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Abstract

A mediator is a domain-speci�c tool to support uni-

form access to multiple heterogeneous information

sources and to abstract and combine data from dif-

ferent but related databases to gain new information.

This middleware product is urgently needed for these

frequently occurring tasks in a decision support envi-

ronment. In order to provide a front end, a media-

tor usually de�nes a new language. If an application

or a user submits a question to the mediator, it has

to be decomposed into several queries to the underly-

ing information sources. Since these sources can only

be accessed using their own query language, a query

translator is needed.

This paper presents a new approach for implement-

ing query translators. It supports conjunctive queries

as well as negation. Care is taken to enable informa-

tion sources of which processing capabilities do not al-

low conjunctive queries in general. Rapid implementa-

tion is guided by reusing previously prepared code. The

speci�cation of the translator is done declaratively and

domain{independent.

1 Introduction

Decision support systems rely heavily on exist-

ing information sources like databases containing �-

nancial or engineering data, specialized expert sys-

tems or the world wide web, just to mention a few.

Whether an executive needs to access di�erent sources

in his daily work or a computer system automates

this procedure: a tool is needed to facilitate the uti-

lization of these heterogeneous, independently main-

tained, and autonomous information sources. Medi-

ators are domain-speci�c integration modules which

build up an intermediate layer between the underlying

information sources and the applications using them.

They \simplify, abstract, reduce, merge and explain

data" to \create information for a higher layer of ap-

plications" [22]. They do not just overcome platform

mismatches but also contain a knowledge base which

describes how relevant new information is acquired us-

ing the information sources.

Di�erent approaches for developing mediators have

been presented, for example [17, 21, 8, 15]. The work

described in this paper is based on the Karlsruhe

Open MEdiator Technology (KOMET) project [6]. In

KOMET the mediatory knowledge base is written in

a declarative manner using annotated logic [16]. The

language, called KAMEL (KArlsruhe MEdiator Lan-

guage), facilitates typical mediation tasks like inte-

grating incompatible schemas [7], preferring more re-

liable sources, making temporal inferences or joining

data from di�erent sources to deduce new information.

This paper introduces a new approach for translat-

ing queries expressed in KAMEL to equivalent queries

expressed in the native query language of an arbitrary

information source. It is described what needs to be

considered to support di�erent types of sources and

how a query translator can be implemented rapidly.

2 KOMET and query translation

We will give only a very short introduction to the

concepts behind KAMEL. For a much deeper treat-

ment and more sophisticated examples, the reader

may refer to [16, 20, 14, 6].

KAMEL is a logic programming language based on

generalized annotated logic [12, 16]. A mediator pro-

gram consists of a set of annotated clauses of the form

A : �  C1 & : : :& Cn jj B1 : �1 & : : :& Bk : �k:

The head A : � is an annotated atom where A is a

usual formula of datalog and � is an annotation. The

Bi : �i are annotated literals. They make up the body



of the clause. Finally, in the constraint part the Ci are

ordinary datalog literals.

If I is an interpretation of the program, then I j=
A : � i� I(A) � �, i.e. A : � holds if the truth value

of A is equal to or higher than �. � is de�ned on a

lattice of values, for example truth values (linear or

non-linear), time information, uncertainty and fuzzy

values, etc. [12].

The literals in the constraint part denote calls to

the information sources. Note that no annotations ap-

pear in the constraint part, so they will not be treated

any further in this paper. A constraint literal is pre-

ceded by a source speci�er. Consider as an example

the following short mediator program:

stock(Name;Close) : [fDateg]  

DB :: fstockname(Name; SID) &

close(SID;Date; Close) g jj

stock(Name;Close) : [ftodayg]  

T :: stock(Name;Close) jj

equal closing(Name1; Name2) : [fDateg]  

jj stock(Name1; Close) : [fDateg] &

stock(Name2; Close) : [fDateg] &

Name1 6= Name2:

In the �rst clause a relation between the full name

of a stock and its closing price is de�ned using the

information in the source called DB. DB is an SQL-

database with relations stockname and close. The

derived data in stock is annotated with the time of

trade. The second clause extracts the same informa-

tion for the actual time from a ticker T . This ticker

provides the full name of each stock combined with

its actual price. today is a constant. The third clause

uses the stock predicate to extract those pairs of stock

which have the same closing price for a given date. In

general there is no limit on the number of di�erent

sources addressable in a clause. Since query transla-

tion is an operation done for each information source

independently, this example will su�ce.

