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Therefore, the monotonicity of hypotheses can be stated as
a requirement because it follows from the specification of
the domain knowledge. If a requirement cannot be derived
from the domain knowledge it must be stated as an
assumption. In our example, the requirement 

 

∃

 

x 

 

(

 

x 

 

∈

 

 observables

 

)

cannot be derived from the domain knowledge because it is
concerned with the input. However, assuming an input for
deriving a diagnosis is not a critical assumption.

For example, a more serious assumption would be the

 

single-fault assumption

 

 (cf. [8]). Formulating it as a
requirement on domain knowledge enforces that each
possible fault combination is represented as a single fault
by the domain knowledge. Therefore, it is often used as an
assumption that limits the scope of the problems that can be
handled correctly by the system. Cases, where a single fault
is the actual cause can be solved correctly by the system.
Situation with more complex error situations must be
solved without support by the system. In general,
formulating a property as a requirement increases the
demand on domain knowledge and formulating a property
as an assumption decreases the application scope of the
system (cf. [4]).

 

7 Conclusions and Future Work

 

In the paper, we introduce a formal and conceptual
framework for specifying and verifying KBSs. One can
specify tasks, PSMs, domain models, and adapters and can
verify whether the assumed relationships between them are
guaranteed, i.e., which assumptions are necessary for
establishing these relationships. Such a conceptual model
improves the understandability of specification and
verification. The modularization reduces the effort in
specification and verification by defining smaller contexts
and enabling reuse of smaller parts in new contexts. The
idea of an adapter allows to combine and adapt reusable
elements without being forced to modify them. The
specification of the PSM is decomposed in external and
internal aspects. The specification of the competence of the
PSM provide all necessary aspects for relating it with the
task that must be solved. When specifying a reusable PSM
it must be proven one time whether the operational
specification specifies a terminating computational process
that has the specified competence. When reusing the
method, it is possible to abstract from all details of the
internal operationalization and refer only to the external
specification of the competence. This requires that the
competence specification is complete for the signature that
describes the input and the output of the method. In analogy
to [28] who discuss the reuse of software components, we
view the operational specification of a PSM as its
implementation and the competence theory as its external
black-box specification. The competence must therefore
describe all relevant properties of the PSM to enable reuse

without forcing to refer to internal details of the
implementation (i.e., operationalization). In the case of the
domain model, such an encapsulation is not possible
because task and PSM need access to meta-knowledge and
domain knowledge. In the case of the task, such an
encapsulation is not necessary because it does not own an
internal implementation. Its implementation is described by
the PSM.

In addition to modelling concepts, formal development of
KBSs requires tool support for modularisation of
specifications and programs and for constructing,
analysing, and reusing proofs. The KIV system (Karlsruhe
Interactive Verifier) (see [24]) is an advanced tool for the
construction of provably correct software. It supports the
design process starting from formal specifications
(algebraic full first-order logic with loose semantics). Our
aim is to adapt the KIV system, originally designed for
conventional software engineering, for development and
verification of KBSs. For this purpose the KIV system is
quite attractive. KIV supports dynamic logic like the
specification languages KARL [12], (ML)

 

2 

 

[33], and
MLPM [14]. KIV allows structuring of specifications and
modularisation of software systems. Finally, the KIV
system offers well-developed proof engineering facilities.
Especially, automatic reuse of proofs that allows an
incremental verification of corrected versions of programs
and lemmas (see [25]) is important given the fact that
system development is a process of steady modification and
revision. [16] and [15] report successful case studies in
applying KIV to the verification of KBSs. Currently we are
working on problems stemming from differences of the
formalization languages of KIV and MLPM, on integrating
our conceptual models directly into the generic module
concept of KIV, and on proof tactics that make use of this
conceptual model.
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6 An Adapter

 

An adapter has to link the different signatures of task, PSM,
and domain, and has to add further axioms to guaranty their
proper relationships. We use abstract data types for this
purpose. First we demonstrate how to link task and PSM by
the 

 

TP

 

Adapter

 

. Then we discuss their relation with the
domain model defined by the 

 

D

 

Adapter

 

.

