
Formal Synthesis at the Algorithmic Level ? ??

Christian Blumenr�ohr and Viktor Sabelfeld

Institute for Circuit Design and Fault Tolerance (Prof. Dr.-Ing. D. Schmid)
University of Karlsruhe, Germany

fblumen,sabelfelg@ira.uka.de http://goethe.ira.uka.de/fsynth

Abstract. In our terminology, the term \formal synthesis" stands for a
synthesis process where the implementation is derived from the speci�ca-
tion by applying elementary mathematical rules within a theorem prover.
As a result the implementation is guaranteed to be correct. In this pa-
per we introduce a new methodology to formally derive register-transfer
structures from descriptions at the algorithmic level via program trans-
formations. Some experimental results at the end of the paper show how
the run-time complexity of the synthesis process in our approach could
be.

1 Introduction

The synthesis of hardware systems is heading toward more and more abstract
design levels. This is due to the fact that the systems are becoming more com-
plex and so does the synthesis process for deriving them. Therefore, the correct-
ness of hardware components has become an important matter | especially in
safety-critical domains. By correctness we mean that the synthesis result (imple-
mentation) satis�es the synthesis input (speci�cation), in a formal mathematical
sense. It is assumed that the speci�cations are correct, which has to be examined
separately, e.g., by model-checking certain properties or by simulation. For prov-
ing the correctness of implementations, simulation is no longer suitable, since it
is normally (i.e. for large designs) not exhaustive in reasonable time. Formal
post-synthesis veri�cation [1] on the other hand needs manual interactions at
higher abstraction levels; it can be automated at the gate level, but is extremely
costly | and can only be applied, if some very simple synthesis steps have
been performed. Therefore, it is our objective to perform synthesis via logical
transformations and thus to guarantee \correctness by construction".

There are many approaches, that claim to ful�ll this paradigm. When regard-
ing the state of the art in this area, one can distinguish two concepts: transforma-

tional design and formal synthesis. In transformational design [2], the synthesis
process is based on correctness-preserving transformations. However, in most

? This work has been partly �nanced by the Deutsche Forschungsgemeinschaft, Project
SCHM 623/6-2.

?? Published in Conference on Correct Hardware Design and Veri�cation Methods,
Number 1703 in Lectures Notes in Computer Science, pp. 187-201, c Springer-
Verlag.

cases a lot of intuition is used during the proofs [3]. Furthermore the proofs
are often based on non-mathematical formalizations [4] and are performed in a
paper&pencil style [5], which means that they have to be examined by others
to verify them. However, the most restrictive fact in transformational design is
that the implementations of the transformations are not proven to be correct.
The transformations are realized by complex software programs, that might be
error-prone. Therefore these approaches do not ful�ll the above mentioned par-
adigm.

In formal synthesis approaches the synthesis process is performed within
some logical calculus. The circuit descriptions are formalized in a mathematical
manner and the transformations are based on some logical rules. The DDD sys-
tem [6], e.g., starts from a speci�cation in a Lisp-like syntax. The behavior is
speci�ed as an iterative system of tail-recursive functions. This is translated into
a sequential description which can be regarded as a network of simultaneous sig-
nal de�nitions comprising variables, constants, delays and expressions involving
operations. Then a series of transformations are applied to re�ne the description
into an implementation. The disadvantage of this method is that the description
language is not strongly typed. Therefore the consistency of an expression has to
be checked separately. Furthermore, although all the transformations are based
on functional algebra, their implementations have not been formally veri�ed, nor
are they based on a small core of elementary rules. Finally, the derivation process
needs manual interactions. An automatic design space exploration method is not
provided.

Our work is based on a functional hardware description language named
Gropius, which ranges from the gate level to the system level. Gropius is strongly-
typed, polymorphic and higher-order. Each construct of Gropius is de�ned within
the higher-order logic theorem prover HOL [7] and since it is a subset of higher-
order logic, Gropius has a mathematically exact semantics. This is the precondi-
tion for proving correctness. The implementation of HOL is not formally veri�ed.
However, since the implementation of the correctness-critical part of HOL | i.e.
deriving new theorems | is very small and is independent of the size of our for-
mal synthesis system, our approach can be considered to be extremely safe as to
correctness. In the next section, we briey introduce the way we represent cir-
cuit descriptions at the algorithmic level and give a small program as a running
example.

Existing approaches in the area of formal synthesis deal with lower levels
of abstraction (register-transfer (RT) level, gate level) [8, 9, 6, 10, 11] or with
pure dataow graphs at the algorithmic level [12]. This paper addresses formal
synthesis at the algorithmic level. The approach goes beyond pure basic blocks
and allows synthesizing arbitrary computable, i.e. �-recursive programs.

The starting point for high-level synthesis (HLS) is an algorithmic descrip-
tion. The result is a structure at the RT level. Usually, hardware at the RT-level
consists of a data-path and a controller. In conventional approaches [13], �rst,
all loops in a given control/dataow graph (CDFG) are cut, thus introducing
several acyclic program pieces each corresponding to one clock tick. The number

of these cycle-free pieces hereby grows exponentially with the size of the CDFG.
Afterwards scheduling, allocation and binding are performed separately on these
parts leading to a data-path and a state transition table. Finally, the controller
and the communication part are generated.