Suppose the question  stock(Name; 500:00) :

[fDateg] has been submitted to the mediator. The

goal-oriented evaluation procedure of KOMET [14]

(see [5] for a bottom-up procedure) will send the sub-

goal (query 1):

ans(Name;Date)  stockname(Name; SID) &

close(SID;Date; 500:00) (1)

to the query translator for DB. The body is partly

instantiated. The head is a pseudo-predicate ans con-

taining all the variables which values are requested by

the mediator. Note that the values of SID are not

needed in the mediator. For DB this query should be

translated to

select r1.name, r2.date

from stockname r1, close r2

where r1.sid = r2.sid and r2.value = 500.00

Representing the constraint part as a conjunc-

tion of ordinary literals makes it possible to col-

lect and combine subqueries directed to one and

the same information source. For example, if  
equal closing(`SAP `; Name) : [fDateg] is sent to the

mediator, DB gets the query

ans(Name;Date)  stockname(`SAP `; SID1) &

stockname(Name; SID2) &

close(SID1; Date; C) &

close(SID2; Date; C):

This query can be sent to DB and translated as a

whole. This ensures that most of the computation is

done by the information source, which is specialized

for this task in contrast to the mediator.

The translator as well as the mediator need to know

the predicates and their signature of every information

source, for example stockname(string; number) and

close(number; float; time) in DB. This collection is

called the export schema of an information source.

In the sequel we describe a framework for query

translator production which provides the following

features:

� It supports conjunctive queries (or SPJ-queries),

not only isolated literals.

� It supports negation.

� It supports information sources which do not have

the processing capabilities to answer conjunctive

queries in general. In this case the translator di-

vides a conjunctive query into a minimal set of

single queries and combines the partial answers

to the demanded one. This happens without con-

sulting the mediator.

� It allows rapid implementation of translators

guided by the weaknesses of the information

source.

� It has an architecture which supports the reuse

of previously implemented parts. For example, if

a generic SQL-translator has been implemented,

only a small amount of work has to be done to

customize it for speci�c DBMS like Informix or

Oracle.



� It is domain-independent, i.e. the same Oracle-

translator code can be used for di�erent databases

(export schemas) running on Oracle-DBMS.

The translation is done in two steps:

1. The conjunctive query is transformed into an in-

termediate language called \box representation".

This representation is best suited for the second

step. Section 3 describes this transformation and

de�nes the semantics of the box representation.

2. The box representation of a query is translated

via production rules into a query in the native

language. There is a �xed set of rules each of

which may be disabled according to the process-

ing capabilities of the information source. Section

4 addresses this translation scheme.

Section 5 is devoted to the software engineering aspect

of how to implement a query translator using a library

of routines and classes (framework). The paper closes

with a comparison to related approaches.

3 Box representation of conjunctive

queries

The box representation of query 1 is the following:

close

stockname 500.00

==

It consists of two white boxes, called N-boxes, denot-

ing the two atoms of the query, and a dark shaded

box, called M-box, denoting a constant occurring in

the query. Every box has attached docks, which rep-

resent the arguments of the atoms. A labeled arc con-

nects two docks if they are represented by the same

variable in the query. The constant 500:00 is separated

as an M-box with an arc connected to the dock where

it originally occurred. A C-box is wrapped around

this construct with dashed arcs (projection-arcs) rep-

resenting the values to be exported. A more formal

de�nition of the syntax and semantics of the box rep-

resentation follows.