 

6.1 Connecting Task and PSM

 

Combining task and PSM requires three activities:
establishing of syntactical links between different
terminologies by mappings (see [23] for more details),
establishing of semantic links between different predicates,
and the introduction of new assumptions and requirements
to establish that the goals of the task is implied by the
output of the method.

In our case study, we have to link the sorts 

 

object

 

 and

 

objects

 

 and the predicate symbol 

 

Correct

 

 of the PSM by
renaming (see Figure 9). The appropriate interpretation of
predicates have to be ensured by axioms if they cannot
linked directly. In our case, we have to ensure that each
possible hypothesis is regarded as input of the method. The
necessity that the output of the method implies the goal of
the task is stated as proof obligation (see Figure 9).

The 

 

TP

 

Adapter

 

 contains the collection of the requirements of
task and PSM. This includes (cf. Figure 9): any application
problem provides at least one observation; a possible
domain that it contains at least one hypothesis; and the
union of all hypotheses of the domain knowledge must be a
complete explanation of all observations of the input (see
Figure 9). These requirements must be fulfilled by the

 

3.  Notice that we do not assume complete knowledge of
symptoms. Knowing only that 

 

bulb

 

1

 

 is not lit does not imply that

 

bulb

 

2

 

 is lit.

adapter TPAdapter
include set-minimizer, complete and parsimonious

explanation
rename set-minimizer by abduction

object → hypothesis, objects →hypotheses, 
Correct → complete

variables h : hypothesis, x : datum, H,H ´: hypotheses
axioms

∀ h input(h)
proof obligation

∀ h (Output(h) → goal(h))
requirements

∃ x (x ∈  observables)
∃ h Input(h)
∀ Η (∀ h (h ∈ H )→ complete(H))

assumptions
∀ Η ,H´(H ⊆  H’ → expl(H) ⊆  expl(H’))

endadapter

Fig. 9.    The TPAdapter.

 

domain knowledge to ensure that the task is well-defined
and the inference steps of the PSM work proper.

Finally, we have to introduce new assumptions and
requirements to ensure that the competence of the PSM
implies the goal of the task (i.e., to fulfil the proof
obligation of the adapter). We already know that 

 

Output

 

contains a locally-minimal set. Each subset of it that
contains one less element is not a complete explanation.
Still this is not strong enough to guaranty parsimoniousness
of the explanation in the general case. There may exist
smaller subsets that are complete explanations. In [15], we
have proven that the global-minimality of the task
definition is implied by the local-minimality if we introduce
the monotonic-problem assumption (see [2]):

H ⊆  H’ → expl(H) ⊆  expl(H’)

For more details how to find such assumptions with
interactive theorem provers compare [15].4

Whether this property must be stated as asssumption or
whether it can be formulated as a requirement on domain
knowledge can be decided when specifying the second
aspect of the adapter, its connection with the domain
knowledge.

6.2 Connecting with the Domain Model

Finally, we have to link the domain model with the other
components using the DAdapter (see Figure 10). We have to
map the different terminologies, to define the logical
relationships between domain knowledge and the other
parts of the specification by axioms, and to prove the
requirements on domain knowledge by the other parts. For
our example, most of these requirements follow straight-
forward from the meta-knowledge of the domain model.

