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examples. E.g. we have verified with KIV theorems of [3]
used to distinguish different complexity classes in
abduction.
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 Notice that these proofs are in no way trivial:
the informal proof for theorem 5.3 of [3] took one page. It
states that for the class of ordered monotonic abduction
problems using a specific preference criterion, there is a
polynomial algorithm for finding a best explanation. This
is proved by presenting an algorithm that in polynomial
time returns such a best explanation. Formalizing the
informal arguments of the correctness proof for this
algorithm results in several hundred (machine checkable)
proof steps.

Roughly, the interactive theorem proving system of
KIV is comparable with systems as PVS [5] and Isabelle
[22]. For our purpose, the KIV system is especially well
suited due to its facilities for structuring specifications and
software modules (including automatic generation of
proof obligations), its proof engineering facilities (like an
elaborated graphical user interface and reuse
mechanisms), and the underlying dynamic logic. 

[20] identifies two kinds of approaches in software
reuse: Supporting the software development process with
reusable components or making parts of the development
process reusable via program transformation techniques.
Our approach provide support by formally specified and
verified building blocks i.e. components. The latter
approach is taken by KIDS/SPECWARE [28], [29] which
provides support in the derivation of efficient
implementations from formal specifications. Here,
problem-solving methods are not “first-order citizens“ that
describe reusable components or architectures but second-
order transformation rules working on specifications. As
in our approach, system development is viewed as a
semiautomatic activity. At the technical level, the main
differences are the use of dynamic logic for the declarative
specification of procedural constructs in KIV and the use
of category theory and sheaf theory to express
transformations of algebraic specifications in
SPECWARE.

AMPHION ([18], [19]) is a knowledge-based software
engineering system for the formal specification and
automatic deductive synthesis of programs which consist
of calls of subroutines from a library. It is specialized to
application domains by means of a declarative domain
theory and a library of subroutines. This specialization
allows the automatic synthesis of programs from
specifications. Our approach is more general-purpose (but,
of course, less automatic): the programs developed are
combinations and instantiations of (mostly domain-

 

7.  Theorem 4.4 and (the more difficult) theorem 5.3. For both theorems
only the total correctness of the algorithms and, of course, not their
complexity bounds have been proven.

 

independent) problem-solving methods rather then simply
a sequence of calls of subroutines from a library.
Furthermore the (normal) user of the AMPHION system is
not intended to create or modify the domain theory or the
subroutine library. In our approach, the verification of
user-defined problem-solving methods in a library with
respect to their declarative specifications (competence) is
done within the KIV system itself. 

From a modelling point of view the main differences to
the mentioned approaches stems from the fact that we
specialise our approach to a specific type of systems (i.e.,
knowledge-based systems) which allow us to introduce
strong assumptions on the architecture of the system under
development. In consequence, we are able to provide
stronger conceptual guidance for system development.
Also, none of the approaches in software engineering
make the distinction between a problem type (called a task
in our framework) and a domain. In consequence,
reusability is limited in their approaches.

From a technical point of view the main difference to
the mentioned approaches stems from the fact that KIV
uses dynamic logic, which enables the integrated
specification and verification of declarative and procedural
parts of a system. Part of this support is the automatic
generation of proof obligations that guarantee the proper
relationships between declarative and procedural parts as
well as composed specifications in general.

Finally, we would like to mention some lines of our
future work. The architecture used to specify knowledge-
based systems can be expressed in the generic module
concept of KIV. However, this is connected with a loss of
information because the KIV specification does not
distinguish the different roles that specifications may have
(goals, requirements, adapters etc.). Therefore, not all of
the desired proof obligations could be generated
automatically or at least not directly. Still, it seems
possible to specialize the generic concepts of KIV. This
would allow us to provide the automatic generation of
according proof obligations and of predefined modules
and specification combinations to model the different
aspects of a knowledge-based systems. Based on this, we
plan to develop a methodological framework for the
stepwise development of correct specifications of
knowledge-based systems. Here we have to take a look on
approaches like KIDS/Specware, especially for the process
of refining a task via a problem-solving method into
subtasks. 
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parsimonious and it remains to prove that there is no
proper subset 