Syntax A box representation consists of four types

of boxes each with a di�erent attribute: N-boxes

(white) have a name, A-boxes (shaded) a query-string,

M-boxes (dark shaded) a relation (i.e. a set of value tu-

ples) and C-boxes a box representation as an attribute.

Each box B contains an ordered row d(B) of docks

referenced by their indices. There are four types of

arcs: A join-arc connects two docks of di�erent boxes,

a selection-arc connects two docks of the same box, a

box-arc connects two boxes directly and a projection-

arc (dashed) connects a dock of a C-box with a dock

of a box inside this C-box. Arcs of the �rst three types

are labeled. Arcs are directed to support the seman-

tics of the labels.

Semantics The semantics of the box representa-

tion can be de�ned in terms of the relational alge-

bra. See for example [1] for the de�nitions of the

usual unnamed relational operators �; �;1. A sort is

a set of values of the same type, for example string.

A relation descriptor R is a name together with a

row of sorts. A relation IR is a set of tuples over

a Cartesian product of the sorts denoted by the de-

scriptor R. For example R = stock(string; float)

and IR = fh`SAP `; 500:00i; h`BMWHold:`;257:30ig.
I can be seen as an instantiation of a descriptor. The

export schema of an information source consists of a

set of descriptors. An information source is an instan-

tiation of each descriptor in its export schema.

De�nition 3.1 The reduction red(B; I) (or simply

red(B)) of a box representation B over information

source I is de�ned as follows:

(1) If B is an N-box with relation descriptor R as

the attribute, then red(B) = IR.

(2) If B is an M-box with relation T as the at-

tribute, then red(B) = T .

(3) If B is an A-box with a formula F of the rela-

tional algebra as the attribute, then red(B) =

F .

(4) If B is a C-box, then red(B) = red(B0), where

B0 results from B by means of application of

one of the following rules. At least one of these

rules is applicable because of the syntax of the

box representation.

(4.1) If B has a box-arc A between boxes

B1 and B2 labeled with �, then replace

A;B1; B2 by a new A-box which obtains

the attribute red(B1) � red(B2) and the

docks (d(B1); d(B2))
1.

1(d1; d2) denotes the concatenation of the elements

in d1 and d2 into one row. (d1; d2; d3; : : : ; dn) :=
((: : : ((d1; d2); d3); : : :); dn).



(4.2) If B has a join-arc A between docks

d1 (at box B1) and d2 (at box B2) la-

beled with �, then replace A;B1; B2 by

a new A-box which obtains the attribute

red(B1) 1d1�d2 red(B2) and the docks

(d(B1); d(B2)).

(4.3) If B has a selection-arc A between docks

d1 and d2 of box B1 labeled with �, then

replace A;B1 by a new A-box which ob-

tains the attribute �d1�d2(red(B1)) and

the docks d(B1).

(4.4) If B contains the boxes B1; : : : ; Bm

and no arcs but projection-arcs, then

B0 is the A-box with the attribute

�P (B1)
(B1) � � � � � �P (Bm)(Bm) and the

docks (P (B1); : : : ; P (Bm)) where P (Bi)

is the row of docks of Bi which are con-

nected with a projection-arc.

For example, the box representation B depicted above

has the reduction red(B) = �1;4(stockname 12=1

(close 13=1 fh500:00ig)). The rules mentioned will

be revisited in section 4.

The algorithm of how to transform a conjunctive

query into a box representation is straightforward. It

is based on the fact that every conjunctive query has

a normal form with explicit equations and without

constants. For example, query 1 may be written as:

ans(X1; X2)  stocknames(X1; Y1) &

close(Y2; X2; Z1) & Y1 = Y2 &

fh500:00ig(Z2) & Z1 = Z2:

Here fh500:00ig represents a predicate which is true

for exactly every tuple the name denotes, in this case

only for h500:00i. The interested reader may refer to

[11] for the algorithm and its correctness proof.

