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Abstract

In order to perform systems analysis or synthesis, it

is compulsory to deduce a model of the process. Arti-

�cial Neural Networks (ANN) have shown their suit-

ability to identify nonlinear dynamic processes with-

out modelling them theoretically. Since no modelling

is performed, the important issue for the Neural Net-

work approach is to determine the required time de-

lays. In this paper, di�erent methods are present-

ed that make it possible to reach this goal. First,

some pruning methods are presented to detect non-

required input neurons belonging to certain time de-

lays. In order to avoid the high computational e�orts

of these methods, a new approach is presented which

is based on the estimation of the gradient vector of

the system nonlinearity. All methods are applied to

a continuous-stirred tank reactor.

1 Introduction

The modelling and identi�cation of dynamic process-

es is necessary in order to perform systems analysis

and synthesis. Due to the fact that theoretical mod-

elling of nonlinear dynamic processes might be too

di�cult or costly, Arti�cial Neural Networks (ANN)

have shown their suitability [1, 2] for the identi�ca-

tion of such processes. One approach is to add a delay

component to the ANN representing the dynamics

(see �g. 1). This structure is called a Time-Delay

Neural Network (TDNN).

Figure 1: Nonlinear dynamic model that consists of

a nonlinear approximator (ANN) and a delay com-

ponent.

The delay component builds a vector consisting of

time delays of the process input and output. This

vector is the input of the ANN. Since the model of

the process is unknown, the number of delays of the

process input and output that is necessary to identi-

fy the process has to be determined. This important

issue is the subject in this contribution. If too few

delays are speci�ed, the TDNN is not able to ap-

proximate the process behaviour accurately. Where-

as, if the number of delays of the model is too high,

the consequence is high computational e�ort for net

training and model validation.
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First, a short introduction to the identi�cation of

nonlinear dynamic systems using TDNNs is given.

After that, pruning methods [3], which are usually

used to reduce the number of hidden neurons, are

taken into consideration for model structuring in this

contribution. Two methods are presented that can be

applied to the input neurons.

Moreover, a new method to determine the appro-

priate set of time delays is presented. It is based on

the estimation of the gradient vector of the nonlin-

earity at di�erent points in the operating domain. In

a �rst step the maximal delay of the output variable

is determined. This guarantees a well-conditioned

matrix built from process data which is used to esti-

mate the gradient vector. Its elements are taken to

�nd out which of the remaining delays of the input

and output can be eliminated. Finally, all methods

presented are applied to determine the model struc-

ture of a continuous-stirred tank reactor.

2 The identi�cation of a nonlinear dy-

namic process

A dynamic SISO process

yk+1 = f
�
yk ; : : : ; yk�ny ; uk; : : : ; uk�nu

�
(1)

is to be identi�ed. The process is BIBO-stable in the

considered operating domain. The unknown nonlin-

ear mapping f(�) is assumed to be time-invariant,

bounded, continuous and di�erentiable. The max-

imal time delays that inuence the process output

yk+1 are indicated by ny (for the output which is fed

back) and nu (for the input variable uk). The model

is represented by the following di�erence equation

ŷk+1 = f̂
�
ŷk ; : : : ; ŷk�n̂y ; uk; : : : ; uk�n̂u ; p

�
(2)

with maximal delays n̂y and n̂u. The vector p con-

sists of the model parameters which are, for instance,

the weights and biases of a Multi-Layer Perceptron

(MLP). They have to be determined in such a way

that (2) approximates the input/output behaviour

of (1) as well as possible. The usual approach is to

minimize the cost function

J = 1
2

PN

k=0
(yk+1�ŷk+1)

2

= 1
2

PN

k=0
(yk+1�f̂(yk;:::;yk�n̂y ;uk;:::;uk�n̂u ;p))

2

(3)

with regard to the vector p using N + 1 tupels of

measured process data. The maximal delays have to

be pre-speci�ed as n̂u � nu and n̂y � ny . All delays

between these limits are to be considered since it is

unknown which could be discarded. On the other

hand, computational e�orts in the succeeding steps

of the identi�cation process increase with the number

of delays since the number of net parameters depends

on them. Therefore, the minimal set of delays which

is necessary to describe the nonlinear dynamic sys-

tem su�ciently has to be determined.

3 Pruning methods for structure analysis

Generally, pruning methods [3] are used to locate un-

necessary neurons and parameters in an ANN, re-

spectively. Below, two pruning approaches are de-

scribed to analyse the degree of dependence of the

input neurons. All delays up to the assumed maxi-

mum n̂u > nu and n̂y > ny have to be examined.