4.  Assumptions arise as open goals during proving that the
competence of the method implies the goal. The proof must fail
because it is not possible. Open goals, i.e. the places where the
proof fails, indicate the assumptions that are necessary to enable a
successful proof.

adapter DAdapter
include circuit, TPAdapter
rename circuit by TPAdapter

symptom → datum,
variables h : hypothesis, x : datum, H,H ´: hypotheses
axioms

∀ x ,H (x ∈  expl(H) ↔ ∃  h (h ∈  H ∧  cause(h,x)))
proof obligation

Input(battery-broken) → ∃ h Input(h)
∀ x ∃  h causes(h, x) → 

(∀Η (∀ h (h ∈ H ) → complete(H)))
(H ⊆ H ´ →{x | ∃ h (h ∈  H ∧  causes(h,x))} ⊆  
{x | ∃ h (h ∈  H ´ ∧  causes(h,x))})
→ ∀ Η ,H´(H ⊆  H’ → expl(H) ⊆  expl(H’))

assumption
∃ x (x ∈  observables)

endadapter

Fig. 10.    The DAdapter.



knowledge, its meta-level characterization, and its external
assumptions. In addition, a signature definition is provided
that defines the common vocabulary of the other three
elements.

We use a simple and familiar device of two bulbs and one
battery to illustrate the different elements. Two possible
symptoms can be observed (one of the bulbs is not lit) and
three different elementary hypotheses are provided (see Fig.
8). The domain knowledge defines their causal
relationships. The meta-knowledge ensues two properties

Fig. 5    The specification of knowledge roles and control.

dkr Input
sorts object
predicates Input : object
variables x : object
axioms 

∃ x input(x)
enddkr

dkr Output
sorts object
predicates Output : object

enddkr

dkr Node
sorts 

object, 
objects set of object

predicates Node : objects
enddkr

init;
repeat 

generate; 
select;
if ∃ x New-node(x) then Node(x) := New-node(x);

until ¬∃ x New-node(x)
Output(x) := Node(x);

dkr Nodes
sorts 

object, 
objects set of object

predicates Nodes : objects
enddkr

dkr New-node
sorts 

object, 
objects set of object

predicates 
New-node : objects

enddkr

skr Correct
sorts 

object, 
objects set of object

predicates 
Correct : objects

endskr

competence set-minimizer
sorts object, objects set of object
static predicates 

Input : object
Correct : objects

dynamic predicates 
Output : objects

variables x : object, y ,z : objects
axioms

(1) Each output was an element of input
[set-minimizer] ∀ x ,y (x ∈ Output(y)  → Input(x))

(2)There is an output
[set-minimizer] ∃ y Output(y)

(3) The output is correct
[set-minimizer] ∀ y(Output(y) → Correct(y))

(4) The output is (locally) minimal
[set-minimizer] 

¬ ∃ x,y,z ( x ∈ Output(y) ∧ z = y \ {x} ∧  Correct(z))
endcompetence

Fig. 6    The competence of the PSM.

of the domain knowledge: there is a cause for each
symptom and hypotheses do not conflict. That is, different
hypotheses do not lead to an inconsistent set of symptoms.
In our domain this is guaranteed by the fact, that the
hypotheses only assume components as broken and no
knowledge is provided that constrains the fault behaviour of
components. Assuming more broken components only
leads to a larger set of symptoms that can be explained. The
complete-fault-knowledge assumptions guarantees that
there are no other unknown faults like broken wires. Only
under this assumption we can deductively infer causes from
observed symptoms. However, it is a critical assumption
when relating the output of our system with the actual

requirements set-minimizer
sorts object, objects set of object
static predicates 

input : object
correct : objects

variables x : object, y : objects
axioms

requirement
(1) non-emptyness of input: 

∃ x input(x)
(2) the set of all input elements is a correct set

∀ x,y((input(x) → x ∈ y) → correct(y))
endrequirements

Fig. 7    The requirements of the PSM.