It is also possible to represent negated literals in the

box representation, although this results in slightly

more complex constructs. Instead of usually insert-

ing an N-box for an atom, a negated atom is repre-

sented by a C-box. An abstract example may su�ce:

ans(X)  r(X;Y ) & :s(Y ) is transformed into the

following box representation B:

-

=
r

r s

Here red(B) = �1(r 12=1 �1(�2(r) � s)) holds, where

� denotes the di�erence of two sets. In order to en-

sure the applicability of this transformation, conjunc-

tive queries need to be safe, i.e. every variable in a

negated literal of the body must also occur in a non-

negated literal. The representation uses a directed

box-arc with the label \-". This can equally be applied

to disjunction. However, disjunction is not supported

by KAMEL.

De�nition 3.1 describes a close relationship between

the box representation and the relational algebra. In

fact, the box representation is just another syntax for

formulas in normal form with explicit equations and

without constants. But using the box syntax, the

translation procedure (described in the next section)

turns out to become more easily understandable due

to the graphical form and the distinction between non-

terminals and attribute in the sense of attribute gram-

mars. As a second advantage, the box syntax delivered

directly the classes for an object-oriented implemen-

tation of the framework library (described in section

5).

4 Translation procedure

4.1 Basics

We use the compiler technique of attribute gram-

mars [13, 4] to perform the translation of the box

representation of a query into an equivalent query in

the native language of an information source. If a

grammar of the source language is given, translating

a sentence (here: query in box representation) is done

via backwards application of the production rules and

evaluating semantic actions attached to each applied

rule.

The grammar in �gure 1 with a semantic action

next to every rule is not complete but su�cient for

the example of translating query 1 into its SQL-

counterpart. The full grammar will be given in �gure

2. Here, the A-boxes are used the �rst time. They

represent the intermediate and �nal SQL-queries.

A resulting SQL-statement will consist of three

lists: the from-, select- and where-lists. The �rst rule

converts each N-box into an A-box. This is the in-

stantiation step. The next two build up the query, de-

pendent on the premises of the rules. They merge two

SQL-queries and expand the where-list. In each step

the select-list is rebuilt due to the remaining docks.

The last rule converts an A-box, containing a query,

into an M-box, containing a set of tuples. This is

the materialization step, i.e. the query is sent to the

information source and the answer is stored as an at-
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Build select list. }
{ Create new query A* with N in from-list.

{ Query A* = A with "a = M" in where-list.
Rebuild select-list. }

{ Query A* = A1 merged with A2 with "a1 = a2"
in where-list. Rebuild select-list. }

{ Send query A to the information source
and store answer in M. }

Figure 1: Rules and actions for SQL translation
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Figure 2: Grammar of the box representation

tribute in the resulting M-box. See the �gure 3 of

how the example translation takes place. Note that

the number of docks is constantly minimized, so that

only \useful" docks with connected arcs remain. This

translation procedure is linear in the size of the query,

i.e. in the number of boxes plus arcs.

Figure 2 shows all production rules of the box repre-

sentation. As an additional rule, each low-level C-box

�rstly needs to be translated into an A-box using the

same rules. If �nally an M-box remains, the transla-

tion procedure is �nished and returns its attribute as

the result of the query.

In order to prove the correctness of a translator one

has to reduce the result of a semantic action (that is

a new A-box resp. query in most cases) to a relational

expression like it is done in the de�nition of the seman-

tics of the box representation. For example, given the

reductions red(A) and red(M ) in rule (2), the result

red(A�) has to be red(A) 1n=m red(M ). The follow-

ing picture shows three rules with their semantics:

R S

R

S
-

n m

n

=

<

R

m

R 1n=m S

�n�m(R)

R� S

Unfortunately, in most cases a formal de�nition of the

native query language is not given, especially no def-

inition using the relational operators. Therefore it is

far from easy to prove the correctness of a query trans-

lator.

The examples given so far exempli�ed how an SQL-

translator is build. Translating into SQL is an easy

task due to the similarity in processing capabilities and

data representation to KAMEL. The next subsection

explains the idea of disabling rule actions according to

the capabilities of an information source. Section 4.3

adds binding patterns to distinguish between output-

docks and input-docks.