We have developed a methodology that absolutely di�ers from this standard.
In our approach, the synthesis process is not reduced to the synthesis of pure
dataow graphs, but the circuit description always remains compact and the
RT-level structure is derived via program transformations. Besides an RT-level
structure, our approach additionally delivers an accompanying proof in terms
of a theorem telling that this implementation is correct. High-level synthesis is
performed in four steps. In the �rst two steps which are explained in Section 3,
scheduling and register allocation/binding are performed. Based on pre-proven
program equations which can be steered by external design exploration tech-
niques, the program is �rst transformed into an equivalent but optimized pro-
gram, and then this program is transformed into an equivalent program with
a single while-loop. The third step (Section 4) performs interface synthesis. An
interface behavior can be selected and the program is mapped by means of a
pre-proven implementation theorem to a RT-level structure, that realizes the
interface behavior with respect to the program. In the last step, which is not
addressed explicitely here, functional units are allocated and bound. Section 5
will give some experimental results.

2 Formal representation of programs

At the algorithmic level, behavioral descriptions are represented as pure soft-
ware programs. The concrete timing of the circuit, that has to be synthesized, is
not yet considered. In Gropius, we distinguish between two di�erent algorithmic
descriptions. DFG-terms represent non-recursive programs that always termi-
nate (Data Flow Graphs). They have some type � ! �. P-terms are means
for representing arbitrary computable functions (Programs). Since P-terms may
not terminate, we have added an explicit value to represent nontermination: a
P-term either has the value De�ned (x) indicating that the function application
terminates with result x, or in case of nontermination the value is Unde�ned.
The type of P-terms is expressed by �! (�)partial.

In our approach, P-terms are used for representing entire programs as well
as blocks. Blocks are used for representing inner pieces of programs. In contrast
to programs, the input type equals the output type. This is necessary for loops
which apply some function iteratively. In Gropius, there is a small core of 8 basic
control structures for building arbitrary computable blocks and programs based
on basic blocks and conditions. Basic blocks (type �! �) and conditions (type
� ! bool) itself are represented by DFG-terms. In Table 1, only those control
structures are explained that are used in this paper. Based on this core of control
structures further control structures like for- and repeat-loops can be derived by
the designer.

PARTIALIZE Type: (� ! �) ! � ! (�)partial. Turns a basic block a to a block
(PARTIALIZE a). Since basic blocks always terminate, (PARTIALIZEa)
maps some x to De�ned(a(x)). Unde�ned is never reached.

WHILE Type: (� ! bool) ! (� ! (�)partial) ! � ! (�)partial. Basis
for formalizing true �{recursion. Given a block A and a condition c,
(WHILE cA) maps some parameter x to some value De�ned(y) by iter-
ating A until the value y is reached with :(c y). In case of nontermi-
nation the result becomes Unde�ned.

THEN Type: (� ! (�)partial) ! (� ! (�)partial) ! � ! (�)partial. Binary
function used in in�x notation. Two blocks A and B are executed con-
secutively. The result of (ATHENB) becomes Unde�ned, i� one of the
two blocks does not terminate.

LOCVAR

A
init

x x’
Type: � ! ((� � �) ! (� � �)partial) !
� ! (�)partial. Introduce a local variable.
Given an arbitrary initial value init for the
local variable, the function (LOCVAR initA)
�rst maps some input x to A(x; init). If the result becomes
De�ned(x0; init0), then De�ned(x0) is returned. In case of nontermina-
tion Unde�ned is returned.

PROGRAM

A
init

x

init’

Type: � ! ((� � �) ! (� � �)partial) !
� ! (�)partial. Turns a block into a
program. Given an arbitrary initial value
init for the output variable, the function
(PROGRAM init A) �rst maps some input x to A(x; init). If A(x; init)
terminates with De�ned(x0; init0), then De�ned(init0) is returned. In case
of nontermination Unde�ned is returned.

Table 1. Core control structures

In the rest of the paper a speci�c pattern called single-loop form (SLF) plays
an important role. Programs in SLF have the following shape:

PROGRAM out init (LOCVAR var init (WHILE c (PARTIALIZE a))) (1)

The expressions out init and var init denote arbitrary constants, c is an arbi-
trary condition and a an arbitrary basic block.

Basically, no front-end is required, since Gropius is both the input language
and the intermediate format for transforming the circuit description. However,
since the \average designer" may not be willing to specify in a mathematical no-
tation, it would also be possible to automatically translate Gropius-descriptions
from other languages like Pascal. But on the other hand this adds an error-prone
part into the synthesis process you can abandon, since Gropius is easy to learn
| there are only few syntax rules.

Fig. 1 shows a program in an imperative representation style (Pascal) and a

corresponding description in Gropius. The program computes the nth Fibonacci
number and uses a fast algorithm which has a complexity of O(log2 n).

