
VARIATIONS ON A DITHER ALGORITHM

Markus PINS and Hermann HILD

Institut f�ur Betriebs- und Dialogsysteme
University of Karlsruhe
Karlsruhe, West-Germany

Mapping continuous-tone pictures into digital halftone pictures, i.e. 0/1-pictures, for
printing purposes is a well explored technique. In this paper, one of these algorithms,
the two-dimensional error-di�usion algorithm is extended to color pictures and animated
pictures. The color picture algorithm is superior to existing algorithms by considering
extreme color values as well as adjacent color values. The animation algorithm eliminates
the noise created by the correct but varying pixel patterns generated by applying a single
picture dithering algorithm on every frame. The power of the algorithms is demonstrated
by experiments carried out on synthetic images generated by ray tracing.

1 INTRODUCTION

Dither algorithms are required to display continuous-tone pictures on graphic devices with less gray
levels or color levels than contained in the original picture. They are particulary helpful for obtaining
a high quality display on devices using a color table that permits the choice of colors from a large
palette. For example, modern workstations have frame bu�ers with 8 planes per pixel, allowing
the reproduction of 256 out of up to more than 16 million colors. Usual rendering and shading
algorithms of e.g. 3-d mechanical CAD-systems make only poor use of these abilities. Rendering
with more colors and then applying a dither algorithm yields considerably better results.
There are several algorithms for dithering pictures, e.g. Dithering with a dither matrix [ES86],
the Floyd-Steinberg Algorithm [FS75], Constant-Level-Thresholding and Two-dimensional-error-

di�usion [Stu82] or the Dot Di�usion Algorithm described by [Knu87]. Comparing these algorithms,
the two-dimensional error di�usion dither algorithm described by [Stu82] yields very good results
and turns out to be easy implementable. A sketch of this algorithm is given in section 2. Although
originally developed for black-and-white dithering, it is adaptable to several situations where dither-
ing is required. In section 3 of this paper, an adaption of the two-dimensional error di�usion al-

gorithm for color images is given. Dithering of color images usually consists of two phases. In the
�rst phase, a suitable color table is chosen. There are several approaches known for this step, e.g.
popularity algorithm [Hec82], the median cut algorithm [Hec82], or octree quantization [GP88]. A
�rst weakness of these algorithms is that colors occurring rarely in the original images might be
eliminated in the dithered image. A second weakness is that adjacent colors that might be useful
when modeling continuous changes between color levels might not be available in the color table.
These two weaknesses are eliminated by the color table algorithm of section 3.1. Section 3.2 presents
the color version of the two-dimensional error di�usion algorithm, and examples of its applications
with the optimized color table.
Todays workstations are capable to display a sequence of several dozens of bitmapped pictures of a
size of, say, 200�200, at a rate of 16 images or more per second. This is su�cient to give the observer
the impression of continuous motion. If the movie is initially given in graytone, an immediate way
of dithering is to use one of the many existing dither algorithms to map each graytone picture
independently into the corresponding binary picture. However, an undesirable side e�ect may occur
in the form of a noisy ickering. This is due to the fact that similar areas in successive graytone
pictures may be mapped into pixel-patterns in the binary picture which are not similar at all. Thus

every single binary picture has patterns which correctly represent the corresponding gray values in
the graytone pictures, but in the moving sequence these patterns may completely change over time,
causing remarkable noise.
Unfortunately this e�ect cannot be demonstrated without a bitmap display, nor can one visually
�gure out changing patterns in subsequent pictures. We denote the di�erence-picture of two binary
pictures B1 and B2 as the picture in which a pixel is set if and only if the values of the pixels at the
two corresponding positions in B1 and B2 di�er. Di�erence-pictures allow some conclusions on the
behavior of the pictures: the more set pixels in the di�erence-picture, the more change and therefore
ickering will be in the sequence. Of course changing pixels disturb more or less, depending on their
context in the picture. Changing pixels do not at all disturb areas where genuine changes in the
graytone pictures take place. Figure 1 shows two successive pictures of a raytraced picture sequence.
The only moving parts in the sequence are the wings and their shadows. The background and the
tower remain the same patterns over the whole sequence.

Figure 1: Subsequent pictures from the sequence windmill
.