domain model circuit
signature

sorts hypothesis, hypotheses set of hypothesis, symptom
 functions

bulb1-broken : hypothesis
bulb2-broken : hypothesis
battery-broken : hypothesis
no-lit1 : symptom
no-lit2 : symptom

 predicates 
causes: hypothesis x symptom

 variables 
h : hypothesis
s : symptom
H,H ´: hypotheses

meta-knowledge
there is a cause for each symptom

∀ s ∃  h causes(h, s)
the fault knowledge is monotonic

H ⊆ H ´ → {s | h ∈  H ∧  causes(h,s)} 
⊆  {s | h ∈  H ´ ∧  causes(h,s)}

domain knowledge
causes(battery-broken, no-lit1)
causes(battery-broken, no-lit2)
causes(bulb1-broken, no-lit1)
causes(bulb2-broken, no-lit2)

assumption
complete fault knowledge

∀ h ( h ≠ battery-broken ∨  h ≠ bulb1-broken 
→ ¬causes(h, no-lit1)) 

∀ h ( h ≠ battery-broken ∨  h ≠ bulb2-broken 
→ ¬causes(h, no-lit2)) 

enddm

Fig. 8    The domain knowledge.



changing the truth values of a predicate according to the
truth values of a formula that is used to define the transition.
Two different types of such elementary state transitions
exist:

p :↔ εx.ϕ and p :↔ λx.ϕ 

The ε-operator expresses non-deterministic selection of one
ground literal. A formula ϕ can be used to restrict the set of
possible ground literals from which one is chosen. All other
ground literals of the predicate p are set to false. The λ-
operator allows updates of all ground literals of a predicate
p according to the truth values of a formula ϕ. All ground
literals are set to true for which the according variable
assignments evaluate the formula to true. All other ground
literals of the predicate p are set to false.

MLPM provides the usual procedural constructs such as
sequence, if-then-else, choice, and while-loop to define
complex transition. We will make use of these constructs
when we define the control flow of the entire method. As
inference actions are regarded to be primitive they are

inf init
sorts object,1 objects set of object
static predicates Input : object
dynamic predicates Node : objects
variables x : object, y ,z : objects
axioms 

[init] ∃ y ∀ x ,z(x ∈  Node(y) 
↔ Input(x)) ∧  (z = y ∨  ¬Node(z)))

implementation 
init =def Node :↔ εy. ∀ x (Input(x) → x ∈ y)

endinf

inf generate
sorts object, objects set of object
static predicates Node : objects
dynamic predicates Nodes : objects
variables x : object, y,z : objects
axioms 

[generate]∀ y(Nodes(y) ↔ ∃ x ∃ z(x ∉  y ∧ Node(z) 
∧ y = z \ {x}))

implementation 
generate =def Nodes :↔ 

λy.(∃ x ∃ z(x ∉  y ∧ Node(z) ∧ y = z \ {x}))
endinf

inf select
sorts object, objects set of object
static predicates Nodes : objects, Correct : objects
dynamic predicates New-node : nodes
variables x,y, z : objects
axioms 

[select] ∃ y (New-node(y) ↔ 
(Nodes(y) ∧ Correct(y) ∧
∀ z(z = y ∨  ¬New-node(z)))) ∨  ¬∀ x New-node(x)

implementation 
select =def New-node :↔ εx.(Nodes(x) ∧ Correct(x))

endinf

1.  object must be an enumarable sort.

Fig. 4    The specification of the inference actions.

defined by only one elementary transition.

4.1.2 Dynamic Knowledge Roles

Dynamic knowledge roles (dkr) are means to represent the
state of the reasoning process and are modelled by algebraic
specifications (see Figure 5). Axioms can be used to
represent state invariants. We define the requirement that
the input provided to the method has to be non-empty.

4.1.3 Static Knowledge Roles

Static knowledge roles (skr) are means to include domain
knowledge into the reasoning process of a PSM. Again,
they are modelled by algebraic specifications. Axioms are
used to define requirements on the domain knowledge. Our
method set-minimizer requires knowledge about correct
sets. This is modelled by the static knowledge roles as given
in Figure 5.

