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Abstract

In this paper we consider a risk process in which claim inter-arrival times have

an Erlang(2) distribution. We consider the in�nite time survival probability as a

compound geometric random variable and give expressions from which both the

survival probability from initial surplus zero and the ladder height distribution can

be calculated. We consider explicit solutions for the survival/ruin probability in

the case where the individual claim amount distribution is phase-type, and show

how the survival/ruin probability can be calculated for other individual claim

amount distributions.
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1. Introduction

In this paper we shall consider a risk process where claims occur as an Erlang

process. In particular we shall assume that the times between claims (and the time

until the �rst claim) form a sequence of independent and identically distributed

random variables, denoted fTig1i=1, with density function

k(t) = ¯2te¡¯t for t > 0,

i.e. an Erlang(2; ¯) distribution.
Let fXig

1

i=1 be a sequence of independent and identically distributed random

variables, where Xi denotes the amount of the i-th claim. Let F (x) be the distri-
bution, and, when it exists, let f (x) denote the density function of Xi. We denote

the mean individual claim amount by m1. Let c denote the insurer�s premium

income per unit time. We will assume that

cE(Ti) > E(Xi)

1This research was conducted during the authors� visits to the Laboratory of
Actuarial Mathematics in the �rst half of 1997.



for all i.
The probability of ultimate ruin from initial surplus u for this risk process is

de�ned as

Ã(u) = Pr

Ã
u+

nX
i=1

(cTi ¡Xi) < 0 for some n, n = 1;2; 3; :::

!

and let ±(u) = 1¡Ã(u) denote the survival probability. If the moment generating

function of Xi exists, then the adjustment coe¢cient for this risk process is the

unique positive number R such that

E[expf¡cRTig]E[expfRXig] = 1 (1.1)

Our purpose in this paper is to �nd both analytical and numerical solutions for

ruin/survival probabilities. In section 2 we set out some basic formulae relating to

±(u). In section 3 we show how these formulae can be used to �nd ±(0), and hence
how we can give a compound geometric representation of ±(u). In section 4, we

discuss the case of phase-type distributions. Finally, in section 5, we show how the

compound geometric representation of ±(u) can be used to compute bounds and

approximations for ruin probabilities in situations where an analytical solution

for ±(u) does not exist.

2. Preliminaries

First, let us adapt some results from Dickson (1997). Starting from

±(u) =

Z
1

0

k(t)

Z u+ct

0

±(u+ ct¡ x)dF (x)dt

we have

c2
d2

du2
±(u)¡ 2¯c

d

du
±(u) + ¯2±(u) = ¯2

Z u

0

±(u¡ x)dF (x) (2.1)

Further, de�ning

±¤(s) =

Z
1

0

e¡su±(u)du and f¤(s) =

Z
1

0

e¡sxdF (x)

to be the Laplace transforms of ±(u) and F (x) respectively, we have

±¤(s) =
c2s±(0) + ¯2m1 ¡ 2¯c

c2s2 ¡ 2¯cs+ ¯2(1¡ f ¤(s))
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Finally, de�ning L to be the maximum aggregate loss, so that ±(u) = Pr(L · u),
the Laplace transform of L, denoted Á¤(s), is

Á¤(s) = E[e¡sL] =
c2s2±(0) + (¯2m1 ¡ 2¯c)s

c2s2 ¡ 2¯cs+ ¯2(1¡ f¤(s))
(2.2)

Note that just as in the classical risk model, L has a compound geometric distri-

bution, so we can also write

Á¤(s) =
±(0)

1 ¡ Ã(0)r¤(s)
(2.3)

where

r¤(s) =

Z
1

0

e¡sxdR(x)

and where R(x) is the ladder height distribution. For convenience, we introduce
the distribution Q(x) de�ned by

Q(x) =
1

m1

Z x

0

(1 ¡ F (x))dx

with Laplace transform

q¤(s) =
1¡ f¤(s)

m1s
:

Note that Q(x) is the ladder height distribution associated with the classical risk

model.