Each of the pictures is correctly dithered. The di�erent pixel-patterns which cause
the ickering cannot be recognized by a visual comparison.

Nevertheless the patterns in the background are di�erent in each binary picture, as indicated by
the di�erence-picture in �gure 2.
Up to now, there seems to be no solution to this problem in literature. In section 4, an adaption
of the two-dimensional error di�usion algorithm is given, reducing the problem of ickering. This
adaption can be seen as a 3-d extension of error di�usion.

2 DITHERING WITH CONSTANT-LEVEL THRESHOLDING

AND TWO-DIMENSIONAL ERROR-DIFFUSION

Dithering with Constant-Level Thresholding and Two-dimensional error-di�usion as described by
[Stu82] is an extension of the Floyd-Steinberg-Algorithm [FS75]. At every position (i; j) of a picture
P , a carried error value resulting from the weighted average of previously computed errors is added.
The range of picture elements comprises the values [Graylevelmin; Graylevelmax]. The errorcarry
is computed by a weighted error�lter. The weight coe�cients are chosen to be 2n to improve com-
putational e�ciency. A point in the bitmap is inserted if the graylevel value in the picture P at

Figure 2: The resulting di�erence-picture

It demonstrates that there are no major areas which have the same pixel-patterns.

position (i; j) including ErrorCarry(i; j) is less or equal the threshold Graylevelmax�Graylevelmin

2
, i.e.

Bitmap(i; j) =

(
0 if P (i; j) +ErrorCarry(i; j) > Graylevelmax�Graylevelmin

2

1 if P (i; j) +ErrorCarry(i; j) � Graylevelmax�Graylevelmin

2
:

The value ErrorCarry results from the weighted average of previously computed errors,

ErrorCarry(i; j) =

P
(k;l)2AreaError(i+ k; j + l) �Weight(k; l)P

(k;l)2AreaWeight(k; l)
:

The weight function Weight and the environment Area of summation are de�ned by

Weight Area

.

. 1 2 4 2 1 . { (-2, -2), (-2, -1), ... (-2, 2),

. 2 4 8 4 2 . (-1, -2), (-1, -1), ... (-1, 2),

. 4 8 (i,j) . . . (0, -2), (0, -1) }

.

The values of ErrorCarry depend on the function Error. Error itself depends on whether a point in
the Bitmap has been inserted or not.
At position (i; j), we want to approximate the graylevel value P (i; j) + ErrorCarry(i; j). If a
point at this position is inserted in the Bitmap and P (i; j) + ErrorCarry(i; j) > Graylevelmin,
the dithered picture is too dark by the amount of P (i; j) + ErrorCarry(i; j) � Graylevelmin. If
the point at position (i; j) is not inserted, the dithered picture is too bright by the amount of
P (i; j) +ErrorCarry(i; j)�Graylevelmax. Hence

Error(i; j) =

(
P (i; j) +ErrorCarry(i; j)�Graylevelmin ; if Bitmap(i; j) = 0
P (i; j) +ErrorCarry(i; j)�Graylevelmax ; if Bitmap(i; j) = 1:

When dithering images with homogeneous background it is recommendable to superpose the image
with a random noise function to avoid regular patterns. The random noise can be obtained by using a
random number generator, creating random numbers in the range from�0:05�Graylevelmax�Graylevelmin

2

to +0:05 � Graylevelmax�Graylevelmin

2
. Generating numbers with a bigger amplitude leads to falsi�ca-

tions of the image. These random numbers are added to the image values, i.e.

Bitmap(i; j) =

(
0 if P (i; j) +ErrorCarry(i; j) + noise >

Graylevelmax�Graylevelmin

2

1 if P (i; j) +ErrorCarry(i; j) + noise � Graylevelmax�Graylevelmin

2
:

3 DITHERING OF COLOR IMAGES

Color images are N �M rectangular arrays of pixel, separated in a red, green and blue color value
for each pixel. The color components are usually represented by 8 bits, which means numbers in
the range [0; 255] or 256 di�erent graylevel values. As explained in the introduction, color reduction
consists of two phases: choosing the color table (i.e. quantization), and replacing the colors in the
picture by the values in the color table (i.e. dithering).

