
A Test Case Generator
for the Validation of High-Level Petri Nets

Jörg Desel
Institut AIFB

Universität Karlsruhe
D 76128 Karlsruhe

Germany
E-mail: desel@aifb.uni-karlsruhe.de

Andreas Oberweis, Torsten Zimmer,
Gabriele Zimmermann

Lehrstuhl für Wirtschaftsinformatik II
J.W. Goethe-Universität Frankfurt/Main

D 60054 Frankfurt am Main
Germany

E-mail: {oberweis|zimmer|zimmermann@
wiwi.uni-frankfurt.de}

Abstract – Test concepts mostly refer to program code and not
to models used in earlier stages of the software development
process. High-level Petri nets are a widely accepted graphical
language for the representation and simulation of requirements,
analysis and design models. In this paper, a technique is pro-
posed which generates test cases for the validation of high-level
Petri nets in a systematic way. Our approach is derived from
cause-effect graphing, a concept that was originally developed for
testing of program code. However, in our approach the relation-
ship between pre-specified causes and effects is not represented
by a Boolean graph, but instead by a Petri net. The test cases are
created in a quite efficient way by generating so-called process
nets.

I. INTRODUCTION

The usual definition of software testing typically refers to
the testing of program code and not to the testing of models
used in earlier development stages of the software develop-
ment process such as requirements engineering, analysis or
design. Model testing could identify many faults earlier and
hence decrease maintenance costs [4].

High-level Petri nets are a widely used modeling and speci-
fication language for information system behavior. In this
paper, a technique for testing high-level Petri net models,
called cause-effect-net-concept, is proposed. We use the con-
cept for testing Predicate/Transition nets (Pr/T-nets) [3], but it
may be applied to other kinds of high-level Petri nets as well.
It was derived from a program testing concept, called cause-
effect graphing [5], [6]. Cause-effect graphing is a Black-
Box-Test, where a program is tested against its external speci-
fication (function test). First, a natural-language software
specification is transformed into a formal-language specifica-
tion. A logical relationship between inputs (causes) and out-
puts (effects) is represented by a Boolean graph. By tracing
back from each effect, all combinations of causes are found.
The graph is then converted into a test case table. Each
column in this table corresponds to a test case.

In our concept, the relationship between causes and effects
is not represented by a Boolean graph, but by a Condi-
tion/Event net (C/E-net), which is a low-level Petri net. In this

C/E-net, which we call cause-effect-net, causes are repre-
sented by places without predecessors and effects by places
without successors.

A test case table is automatically created by first converting
the direction of all arcs and then simulating the resulting C/E-
net. The used simulation concept generates so-called process
nets [1], [7]. Each process net describes a relationship
between an effect and its causes. All relationships are repre-
sented by columns of the test case table which can be inter-
preted as test cases.

The cause-effect-net-concept is also a Black-Box-Test. The
generated test cases check whether all functions described in
the natural-language specification are completely and cor-
rectly modeled in the Pr/T-net.

Two questions are to be answered during simulation:
1. Is a specified function missing in the Pr/T-net?
2. Is a function modeled incorrectly?

Failure of a test case indicates modeling errors. In this case
the internal structure of the Pr/T-net has to be investigated.
Possible errors are:

• missing predicates or transitions,
• incorrect arc inscriptions (incorrect arity of the vari-

able tuples or incorrect variable names),
• incorrect transition inscriptions or
• incorrect arity of the predicates.

Additionally, cause-effect graphing and the cause-effect-
net-concept have a beneficial side effect. Incompleteness and
ambiguities in the natural-language specification can be iden-
tified during the investigation of the relationship between
causes and effects.

As pointed out in [6], the most difficult aspect of cause-
effect graphing is the conversion of the graph into the test
case table. We will present an efficient way to compute the
relationship between causes and effects by generating process
nets [2]. Deriving the test case table from the process nets is
simple: each process net is represented by a column of the test
case table.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197598325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. BASIC TERMINOLOGY

A. Test cases

Usually, a program cannot be completely tested due to the
large number of possible input values. To find errors under
time and cost restrictions, a subset of all possible test cases
has to be generated which has the highest probability of
detecting errors [6]. According to [4] test cases are created as
part of the testing process to direct the search [for errors]. A
test case presents a context in which the software is to oper-
ate and a description of the behavior expected from the soft-
ware within that context. ... If the product under test is a
model rather than actual code, the test case may contain a
textual description of the context as well as some specific
input values.

A simple way to generate test cases is random-input testing,
i.e. an arbitrary subset of test cases is selected, but the prob-
ability to get an effective set of test cases is rather low. There-
fore, random-input testing leads to an inefficient test. Instead,
structured methods should be used. There exist many methods
for the generation of test cases, an overview is given in [6].
An example of a method for test case design in a systematic
way is cause-effect graphing.