Imperative Program Representation in Gropius

FUNCTION FIB val �b =
(var n : int) : int; PROGRAM 1
VAR a1; a2; y1; y2;m : int; LOCVAR (1; 1; 0; 0)
VAR r; s : int; PARTIALIZE (�((n; y1); a1; a2; y2;m):
BEGIN ((n; y1); a1; a2; y2; (n DIV 2) + 1))
a1 := 1; a2 := 1; THEN

y1 := 1; WHILE (�((n; y1); a1; a2; y2;m)::(m = 0))
y2 := 0; PARTIALIZE (�((n; y1); a1; a2; y2;m):
m := n div 2 + 1; let c = ODD m in

WHILE m <> 0 DO let m1 = m� 1 in
IF odd m let m2 = m DIV 2 in
THEN BEGIN let m3 = MUX(c;m1; m2) in
r := y1; let x = a1 + a2 in
y1 := y1 � a1 + y2 � a2; let x1 = MUX(c; y1; a1) in
y2 := r � a2 + y2 � (a1 + a2); let x2 = MUX(c; y2; a2) in
m := m� 1 let x3 = x1 � a1 in
END let x4 = x2 � a2 in
ELSE BEGIN let x5 = x3 + x4 in
s := a1; let x6 = x1 � a2 in
a1 := a1 � a1 + a2 � a2; let x7 = x2 � x in

a2 := s � a2 + a2 � (s+ a2); let x8 = x6 + x7 in
m := m div 2 let y10 = MUX(c; x5; y1) in
END; let a10 = MUX(c; a1; x5) in

IF odd n let a20 = MUX(c; a2; x8) in
THEN let y20 = MUX(c; x8; y2) in
RETURN y2 ((n; y10); a10; a20; y20; m3))
ELSE THEN

RETURN y1 PARTIALIZE (�((n; y1); a1; a2; y2;m):
END; ((n;MUX(ODD n; y2; y1)); a1; a2; y2;m))

Fig. 1. Program for calculating the nth Fibonacci number

The program �b has type num ! (num)partial (num is the type of natural
numbers). The input variable is n. The construct (PROGRAM1) introduces a
variable (here called y1) which indicates the output of the program and hence

the nth Fibonacci number. A special \return"-statement is not necessary since
the result is stored in y1. The initial value of the output is the same as for
the local variable y1 in the imperative program. (LOCVAR(1; 1; 0; 0)) is used to
introduce local variables with initial values 1, 1, 0 and 0, respectively. These
local variables correspond to the local variables a1; a2; y2 and m in the impera-
tive program. DFG-terms are formalized using �-expressions [14]. An expression
(�x:a[x]) denotes a function, which maps the value of a variable x to the expres-
sion a[x], which has some free occurrences of x. Two basic laws of the �-calculus

are �-conversion and �-conversion:

(�x:a [x]) b
�
�! a[b=x] (�x:a x)

�
�! a

let-terms (let x = y in z) are a syntactic variant of �-redices (�x:z) y. By apply-
ing �-conversion some or all of the let-terms can be eliminated. In contrast to
LOCVAR, let-terms introduce local variables only within basic blocks. The ex-
pressionMUX is an abbreviation for a conditional expression within basic blocks.
MUX(c; a; b) returns a, if the condition c is true, otherwise it returns b.

The correspondence between the two descriptions in Fig. 1 is not one-to-
one. To yield a more e�cient description with less addition and multiplication
operations, the following two theorems for conditionals have been applied:

` f MUX(c; a; b) = MUX(c; f a; f b) ` MUX(c; a; b) g = MUX(c; a g; b g) (2)

The imperative program can �rst be translated into a Gropius description
containing the same eight multiplications and six additions in the loop-body.
Then the theorems (2) can be applied to generate the description shown in Fig.
1, which needs only four multiplications and three additions in the loop-body.

3 Program transformations

The basic idea of our formal synthesis concept is to transform a given program
into an equivalent one, which is given in SLF. This is motivated by the fact that
hardware implementations are nothing but a single while-loop, always execut-
ing the same basic block. Every program can be transformed into an equivalent
SLF-program (Kleene's normal form of �-recursive functions). However for a
given program there might not be an unique SLF, but there are in�nitely many
equivalent SLF-programs. In the loop-body of a SLF-program, all operations of
the originally given program are scheduled. The loop-body behaves like a case-
statement, in which within a single execution certain operations are performed
according to the control state indicated by the local variables (LOCVAR var init).
After mapping the SLF-program to a RT-level structure (see Section 4), every
execution of the loop-body corresponds to a single control step. The cost of
the RT-implementation therefore depends on which operations are performed in
which control step. Thus every SLF corresponds to a RT-implementation with
certain costs. Performing high-level synthesis therefore requires to transform the
program into a SLF-program, that corresponds to a cost-minimal implementa-
tion.