4.2 Disabling rule actions

If the question

 equal closing(0SAP 0; Name) : [ftodayg]

is posed to the mediator, the query

ans(N ) stock(`SAP `; C) & stock(N;C) (2)

must be answered by the ticker. The problems arise

that �rstly the ticker cannot process conjunctions (or

joins) and secondly that the ticker does not accept con-

stants (`SAP `) as arguments, since it only provides a

stream of value pairs. Similar problems arise for ex-

ample with inquiry systems in libraries. Such systems

usually can not process conjunctions but do allow con-

stants. Furthermore it is usually not possible to re-

trieve information about books for which the name of



select sid,date

where value = 500.00
from close

select *
from stockname

close

500.00stockname 500.00from stockname
select *

from close
select *

(1)(1)

(2)

(3)(4)

where sid = sid
and value = 500.00

from stockname, close
select name, date

== = =

=
{<SAP,15/7>}

Figure 3: Translation of query 1

the author equals to the name of the title (for example

with autobiographies). The same observations apply

to �ll-in-forms in HTML-pages in the world wide web.

To support those information sources which do not

provide the necessary processing capabilities to answer

conjunctive queries in general, the set of rules { or the

grammar { is extended with the rules in �gure 4.

(10)

(9)

(8)

(11)

a1

a2

M1 M2 M*
a1 a2
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M1 M2 M*

M1 M2 M*

Figure 4: Additional production rules

These rules are only de�ned on M-boxes. Recall

that M-boxes contain materialized relations as an at-

tribute. If there is a unique interface to access the

values in these relations, it is possible to implement

the correct semantic actions for these new rules inde-

pendent of the information source. In KOMET this

interface is based on cursors or iterators. It is possible

to read the value of a cursor, set the cursor to the �rst

or the next value and test whether a next value ex-

ists. This is the usual cursor mechanism known from

embedded SQL. Using cursors, there is no necessity to

really materialize the relations.

As an example, the action of the rule (9) is imple-

mented as follows: Every time the cursor of M� is

set to the next value, the cursor of M is carried on

until the two values at arguments a1 and a2 are in �-

relation, e.g. equal. If no such position can be found,

it is not possible to set theM�-cursor one step further.

Using these additional rules and their source-

independent actions, it becomes possible to choose be-

tween several sequences of rule applications. Figure 5

shows some paths for a query after invoking rule (1)

two times. It is important to notice that it is always

possible to �nd a path between the initial query in

box representation and a single M-box containing the

answer of the informations source, provided that the

actions (1) and (4) are implemented. Therefore it is

su�cient for a translator to enable only these two rules

and disable the other ones. For information sources

which do not have complete processing power it is in-

deed not possible to implement certain rule actions.

For example, rule action (5) cannot be implemented

for library inquiry systems. Of course the additional

M-box-rules are always enabled. For SQL sources, all

actions are implementable.

There are two indeterminisms in the translation

procedure. Given a state of translation,

1. more than one rule may be applicable,

2. a rule may be applicable at di�erent places.
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Figure 6: Translation of query 2
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Figure 5: Some alternative paths of translation

Cost estimation, dependent on the size of relations and

the speed of accessing the information source, could

give preferences for one path over the others. For ex-

ample, rule (4) should be avoided and only applied for

small predicate extensions, if there is a choice.

The translation of query 2 for the ticker, after in-

voking action (1) two times, is performed as shown in

�gure 6. Only the rules (4) and (8) are needed. Rules

(2) and (3) are not applied, because they are not im-

plementable for such a weak information source. In

both \stock"-M-boxes, the whole stock-relation is ac-

cessible via cursor-handles. The �rst application of

rule (8) searches for the \SAP"-stock and the second

for a stock with the same closing price.