3. Main Results

In this section we derive a formula for ±(0) and for the ladder height distribution.

We start from formula (2.2) which can be written as

Á¤(s) =
c2s±(0) + ¯2m1 ¡ 2¯c

c2s¡ 2¯c+ ¯2m1q¤(s)
(3.1)

>From ¯2m1 ¡ 2¯c < 0 we see that the numerator

c2s±(0) + ¯2m1 ¡ 2¯c

will have a positive zero at s0 = (2¯c¡¯2m1)=(c
2±(0)): Since Á¤(s) is positive for

all s > 0; s0 must also be a solution of the equation

I(s) = c2s¡ 2¯c+ ¯2m1q
¤(s) = 0: (3.2)
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Notice that (3.2) is the de�ning equation for the adjustment coe¢cient for the

problem, given in (1.1). However, also in the case without an adjustment coe¢-

cient, (3.2) will have a positive solution, and this solution will be unique. To see

this, notice that

I(0) = ¡2¯c+ ¯2m1 < 0;

lim
s!1

I(s) = 1 ; and

I 00(s) = ¯2

Z
x2e¡sx(1¡ F (x))dx > 0:

So if I 0(0) ¸ 0; the function I(s) will be increasing on (0;1); and if I 0(0) < 0 then

the function I(s) will be decreasing up to some point, and it will be increasing

from this point on, so in both cases the solution to (3.2) exists, and it is unique.

Hence ±(0) can be identi�ed:

±(0) =
2¯c¡ ¯2m1

c2s0
. (3.3)

We can now write (3.1) as

Á¤(s) =
c2(s¡ s0)±(0)

c2(s¡ s0) + ¯2m1[q¤(s)¡ q¤(s0)]
;

and hence

r¤(s) =
¯2m1[q

¤(s)¡ q¤(s0)]

c2(1 ¡ ±(0))(s0 ¡ s)

= °m1

q¤(s)¡ q¤(s0)

s0 ¡ s

with

° =
¯2

c2 ¡ 2¯c=s0 + ¯2m1=s0
.

In order to �nd the distribution with this Laplace Transform, we write r¤(s) as

r¤(s) = °
1

s0 ¡ s

Z
1

0

(e¡sx ¡ e¡s0x)(1 ¡ F (x))dx

= °
1

s0 ¡ s

Z
1

0

e¡s0x(e¡(s¡s0)x ¡ 1)(1 ¡ F (x))dx

= °

Z
1

0

e¡s0x
Z x

0

e¡(s¡s0)ydy(1¡ F (x))dx

= °

Z
1

0

e¡(s¡s0)y

Z
1

y

e¡s0x(1 ¡ F (x))dxdy

= °

Z
1

0

e¡syG(y)dy
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where

G(y) =

Z
1

y

e¡s0(x¡y)(1¡ F (x))dx; y > 0:

Hence the Lebesgue density of the ladder height distribution, denoted r(y); is
given by

r(y) =
¯2

c2 ¡ 2¯c=s0 + ¯2m1=s0
G(y); y > 0: (3.4)

Example 1. If F is an exponential distribution, F (x) = 1 ¡ exp(¡®x); we have

G(y) = es0y
Z

1

y

e¡(®+s0)xdx =
1

®+ s0
e¡®y

and so the density of R(x) is proportional to exp(¡®y); y > 0; which yields
R(x) = F (x) in this simple case. In this case, s0 is the unique positive solution of

c2s2 +
¡
®c2 ¡ 2¯c

¢
s+

¡
¯2 ¡ 2®¯c

¢
= 0

which exists because of
¯2 ¡ 2®¯c < 0:

4. Phase-type Distributions

Phase-type distributions, introduced by Neuts (1975), are de�ned via a continuous

time homogeneous Markov chain X(t) on a �nite state space f0; 1; :::; Ig; I ¸ 1:
The state 0 is absorbing, and the Markov chain is assumed to be irreducible. Then

the random variable

T = infft ¸ 0 : X(t) = 0g

is �nite almost everywhere, and its distribution is called a phase-type distribu-

tion with parameters ¼¤ = (¼0; :::; ¼I) ¡ the starting distribution - and B =

(bi;j)i;j=1;:::;I - the in�nitesimal operator de�ned by

PfX(t+ h) = jjX(t) = ig = bi;jh+ o(h); h! 0; i 6= j; i; j = 1; :::; I

PfX(t+ h) = ijX(t) = ig = 1 ¡ bi;ih+ o(h); h! 0; i = 1; :::; I:

If ¼0 = 0 then PfT = 0g = 0; and in this case the distribution is called proper

phase-type, and we shall use the notation ¼ = (¼1; :::; ¼I). Examples of phase-type

distributions are convolutions and mixtures of exponential distributions. Convo-

lutions or mixtures of phase-type distributions are also phase-type. For further

general properties of these distributions see Neuts (1977) and Asmussen (1987);

the more general and very useful notation of matrix-exponential distributions can
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be found in Asmussen and Bladt (1996). Applications of phase-type distributions

to queueing and ruin theory are given in Asmussen and Rolski (1991) and in

Asmussen (1992).

For phase-type claim size distributions, the in�nite time survival probability

can be given in explicit form, for exponential as well as for Erlang(2,¯) inter-arrival
times. Let us �rst recall the situation of the classical compound Poisson model.

Let the inter-arrival times Ti have an exponential distribution with parameter ¯:
Then the ruin probability is non-trivial only if

Ãc(0) = ¯m1=c < 1; (4.1)

where Ãc denotes the ruin probability in the classical risk model. If the claim size

distribution has a proper phase-type distribution with parameters ¼ and B; then

m1 = ¡¼0 (B0)
¡1
e (4.2)

and

Ãc(u) = Ãc(0)b¼0 exp(u bB)e: (4.3)

Here, e = (1; :::;1) is the I¡vector with all its entries equal to 1; and

b¼ = ¡
1

m1

(B 0)
¡1

¼; (4.4)

bB = B + Ã(0)bb¼: (4.5)

The I £ I¡matrix bb¼ has entries bib¼j; i; j = 1; :::; I; where bi is de�ned via

PfX(t+ h) = 0jX(t) = ig = bih+ o(h); h! 0; i = 1; :::; I:

The matrix exponential exp(sA) can be computed, e.g., with Maple V, Release 3

or 4, in the linalg package. There, for example, with

A =

µ
¡1 1

0 1

¶
the command exponential(A,t); gives the resultµ

e¡t te¡t

0 e¡t

¶
:

Example 2. When F is the Erlang(2; 1) distribution, ¯ = 1 and c = 4 we have
I = 2; ¼ = (1;0); and

B =

µ
¡1 1

0 ¡1

¶
:
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Then Ãc(0) = 1=2; b¼ = (1=2; 1=2);

bB =

µ
¡1 1

1=4 ¡3=4

¶
;

and formula (4.3) yields the following result:

Ãc(u) = 0:55317 exp(¡0:35961 u)¡ 0:05317exp(¡1:39039u):

Example 3. If we instead take a mixture of two Erlang(2) distributions, say the

symmetric mixture of Erlang(2,1) and Erlang(2,2), ¯ = 1; c = 4; then I = 4;

B =

0BB@
¡1 1 0 0

0 ¡1 0 0

0 0 ¡2 2

0 0 0 ¡2

1CCA ; ¼ =

0BB@
1=2
0

1=2
0

1CCA ;

bB =

0BB@
¡1 1 0 0

1=8 ¡7=8 1=16 1=16
0 0 ¡2 2

1=4 1=4 1=8 ¡15=8

1CCA ; b¼ =

0BB@
1=3
1=3
1=6
1=6

1CCA ;

and the ruin probability equals

Ãc(u) = 0:40026 exp(¡0:51949 u)¡ 0:04764 exp(¡2:43637 u)