In the HOL theorem prover we proved several program transformation the-
orems which can be subdivided into two groups. The �rst group consists of 27
theorems. One can prove that these theorems are su�cient to transform every
program into an equivalent program in SLF. The application of these theorems
is called the standard-program-transformation (SPT). During the SPT, control

structures are removed and instead auxiliary variables are introduced holding
the control information. Theorem (3) is an example:

` WHILE c1 (LOCVAR v (WHILE c2 (PARTIALIZE a))) =
LOCVAR (v;F)
WHILE (�(x; h1; h2): c1 x _ h2)
PARTIALIZE (�(x; h1; h2):MUX (c2 (x; h1); (a (x; h1);T); (x; v;F)))

(3)

Two nested while-loops with a local variable at the beginning of the outer loop-
body are transformed to a single while-loop. The local variable is now outside the
loop and there is an additional local variable with initial value F. This variable
holds the control information, whether the inner while-loop is performed (value
is T) or not (value is F).

Although the SLF representation is not unique, the SPT always leads to
the same SLF for a given program by scheduling the operations in a �xed way.
Therefore, the SPT unambiguously assigns costs to every program. To produce
other, equivalent SLF representations, which result in another scheduling and
thus in other costs for the implementation, the theorems of the second group have
to be applied before performing the SPT. Currently, we proved 19 optimization-
program-transformation (OPT) theorems. These OPT-theorems can be selected
manually, but it is also possible to integrate existing design space exploration
techniques which steer the application of the OPT-theorems. The OPT-theorems
realize transformations which are known from the optimization of compilers in
the software domain [15]. Two of these transformations are loop-unrolling and
loop-cutting.

Loop unrolling reduces the execution time since several operations are per-
formed in the same control step. On the other hand, it increases the combi-
natorial depth and therefore the amount of hardware. Theorem (4) shows the
loop unrolling theorem. It describes the equivalence between a while-loop and
an n-fold unrolled while-loop with several loop-bodies which are executed suc-
cessively. Between two loop-bodies, the loop-condition is checked to guarantee
that the second body is only executed if the value of the condition is still true.
FOR N is a function derived from the core of Gropius. (FOR N n A) realizes
an n-fold application of the same block A. Theorem (5) can be used to remove
FOR N after having instantiated n (SUC is the successor function).

` WHILE c (PARTIALIZE a) =

WHILE c
�
(PARTIALIZE a) THEN

(FOR N n (PARTIALIZE (�x:MUX (c x; a x; x))))
� (4)

` (FOR N 1 A = A) ^ (FOR N (SUC n) A = A THEN (FOR N n A)) (5)

The counterpart to loop unrolling is the loop cutting: the loop is cut into
several smaller parts. Each part then corresponds to a separate control step.
This results in a longer execution time; however, the hardware consumption
might be reduced, if the parts can share function units.

` WHILE c (PARTIALIZE (list o (k :: r))) =
LOCVAR (enum (SUC (LENGTH r)) 0)
WHILE (�(x; h): c x _ :(h = 0))
PARTIALIZE (�(x; h): ((CASE (k :: r) h) x; next (SUC (LENGTH r)) h))

(6)

In (6) the loop cutting theorem is shown. It assumes that the body of a while-
loop has been scheduled into a composition of functions. The term (list o L)
denotes a composition of functions given by the list L. By restricting L to be of
the form (k :: r) it is guaranteed that the list is not empty. Each function of the
list L must have the same type � ! �. The input and output types must be
equal, since loop-bodies are executed iteratively. Given a while-loop with such
a scheduled loop-body (list o (k :: r)), theorem (6) turns it into an equivalent
while-loop, which executes its body (LENGTH r)1 times more often than the
original while-loop. Within one execution of the loop-body exactly one of the
functions of the list (k :: r) is applied. The control information, which function
is to be performed is stored in a local variable that has been introduced. This
variable has an enumeration datatype. Its initial value is 0 and its value ranges
from 0 to (LENGTH r). The semantics of enum is shown in (7). If the local
variable has value 0, the loop-condition c is checked, whether to perform the
loop-body or not. If the local variable's value di�ers from 0, the loop-body will

be executed independent of c. (CASE L i) picks the ith function of the list L.
Therefore, within one execution of the loop-body, a function of the list (k :: r) is
selected according to the value h of the local variable and then this function is
applied to the value x of the global input variable. Furthermore, the new value
of the local variable is determined. The semantics of next is shown in (7).

` enumnm = MUX(m < n;m; 0) ` next n x = MUX(SUC x < n; SUC x; 0) (7)

Returning to our example program �b, the body of the while-loop can be
scheduled in many ways. The decision on how the body should be scheduled
can be made outside the logic by incorporating existing scheduling techniques
for data-paths. Table 2 shows the results of applying the ASAP (as-soon-as-
possible), force-directed [16] and list-based scheduling techniques to our example
program. The ASAP algorithm delivers the minimal number of control steps. In
addition to this, the force-directed-algorithm tries to minimize the amount of
hardware. The list-based scheduling on the other hand restricts the amount of
hardware components and tries to minimize the execution time. For each control
step, we list the local variables of the loop from Fig. 1 that hold the result of the
corresponding operations. Note that no chaining was allowed in the implemen-
tation of these scheduling programs. However, this is not a general restriction.
For performing the list-based scheduling, the number of multiplications and ad-
ditions was each restricted to two.