B. Process nets

A process net is a net with a special restricted structure, [1],
[7]. It describes one single behavior of a system or of a Petri
net. A process net is itself a special kind of Petri net, a so-
called occurrence net, inscribed with labels for the places and
the transitions. The labels describe the relationship between
the tokens and transition occurrences in the system run and
the places and transitions of the occurrence net. In this paper,
we use process nets for the derivation of test cases and for the
test object inspection.

C. Cause-effect graphing

In [5], [6] a software testing technique called cause-effect
graphing is proposed which is performed in a systematic way
and selects a high-yield set of test cases. A cause-effect graph
is a formal description which is derived from a natural-lan-
guage specification. First the causes and effects in the specifi-
cation are identified. Causes are distinct input conditions or
equivalence classes of input conditions. Effects are output
conditions or system transformations. Then, causes and effects
are joined in a structure of logical relationships which is rep-
resented by a Boolean graph, the so-called cause-effect graph.
By tracing back from each effect in the graph, all combina-
tions of causes which lead to this effect are identified. All
causes-effect relationships are represented in a test case table.
Every column in this table corresponds to a test case.

D. Cause-effect-net

In this paper, the concept of cause-effect graphing is modi-
fied to generate test cases for the validation of a Petri net. The
representation of the relationship between causes and effects
is not performed using a Boolean graph, but using a Condi-
tion/Event net (C/E-net). In the C/E-net, the causes are repre-
sented by conditions without predecessors and the effects are
represented by conditions without successors. The Petri net,
which has to be validated, is called test object in the follow-
ing. The Petri net, which represents the causes-effect relation-
ships is called cause-effect-net.

From the cause-effect-net, test cases are derived, which
describe the relationship between causes and effects. Each
relationship represents one possible system behavior that can
be executed by the test object. The idea is to convert the
direction of all arcs in the cause-effect-net and to simulate the
modified net by generating process nets. Every marked effect
is simulated separately. Every process net corresponds to
exactly one relationship. To ensure objective testing, model-
ing the test object and generating the cause-effect-net have to
be done by different persons.

E. OR-, AND- and SINGLE-relationship

Alternative causes which can belong to the same effect, are
represented by an (exclusive) OR-relationship. Common
causes which belong to one effect are represented by an AND-
relationship. Negated causes are represented by complement
conditions. A cause which leads directly to one effect is repre-
sented by a SINGLE-relationship. To express more compli-
cated relationships intermediate nodes are introduced (e.g.
effect M is present under the condition: cause A AND (cause
B OR cause C) occur). Fig. 1 - 3 show the graphical repre-
sentation of the OR-, AND- and SINGLE-relationship.

s2 t2

s3

t1s1

Fig. 1 OR-relationship

s1

s2

s3t1

Fig. 2 AND-relationship

s2t1s1

Fig. 3 SINGLE-relationship

F. Non-determinism

A single cause or a combination of causes may lead to dif-
ferent effects (alternative effects). This situation is represented
by an ALTERNATE-relationship which is modeled by a for-
ward branched place. This means, that the place has more than
one successor transition. Fig. 4 shows the ALTERNATE-
relationship.

Cause or combina-
tion of causes

effect 1

effect 2

Fig. 4 ALTERNATE-relationship

III. TEST CASE GENERATION AND INSPECTION

A. The generation of the cause-effect-net

The prerequisite for a successful function test is a precise
and accurate external specification [5]. The generation of the
cause-effect-net is similar to the generation of the Boolean
graph.

Step 1: Identification of the causes and effects:
First, the causes and effects are identified by reading the natu-
ral-language specification word by word and underlining
words or phrases that describe causes and effects [6]. They
are modeled as conditions of a C/E-net.

Step 2: Linking the causes and effects:
The semantic content of the specification is analyzed and
transformed into the cause-effect-net by linking the causes and
effects using the OR-, AND-, SINGLE- and ALTERNATE-
relationship.

B. Identification of the causes-effect relationships

From the cause-effect-net, all relationships between causes
and effects are derived by the algorithm represented in Fig. 5.
The algorithm is based on the generation of process nets and
may be executed automatically (see [2] for the description of a
process generating tool).

C. Generation of the test case table

For every relationship between causes and an effect a col-
umn is inserted into a so-called test case table. Every column
in the test case table corresponds to a test case.

Using an ALTERNATE-relationship means, that at least
two causes-effect relationships have the same cause or the
same combination of causes. Then the causes-effect relation-
ships are combined in one test case.