4.1.4 Control Flow

The operational description of a PSM is completed by
defining the control flow (see Figure 5) that defines the
execution order of the inference actions. Again, we use
Modal Logic for Predicate Modification (MLPM) (see
section 4.1.1). An elementary state transition is achieved by
changing the truth values of a predicate according to the
truth values of a formula that is used to define the transition.
Complex transitions are built up by defining procedural
control (i.e., sequence, branch, and loop) on top of these
elementary transitions. The inference action init selects the
set of all hypotheses as current node. The inference action
generate generates all successor sets that contain one
element less. The inference action select tries to select a
correct set under this successors. The search process stops if
it fails. Otherwise the loop of generate and select is applied
to such a complete successor.

4.2 Competence Theory

The competence theory describes the functionality of the
PSM. Again algebraic specifications enriched by the
modality operators of dynamic logic can be used for this
purpose (see Figure 6). As in the description of inference
actions we distinguish static and dynamic predicates. The
competence theory in Figure 6 defines that the set-
minimizer is able to find an output set that is a correct and
locally minimal subset of the input. Local minimality
means, that there is no correct subset of the output that has
only one element less.

4.3 Requirements

The method has two requirements: there must be an input
and the set of all input objects is a correct set. Then one can
guaranty that the method finds a local-minimal and correct
set (cf. Figure 7). 

5 The Domain Model

A domain model consists of three main parts: the domain



reusable. As PSMs can be reused, the proofs of PO-ii does
not have to be repeated for every application. These proofs
have to be done only when a new PSM is introduced into
the library. Similar proof economy can be achieved for PO-
i and PO-iii by reusable task definitions and domain
models. Application specific proof obligation is PO-iv.

Assumptions concerning the input cannot be verified during
the development process of a KBS. However, their
derivation is very important because they define pre-
conditions for valid inputs that must be checked for actual
inputs to guaranty the correctness of the system.

3 Formalizing Tasks

We use a simple task to illustrate the formalization of our
approach. The task abductive diagnosis receives a set of
observations as input and delivers a complete and
parsimonious explanation (see e.g. [2]). An explanation is a
set of hypotheses. A complete explanation must explain all
input data (i.e., observations) and a parsimonious
explanation must be minimal (that is, no subset of
hypotheses explains all observations). Figure 2 provides the
task definition for our example. Any explanation that fulfils
the goal must be complete and parsimonious. The input
requirement ensures that there are observations.

The task does not introduce any requirements on domain
knowledge by axioms but the domain model must provide
sets to interpret the sorts datum and hypothesis and an
explanation function expl. We will see how the signature
mapping is achieved by the adapter.

4 The Problem-Solving Method

Finding a complete and parsimonious explanation is NP-
hard in the number of hypotheses [2]. Therefore, we have to

task complete and parsimonious explanation
sorts 

datum, data : set of datum, 
hypothesis, hypotheses : set of hypothesis

functions
expl: hypotheses → data
observables: data

predicates 
goal : hypotheses
complete: hypotheses
parsimonious: hypotheses

variables 
x : datum
H,H’ : hypotheses

axioms
goal

∀ H (goal(H) → complete(H) ∧ parsimonious(H))
∀ H (complete(H) ↔ expl(H) = observables)
∀ H (parsimonious(H) ↔ 

¬∃ H’ (H’ ⊂ H ∧  expl(H) ⊆  expl(H’ )))
input requirement

∃ x (x ∈  observables)
endtask

Fig. 2.    The task definition for abduction.

apply heuristic search strategies. In the following, we
characterize such a method which we call set-minimizer.
The discussion whether other methods would be better
suited or how we have selected this method is beyond the
scope of this paper. In the following, we provide the
operational specification, the competence, and the
requirements of the method.

4.1 The Operational Specification

Our method set-minimizer uses depth-first search through a
search tree that is derived from set inclusion. The entire
method is decomposed into the following three steps. The
inference action init construct the set of all input elements
as initial set. The inference action generate generates all
successor sets that contain one element less. The inference
action select tries to find a valid set under this successors.
Figure 3 gives the knowledge flow diagram of the method.