In the next step, the number and types of the registers will be determined
that have to be allocated. This is also listed in Table 2. Before actually scheduling

1 LENGTH L returns the length of a list L. Instantiating the theorem with a concrete
list, yields a concrete value for this expression. Similarly, (list o L) then corresponds
to a concrete term.

Control step ASAP Force-directed List-based

1 c;m1;m2; x c c;m1;m2; x
2 m3; x1; x2 m1;m2; x; x1; x2 m3; x1; x2
3 x3; x4; x6; x7 x3; x4; x6; x7 x3; x4
4 x5; x8 m3; x5; x8 x5; x6; x7
5 y10; a10; a20; y20 y10; a10; a20; y20 x8; y10; a10

6 ��� ��� a20; y20

Type bool : 1 Type bool : 1 Type bool : 1
Allocated registers

Type num : 10 Type num : 10 Type num : 11

Table 2. Control information extracted by di�erent scheduling algorithms

the loop-body by a logical transformation, additional input variables have to be
introduced, since the number of input and output variables directly corresponds
to the number of registers necessary at the RT-level. The number of additional
variables is (#regalloc � #invars) with #invars being the number of input
variables of the loop-body and #regalloc being the number of allocated registers.
For our example �b in the case of allocation after the ASAP scheduling, this
value is 11� 6 = 5. Therefore 5 additional input variables for the loop have to
be introduced. This is done by theorem (8). Applying it to the loop in Fig. 1
with appropriately instantiating i gives program (9).

` 8i:WHILE c (PARTIALIZE a) =
LOCVAR i (WHILE (�(x; h):cx) (PARTIALIZE(�(x; h):(ax; i))))

(8)

LOCVAR(F; 0; 0; 0; 0)
WHILE(�(((n; y1); a1; a2; y2;m); h1; h2; h3; h4; h5)::(m = 0))
PARTIALIZE(�(((n; y1); a1; a2; y2;m); h1; h2; h3; h4; h5):

let c = ODD m in : : : in (((n; y10); a10; a20; y20; m3);F; 0; 0; 0; 0))

(9)

The additional variables are only dummies for the following scheduling and
register allocation/binding. They must not be used within the loop-body. Since
the original input variables are all of type num, one variable of type bool (h1)
and four variables of type num (h2; : : : ; h5) are introduced. Some default initial
values are used for each type. Since the output type must equal the input type,
additional outputs have to be introduced as well.

Now the DFG-term representing the loop-body can be scheduled and register
binding can be performed, both by logical conversions within HOL. Fig. 2 shows
the resulting theorem after this conversion. The equivalence between the original
and the scheduled DFG-term is proven by normalizing the terms, i.e. performing
�-conversions on all �-redices [19]. The register binding was performed based on
the result of a heuristic that tries to keep a variable in the same register as long
as possible to avoid unnecessary register transfer. The right hand side of the
theorem in Fig. 2 is actually an expression of the form (list o L) with L being
a list of �ve DFG-terms. The theorem in Fig. 2 can be used to transform the
circuit description �b by rewriting and afterwards the loop-cutting theorem (6)
can be applied.

` �(((n; y1); a1; a2; y2;m); h1; h2; h3; h4; h5):
let c = ODD m in : : : in (((n; y10); a10; a20; y20;m3);F; 0; 0; 0; 0)

=
�(((r1; r2); r3; r4; r5; r6); r7; r8; r9; r10; r11):
let y10 = MUX(r7; r2; r6) in let a10 = MUX(r7; r1; r2) in
let a20 = MUX(r7; r8; r3) in let y20 = MUX(r7; r3; r9) in
(((r5; y10); a10; a20; y20; r4);F; 0; 0; 0; 0)

�
�(((r1; r2); r3; r4; r5; r6); r7; r8; r9; r10; r11):
let r20 = r11 + r10 in let r30 = r3 + r2 in
(((r1; r2)0; r30; r4; r5; r6); r7; r8; r9; r10; r11)

�
�(((r1; r2); r3; r4; r5; r6); r7; r8; r9; r10; r11):
let r110 = r2 � r1 in let r100 = r10 � r8 in let r30 = r2 � r8 in
let r20 = r10 � r3 in (((r1; r20); r30; r4; r5; r6); r7; r8; r9; r100; r110)

�
�(((r1; r2); r3; r4; r5; r6); r7; r8; r9; r10; r11):
let r40 = MUX(r7; r2; r4) in let r20 = MUX(r7; r6; r1) in
let r100 = MUX(r7; r9; r8) in (((r1; r20); r3; r40; r5; r6); r7; r8; r9; r100; r11)