3.1 Quantization

First, a color table C with K di�erent colors must be chosen. (K is the number of colors, the frame
bu�er can reproduce. We use K = 256).
There are di�erent possibilities to choose a color table. The Standard Algorithm is to subdivide the
RGB-color-space by a grid structure into boxes, and �ll the color table with the representatives of
each box. Because the human eye cannot distinguish the blue color levels as well as the red or green
color levels, the red and green axis will be divided into eight pieces, the blue one into four pieces.
Now 8 � 8 � 4 = 256 colors are available. The quality of the dithered picture is normaly low. The
Popularity Algorithm chooses a color table by evaluating the K most frequently occurring colors in
the image. However, when dithering pictures with a lot of di�erent colors, the algorithm delivers no
satisfying results. A recent method is the Octree Quantization [GP88]. The �rst K di�erent colors
of the image are used as initial entries to the color table. Reading the image sequentially, at each
new color not contained in the color table two very near neighbours of the now existing K+1 colors
are merged and replaced by the weighted mean. This step is repeated for every new color, until the
image is completely processed.
Our approach is based on the Median Cut Algorithm [Hec82] which subdivides the RGB-color space
into K rectangular boxes. At every step, the box with the most entries is divided along its longest
axis into two new boxes, i.e.

Shrink_RGB_Colorspace;

For i = 1 to K do

Split_Box_with_most_Colorentries;

Shrink_both_boxes

od.

Procedure Shrink computes the minimal rectangular box q0 to a given box q, which includes all en-
tries of q. Split divides a box along the longest dimension such that each box contains approximately
the same number of entries.
The algorithm starts with the full color space and terminates after K steps. The K colors are
selected in such a way, that every color represents approximately the same number of pixels in the
image. The representative q:c of the box q is computed as weighted average of all color entries in q.
q contains the colors q:ci occuring q:si times, i = 1 � � � n. n is the number of di�erent colors in q.

q:s =
nX
i=1

q:si; q:c =
1

q:s
�

nX
i=1

q:si � q:ci

The Median Cut Algorithm is a de�nite improvement over the Popularity Algorithm, however the
color selection can be improved. First, extremal colors, occurring rarely and lying far away from the
color table entries are not considered by the algorithm. Thus colors must be chosen from a color
table, having a big distance to the original color value. Another weakness is that only one color is
possibly chosen from a cluster of colors. For continuous gradations of colors it might happen that
representative colors are chosen lying far away from the cluster. This is unsatisfactory, since the
human eye is very sensitive to small gradations.
The idea of the following is to compute a bigger color table with K 0 colors, (K 0 > K) and select the
�nal color table entries out of these colors, prefering the extreme and the clustered color values.

Prefering extreme color values

First, K 0 colors must be computed, for example with the Median-Cut-Algorithm. (K 0 := 2 � K
produces good results). These K 0 colors are inserted into a list l which contains the color values qi:c
and the cumulated occurrences qi:s for every box qi; i = 1 � � �K 0. In addition the distance criterion
p will be introduced as an element of l. p is initialized with the number of entries qi:s in qi. After
building up the list l, the color value c with the biggest criterion value p is inserted into the color
table and erased in l. The other criterion values of all elements in l are multiplied by the distance-
factor A = r

1+r
. r is the distance between chosen color c and the current color in the list l. Doing

this the criterion value for colors lying near c will be reduced more than the value for colors far
away from c. Because the distances to the chosen color are all multiplied by every p, that color will
be chosen next which guarantees the best relation between occurrences and distance to all other
chosen colors. This step will be repeated K times until all colors of the color table are computed.

for i = 1 to K do

c = Choose_Color_from_List_with_maximal_p;

ColorTable[i] := c;

(* Erase c in List l of intermediate Colors and decrement K' *)

l = l \ c;

K' = K' - 1;

(* Compute distance d between Colors c and l[j].c and multiply

l[j].p with A = r / (1 + r) *)

for j = 1 to K' do

r = d(c, l[j].c);

A = r / (1 + r)

l[j].p = l[j].p * A

od

od

Prefering colors in clusters

A di�erent possibility is to merge two color values lying close to each other to a new color value.
Merging is weighted according to the occurrences of both color values.
The algorithm starts again with the Median-Cut-Algorithm which computes K 0 colors and inserts
them in the list l. In addition, the ag merge initialized with FALSE is introduced as element of l.