 

H

 

 of 

 

local-parsimonious-explanation

 

 which
explains (at least) all the data explained by the 

 

local-
parsimonious explanation

 

, i.e.,

 

explain

 

(

 

local-parsimonious-explanation

 

) 

 

⊆ 

 

explain

 

(

 

H

 

).
We choose some hypothesis 

 

h

 

 

 

∈ 

 

local-parsimonious-
explanation

 

, such that 

 

H 

 

⊆

 

 

 

local-parsimonious-explanation 

 

\ 

 

h.

 

Due to the monotony assumption we can derive

 

explain

 

(

 

H

 

) 

 

⊆ 

 

explain

 

(

 

local-parsimonious-explanation 

 

\ 

 

h

 

)
and transitivity of 

 

⊆ 

 

yields

 

explain

 

(

 

local-parsimonious-explanation

 

) 

 

⊆ 

 

explain

 

(

 

local-parsimonious-explanation 

 

\ 

 

h

 

).
Since 

 

local-parsimonious-explanation

 

 is complete (see
ii) it holds

 

explain

 

(

 

local-parsimonious-explanation

 

) = 

 

all-data

 

and thus

 

explain

 

(

 

local-parsimonious-explanation 

 

\ 

 

h

 

) = 

 

all-data

 

that is 

 

local-parsimonious-explanation 

 

\ 

 

h 

 

is a complete
set of hypotheses. This, however, contradicts the
minimality axiom of the (mapped) competence. The proof
in KIV requires 14 proof steps and 7 interactions. The
seven interactions concern the application of axioms of the
different specifications for the proof process.

The monotony assumption defines a natural subclass of
abduction. For example [17] examine their role in model-
based diagnosis. The assumption holds for applications,
where no knowledge that constrains fault behaviour of
devices is provided or where this knowledge respects the

 

limited-knowledge-of-abnormal behaviour assumption

 

.
This is used by [16] as a 

 

minimal diagnosis hypothesis

 

 to
reduce the average-case effort of finding all parsimonious
and complete explanations with GDE.

The question of how to provide such assumptions that
close the gap between task definitions and PSMs may
arise. In [12], we presented the idea of 

 

inverse verification

 

.
We start a proof with KIV that the competence of the PSM
implies the goal of the task. This proof usually cannot
succeed but its gaps provide hints for assumptions that are
necessary for it. That is, we use the technique of a
mathematical proof to search for assumptions that are
necessary to guarantee the relationship between the PSM
and the task. When applying the 

 

interactive

 

 theorem
prover to an impossible proof it returns a open goal that
cannot be proven but which would allow to finish the
proof. Therefore such an open goal defines a sufficient
assumption. Further proof attempts have to be made to
refine it to necessary assumptions (see [12] for more
details).
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6.  For example, the generation of counterexamples helps to find the
essential aspects of an assumptions.

 

7. Related Work, Conclusions and Future
Work

 

We have shown in the paper how tasks and problem-
solving methods can be specified and verified with KIV.
KIV is well-suited for both as it combines algebraic
specifications with imperative constructs that enable the
specification of the reasoning behaviour. The interactive
theorem prover provides excellent support in processing
the different automatically generated proof obligations.
The modular concept of proofs and proof reuse for partial
modified specification make the verification effort
feasible.

As a consequence of our modularized specification, we
distinguish several proof obligations that arise in order to
guarantee a consistent specification. Thus a separation of
concerns is achieved that contributes to the feasibility of
the verification. In addition, the proofs of the internal
correctness of the components need not to be repeated
when a component is reused. Only the proofs that are
concerned with the proper combination of them have to be
proceeded when developing a KBS.

