole pendulum BLP10. The solid square symbols belong to the tilt noise model.



APPENDIX 111

Acknowledgements

I thank Prof. Dr. Helmut Wilhelm for being my referee. Prof. Dr. Hans{Georg

Wenzel I wish to thank for being referee, for carefully reading the manuscript and

for providing his ETERNA software package including his sound advice from long

years of experience. I sincerely thank Dr. Walter Z�urn who was always a patient

and critical advisor. Especially I would like to thank Dr. Rudolf Widmer{Schnidrig

for his ever present interest in my work, for fruitful discussions and providing soft-

ware. I thank Dr. Gabi Laske and Dr. Fred Pollitz for their interest in my work

and being commited collegues. Thanks to all the other collegues who contributed

to the nice atmosphere to work in. I thank Dr. Duncan Agnew for calculating the

ocean load signals for BFO. Support from Deutsche Forschungsgemeinschaft under

grant We 1653/1 made this work possible and is gratefully acknowledged. Calcu-

lations were performed by a SUN{ELC{workstation under the operating system

SunOS 4.1.1 with the graphical user surface OpenWindows and by Hewlett Packard
workstations HP 715/50 under HP{UX 9.05 and Visiual User Environment 3.0. This

thesis was written in LATEX2�.