repeat

(* Choose the two Colors l[i].c and l[j].c out of l which

have minimal distance dist and both are not merged yet *)

choose_nearest_not_merged_colors(dist, i, j);

(* If the distance is lower than D, the colors i and j will

be merged, l will be updated and the number of colors K'

will be decremented *)

if (dist <= D)

new_color.p = l[i].p + l[j].p;

new_color.c = (l[i].p * l[i].c + l[j].p * l[j].c) / new_color.p;

new_color.merge = TRUE;

eliminate_from_list(i, j);

add_to_list(new_color);

K' = K' - 1

fi

until (K' <= K) or (dist > D);

This algorithm has the property that already merged color values may not be merged again. The
constant D in the conditional statement denoting the maximal distance between to di�erent color
values can be determined freely. Experiments show that 5 � D � 10 produces best results. Using this
improvement the probability increases that color gradations in images have a smoother appearence.

Correcting the brightness of the image

Psychophysical research has shown that the perceptual experiences of the human eye are nonlinearly
to the physical event. This means that the human eye perceives a linear increase in brightness as
nonlinear, shown in �gure 3 [Mur86].

Figure 3: Perceived brightness as a function of light intensity

When considering this e�ect evaluating the distance function d produces better results. Light inten-
sity of color values are computed by converting the RGB-modell into the HLS-Color-Modell [ES86].
It consists of three components Hue, Lightness and Saturation (�gure 4). Hue is an angle between
0 and 360 degree, Lightness is the height in the HLS-color-cone along the axis, normalized to the
range [0; 1] and Saturation is the distance between the color value and the axis.
Taking into consideration the human eyes perception sensitivity leads to the HL0S-modell derived
from HLS, with

L0 = m(L); 8x 2 L : m(x) = �0:6x2 + 1:6x

3.2 Dithering

The key operation of dithering is �nding a closest color in the color table for a given color in the
picture. A symmetrical grid with cell length dbox is used, enclosing the complete color space. Each
grid cell contains a list of representatives which are potential nearest neighbors. A potential neighbor

Figure 4: HLS-color-cone

is a color value out of the color table if the distance to the middle of the grid cell gbox is smaller
than dcol,

dcol = dbox + min
8c2C

(d(c; gbox))

In practice one should not evaluate the entries for all grid cells, since a lot of them are not used.
It is better to compute only the needed cells and their representatives [Hec82]. Instead of a grid
structure one can use a more exible space dividing structure, for example an Octree [JT80] or a
Grid File [HNS84].
Based on this closest color procedure, the modi�ed constant level thresholding and two-dimensional
error di�usion algorithm works as follows. At each point Pred;green;blue(i; j), the corrected new value
P 0
red;green;blue(i; j), representing the sum from chosen color value, errorcarry, and noise function must

be computed,

P 0
red;green;blue(i; j) = Pred;green;blue(i; j) + Scale(P (i; j)) �ErrorCarryred;green;blue(i; j):

The errorcarry value for each picture element results from the weighted average of previously com-
puted errors. The error�lter has the same size and the same weights as described in the �rst section.
The function Scale(r; g; b) returns a value between 0 and 1 depending on the actual color value (r,
g, b) and the color values of the color table,

Scale(r; g; b) = min

�
1

3
;

1

Number of Entries in G(r; g; b)

�

This function is used because the whole errorcarry should not be superposed to only one pixel.
Dithering color images without this restriction, areas with similar colors will be mapped to areas
with disturbing patterns. The function Scale depends on the distribution of all color values of the
color table in color space. Evaluating the errorcarry for extreme colors,

ErrorCarryred;green;blue(i; j) =

P
(k;l)2AErrorred;green;blue(i+ k; j + l) �Weight(k; l)P

(k;l)2AWeight(k; l)

the value of the Scale-function can be chosen bigger than computing the errorcarry for clustered
colors. This is important if homogeneous areas of the image should be dithered.