The examples and proofs in our paper are kept simple.
However, we have applied KIV also in more complex

Fig. 5    Connecting PSM and Task.

assumptions = enrich abduction problem with 
axioms

complete(all-hypotheses),
H1 ⊆  H2 → explain(H1) ⊆ explain(H2)

end enrich

mapping = 
actualize competence with assumptions by morphism

correct → complete, input → all-hypotheses, 
local-minimal-set → 
local-parsimonious-explanation, 
objects → hypotheses, 
all-objects → all-hypotheses, 
...

end actualize

adapter = module
export explanation
refinement

representation of operations
explanation implements explanation;

import mapping
variables res : hypotheses;
implementation

explanation(var res)
begin

res := local-parsimonious-explanation
end



6. Adapter: Connecting Task and PSM

The description of an adapter maps the different
terminologies of the task definition, the PSM, and the
domain model and introduces further requirements and
assumptions that have to be made to relate the competence
of a PSM with the functionality as it is introduced by the
task definition. Because it relates the three other parts of a
specification together and establishes their relationship in
a way that meets the specific application problem, they
can be described independently and selected from
libraries. Their consistent combination and their
adaptation to the specific aspects of the given application
must be provided by the adapter. 

Usually an adapter introduces new requirements or
assumptions, because, in general most problems tackled
with KBSs are inherently complex and intractable (cf.
[11], [21]). A PSM can only solve such tasks with
reasonable computational effort by introducing
assumptions that restrict the complexity of the problem or
by strengthening the requirements on domain knowledge.

We have to introduce assumptions by the
subspecification assumptions (cf. Figure 5) to ensure that
the competence of our method implies the goal of the task.
First, we have to require that the input of the method is a
complete explanation. Based on the mappings it is now
easy to prove that the input requirement of the method is

fulfilled (i.e., the input is correct). Second, based on the
mappings we can prove that our method set-minimizer
finds a local-minimal set that is parsimonious in the sense
that each subset that contains one element less is not a
complete explanation. However, we cannot guarantee that
it is parsimonious in general. Smaller subsets of it that are
complete explanations may exist. The adapter has to
introduce a new requirement on domain knowledge or an
assumption (in the case that it does not follow from the
domain model) to guarantee, that the competence of the
PSM is strong enough to achieve the goal of the task. The
monotony assumption (cf. Figure 5) is sufficient (and
necessary cf. [12]) to prove that the (global)
parsimoniousness of the result of the PSM follows from its
local parsimoniousness. To ensure the automatic
generation and management of this proof obligations by
KIV we have to specify the adapter as a module that
implements the task goal by importing the mappings and
exporting the goal of the task (cf. Figure 5).

KIV automatically generates three proof obligations for
the adapter module, again formulated in dynamic logic.

(i) <explanation(res)> true
(ii) <explanation(res)> complete(res)
(iii) <explanation(res)> parsimonious(res)
The proofs of i and ii are trivial and fully automatic. iii

is the real proof obligation of this module. The informal
proof sketch is as follows: We unfold the definition of

Fig. 4    Verifying the PSM with KIV.



can be performed by selecting alternatives provided by a
menu.

For each of the proof obligations we formulate
straightforward auxiliary lemmas i-lemma, ii-lemma, iii-
lemma, and iv-lemma; one for each of these proof
obligations, respectively. These auxiliary lemmas express
the corresponding property of the hill-climbing sub-
procedure (cf. Figure 3):

(i-lemma) <hill-climbing(current;output)> true
(ii-lemma) current ⊆  O 

→ <hill-climbing(current;output)> output ⊆  O
(iii-lemma) correct(current) 

→ <hill-climbing(current;output)> correct(output)
(iv-lemma)

<hill-climbing(current;output)> output = O 
→ ¬  ∃ o. o ∈  O ∧  correct(O \ o) 

Using these lemmas, each of the proof obligations can
now directly be proven with the interactive proof
environment of KIV. Activating the standard set of
predefined heuristics (by click) and then selecting the
auxiliary lemma proper (by click) is enough. KIV
automatically unfolds the control procedure, finds the
appropriate instantiation of the lemma, and carries out the
first-order reasoning (necessary e.g. for (iii)). Thus the
proofs of (i), (ii), (iii), (iv) respectively can be carried out
with one user interaction.