+0:02238 exp(¡1:39707 u) cos(0:15311u)

¡0:21635 exp(¡1:39707 u) sin(0:15311 u):

Let us now consider the case of an Erlang(2,¯) inter-arrival time distribution.
If the claim size has an arbitrary proper phase-type distribution with parameters

(¼;B), then the Laplace transform of Q is given by

q¤(s) =
1

m1

¼0(s Id¡B)¡1e;

where m1 = ¡¼0B¡1e and Id is the I£ I¡identity matrix. The de�ning equation

for s0 is
c2s¡ 2¯c+ ¯2¼0(s Id¡B)¡1e = 0; (4.6)

which gives us

Ã(0) =
c2s0 ¡ 2¯c+ ¯2m1

c2s0
(4.7)

=
¯2

c2s0

¡
¼0(s0 Id¡B)¡1e¡m1

¢
:
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The ladder height distribution is again phase-type with parameters (e¼;B), where

e¼ = ½(B0)¡1 (B 0 ¡ s0 Id)
¡1

¼: (4.8)

and where the parameter ½ has to be chosen such that e¼ is a stochastic vector.

To derive this from

G(y) =

Z
1

y

e¡s0(x¡y)(1 ¡ F (x))dx;

notice that

1 ¡ F (x) = ¼0 exp(xB)e;

e¡s0x (1 ¡ F (x)) = ¼0 exp(x(B ¡ s0 Id))e;Z
1

y

e¡s0x (1¡ F (x)) dx = ¼0(B ¡ s0 Id)
¡1 exp(y(B ¡ s0 Id))e;

e¡s0y

Z
1

y

e¡s0x (1¡ F (x)) dx = ¼0(B ¡ s0 Id)
¡1 exp(yB)e;

and, �nally, the tail probabilities of R(x) are proportional toZ
1

u

e¡s0y

Z
1

y

e¡s0x (1¡ F (x)) dxdy = ¼0(B ¡ s0 Id)
¡1B¡1 exp(uB)e;

The ruin probability is again the tail probability of an (improper) phase-type

distribution in the form of (4.3),

Ã(u) = Ã(0)e¼0 exp(u bB)e

with bB de�ned as in (4.5).

Example 4. When F is an Erlang(2; 1) distribution, ¯ = 1 and c = 4 we have

again I = 2; ¼ = (1;0); and

B =

µ
¡1 1

0 ¡1

¶
:

The number s0 is the positive solution of

1

s+ 1
+

1

(s+ 1)2
= 8¡ 16s

which gives
s0 = ¡3

8
+ 1

8

p
41 = 0:425391:
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According to (4.8), the vector e¼ is given by

e¼ =
1

2(9 +
p
41)

µ
5 +

p
41

13 +
p
41

¶
=

µ
0:37016
0:62984

¶
;

and the ruin probability is

Ã(u) = 0:17269 exp(¡0:75 u)¡ 0:05424 exp(¡1:17539u):

Example 5. When F is the symmetric mixture of Erlang(2,1) and Erlang(2,2),

¯ = 1 and c = 4, we obtain

s0 = 0:43992;

e¼ =

0BB@
0:58840
0:24115
0:18645
0:08399

1CCA ;

Ã(0) = 0:07653;

and the ruin probability is

Ã(u) = 0:11071 exp(¡0:82942u) + 0:04578 exp(¡1:82904 u)

¡0:05093 exp(¡1:13370 u)¡ 0:02902 exp(¡2:14776 u):

5. Calculation of Ruin Probabilities

Since the ruin probability Ã(u) is the tail probability of a compound geometric

random variable, we can compute bounds for Ã(u) using �Method 1� of Dufresne

and Gerber (1989). All that we require to apply this method is the survival

probability ±(0) and the ladder height distribution R(x). An accurate way of

approximating Ã(u) is to average the upper and lower bounds. (See Dickson et al

(1995).)