3.1 Skeletonization

The idea of Skeletonization [4] is to compute how

the performance of the ANN changes when a neuron

is removed. Using the sum squared error (3) as a

measure for the network performance, the relevance

of a unit is

�i = Jwithout unit i � Jwith unit i (4)

This relevance has to be computed for each input

neuron. The smaller �i is, the less impact has the

i-th input neuron. The neuron with the smallest �i
can be discarded when the corresponding mean ap-

proximation error 1
N+1Jwithout unit i due to deletion

of neuron i is su�ciently small. The next step is

to train the ANN without the deleted neuron and

to repeat the steps described above until the mean

approximation error of the smallest �i is too large.

3.2 Optimal Brain Damage (OBD)

OBD is a method to �nd a set of parameters whose

deletion will cause the least increase of the objective

function (3). In order to gain an insight into the in-

uence of the parameters on the objective function,

(3) is expanded by its Taylor series at the determined

parameter vector p
min

that minimises (3). A pertu-

bation �p of the parameter vector p will change the

objective function (3) by

�J =
P

i gi�pi +
1
2

P
i hii�p

2
i+

+1
2

P
i6=j hij�pi�pj + O

�
k�pk3

�
:

(5)
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Here, the �pis are the components of �p, the gis are

the components of the gradient of J with respect to

p and the hijs are the elements of the Hessian matrix

of J with respect to p.

Since it is too di�cult to handle (5) analytically,

in [5] some simpli�cations are introduced:

� �J is well described by a quadratic function at

p
min

, i.e. O(k�pk3) � 0.

� Since the parameter vector p is at a minimum,

the gradient vector can be neglected (gi � 0).

� It is assumed that only the diagonal elements hii
of the Hessian matrix have to be considered in

(5).

Thus, J can be approximated [5] as a quadratic func-

tion of �p = p� p
min

. The increase of the net error

�J depending on the parameter changes �pi reduces

to

�J �
1

2

npX
i=1

hii�p2i (6)

with np = dim(p). The Hessian elements hii in (6)

can be computed e�ciently using the Marquardt-

Levenberg approximation [6]. If the Marquardt-

Levenberg optimization method is also used for the

training of the net f̂(�), no extra computation is nec-

essary for OBD.

The original OBD procedure computes the salien-

cies sk =
hkk�p2

k

2 =
hkkp

2
k

2 for each considered param-

eter and deletes some low-saliency parameters. After

that, the whole procedure is repeated until no more

parameters can be deleted. Since the compulsory de-

lays have to be found, only the fan-out parameters of

the input neurons have to be considered. In order to

shorten the described procedure, the saliencies of an

input neuron are computed by the sum of the salien-

cies of the fan-out parameters of this neuron. The

low-saliency neuron is deleted before training starts

again.

The disadvantage of both methods presented is

that an ANN with an "oversized" input layer has

to be trained. A new approach avoiding this is given

in the following section.

4 Model Structuring by Linearization

The idea is to determine the compulsory delays using

the gradient vector of f̂ (�; p) with regard to the input

vector at a point xp = [yk; : : : ; yk�n̂y ; uk; : : : ; uk�n̂u ]p

in the operating domain. A delay term can be dis-

carded if the element of the gradient vector that be-

longs to that delay term is close to zero within the

whole operating domain (see �g. 2).

Figure 2: A function y = g(x1; x2) is shown in both

graphs. In the upper case, the input variable x1 can

be discarded. The element of the vector m that be-

longs to this input variable is zero in the whole input

domain. In the lower case, no input variable can be

discarded since the vector m doesn't hold this condi-

tion for each input variable.

In order to avoid the high computational e�ort to

obtain an f̂(�; p) as in the previous section, measured

process data is taken to estimate the gradient vec-

tor for a su�cient high number of points xp in the

operating domain.

The tangent plane of f̂(�) at xp is given by the

Taylor series expansion of f̂ (�) at xp
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yk+1 = f̂(xp) + �xT
@f̂

@x

�����
xp

+O
�
k�xk2

�
(7)

with �x = x � xp. The vector x is built from

process data. The remainder can be neglected if �x

is small enough. This yields

�yk+1 � �xT
@f̂

@x

�����
x
p

= �xTm̂: (8)

with the gradient vector m̂ , which has to be esti-

mated by a least-squares method. Using a su�cient

number of data N , (8) yields

2
64
�y1k+1

...

�yNk+1

3
75 =

2
64

�xT1
...

�xTN

3
75 m̂+ ê = Am̂+ ê (9)

with

A =

2
664

�y1k � � � �y1k�n̂y �u1k � � � �u1k�n̂u
...

...
...

...

�yNk � � � �yNk�n̂y �uNk � � � �uNk�n̂u

3
775

(10)

and the linearization error ê.

In order to obtain a good estimation, it is oblig-

atory that A is well-conditioned. This depends not

only on the data used but also on the number of con-

sidered output delays in (10) as will be shown below.