4.1.1 Inference Actions.

We use algebraic specifications enriched by the modality
operators of dynamic logic to specify the functionality of
inference actions. We distinguish between predicates that
have the same truth values in the initial state and in the state
after the execution of an inference action (called static
predicates) from the predicates that change as a result of
executing the inference action (called dynamic predicates).2

Figure 4 provides the definition of the three inference
actions of the PSM. The functional specification is
extended by an operational specification (called
implementation) that express the inference in a procedural
way. We use a variant of dynamic logic for this purpose.
The Modal Logic for Predicate Modification (MLPM) (see
[14]) was developed as a generalization of the modelling
primitives of the specification languages KARL (see [12])
and (ML)2 (see [33]). In addition to these languages, it
provides an axiomatization that enables automated proofs.
MLPM represents a state by the truth values of the
predicates. An elementary state transition is achieved by

2.  Dynamic knowledge roles and static knowledge roles should
not get mixed with dynamic and static predicates. The former are
determined in the context of the entire PSM and the latter are
determined in the context of an individual inference action.

generate

Fig. 3    Knowledge flow diagram of set-minimizer.
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domain knowledge distinguish a PSM from usual software
products. Pre-conditions on valid inputs are extended to
complex requirements on available domain knowledge.

2.1.3 The Domain Model

The description of the domain model introduces the domain
knowledge as it is required by the PSM and the task
definition. Ontologies are proposed in knowledge
engineering as a means to represent domain knowledge in a
reusable manner (cf. [18], [30], [34]). Our framework
provides three elements for defining a domain model: a
meta-level characterization of properties, the domain
knowledge, and assumptions of the domain model.

The meta knowledge characterizes properties of the domain
knowledge. It is the counter part of the requirements on
domain knowledge of the other parts of a specification. The
domain knowledge is necessary to define the task in the
given application domain and necessary to proceed the
inference steps of the chosen PSM. External assumptions
relate the domain knowledge with the actual domain. They
can be viewed as the missing pieces in the proof that the
domain knowledge fulfil its meta-level characterizations.
Some of these properties may be directly inferred from the
domain knowledge whereas others can only be derived by
introducing assumptions on the environment of the system
and the actual provided input. For example, typical external
assumption in model-based diagnosis are: the fault model is
complete (no fault appears that are not captured by the
model), the behavioural description of faults is complete
(all fault behaviours of the components are modelled), the
behavioural discrepancy that is provided as input is the
result of a measurement fault, etc. (cf. [10]).

2.1.4 The Adapter

The description of an adapter maps the different
terminologies of task definition, PSM, and domain model
and introduces further requirements and assumptions that
have to be made to relate the competence of a PSM with the
functionality as it is introduced by the task definition (cf.
[11], [4]). Because it relates the three other parts of a
specification together and establishes their relationship in a
way that meets the specific application problem they can be
described independently and selected from libraries. Their
consistent combination and their adaptation to the specific
aspects of the given application (because they should be
reusable they need to abstract from specific aspects of
application problems) must be provided by the adapter. 

Usually an adapter introduces new requirements or
assumptions because in general, most problems tackled

1.  In terms of [35], a task definition is an extensional specification
and a PSM combines extensional with intensional specification
elements. The entire competence of the PSM and their elementary
reasoning steps are specified extensionally. The interaction of the
elementary reasoning steps in order to achieve the competence is
specified intensionally.

with KBSs are inherently complex and intractable (cf. [2],
[20]). A PSM can only solve such tasks with reasonable
computational effort by introducing assumptions that
restrict the complexity of the problem or by strengthening
the requirements on domain knowledge.

2.2  The Main Proof Obligations

Following the conceptual model of the specification of a
KBS, the overall verification of a KBS is broken down into
four kinds of proof obligations (see Figure 1).

(PO-i)The consistence of the task definition ensures that a
model exist. Otherwise, we would define an unsolvable
problem. The requirements on domain knowledge are
necessary to prove that the goal of the task can be
achieved. Such a proof is usually done by constructing a
model via an (inefficient) generate & test like
implementation.