Having computed P 0(i; j) the nearest entry in the color table must be searched. It is inserted in the
dithered image at position (i; j). The resulting error Errorred;green;blue(i; j) depends on the color
value col and on P 0(i; j),

Errorred;green;blue(i; j) = P 0
red;green;blue(i; j) � colred;green;blue ��
1� Scale(P (i; j))

�
�ErrorCarryred;green;blue(i; j)

To avoid disturbing patterns in dithered images this algorithm can be improved by adding a func-
tion noise. This function depends on the distribution of colors in the color table too. The maximal
amplitude of the noise function must be smaller than the average distance between all color repre-
sentatives in a grid cell G(r; g; b),

jnoise(r; g; b)j � dbox �
p
3

3
p
Number of Entries in G(r; g; b)

To evaluate the �nal color value P 0
red;green;blue(i; j), we use

P 0
red;green;blue(i; j) = Pred;green;blue(i; j) + noise(P (i; j)) +

Scale(P (i; j)) �ErrorCarryred;green;blue(i; j)

3.3 Results

The table below compares the explained methods for color table evaluation in terms of execution
time and color table quality. The quality criterion is the variance d of the distances between the
color values of the image and the nearest color value in the color table,

d =
1

M �N �
NX
i=1

MX
j=1

min
k=1::K

(d(ck ; P (i; j))
2)

d(c1; c2) = (c1:r � c2:r)
2 + (c1:g � c2:g)

2 + (c1:b � c2:b)
2;

with ck the k-th color in the color table C, and P (i; j) the value of image P at position (i; j). Both
images were quantized to K = 256 di�erent colors, with K 0 = 512.

Computational Costs Picture 1 Picture 2

(8216 colors) (74480 colors)

Standard Algorithm O(1) d = 669:9053 d = 442:3563

Popularity Algorithm O(N �M � log2(K)) d = 6:7597 d = 116:8340

Median Cut Algorithm O(N �M � log2(K)) d = 8:3895 d = 44:1677

Median Cut Algorithm

prefering extreme colors O(N �M � log2(K
0

) +K �K0

) d = 6:6931 d = 27:1358

Median Cut Algorithm

prefering extreme and O(N �M � log2(K) +K �K0

+

clustered colors K0

� log2(K
0

) +K � log2(K
0

)) d = 5:6031 d = 26:1835

To elucidate the results, the second picture is shown in three versions. Figure 1 shows the original
picture with 24 bits per pixel. In �gure 2 the color table was computed with the Median Cut

Algorithm. The color table for �gure 3 was chosen by the Extended Median Cut Algorithm.

4 DIGITAL HALFTONING OF PICTURE SEQUENCES

4.1 Noise In Digital Halftone Sequences

The example shown in the introduction was dithered with one out of many possible algorithms. How-
ever, this behavior is shown by all algorithms that represent similar areas in the graytone pictures

by di�erent pixel-patterns in the binary pictures. Typical representatives are the Floyd-Steinberg
Algorithm [FS75], the Dot Di�usion Algorithm [Knu87], or the Constant-Level-Thresholding and
Two-dimensional error-di�usion as described by [Stu82]. For this type of algorithm, a straightfor-
ward solution to achieve non-ickering sequences is slightly shifting the pixels set in the actual
binary picture in order to achieve pixel-patterns as close as possible to those of the previous picture.
As a boundary condition, the number and distances of the pixel movements is to be minimized.
Experiments show that even if every pixel is shifted by at most one position, more than two third
of the pixels can be made to match. However, the shift by just one position essentially spoils the
picture, contours become less de�ned and regular pixel-patterns become irregular. Furthermore, the
movement by only one position is not enough to remedy the ickering problem.
Another class of dither algorithms place the pixels independently of their environment in the gray-
tone or binary picture by creating always the same pixel-patterns from the same graytone-areas.
If these algorithms additionally show a certain steadyness, i.e. similar gray areas are mapped into
similar pixel-patterns, then they indeed create sequences without the disturbing ickering. The
ordered-dither algorithms, for example dithering with a dither matrix [ES86] [Knu87], satisfy these
properties, and they indeed create sequences without ickering. The problem of these algorithms
is that they do not generate pictures of a quality as high as those algorithms which are su�ering
from the ickering problem. The following modi�cation of the error di�usion algorithm shows how
to maintain the high quality of the dithered pictures as well as reducing the ickering e�ect.