Step 2:
If all effects have been investigated
END, else mark one effect which
has not been investigated before,
with a token.

Step 1:
Convert the direction
of all arcs in the
cause-effect-net.

Step 3:
Generate all process
nets to the marked
cause-effect-net.

Step 4:
For every process net iden-
tify the relationship between
an effect and its causes.

Fig. 5 Algorithm for derivation of the causes-effect relationship

ad Step 2: In every simulation run, only one effect is marked.

ad Step 4: Effects correspond to the sources in the process net (places with-
out any predecessors) and causes correspond to the sinks in the process net
(places without any successors).

D. Test object inspection

The test object inspection is executed by checking all test
cases. The causes of a column in the test case table corre-
spond to the initial marking of the test object. In a first step,
test data is manually generated by transforming the causes of a
test case to an initial marking of the Pr/T-net. In a second
step, the initialized test object is simulated by generating
process nets. In a third step, the test case is analyzed manu-
ally: The test case finds no error, if the final marking of the
generated process net corresponds to the effect. Using an
ALTERNATE-relationship, the simulation of the test object
generates several process nets. If the final markings of all
created process nets correspond to the different effects of the
test case then no error is found.

IV. EXAMPLE

A. External specification and test object

To demonstrate the principle of the concept we use the
following specification of a simplified workflow traveling
expenses accounting: Applicants for a traveling expenses
accounting fill in a document. In the document they select the
method of payment (cash or transfer payment) and the method
of notification (internal or external mail). First, the submitted
document is checked for correctness. If the submitted docu-
ment is correct, a payment is ordered by sending a copy of the
document to the payment office. The amount of the traveling
expenses is refunded by cash or transfer payment. A notifica-
tion (copy of the document) is sent to the applicant according
to the chosen notification mode. The original document is
stored in an archive. Incorrect documents are returned to the
applicant by internal or external mail and the payment is
rejected.

This specification is modeled by the Pr/T-net represented in
Fig. 6.

p(C)=in-
correct<C, D, N, P>

<C, D, N, P>

Document
controlling
[C,D,N,P]

<D, N> <D, N>

incorrect documents
(Document,
Notification)

submitted documents
(Contents, Document,
Notification, Payment)

Document
return [D, N]

notifications
(Document,
Notification)

N =
external

Notification
internal mail

[D, N]

Notification
external mail

[D, N]

Copy =
copy.D

N =
internal

internal mailbox
(Document)

external mailbox
(Document)

<D>

<D>

p(C) =
correct

Document
controlling
[C,D,N,P]

<D, N, P><D, N, P>

Document
processing

[D,N,P,Copy]

<D> archive
(Document)

P =
cash

Cash
payment
[D, P]

payment order
(Document,
Payment)

travelling expenses
refunded

(Document)

<D>

P =
transfer

Transfer
payment
[D, P]

<Copy, P>

<D, P>

<D>

<D, P>

<D, N>

<Copy, N>

<D, N>

<D, N>

correct documents
(Document,

Notification, Payment)

Fig. 6 Traveling expenses accounting modeled as a Predicate/Transition net

The validation of the model is performed by testing. Test
cases are created in a systematic way by using the cause-
effect-net-concept.

B. The generation of the cause-effect-net

In the first step, the following causes and effects are identi-
fied:

Causes: document is submitted, cash payment selected,
transfer payment selected, notification by internal mail, notifi-
cation by external mail, document filled in correctly, docu-
ment not filled in correctly.

Effects: traveling expenses refunded and document stored,
traveling expenses refund rejected and document sent back.

In the second step, the causes and effects are linked by OR-
and AND-relationships. The resulting cause-effect-net is
represented in Fig. 7.

t2

notification by
external mail

document not
filled in correctly

document
filled

in correctly

notification by
internal mail

cash payment
selected

refund and
document stored

transfer payment
selected

rejected refund
and document

sent back

s3

s4

s2

s1
t1

document is
submitted

t4

t3

t5

t6

t7

t8

Fig. 7 Cause-effect-net to the Pr/T-net of Fig. 6

C. Identification of all causes-effect relationships

The relationships between causes and effects are derived
from the cause-effect-net by generating process nets. Before
simulation, the direction of all arcs is converted. The simula-
tion where the effect refund and document stored is marked
generates four process nets. The simulation where the effect
rejected refund and document sent back is marked also
creates four process nets. Fig. 8 and Fig. 9 show one process
net to each effect.

document filled
in correctly

refund and
document filed

document is
submitted

t5

t7

notification by
internal mail

cash payment
selected

t1

t3

s3

s2

s1

Fig. 8 A process net to the effect refund and document stored

document not
filled in correctly

rejected refund
and document
sent back

document is
submitted

t6

t8
notification by
external mail

t4

s4

s2

cash payment
selected

t1s1

Fig. 9 A process net to the effect rejected refund and document sent back

D. Generation of the test case table

The relationships between the causes and the effects are
represented in the columns of a test case table. The process
net of Fig. 8 is represented in column 1, the process net of
Fig. 9 in column 6 of the test case table (see Tab. 1).