4.3 Binding patterns

The usefulness of binding patterns for query trans-

lation has been emphasized in [19]. It is possible to

integrate binding patterns into our framework. Each

predicate in the export schema has a set of allowed

patterns. A pattern determines for each argument

of a predicate whether it is an input argument (i.e.

this argument needs to be bound to a value), or an

output argument (i.e. this argument gives a value as

a result and has to be free), or both. Consider as

an example a pocket calculator with the ability to

add or multiply numbers. Add() needs one output

(the �rst) and two input (the second and third) ar-

guments. Therefore ans(X)  Add(X; 1; 2), which

stands for X = 1 + 2, is an allowed query, but

ans(X)  Add(3; 1; X) is not. In the box representa-

tion, bound arguments are represented as �-docks and
free arguments as �-docks. For example the query

ans(X)  Add(X; 1; Y ) & Mult(Y; 5; 5) is trans-

formed into:

1

MultAdd

5 5



store answer in M. }
{ Send query A to information source and

in a-th argument. }
{ A* = A1 with A2 as function

{ A* = A with M as atomic value
in a-th argument. }

{ A* = new function with N as function name. }

A2

A
=

=

N

M

(1)

(2)

(3) A1

a

a

A*

A*

A*

A(4) M

Figure 7: Rules and actions for functional translation

A query is allowed if each arc connects a �-dock
with a �-dock and if every �-dock has exactly one arc.
This ensures that every input-dock gets its required

value from an output-dock. The example query meets

this condition.

The rules with their actions in �gure 7 specify the

translator for a pocket calculator or for any source

which processes concatenations of functions. A func-

tional query has the general form of a function name

with a set of arguments, which themselves can be func-

tions or atomic values. All remaining rule actions are

not implementable.

It is possible that the mediator poses a query to the

translator which is not allowed. There are two possible

binding conicts: An arc connects two �-docks (�-�-
conict) or an arc connects two �-docks (�-�-conict).
A non-connected �-dock is a special case of the lat-

ter. As an example for an �-�-conict consider the

following query:

ans()  P lus(X; 1; 2) & P lus(X; 2; 1) (3)

which asks whether 1+ 2 = 2+ 1. Note that no value

is exported, so the answer will be Yes (= relation fhig)
or No (= empty relation fg). After applying rule (2)
four times, the box representation is the following:

"2+1"

"1+2"

Although applicable rule (3) is implemented, in this

case the rule is disabled by force due to the �-�-conict.
The translation goes on with rule (4) two times, which

materializes the A-boxes, yielding the answer fh3ig in
both cases. Now the rule (8) is applicable with result

fhig, i.e. \Yes". So: �-�-conicts are handled by the

translator automatically via splitting the conjunction

without consulting the mediator. It does so by means

of disabling rules with conicting arcs.

�-�-conicts are resolved using sort predicates. Sort

predicates evaluate to true for every instance of a

sort, for example natural number(X) is true for X 2
f0; 1; 2; : : :g. Consider an information source predi-

cate student() which returns the register number to

any given �rst name and surname of a student. A

query with a �-�-conict is for example ans(R)  
student(R;N;N ), which requests all register numbers

of students whose �rst name equals to the second

name. The conict is resolved by adding a sort predi-

cate names() which returns all possible names of stu-

dents: ans(R)  student(R;N;N ) & names(N ). In

the box representation this is like cutting the �-�-arc
and putting in the sort-M-box with an �-dock:

student student

{<..>,..,
<..> }

If the information source itself provides this sort

predicate, the query is translatable as usual. If not,

the query is either impossible to answer or the sort

predicate has to be inserted by the translator. This

may be a very time expensive conict resolution { as

in our example { and in cases where the sort predicate

extension is not �nite (natural number()), it is indeed

impossible. But for small sorts (like Boolean values),

this technique turns out to be useful.

For both conicts the translator hides the impos-

sibilities of processing as far as possible and divides

or extends the query so that the demanded answer is

given to the mediator. Together with the technique of



disabling rules, we have a powerful approach to spec-

ify query translators for various information sources.