4.2 Modi�cation Of The Error-Di�usion Algorithm

The principle of the error di�usion algorithm is to take an error carry into account in the further
process of deciding whether a pixel is to be set or not. This is extended to picture sequences by
facilitating the decision for a pixel to be set if there is a set pixel in the precedent picture and vice
versa. The goal is to achieve the best matching pixel-patterns in two subsequent pictures, expressed
by the Hamming-distance between two pictures.
This can easily be realized. We enlarge the probability for an unset pixel by lowering the threshold
by a constant Delta if there is an unset pixel in the previous binary picture. If the corresponding
pixel in the previous picture is set, we raise the threshold by adding Delta, thus lowering the chance
that a pixel will not be set. In details,

Bitmap(i; j; t) =

�
0 if P (i; j; t) +ErrorCarry(i; j; t) +Delta(i; j; t� 1) > Graylevelmax�Graylevelmin

2

1 if P (i; j; t) +ErrorCarry(i; j; t) +Delta(i; j; t� 1) �
Graylevelmax�Graylevelmin

2

with

Delta(i; j; t) =

(
�Delta if Bitmap(i; j; t) = 1
Delta if Bitmap(i; j; t) = 0

This de�nition of Bitmap is justi�ed by the observation that neither constant raising nor lowering
or varying the threshold will a�ect the quality of the dithered binary pictures except for very local
areas. Further, setting pixels according to the previous picture rather than to the needs of the actual
picture increase the errors made, but even in the worst case the ErrorCarry at any position (i,j)
is bound,

(�) jErrorCarry(i; j)j � Graylevelmax �Graylevelmin

2
+Delta:

Figure 5 demonstrates the result of the application of this algorithm. The value for Delta was chosen
at 15% of the range of the gray values. The picture shows that already this relatively small Delta is
able to keep almost all pixels at their previous positions. A visual judgement of the moving sequence
shows that the problem of ickering is su�ciently solved.
In �gure 5, structures of previous pictures can be realized in the actual picture. The only di�erences
in the corresponding di�erence-picture are at the moving parts of the picture, the wings of the mill
and their shadows. (See �gure 5). The motion blur e�ect thus introduced might be useful in case of
computer generated graphics minimizing the e�ect of temporal aliasing. Nevertheless, in the next
section, a modi�cation of the algorithm is presented eliminating this e�ect.

Figure 5: Picture out of the sequence windmill

The left picture is dithered with the re�nement just described. At the wings one
can clearly see the remainders of previous pictures. The only di�erences in the right
di�erence-picture are at the moving parts of the picture, the wings and their shadows.

4.3 The Change-Picture Technique

The �rst modi�cation that is suggested now is to apply the pattern-keeping threshold manipulation
only in regions where no or only minor changes happened between the previous and the actual
graytone picture. A measure for the changes between to subsequent graytone pictures is given by

Change(i; j; t) = jP (i; j; t) � P (i; j; t � 1)j

This yields the following formula for the value of Bitmap(i; j; t),

Bitmap(i; j; t) =

�
0 if P (i; j; t) +ErrorCarry(i; j; t) +Delta(i; j; t� 1) > Graylevelmax�Graylevelmin

2

1 if P (i; j; t) +ErrorCarry(i; j; t) +Delta(i; j; t� 1) �
Graylevelmax�Graylevelmin

2

with

Delta(i; j; t) =

�
�w(Change(i; j; t)) � (Graylevelmax �Graylevelmin) if Bitmap(i; j; t) = 1

w(Change(i; j; t)) � (Graylevelmax �Graylevelmin) if Bitmap(i; j; t) = 0

The function w determines to what extent the algorithm tries to copy the values of the pixels in the
previous picture. The goal is to keep patterns with a maximum extent if no change takes place at
a position (i; j) (i.e. Change(i; j; t) = 0). With increasing changes, w should become smaller. Some
concrete values for w are shown in �gure 6.
Unfortunately, this modi�cation is not su�cient to overcome the structure-keeping property of the
algorithm. It still can be observed that it tends to generate patterns which are similar to structures
in previous pictures. This can be explained by a certain inertia of the error di�usion algorithm in
general. (Spatial) changes in the gray level within a graytone picture may a�ect a larger area in the
binary picture than the exactly corresponding positions in the graytone picture. In �gure 1, there
are no set pixels at all within the facets of the lower-left wing. Instead of white holes one should
expect the same patterns as in the surrounding background, since the background in the graytone
picture is the same over the whole area of this wing. These holes are the areas where the wrong old
structures occur: the algorithm tries to keep the pixel-patterns in the facets of the wing, since the
gray level of this areas did not change. By doing so, the undesired holes are kept. The disturbing
results can be observed in �gure 5. The problem was caused by the shadow-like disturbances created
by the error di�usion algorithm. It should not be tried to keep pixel-patterns �xed in such areas.