�
�(((n; y1); a1; a2; y2;m); h1; h2; h3; h4; h5):
let r70 = ODD m in let r20 = m� 1 in let r40 = m DIV 2 in
let r30 = a1 + a2 in (((a1; r20); r30; r40; n; y1); r70; a2; y2; r10; r11)

Fig. 2. Theorem after scheduling and register allocation/binding

Besides loop-unrolling and loop-cutting, several other OPT-theorems can be
applied. After that the SPT is performed generating a speci�c program in SLF.
Fig. 3 shows the theorem after performing the SPT without applying any OPT-
theorem before. When the program in SLF is generated without any OPT, then
the operations in the three blocks before, within and after the while-loop in the
original program �b, will be performed in separate executions of the resulting
loop-body. Therefore, function units can be shared among these three blocks.
Although ,e.g., two DIV-operations appear in Fig. 3, only one divider is necessary.
One division comes from the block before the loop and the other results from
the loop-body. These two division-operations are therefore needed in di�erent
executions of the new loop-body. They can be shifted behind the multiplexer by
using one of the theorems (2). The allocation and binding of functional units is
the last step in our high-level synthesis scenario. Before this, interface synthesis
must be applied.

4 Interface synthesis

At the algorithmic level, circuit representations consist of two parts. An algorith-
mic part describes the functional relationship between input and output. Time

` �b =
PROGRAM1
LOCVAR((1; 1; 0; 0); F;F)
WHILE(�(((n; y1); a1; a2; y2;m); h1; h2)::h1 _ :h2)
PARTIALIZE(�(((n; y1); a1; a2; y2;m); h1; h2):

let x10 = :(m = 0) in
let c = ODD m in

let x100 = MUX(c; y1; a1) in
let x2 = MUX(c; y2; a2) in
let x5 = x100 � a1 + x2 � a2 in
let x8 = x100 � a2 + x2 � (a1 + a2) in
(((n;MUX(h2;MUX(x10;MUX(c; x5; y1);MUX(ODD n; y2; y1)); y1));
MUX(h2 ^ x10;MUX(c; a1; x5); a1);
MUX(h2 ^ x10;MUX(c; a2; x8); a2);
MUX(h2 ^ x10 ^ c; x8; y2);
MUX(h2;MUX(x10;MUX(c;m� 1; m DIV 2); m); (n DIV 2) + 1));
MUX(h2;:x10; h1);T))

Fig. 3. Single-loop-form of �b

is not yet considered. During high-level synthesis the algorithmic description is
mapped to a RT-level structure. To bridge the gap between these two di�erent
abstraction levels one has to determine how the circuit communicates with its
environment. Therefore, as second component of the circuit representation, an
interface description is required.

In contrast to most existing approaches, we strictly separate between the
algorithmic and the interface description. We provide a set of at the moment
nine interface patterns, of which the designer can select one. Some of these
patterns are used for synthesis of P-terms and others for synthesis of DFG-
terms. The orthogonal treatment of functional and temporal aspects supports
reuse of designs in a systematic manner, since the designer can use the same
algorithmic description in combination with di�erent interface patterns.

Remark: At the algorithmic level we only consider single processes that do
not communicate with other processes. In addition to this, we have developed
an approach for formal synthesis at the system level, where several processes
interact with each other [17].

Fig. 4 shows the formal de�nition of two of those interface patterns. Beside
the data signals of an algorithmic description P , the interface descriptions con-
tain additional control signals which are used to steer the communication, to
stop or to start the execution of the algorithm.

The two patterns are functions which map an arbitrary program P and
the signals (in; start; out; ready) and (in; reset; out; ready), respectively, to a
relation between these signals with respect to the program P . The pattern
P IFC START states that at the beginning the process is idle, if the start-signal
is not active. As long as the process is idle and no calculation is started, the

P IFC START = P IFC CYCLE =
�P: �(in; start; out; ready): �P: �(in; reset; out; ready):
:(start 0)) ready 0
^

8t:
(ready t ^ :(start (t+ 1))))
(ready (t + 1) ^ (out (t+ 1) = out t))
^

start t)
case (P (in t)) of
De�ned y :
9m:
8n: n < m)

(8p: p < n) :(start (t+ p + 1))))
:(ready (t+ n))

^

(8p: p < m) :(start (t+ p + 1))))
((out (t+m) = y) ^ ready (t+m))

Unde�ned:

8m:

(8n: n < m) :(start (t+ n+ 1))))
:(ready (t+m))

8t:

((t = 0) _ ready (t� 1) _ reset t))
case (P (in t)) of
De�ned y :
9m:
8n: n < m)

(8p: p < n) :(reset (t+ p + 1))))
:(ready(t+ n))

^

(8p: p < m) :(reset (t+ p+ 1))))
((out(t+m) = y) ^ ready(t+m))

Unde�ned:

8m:

(8n: n < m) :(reset (t+ n + 1))))
:(ready (t+m))

Fig. 4. Formal de�nition of two interface patterns

process will be idle in the next clock tick and out holds its last value. If start is
active, i.e. a new calculation begins, two alternatives may occur:

{ the calculation P (in t) will terminate after some time steps m. As long as
the calculation is performed, the process is active, i.e. ready is F. When the
calculation is �nished at time step t +m, out holds the result y and ready
is T, indicating that the process is idle again. However, the calculation can
only be �nished, if start is not set to T while the calculation is performed.