In this section we give two numerical examples. In each case, claims arrive as

an Erlang(2,2) process, the individual claim amount distribution has mean 1 and

the premium income per unit time is 1.1. Further, in each case, we rescaled the

surplus process by a factor of 100 in order to perform calculations. (See Dufresne

and Gerber (1989) or Dickson et al (1995).)

Example 6. Let the individual claim amount distribution be Erlang(2,2). Then

from Dickson (1997) we have

Ã(u) = 0:8841 exp(¡0:1818u)¡ 0:0109 exp(¡2:7892u)

9



and hence we can compare exact and approximate values. Table 1 shows some

bounds for, exact values of, and approximations to Ã(u).

Lower Exact Upper

u bound value Approximation bound

0 0.87322 0.87322 0.87322 0.87322

5 0.35423 0.35619 0.35620 0.35817

10 0.14189 0.14350 0.14351 0.14513

15 0.05684 0.05782 0.05783 0.05881

20 0.02277 0.02329 0.02330 0.02383

25 0.00912 0.00938 0.00939 0.00966

Table 1: Ruin probabilities for Erlang(2,2) claims

We can see from Table 1 that this method of approximating Ã(u) produces excel-
lent approximations.
Figure 1 shows (exact) values of Ã(u). For interest, we have also plotted values
of the ruin probability when claims occur as a Poisson process with parameter
1. This �gure shows that ruin probabilities are smaller when claims occur as

an Erlang(2,2) process, as we would expect due to the smaller variance of claim
inter-arrival times compared with exponential inter-arrival times under the Pois-
son process. Figure 2 shows a comparison of the ladder height distributions for
these two models. The ladder height distribution when we have Erlang inter-
arrival times is always below the corresponding distribution for the classical risk

model.

Example 7. Let the individual claim amount distribution be Pareto(2,1). In

this case we cannot solve explicitly for Ã(u), nor for s0. Recalling that we have
rescaled the surplus process by a factor of 100, s0 is found as the root of

1:21s¡ 0:044 + 4

Z
1

0

e¡sy

(100 + y)2
dy = 0

We can solve numerically to �nd s0 = 0:02916 and hence ±(0) = 0:113364.
We can �nd the ladder height distribution by integrating (3.4) giving

R(x) = 1¡ s¡10 (m1°(1¡Q(x))¡ r(x))

with r(x) given here by

r(x) = °

Z
1

x

e¡s0(x¡y) 1002

(100 + y)2
dy
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We can easily compute r(x) numerically. In our application, we truncated the

upper limit of integration in such a way that the value of the discarded part of

the integral was at most 10¡20. We observe in passing that in this example the

dominant term in R(x) as x ! 1 is Q(x) so that the behaviour of the ladder

height density as x ! 1 is essentially the same under the Erlang(2,2) claims

arrival model as under the classical risk model.

Table 2 shows some bounds and approximations to Ã(u).

Lower Upper

u bound Approximation bound

0 0.88664 0.88664 0.88664

5 0.69965 0.69993 0.70021

10 0.60187 0.60218 0.60249

15 0.53082 0.53113 0.53144
20 0.47495 0.47525 0.47555

25 0.42923 0.42952 0.42981

Table 2: Ruin probabilities for Pareto(2,1) claims

Figure 3 shows the same comparison as Figure 1. Once again we note that the
probability of ruin is smaller in the case of Erlang(2,2) inter-arrival times. Figure 4
shows a comparison of the two ladder height distributions. Unlike in the previous
example, the ladder height distribution when we have Erlang inter-arrival times
is below the corresponding distribution for the classical risk model, at least for

values we have calculated. Unlike in the previous example, it is not possible to
verify this analytically.
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