It remains to prove the four lemmas. All of these proofs
work by induction. And to construct them with the help of
KIV one has to tell KIV (again by clicking) which kind of
induction should be used. KIV is then able to unfold (and
symbolically execute) the procedure hill-climbing and
find the correct instantiation of the induction hypothesis.
While KIV tries to construct the proofs it comes up with
subgoals reflecting certain properties of the inference
actions. We then interact by formulating these properties
as first-order lemmas in the specification of the inferences,
and KIV is able to automatically find and use them to
close the open subgoals. Thus with a few and almost
straightforward user interactions (in addition to the
formulation of the lemmas) the original proof obligations
are reduced to the task of proving some properties of the
inferences stated in first-order logic. These in turn can be
derived from the axioms. Here again some user interaction
is required, mostly selecting the appropriate axioms (and
also one quantifier instantiation). Besides this KIV does
all the first-order reasoning. We now give a sketch of the
proofs:

i-lemma. The termination of the PSM is proven by
induction on the first parameter of hill-climbing, where
the (well-founded5) order ⊂ is used. In the induction
step we use the fact that 

5.  Remember that we deal with finite sets only.

select-one-correct(O,generate-successors(O)) ≠ O → 
select-one-correct(O,generate-successors(O)) ⊂ O.

This is equivalent to 
select-one-correct(O,generate-successors(O)) ⊆ O

which can be proved as an instantiation of a stronger
lemma which is used in the proof of ii-lemma.
ii-lemma. The proof is carried out by induction on the
recursive calls of the hill-climbing procedure in a
terminating run. The proof uses the property that

O ⊆  O0 → 
select-one-correct(O,generate-successors(O)) ⊆ O0.

This property is proven by using the (three) axioms for
the inferences generate-successors and select-one-
correct and a suitable case-distinction (i.e., four
interactions).
iii-lemma. The proof is carried out, as for lemma ii-
lemma, by induction on the recursive calls of the hill-
climbing procedure in a terminating run. For this it is
enough to use the property of select-one-correct that it
yields a correct object set, whenever it does not yield its
first argument as result. This property follows
immediately from the axioms.
iv-lemma. The proof is carried out, as for ii-lemma and
iii-lemma, by induction on the recursive calls of the hill-
climbing procedure in a terminating run. The proof uses
the property that

∃ o. (o ∈ O ∧  correct(O \ o)) → 
select-one-correct(O,generate-successors(O)) ≠ O.

This property is proven as follows: First we show that
from the condition 

∃ o. (o ∈ O ∧  correct(O \ o)) it follows that
O1 := select-one-correct(O,generate-successors(O)) 

∈ generate-successors(O)
From the axiom for generate successors follows that an
o1 ∈ O must exist such that O1 = O \ o1, i.e. O1 ≠ O.
To give an impression of how to work with KIV, Figure

4 is a screen dump of the KIV system when proving iv-
lemma. The current proof window on the right shows the
partial proof tree currently under development. Each node
represents a sequent (of a sequent calculus for dynamic
logic); the root contains the theorem to prove. In the
messages window the KIV system reports its ongoing
activities. The KIV-Strategy window is the main window
which shows the sequent of the current goal i.e. an open
premise (leaf) of the (partial) proof tree. The user works
either by selecting (clicking) one proof tactic (the list on
the left) or by selecting a command from the menu bar
above. Proof tactics reduce the current goal to subgoals
and thereby make the proof tree grow. Commands include
the selection of heuristics, backtracking, pruning the proof
tree, saving the proof, etc.



5. Proving Total Correctness of the PSM

When introducing a PSM into a library we have to
prove two aspects of the operational specification of the
PSM. We have to ensure the termination of the procedure
and the competence as specified. When reusing the PSM
this proof need not to be repeated and can (implicitly) be
reused. 