{ the calculation P (in t) will not terminate. Then the process will be active
producing no result until a new calculation is started by setting start to T.

The pattern P IFC CYCLE describes a process, which always performs a cal-
culation and starts a new one as soon as the old one has been �nished. The
reset-signal can be used here to stop a (non-terminating) calculation and to
start a new one.

For each interface pattern that we provide, we also have proven a correct
implementation theorem. All the implementation theorems corresponding to
patterns for P-terms expect the programs to be in SLF. The formal Gropius-
descriptions of implementations at the RT-level can be found in [18]. In (10),
an implementation theorem is shown, stating that an implementation pattern
called IMP START ful�lls the interface pattern P IFC START for each program
being in SLF (see also the pattern of the SLF in (1)).

` 8a c out init var init:

IMP START (a; c; out init; var init) (in; start; out; ready)
)
P IFC START�

PROGRAM out init (LOCVAR var init (WHILE c (PARTIALIZE a)))
�

(in; start; out; ready)

(10)

SLF

F
T

>1

T
F

T

F

D

1>&

q

ready

T
D

start

1
0

out

b

in

F

a

Fig. 5. RT implementation IMP START for the program �b

` IMP START (aSLF ; cSLF ; out initSLF ; var initSLF) (in; start; out; ready)
)
P IFC START �b (in; start; out; ready)

(11)

The �nal theorem (11) is achieved by �rst instantiating the universal quanti-
�ed variables in theorem (10) with the components aSLF ; cSLF ; out initSLF and
var initSLF of the SLF in Fig. 3. Afterwards, the SLF-theorem ` �b = �bSLF in
Fig. 3 is turned to ` �bSLF = �b (symmetry of equivalence) and rewriting is per-
formed with this theorem. Theorem (11) says that the implementation sketched
in Fig. 52 satis�es the program �b from Fig. 1 with respect to the interface
pattern P IFC START.

The last step in our high-level synthesis scenario is allocation and binding of
functional units (FU). This is done within the DFG-term b (grey area in Fig.
5). When synthesizing �b without any OPT, four multipliers, three adders and
one divider have to be allocated besides some boolean function units. For sake
of space, the logical transformation for this task is not shown here. When OPT-
theorems like loop-unrolling or loop-cutting are applied, the amount of allocated
hardware may be di�erent. For more information on FU allocation/binding see
also [19], where the synthesis of pure DFG-terms is described. Since the allocation
and binding of functional units is performed within the DFG-term b, the method
can be applied which is described there.

5 Experimental results

Our formal synthesis approach consists of four steps. OPT and SPT for schedul-
ing and register allocation/binding, applying an implementation theorem for
interface synthesis and allocation/binding of functional units within the result-
ing basic block of the RT-implementation. SPT and interface synthesis consist of
rewriting and �-conversions, which can be done fully automatically within the

2 Due to lack of space the loop-body of the SLF (component aSLF) is not explicitely
shown in Fig. 5. q denotes an arbitrary initial value in the eight allocated registers.

HOL theorem prover. For the OPT and the FU-allocation/binding, however,
heuristics are needed to explore the design space. Those non-formal methods
can be integrated in the formal synthesis process, since the design space ex-
ploration part is separated from the transformation within the theorem prover.
After establishing the formal basis for our synthesis approach, it is our objec-
tive in the future to develop further heuristics and to integrate more existing
techniques for the OPT. An interesting approach is proposed in [20] where a
method is described in which the design space is explored for performing similar
transformations that are used in the OPT of our synthesis process.

To give an impression about the costs in formal synthesis, Fig. 6 shows the
run-times (on SUN UltraCreator, Solaris 5.5.1, 196 MB main memory) of several
programs for both performing the SPT and instantiating an implementation
theorem. The descriptions of the programs in the programming language C can
be found in [21]. Since we did not perform any OPT, it does not make sense
to compare the results with other approaches with respect to the number of
registers and FUs. As we have demonstrated on our small running example,
very di�erent implementations can be achieved if OPT-theorems are applied.
Since only few heuristics for automatic invoking the OPT-theorems have been
implemented, we have considered only the SPT and the interface synthesis. The
cost for the SPT mainly increases with the number of the control structures but
also with the number of operations in the program. The cost for the interface
synthesis mainly increases with the size of the loop-body of the SLF-program.