Test Cases 1 2 3 4 5 6 7 8
Causes:
cash payment selected 1 1 0 0 1 1 0 0
transfer payment selected 0 0 1 1 0 0 1 1
notification by internal mail 1 0 1 0 1 0 1 0
notification by external mail 0 1 0 1 0 1 0 1
document is submitted 1 1 1 1 1 1 1 1
document filled in correctly 1 1 1 1 0 0 0 0
document not filled in correctly 0 0 0 0 1 1 1 1

Effects:
refund and document stored 1 1 1 1 0 0 0 0
rejected refund and
document sent back

0 0 0 0 1 1 1 1

Tab. 1 Test case table derived from the process nets

E. Test object inspection

The test object is checked with respect to the generated test
cases. The causes of a test case are converted to test data
which is a set of tuples. The test data represents the initial
marking of the Pr/T-net. The Pr/T-net is also simulated with a
process net generator and the test case succeeds, if the final
marking of the process net corresponds to the effect of the
investigated test case.

Example: For the test case 1 the predicate submitted docu-
ments in the Pr/T-net of Fig. 6 is marked with the tuple
<correct,trav.exp.acc.1,internal,cash>. The simulator gener-
ates a process net with the final marking traveling expenses
refunded (copy.trav.exp.acc.1), archive (trav.exp.acc.1), in-
ternal mailbox (copy.trav.exp.acc.1) which corresponds to the
effect of test case 1 refund and document stored.

V. SUMMARY AND OUTLOOK

In this paper, an approach for generating test cases for the
validation of high-level Petri nets is proposed. The concept of
cause-effect graphing is transformed into the cause-effect-net-
concept. The relationships between causes and effects are not
represented by a Boolean graph, but instead by a C/E-net. The
computation of the relationship between an effect and its
causes can be done in an efficient way. Only the investigated
effect is marked in the C/E-net to which a simulator generates
all process nets. From the sources and the sinks of the process
nets test cases are derived.

The concept has a beneficial side effect: The test tool
(simulator) finds one or more additional final markings which
are not specified, for example notification by internal and
external mail.

The quality of the test case generator itself depends on the
correctness and completeness of the cause-effect-net, i.e. the
C/E-net is to be validated as well.

The described work is part of a larger project which aims at
verification of information systems by analysis of partial
ordered Petri net simulation runs [2].

The concept is currently implemented as a prototype sys-
tem. Future extensions will include a test data generator for
Predicate/Transition nets. This generator divides the test data
in test input and test output data. The test input data is gener-
ated by identification of the relationships between causes and
attributes of the predicates of the test object. The test output
data is identified using the test input data, the specification
and the relationships between effects and attributes of the test
object.

Furthermore test concepts are to be generated which check
functions which must not be executable, for example a test
about multiple payment the traveling expenses (cash and
transfer).

VI. ACKNOWLEDGEMENTS

The authors wish to thank Volker Guth for many valuable
comments on an earlier version of this paper.

VII. REFERENCES

[1] E. Best, and C. Fernandez, Nonsequential processes:
A Petri net view, EATCS monographs on Theoretical
Computer Science, Springer Verlag, Berlin, 1988.

[2] J. Desel, A. Oberweis and T. Zimmer, Simulation-
based Analysis of Distributed Information System
Behaviour, in: Proceedings of the 8th European
Simulation Symposium ESS 96, A. Bruzzone, and E.
Kerckhoffs (eds.), Genua, 1996, pp. 319-323.

[3] H. Genrich, Predicate/Transition Nets, in: Petri Nets:
Central Models and Their Properties, W. Brauer, W.
Reisig, and G. Rozenberg (eds.), Springer Verlag
Berlin, 1987.

[4] J.D. McGregor, An overview of testing, Journal of
Object-Oriented Programming; vol. 9, no. 8, Jan.
1997, pp. 5-9.

[5] G.J. Myers, Software Reliability: Principles and
Practices, John Wiley & Sons, Inc., New York,
USA, 1976, pp. 216-227.

[6] G.J. Myers, The art of software testing, John Wiley
& Sons, Inc., New York, USA, 1979, pp. 56-76.

[7] W. Reisig, Petri nets: an Introduction. EATCS
monographs on Theoretical Computer Science,
Springer Verlag, Berlin, 1985.