The proof obligations are automatically generated by
KIV as formulas in dynamic logic (cf. [14], [15]). In our
example, it derives the following proof obligations (see
[24], section 5.2 for more details on how the correctness of
a module is translated into a set of proof obligations
formulated in dynamic logic.):

(i) <control(output)> true, i.e. termination
(ii) <control(output)> output ⊆  input,
corresponds to axiom 1 of the competence
(iii) <control(output)> correct(output),
corresponds to axiom 2 of the competence

(iv) <control(output)> o ∈  output 
→ ¬  <control(output)>correct(output \ o), 
corresponds to axioms 3 of the competence.
These proof obligations ensure that the PSM terminates

and that it terminates in a state that respects the axioms
used to characterize the competence of the PSM (“<>“ is
the diamond operator of dynamic logic).

The next step is to actually prove these obligations
using KIV. For constructing proofs KIV provides an
integration of automated reasoning and interactive proof
engineering. The user constructs proofs interactively, but
has only to give the key steps of the proof (e.g. induction,
case distinction) and all the numerous tedious steps (e.g.
simplification) are performed by the machine. Automation
is achieved by rewriting and by heuristics which can be
chosen, combined and tailored by the proof engineer. If the
chosen set of heuristics get stuck in applying proof tactics
the user has to select tactics on his own or activate a
different set of heuristics in order to continue the partial
proof constructed so far. Most of these user interactions

psm-domain requirements = enrich objects with 
constants input : objects;
predicates correct : objects, 
axioms

correct(input)
end enrich

object-sets = generic specification
parameter psm-domain requirements target
constants ∅  : object-sets;
functions os-insert : objects x object-sets → object-sets;
predicates . ∈ . : objects x object-sets;
axioms

object-sets generated by ∅ os, os-insert ,
¬  OS ∈ os ∅ os,
o1 ∈ os-insert(o2,O) ↔ o1 = o2 ∨  o1 ∈ o O,
O1 = O2 ↔ (∀  o1 . o1 ∈  O1 ↔ o1 ∈  O2)

end generic specification

inferences = enrich object-sets with
functions 

generate-successors : objects → object-sets,
select-one-correct : objects x object-sets → objects; 

axioms
O2 ∈  generate-successors(O1) ↔ 

∃ o1 . (o1 ∈  O1 ∧  O2 = O1 \ o1),
(∃ O1 . (O1 ∈ OS ∧ correct(O1)) →

select-one-correct(O,OS) ∈  OS ∧
correct(select-one-correct(O,OS)),

¬∃ O1 . (O1 ∈ OS ∧ correct(O1)) 
→ select-one-correct(O,OS) = O

end enrich

Fig. 3    The sub-specifications and modules of set-minimizer.

control = module
export competence
refinement

representation of operations
control implements local-minimal-set 

import inferences
procedures hill-climbing(objects) : objects
variables output, current, new :objects;
implementation

control(var output)
begin

hill-climbing(input,output)
end

hill-climbing(current, var output)
begin

var new = select-one-correct
(current,generate-successors(current)) 

if new = current
then output := current 
else hill-climbing(new,output)

end

competence = generic specification
parameter psm-domain requirements target
constants local-minimal-set : objects;
axioms

(1) local-minimal-set ⊆ input,
(2) correct(local-minimal-set),
(3) o1 ∈  local-minimal-set 

→ ¬correct(local-minimal-set \ o1)
end generic specification



4. Formalizing a Problem-Solving Method

The concept PSM is present in many current
knowledge-engineering frameworks (e.g. Generic Tasks
[4], CommonKADS [26], Method-to-task approach [6]).
In general, PSMs are used to describe the reasoning
process of a KBS. Aside from some differences between
the approaches, there is a consensus that a PSM
decomposes the entire reasoning task into more
elementary inferences; defines the types of knowledge that
are needed by the inference steps to be done; and defines
control and knowledge flow between the inferences. 