In the following, it is �rst outlined how the maxi-

mal output delay ny can be detected. It is assumed

that �ny = n̂y �ny � 1, �nu = n̂u�nu � 1 and the

abbreviation �m = min (�nu;�ny) is used. If f(�)
were known, its linearization at a point xp would be

�yk+1 = m1�yk + : : :+mny+1�yk�ny+

+mny+2�uk + : : :+mny+nu+2�uk�nu + ":

(11)

Furthermore, the linearizations of (1) by Taylor

series expansion after the shifting of the index k by

0 � r � �m results as:

�yk+1�r = mr
1�yk�r + : : :+mr

ny+1�yk�ny�r+

+mr
ny+2�uk�r + : : :+mr

ny+nu+2�uk�nu�r + "r

(12)

with the linearization error "r. The lineariza-

tions (12) equally hold with vectors �yT
k��

=

[�y1k�� ;: : : ; �yNk�� ], r � 1 � � � ny + r and

�uTk��=[�u1k��;: : : ;�uNk��], r � � � nu + r. All

these vectors are built of process data. For reasons of

simpli�cation, it is assumed that �m = �ny . If "
r =

0, which represents the linear case, it follows from

(12) that the vectors �yT
k�j

=
h
�y1k�j ; : : : ;�yNk�j

i
,

0 � j � �m � 1 are exactly linearly dependent from

others yT
k�i

with j +1 � i � j+ ny +1 and �uTk�i =h
�u1k�i; : : : ;�uNk�i

i
with j + 1 � i � j + nu + 1 .

Therefore, as shown in [8], a reduced rank of the ma-

trixA in (9) results if n̂y > ny . Since in the nonlinear

case, "r cannot be neglected, the column vectors of A

are not exactly linearly dependent but, in this case,

a reduced rank of a matrix A can be derived by the

ill-conditioning of this matrix. This holds provided

that "r is su�ciently small, which means (12) is only

considered in a small environment of xp. A is ill-

conditioned if n̂y > ny . This fact is the basis to �nd

the maximal delay of y in the model (2). Therefore,

the matrix

A� =
h
�y

k��
; : : : ;�y

k�n̂y
;�uk��; : : : ;�uk�n̂u

i
(13)

is built stepwise for � = fn̂y ; n̂y � 1; : : :0; : : :g. If

n̂y � ny � � � n̂y , then A� is well-conditioned,

since its column vectors are linearly independent.

By adding the column vector �yT
k+1+ny�n̂y

for � =

n̂y �ny� 1 , it follows with (12) that An̂y�ny�1 is ill-

conditioned. The index of the last well-conditioned

matrix A� is named ��. This change from a well-

to an ill-conditioned matrix indicates that one more

delay is considered than necessary. Thus, when

�� = n̂y � ny is detected, the maximal output de-

lay is easily computed by

ny = n̂y � ��: (14)

It follows that the resulting matrix An̂y�ny
=

A�� , that is used to estimate the gradient vector, is

well-conditioned only depending on the chosen data.

Therefore, it is possible to estimate m̂. If elements

of m̂ are close to zero, then the corresponding delay

terms are negligible at xp.

Summing up, the whole procedure works as fol-

lows:

1. Select a su�ciently high number of delays in u

and y.

2. Compute the conditions c� = cond fA�g for � �
n̂y step by step until the transition from a well-

conditioned matrix to an ill-conditioned matrix

4



occurs. The maximal output delay is computed

by (14) with the detected �� = n̂y � ny .

3. Estimate the gradient vector for the determined

number of output delays and the included input

delays with the last well-conditioned A�� .

4. Determine which delay terms are negligible at

the considered xp by analysing the correspond-

ing elements of the gradient vector.

This procedure has to be applied to a su�ciently

high number of points xp. So, the delay terms which

are unnecessary in all operating points xp have to be

discarded.

The method presented requires that enough data

is available in the considered region of xp. Moreover,

this data has to be distributed in such a way that no

linear dependence occurs. Thus, a well-conditioned

matrix An̂y�ny is guaranteed. These conditions are

no limitations. It can always be achieved that the

data coming from the input delays is well-distributed

since the process input is freely chosen by the oper-

ator and the system is assumed to be BIBO-stable

and as much data as needed can be generated from

the process.

Example: A continuous-stirred tank reactor is to

be identi�ed. The inaccessible continuous time model

[7]

_x =

"
�0:957 a12 (x)

�0:323 a22 (x)

#
x +

"
0

1:548

#
u

with a22(x) = 0:468 � a12(x)� 1:815,

a12(x)=

8<
:

1:05�1014 �(0:279�x1)
x2

�
e

�34:289
1:05+x2 �6:568�10�15

�
x2 6=0

21:449�(0:279�x1) x2=0

and y(t) = [0 1] x(t) represents the process. The

control variable is the coolant temperature and

the output variable is the reactor temperature.