(PO-ii)We have to show that the operational specification of
the PSM describes a PSM for that termination can be
guaranteed and that the PSM has the competence as
specified. This proof obligation recursively returns for
each non-elementary inference action of a PSM. In
addition to termination, one may also want to include
some thresholds for the efficiency of the method by
including it as part of the competence description (cf.
[26]).

(PO-iii)We have ensure internal consistency of the domain
knowledge and domain model. The domain knowledge
needs not to be overall consist but it must be possible to
divide it into consistent parts. In addition, we have to
prove that given its assumptions the domain knowledge
actually implies its meta-level characterization.

(PO-iv)We have to establish the relationships between the
different elements of the specification: 

• (a) We have to prove that the requirements of the
adapter imply the knowledge requirements of the
PSM and the task. 

• (b) In addition to the already existing requirements,
an adapter may need to introduce new requirements
on domain knowledge and assumptions (properties
that do not follow from the domain model) to
guaranty, that the competence of the PSM is strong
enough to proceed the task.

• (c) We have to prove that the requirements of the
adapter are implied by the meta knowledge of the
domain model.

Notice that PO-i deals with the task definition internally,
PO-ii deals with the PSM internally, and PO-iii deals with
the domain model internally, whereas PO-iv deals with the
external relationships between task, PSM, domain
knowledge, and adapter. Thus a separation of concerns is
achieved that contributes to the feasibility of the
verification (cf. [32]). The conceptual model applied to
describe KBSs is used to brake the general proof
obligations into smaller pieces and makes parts of them



that should be solved by the KBS; a problem-solving
method (PSM) that defines the reasoning process of a
KBS; and a domain model that describes the domain
knowledge of the KBS. Each of these three elements are
described independently to enable the reuse of task
descriptions in different domains (see [6]), the reuse of
PSMs for different tasks and domains ([22], [6], [3]), and
the reuse of domain knowledge for different tasks and
PSMs (cf. [18], [30], [34]). Therefore, a fourth element of
a specification of a KBS is an adapter that is necessary to
adjust the three other (reusable) parts to each other and to
the specific application problem. It is used to introduce
assumptions and to map the different terminologies.

2.1.1 The Task

The description of a task specifies goals that should be
achieved in order to solve a given problem. A second part
of a task specification is the definition of requirements on
domain knowledge. For example, a task that defines the
selection of the maximal element of a given set of
elements requires a preference relation as domain
knowledge. Axioms are used to define the requirements on
such a relation (e.g. transitivity, connexitivity, etc.). A
natural candidate for the formal task definition are
algebraic specifications. They have been developed in
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Fig. 1    The four elements of a specification of a KBS.
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software engineering to define the functionality of a
software artefact (cf. [5], [36]) and have already been
applied by [29] and [21] for KBS. In a nutshell, algebraic
specifications provide a signature (consisting of types,
constants, functions and predicates) and a set of axioms
that define properties of these syntactical elements.

2.1.2 The Problem-Solving Method

The concept PSM is present in a large part of current
knowledge-engineering frameworks (e.g. Generic Tasks
[7], CommonKADS [6], [27], Method-to-task approach
[9], Configurable Role-Limiting Methods [22]). In
general, PSMs are used to describe the reasoning process
of a KBS. Besides some differences between the
approaches, there is strong consensus that a PSM:

• decompose the entire reasoning task into more
elementary inferences;

• defines the types of knowledge that are needed by the
inference steps to be done; and

• defines control and knowledge flow between the
inferences.

In addition, [31] and [1] define the competence of a PSM
independent from the specification of its operational
reasoning behaviour. Proving that a PSM has some
competence has the clear advantage that the selection of a
method for a given problem and the verification whether a
PSM fulfils its task can be done independently from
details of the internal reasoning behaviour of the method. 

The description of the reasoning process of a KBS by a
PSM consists of three elements in our framework: a
competence description, an operational specification, and
requirements on domain knowledge. 