Extending, [1] defined the competence of a PSM (i.e., a
functional black-box specification) independent from the
specification of its operational reasoning behaviour.
Proving that a PSM has some competence has the clear
advantage that the selection of a method for a given
problem and the verification whether a PSM fulfils its task
can be done independently from details of the internal
reasoning behaviour of the method. 

Finally, a PSM has requirements on domain
knowledge. Each inference step and therefore the
competence description of a PSM requires specific types
of domain knowledge. These complex requirements on
domain knowledge distinguish a PSM from usual software
products. Preconditions on valid inputs are extended to
complex requirements on available domain knowledge.

Libraries of PSMs are described in [2], [4], and [23].
Reusing PSMs enhance the development process of KBSs.
They can either be directly reused as reasoning component
or in the case of a more complex task they can be used to
decompose the task. In the latter case, each inference step
of the PSM defines a new task. Each of these subtasks
require again the selection of a PSM that may either
directly solve it or recursively refine it to new subtasks. In

abduction problem = enrich hypotheses, data with
functions explain : hypotheses → data;
predicates

complete : hypotheses,
parsimonious : hypotheses;

axioms
 complete(H) ↔ explain(H) = all-data,
 parsimonious(H) ↔ 

¬  ∃  H1 . H1 ⊂ H ∧ explain(H) ⊆ explain(H1) 
end enrich
explanation = enrich abduction problem with

constants explanation : hypotheses;
axioms

 complete(explanation),
 parsimonious(explanation)

end enrich

Fig. 2    The specification of the abductive task.

the first case, a PSM is reused as a component (black-box
reuse of PSM) whereas in the second case, the PSM
defines an architecture (white-box reuse) for selecting
further components.3

We use the very simple PSM set-minimizer of [10] for
our example. It receives a set of objects as input and tries
to find a minimized version of the set that still fulfils a
correctness requirement. The search strategy applied is
one-step look ahead. The overall structure of the PSM-
specification is provided in Figure 1 and the definition of
some of its subspecifications and modules is given in
Figure 3.

4.1. Domain Requirements

The main requirements on available knowledge and
input that are introduced by the method are: the existence
of a possible set of objects (a sort), the existence of a
predicate correct holding true for some sets, and, finally,
the method assumes that the input is a correct set. These
requirements on knowledge and input data are specified as
(formal) parameter of the specification of the method.
They are replaced by concrete parameters when the
method is applied for a specific task and domain as we will
see in Section 6.4

4.2. Operational Specification

The method works as follows: First, we take the input.
Then we recursively generate the successors of the current
set and select one of its correct successors. If there is no
new correct successor we return the current set. The
functions generate-successors and select-one-correct in
the specification inferences correspond to elementary
inference actions in CommonKADS [26]. The procedural
control (in KADS located at the task body) is defined by
the module control.

4.3. Competence

The competence in Figure 3 states that set-minimizer is
able to find a local minimal subset of the given set of
objects. The three axioms state that it (1) finds a subset
that is correct (2), and minimal (3), i.e. that each set
containing one less element is not a correct set. 

3.  An alternative way to the architectural point of view is to view PSMs
that decompose complex tasks as a meta-object which obtains
specifications as input and transformed specifications as output. Then,
they correspond to design operators of KIDS [28].
4.  This parameterization also allows us to obtain different variants of the
competence of a method by varying its knowledge requirement.



be solved by the KBS. Contrary to most approaches in
software engineering this problem definition is kept
domain independent, which enables the reuse of generic
problem definitions for different applications. In the
following, we define a simple diagnostic problem
independent of the domain (e.g. medical diagnosis,
mechanical diagnosis, diagnosis of electrical devices etc.).

We use a simple task to illustrate the formalization of
our approach. The task abductive diagnosis receives a set
of observations as input and delivers a complete and
parsimonious explanation (see e.g. [3]). An explanation is
a set of hypotheses. A complete explanation must explain
all input data (i.e., observations) and a parsimonious
explanation must be minimal (that is, none of its subsets
have the same or a greater explanatory power). Figure 1
provides the modular structure of the task definition of our

example. The internal definitions of some of the
specifications are given in Figure 2. The specification
abduction problem is an enrichment of data and
hypothesis2 and introduces a requirement on domain
knowledge. A function explain relates hypotheses with
observations they explain. Further, two predicates
complete and parsimonious are introduced that are
required to define a solution of the task. Based on these
definition, we can finally define what an explanation must
fulfil. It must be complete and parsimonious.