The di�erence equation of the system yk+1 =

f(yk ; yk�1; uk; uk�1) is obtained by Euler approxima-

tion. Thus, ny = 1 and nu = 1.

An ANN with two hidden layers and 6 neurons

in each of them is considered. This net is trained

using 9818 process patterns until a su�ciently small

J = 5:7�10�4 after 1900 epochs is achieved so that the
pruning methods can be applied. The model consists

of 91 parameters and its structure is given by yk+1 =

�i yk yk�1 yk�2 uk uk�1 uk�2
Skel. 0:56 1:0 0:004 1:0 0:67 0:01

OBD 1:0 0:45 0:000 0:42 1:0 0:16

Table 1: The scaled relevance terms that result for

the continuous-stirred tank reactor using the skele-

tonization method and OBD respectively.

f̂(yk; yk�1; yk�2; uk; uk�1; uk�2; p). The scaled �is for

the model delays are presented in table 1.

The relevance for yk�2 and uk�2 computed by

Skeletonization is quite small. So, one would discard

these two terms. In this case, both non-required time

delays are detected in one step.

Using OBD one would only discard the delay term

yk�2. Apparently, the simpli�cations made in section

3.2 do not hold in this case.

Thus, a further Neural Network with the input

variables yk , yk�1 and uk, uk�1, uk�2 has to be ex-

amined. After training to a su�ciently small error

with the training data used above, the OBD is ap-

plied at this net. The scaled relevances are presented

in table 2. This time, OBD yields a su�ciently small

relevance of the variable uk�2 so that the belonging

input term can be neglected. Therefore, the resulting

model structure is yk+1 = f̂(yk; yk�1;uk; uk�1; p).

�i yk yk�1 yk�2 uk uk�1 uk�2
OBD 1:0 0:53 | 1:0 0:41 0:07

Table 2: The scaled relevance terms that result for

the continuous-stirred tank reactor using OBD ap-

plied at the second Neural Network with 5 input vari-

ables.

In conclusion, both methods were successfully

applied to select the signi�cant input terms and

analysing the model structure. Nevertheless, the

computational e�orts for the methods are consider-

able since, �rst, a net has to be trained so that these

methods can be applied.

For the linearization approach the delays yk ,

: : : ; yk�2; uk; : : : ; uk�2 are taken into consideration.

Thus, n̂u = 2 , n̂y = 2. The sequence of matrix con-

ditions of A� is fc2;: : : ;c�1g = f1:4; 3:8; 137:5; 1310g
at xTp1 = [5:3; 3:3; 2:1; 3:5; 3:4;�1:5] � 10�3 and

fc2; : : : ; c�1g = f1:6; 3:5; 1245; 953g at xTp2 =
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[0;0; 0; 0; 0; 0]. The matrix conditions are comput-

ed by the MATLAB function cond that uses the

Singular Value Decomposition. The change from a

well- to an ill-conditioned matrix for both xp1 and

xp2 is detected by the step from c1 to c0. Thus,

A1 represents the last well-conditioned matrix and

�� = 1. With (14) it follows that ny = n̂y �
�� = 1. Since no jumping systems are considered

using (1), the concluded model structure is yk =

f̂(yk�1; yk�2;uk�1; uk�2; p). The well-conditioned

matrix A1 is used to estimate m̂ at xp1 and xp2.

These vectors are mT
1 = [2:2;�1:6; 0:16;�0:23] and

mT
2 = [2:6;�1:7; 0:2;�0:21]. Thus, yk�1, uk�1 and

uk�2 have to be included in the model. Only one

index shift is necessary to get the same structure of

model and system. For this approach only data se-

lection, computation of the conditions c�, and the

estimation of m̂ has to be carried out. That is a

reasonable e�ort in comparison to the training of a

net.

5 Conclusion

For the identi�cation of nonlinear dynamic systems

using neural networks with external delays (TDNN),

it is necessary to determine the required time delays.

First, two pruning methods are presented with which

the needed time delays can be found. However, this

approach is characterised by a tremendous compu-

tational burden. This results from the training of

'oversized' ANNs. For this reason, a new method

based on the estimation of the gradient vector at a

su�cient number of points in the operating domain is

presented. In a �rst step, the maximal output delay

is determined using the condition of a matrix built

from process data. Then, the gradient vector is esti-

mated. If an element is close to zero at all considered

points, its belonging delay term can be discarded. All

methods are applied to the continuous-stirred tank

reactor. The presented new approach is suitable to

detect the necessary delays with tolerable computing

e�orts.
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