Interface
Program SPT

synthesis

�bonacci 2.1 0.1
gcd 1.5 0.2
bubble 4.4 0.5
fuzzy 19.0 1.2
kalman 103.9 2.8
di�eq 3.4 0.3
�delity 5.1 0.6
dct 50.0 5.2
atoi 1.9 0.2

Fig. 6. Time [s] for synthesis
experiments

The experiments have been run using a slight
variant of the HOL theorem prover. As com-
pared to the original HOL system, it has been
made more e�cient by changing the term repre-
sentation and adding two core functions. See [22]
for a detailed description and discussion about
this. As we have demonstrated in the paper,
the result of our synthesis process is a guaran-
teed correct implementation. A proof is given to-
gether with the implementation, stating that the
implementation ful�lls the speci�cation. There-
fore, one should be aware that the run-times
must be compared with conventional synthesis
plus exhaustive simulation. Furthermore, we be-
lieve that due to the complexity it is very hard
(or even impossible) to develop automatic post-synthesis veri�cation methods at
this abstraction level which could prove the correctness of the synthesis process.

6 Conclusion

In this paper, we presented a formal way for performing high-level synthesis.
The main contribution is that we perform the whole synthesis process within a
theorem prover. The result is therefore not only an implementation but also an

accompanying proof that this implementation is correct. Furthermore, we devel-
oped a new synthesis method, where the implementation is derived by applying
program transformations instead of generating and analyzing a number of con-
trol paths that grows exponentially with the CDFG size. Last but not least we
orthogonalize the treatment of algorithmic and temporal aspects and therefore
support a systematic reuse of designs.

References

1. A. Gupta. Formal hardware veri�cation methods: A survey. Formal Methods in
System Design, 1(2/3):151{238, 1992.

2. P. Middelhoek. Transformational Design. PhD thesis, Univ. Twente, NL, 1997.

3. M. McFarland. Formal analysis of correctness of behavioral transformations.
Formal Methods in System Design, 2(3), 1993.

4. Z. Peng, K. Kuchcinski. Automated transformation of algorithms into register-
transfer implementations. IEEE Transactions on CAD, 13(2):150{166, 1994.

5. R. Camposano. Behavior-preserving transformations for high-level synthesis. In
Hardware Speci�cation, Veri�cation and Synthesis: Mathematical Aspects, number
408 in LNCS, pp. 106{128, Ithaca, New York, 1989. Springer.

6. S.D. Johnson, B. Bose. DDD: A system for mechanized digital design deriva-
tion. In Int. Workshop on Formal Methods in VLSI Design, Miami, Florida, 1991.
Available via \ftp://ftp.cs.indiana.edu/pub/techreports/TR323.ps.Z" (rev. 1997).

7. M.J.C. Gordon, T.F. Melham. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, 1993.

8. R. Sharp, O. Rasmussen. The T-Ruby design system. In IFIP Conference on
Hardware Description Languages and their Applications, pp. 587{596, 1995.

9. E.M. Mayger, M.P. Fourman. Integration of formal methods with system design.
In Int. Conf. on VLSI, pp. 59{70, Edinburgh, Scotland, 1991. North-Holland.

10. R. Kumar et al. Formal synthesis in circuit design-A classi�cation and survey. In
FMCAD'96, number 1166 in LNCS, pp. 294{309, Palo Alto, CA, 1996. Springer.

11. F.K. Hanna et al. Formal synthesis of digital systems. In Applied Formal Methods
For Correct VLSI Design, volume 2, pp. 532{548. Elsevier, 1989.

12. M. Larsson. An engineering approach to formal digital system design. The Com-
puter Journal, 38(2):101{110, 1995.

13. D. Gajski et al. High-Level Synthesis, Introduction to Chip and System Design.
Kluwer, 1992.

14. H.P . Barendregt. Handbook of Theoretical Computer Science, Volume B: Formal
Models and Semantics, chapter 7: Functional Programming and Lambda Calculus,
pp. 321{364. Elsevier, 1992.

15. A. Aho et al. Compilers: Principles, Techniques and Tools. Addison Wesley, 1986.
16. P.G. Paulin, J. P. Knight. Force-directed scheduling for the behavioral synthesis

of ASIC's. IEEE Transactions on CAD, 8(6):661{679, 1989.
17. C. Blumenr�ohr. A formal approach to specify and synthesize at the system level.

In GI Workshop Modellierung und Veri�kation von Systemen, pp. 11{20, Braun-
schweig, Germany, 1999. Shaker-Verlag.

18. D. Eisenbiegler, R. Kumar. An automata theory dedicated towards formal circuit
synthesis. In TPHOL'95, number 971 in LNCS, pp. 154{169, Aspen Grove, Utah,
1995. Springer.

19. D. Eisenbiegler et al. Implementation issues about the embedding of existing high
level synthesis algorithms in HOL. In TPHOLs'96, number 1125 in LNCS, pp.
157{172, Turku, Finland, 1996. Springer.

20. J. Gerlach, W. Rosenstiel. A Scalable Methodology for Cost Estimation in a
Transformational High-Level Design Space Exploration Environment. InDATE'98,
pp. 226{231, Paris, France, 1998. IEEE Computer Society.

21. http: //goethe. ira.uka.de/fsynth/Charme/<name>.c.
22. C. Blumenr�ohr et al. On the e�ciency of formal synthesis | experimental results.

IEEE Transactions on CAD, 18(1):25{32, 1999.