Delta

+

100% +

+

.

.

+

15% *

+

+

+

5% + *

+

+--------------+--------------+---------- --*---->

(0 13 255)

Graylevel_min Graylevel_max

Figure 6: Weighting function w

Therefore safety-zone is now built around all areas changing in time, by expanding the borders of
this areas. Applying this dilatation to Change yields

Change0k(i; j; t) = max
i�k�n�i+k;j�k�m�j+k

(Change(n;m; t));

where k determines the size of the dilatation-�lter.
Making the threshold manipulation dependent on Change0 instead of Change excludes the critical
areas around changing structures from the areas where the pixel-patterns are tried to be kept �xed.
Figure 7 shows a picture out of a sequence dithered with the additional application of the dilatation.
The graytone (CHANGE)-picture was dilated with a �lter of size k = 7. Besides some casual
disturbances in a pixel-pattern there are no more structures of previous pictures.

4.4 Application

The proposed algorithm showed to be a helpful tool to dither non-ickering animations. The re-
sponsibility of the function w is to determine the amount of inuence of the previous picture. For
the windmill-example we achieved the best results with values for w as presented above. However,
depending on the image content other values of w might improve the result.
Memory and execution time requirements are linear in the size of the images. Approximately 10
seconds on a SUN 3-50 are required for a 200� 200 image.
Since the resulting pixel-patterns are always the result of a compromise between the optimal pixel-
pattern for the actual picture and the pattern of the previous picture, some casual irregularities in
the patterns are unavoidable. When the algorithm comes from such an area into an area with a
given pattern, it suddenly has to adopt to this pattern. These are critical areas. To our experience
these disturbances are compensated by the bene�t of non-ickering sequences.

Acknowledgements

The authors would like to express their appreciation to Prof. Heinrich M�uller for reviewing this
manuscript, to Christoph Rothe, who painted the diagrams and to Achim St�o�er, who has designed
the windmill-sequence and the pictorial examples in section 2.

Figure 7: Picture out of the sequence, which is now dithered with all re�nements.

The threshold manipulation is dependent on the dilated graytone-change-picture.
Old structures of previous pictures are no longer recognizable. Taking a closer view
some minor irregularities in the pixel-patterns along the way the wing moved may
be realized.

References

[ES86] J. Encarnacao and W. Stra�er. Computer Graphics. Oldenbourg-Verlag, M�unchen, 1986.

[FS75] R.W. Floyd and L. Steinberg. An adaptive algorithm for spatial gray scale. Int. Symp.

Dig. Tech. Papers, 36, 1975.

[GP88] M. Gervautz and W. Purgathofer. A simple method for color quantization: Octree quanti-
zation. Proc. Computer Graphics International'88, Springer Verlag Berlin:219{231, 1988.

[Hec82] P. Heckbert. Color image quantization for frame bu�er display. Computer Graphics,
16(3):297{305, Juli 1982.

[HNS84] Hinterberger, Nievergelt, and Sevcik. The grid �le, an adaptable, symetric multikey �le
structure. ACM Transactions on Database Systems, 9(1):38{71, M�arz 1984.

[JT80] C.L. Jakson and S.L. Tanimoto. Octrees and their use in representing three-dimensional
objects. Computer Graphics and Image Processing, 14(3):249{270, 1980.

[Knu87] D.E. Knuth. Digital halftones by dot di�usion. ACM Transactions on Graphics, 6(4):245{
273, Oktober 1987.

[Mur86] G.M. Murch. Human factors of color displays. Eurographic Seminars, Advances in Com-
puter Graphics II:1{27, 1986.

[Stu82] P. Stucki. Image processing for documentation. Fachberichte und Referate, Textverar-
beitung und B�urosysteme(13):245{282, 1982.