2.  Data and hypothesis specify finite sets of data and hypothesis,
respectively. Their specification is omitted due to space limitation.

Fig. 1    The development graph in KIV.
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thousand lines of code and specification (see e.g. [13]).
The use of the KIV system for the verification of KBSs is
quite attractive. KIV supports dynamic logic (cf. [14],
[15]) which has been proved useful in the specification of
KBSs (cf. KARL [7], (ML)2 [31], and MLPM [9]).
Dynamic logic has two main advantages (especially if
compared to first-order predicate logic). First, dynamic
logic is quite expressive, e.g. we can formalize and prove
termination or equivalence of programs or generatedness
of data types.1 Second, in dynamic logic programs are
explicitly represented as part of the formulas. Thus
(especially if compared to the verification condition
generator approach) formulas and proofs are more
readable for people and provide more structural
information which can be employed by proof heuristics.

KIV allows structuring of specifications and
modularisation of software systems. Therefore, the
conceptual model of our specification can be realized by
the modular structure of a specification in KIV. Finally,
the KIV system offers well-developed proof engineering
facilities: Proof obligations are generated automatically.
Proof trees are visualized and can be manipulated with the
help of a graphical user interface. Even complicated
proofs can be constructed with the interactive theorem
prover. A high degree of automation can be achieved by a
number of implemented heuristics. However, interaction
is necessary for two reasons: In general, complex proofs
cannot be completely automated, and proving usually
means finding errors either in the specification or in the
implementation. The proof process is therefore a kind of
search process for errors. Analysis of failed proof attempts
and the automatic generation of counter examples support
the iterative process of developing correct specifications
and programs. An elaborated correctness management
keeps track of lemma dependencies (and their
modifications) and the automatic reuse of proofs allows an
incremental verification of corrected versions of programs
and lemmas (see [25]). Both aspects are essential to make
verification feasible given the fact that system
development is a process of steady modification and
revision.

In this paper we illustrate some of the specification
elements and proof processes necessary to establish the
correctness of the different elements of a complete
specification. In each section, we use different aspects of a
running example for illustrating these processes. In
Section 2, we introduce the structure of our specification

1.  Of course, due to its expressive power any effective calculus for
dynamic logic has to be incomplete. Fortunately, this does not limit the
practical applications (because the incompleteness stems from self
reference). However, as in first-order logic, the fully automatic
construction of proofs is in general not feasible due to the enormous size
of the search space.

in KIV. In Section 3, we illustrate the specification of a
task. In Section 4, we present the specification of a
problem-solving method. Its termination and correctness
proofs are provided in Section 5. In Section 6, we illustrate
how the appropriate relationship between task and
problem-solving method becomes established. Section 7
summarizes the paper and defines objectives for future
research. For the sake of space limitation we only discuss
the verification of the PSM and the adapter and not the
specification and verification of a domain model. In
general, we would have to show that the domain
knowledge is consistent and that it fulfils the requirements
of PSM, task, and adapter.

2. The Architecture

In KIV, the entire specification of a system can be split
into smaller and more tractable pieces. Each elementary
specification introduces a signature and a set of axioms.
The semantics of such a specification is the class of all
algebras that satisfy the first-order axioms (i.e., loose
semantics is applied [32]).

KIV provides mechanisms for combining elementary
specifications to more complex ones (e.g. sum,
enrichment, renaming, and actualization of parameterized
specifications) which are common to most algebraic
specification languages, cf. [33].

In addition to (elementary) specifications, KIV provides
modules to describe implementations in a Pascal-like style.
A module consists of an export specification, an import
specification, and an implementation that defines a
collection of procedures implementing the operations of
the export specification.