The definition of the functionality of the PSM introduces
the competence of a PSM independent from its dynamic
realization. As for task definitions, algebraic
specifications can be used for this purpose. 

An operational description defines the dynamic reasoning
of a PSM. Such an operational description explains how
the desired competence can be achieved. It defines the
main reasoning steps (called inference actions) and their
dynamic interaction (i.e., the knowledge and control flow)
in order to achieve the functionality of the PSM. We use a
variant of dynamic logic (cf. [19]) to express procedural
control over the execution of inferences. The definition of
an inference step could recursively introduce a new (sub-
)task definition. This process of stepwise refinement stops
when the realization of such an inference is regarded as an
implementation issue that is neglected during the
specification process of the KBS.1 

The third element of a PSM are requirements on domain
knowledge. Each inference step and therefore the
competence description of a PSM require specific types of
domain knowledge. These complex requirements on
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Abstract. The paper introduces an approach for the
specification and verification of knowledge-based systems
combining conceptual and formal techniques. We identify
four elements of the specification of a knowledge-based
system: a task definition, a problem-solving method, a
domain model, and an adapter that relates the other
elements. We present abstract data types and a variant of
dynamic logic as formal means to specify and verify these
different elements. As a consequence of our conceptual
model we can decompose the overall verification task of
the knowledge-based systems into different proof
obligations. Each proof obligation deals with a different
aspect of the entire system. The use of the conceptual
model in specification and verification improves
understandability and reduces the effort for both activities.
The modularization enables reuse of specifications and
proofs. A knowledge-based system can be build by
combing and adapting different components.

1 INTRODUCTION

During the last years, several conceptual and formal
specification techniques for knowledge-based systems
(KBSs) have been developed (see [17], [13] for surveys).
The main advantage of these modelling or specification
techniques is that they enable the description of a KBS
independent of its implementation. This has two main
implications. First, such a specification can be used as
golden standard for the validation and verification of the
implementation of the KBS. It defines the requirements
the implementation must fulfil. Second, validation and
verification of the functionality, the reasoning behavior,
and the domain knowledge of a KBS is already possible
during the early phases of the development process of the
KBS. A model of the KBS can be investigated
independently of aspects that are only related to its
implementation. Especially if a KBS is built up from
reusable components it becomes an essential task to verify
whether the assumptions of such a reusable building block
fit to each other and the specific circumstances of the
actual problem and knowledge. 

In the paper, we discuss a conceptual and formal
framework for the specification of KBSs. The conceptual
framework is developed in accordance to the
CommonKADS model of expertise (see [27]) because this
model has become widely used by the knowledge
engineering community. The formal means applied are
based on combining variants of algebraic specification
techniques (see [5]) and dynamic logic (see [19]).

As a consequence of our modularized specification, we
identify several proof obligations that arise in order to
guarantee a consistent specification. The overall
verification of a KBS is broken down into different types
of proof obligations that ensure that the different elements
of a specification together define a consistent system with
appropriate functionality.

The paper is organised as follows. In section 2, we discuss
the different conceptual elements of a specification of a
KBS and which kinds of proof obligation arise in their
context. During section 3 until section 6, we introduce our
formal means to specify the different elements. In each
section, we use an example for illustrating these
formalizations. In section 3 we introduce an example of a
task definition. We discuss a simple abductive problem. In
section 4, we provide the definition of a PSM. In section 5,
we sketch the definitions of a domain model. Section 6
discuss the role of the adapter and discuss assumptions
that are necessary to relate the task description with the
competence of the PSM. Section 7 summarizes the paper
and defines objectives for future research.

2 A Formal Framework for the Specification
of Knowledge-Based Systems

During the following, we first introduce the different
elements of a specification. Then we discuss how they are
related and which proof obligations arise from these
relationships.

2.1 The Main Elements of a Specification

Our framework for describing a KBS consists of four
elements (see Figure 1): a task that defines the problem
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