Figure 1 provides the structure of the entire
specification of our example, i.e. the dependencies
between the (sub-)specifications and implementations in
KIV. The single specifications (the rectangles in the graph)
and modules (the rhomboid units in the graph) are
discussed in the following sections. The conceptual units
we identified above (i.e., task, PSM, domain model, and
adapter) can be defined by hand as aggregation of
elements of the development graph and current work is
being done to include this directly in the tool environment.

3. Formalizing a Task

The description of a task consists of two parts (cf. [10]):
It specifies a goal that should be achieved in order to solve
a given problem. The second part of a task specification is
the definition of requirements on domain knowledge
necessary to define the goal in a given application domain.
Both parts establish the definition of a problem that should



Using KIV to Specify and Verify Architectures of Knowledge-Based Systems

Abstract
Building knowledge-based systems from reusable
elements is a key factor in developing them economically.
However, one has to ensure that the assumptions and
functionality of the reused building block fit together with
each other and the specific circumstances of the actual
problem and knowledge. We use the Karlsruhe Interactive
Verifier (KIV) for this purpose. We show how the
verification of conceptual and formal specifications of
knowledge-based systems can be performed with it. KIV
was originally developed for the verification of procedural
programs but it serves well for verifying knowledge-based
systems. Its specification language is based on abstract
data types for the functional specification of components
and dynamic logic for the algorithmic specification. It
provides an interactive theorem prover integrated into a
sophisticated tool environment supporting aspects like the
automatic generation of proof obligations, generation of
counter examples, proof management, proof reuse etc.
Such a support is essential for making the verification of
complex specifications feasible. We provide some
examples on how to specify and verify tasks, problem-
solving methods, and their relationships.

1. Introduction

During the last few years, several conceptual [26] and
formal specification techniques [8] for knowledge-based
systems (KBSs) have been developed. These modelling or
specification techniques enable the description of a KBS
independent of its implementation. These approaches
provide three essential contributions for enhancing the
development process of KBSs (cf. [30]): 
• First, the functionality and the knowledge of a KBS can

be modelled and evaluated independent from
implementation issues. Validation and verification of
the functionality, the reasoning behavior, and the
domain knowledge of a KBS is already possible in the
early phases of the development process of the KBS.

• Second, identifying different modelling aspects and

knowledge types involved in a KBS enables us to
structure the development process as well as its
intermediate and final results.

• Third, abstracting implementation- and application-
specific circumstances enables the identification of
reusable architectures, components, and knowledge
bases that enhances quality and efficiency of the
development process.
When put in a broader context such approaches

correspond to recent efforts on software architectures [27]
that provide patterns for breaking down an entire
functionality into a number of components with predefined
interactions. In [10], we presented an architecture for the
specification of KBSs based on different reusable
elements. This architecture is a refinement of the
CommonKADS model of expertise [26] which has been
widely used by the knowledge engineering community.
Our framework for describing a KBS consists of three
reusable elements: a task defines the problem that should
be solved by the KBS, a problem-solving method (PSM)
defines the reasoning process of a KBS, and a domain
model describes the domain knowledge of the KBS. Each
of these elements is described independently to enable the
reuse of task descriptions in different domains, the reuse of
PSMs for different tasks and domains, and the reuse of
domain knowledge for different tasks and PSMs. A fourth
element of a specification of a KBS is an adapter that is
necessary to adjust the three other (reusable) parts to each
other and to the specific application problem. It is used to
introduce assumptions and to map the different
terminologies.

In this paper, we discuss the specification and
verification of the different elements and their
relationships. We use the KIV system (Karlsruhe
Interactive Verifier) [24] for both activities. It is an
advanced tool for the construction of provably correct
software. KIV supports the entire design process starting
from formal specifications (algebraic full first-order logic
with loose semantics) and ending with verified code
(Pascal-like procedures grouped into modules). It has been
successfully applied in case-studies up to a size of several
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