Both techniques complete each other. Reconsider for

example the pocket calculator, which allows only lim-

ited binding patterns and does not support rules (5)

to (7). Both techniques also overlap each other: For

example the ticker problem encountered in section 4.2

can be solved either by disabling all rules but (1) and

(4) or by allowing only �-docks.
There are still queries that cannot be handled. Ex-

amine the query ans(X)  Mult(X;X;X):

Mult

The box representation contains no conicts. Since

rule (5) is disabled for calculators, the N-box needs to

be materialized using the rules (1) and (4). This is im-

possible because the box contains �-docks. Of course,
rule (4) is only applicable if the A-box merely contains

�-docks. This corresponds with the fact that a func-

tional source cannot solve those �xpoint problems.

5 How to implement a query transla-

tor

In this section we shortly present the typical way to

develop a translator using our approach. In a �rst step

the developer of a query translator for a new informa-

tion source has to determine how the knowledge of the

source is accessed by the mediator, i.e. which pred-

icates (with allowed binding patterns) make up the

export schema. For example, the binary operations of

a calculator (add,mult,etc.) are represented as 3-ary

predicates, like Add(�; �; �). Relational databases are
usually represented as they are, because KAMEL is

basically also relational.

In the second step s/he has to implement the struc-

ture of a query for the source { for example an SQL-

statement consists of the select-, from- and where-lists

{, the supported rule actions of the source (like shown

in �gure 1), and the cursor methods, which are depen-

dent on the speci�c information source. To implement

a full working translator, at least the actions for rules

(1) and (4) have to be implemented. To put the most

processing work into the source, all possible actions

should be implemented. In KOMET this implemen-

tation is done in C++. A pre-developed translator-

library of classes and program code de�nes the inter-

faces and many central methods like the translation

loop, the action of the rules (8) to (11) and the com-

munication with the mediator.

In many cases it is sensible to construct transla-

tors in a modular fashion. For example, a pure SQL-

translator can de�ne the structure of a query and all

rule actions, except for rule (4). A special translator

for Oracle as well as Informix can be build by reusing

the pure SQL-translator and adding just the action of

rule (4) (i.e. how to send a query to the source) and

the cursor methods, which are also product speci�c. If

two databases with di�erent export schemas but the

same DBMS are to be integrated in a mediator en-

vironment, the whole translator code for this DBMS

can be reused.

Most of the programming work lies in the imple-

mentation of the source speci�c cursor methods, which

include type conversion and native calling conven-

tions. Much time can be saved, if industry standards

(like ODBC for relational databases) are addressed,

since most of the code can be reused for other stan-

dard sources. If the developer has su�cient knowl-

edge of the product-speci�c programming interface,

the amount of time for implementation of a translator

can be counted in man-days.

With this framework we built translators for

Oracle-7 databases, for WWW pages or �les with a

tabular structure and for Mathematica. Mathematica

is a computer algebra system and processes { just like

the pocket calculator { concatenations of functions.

The corresponding translator was derived from a gen-

eral translator for functional queries. In [11] a solution

of how to address object-oriented databases has also

been presented.

6 Conclusion and related work

In this paper we presented a new approach to query

translation in a mediator environment. It is based

on well known compiler techniques. By extending the

grammar of the query language with production rules

for which semantic actions can be de�ned once for

every information source, the speci�cation of trans-

lators for weak information sources turned out to be

goal directed and easy. It is goal directed in the sense

that the developer just ignores actions which cannot

be served by the information source. The answering

of queries which require more processing capabilities

than the source provides is done automatically. Bind-

ing patterns have been added to the framework in a

natural manner.

Many projects handle the integration of heteroge-

neous information sources in a mediator-like architec-

ture, but only few address the problem of how to write



query translators. HERMES [2, 21] also uses a media-

tor language based on annotated logic. In contrast to

KAMEL, the constraint part consists only of functions

which the sources can process. So there is no di�culty

in translating queries and all queries are guaranteed

to be supported. This encoding hinders in building

general conjunctive queries and combining two queries

stated to the same source, as exempli�ed in query (5).

A more general framework, which also includes bind-

ing patterns, has been presented in [3]. This work

is comparable to the solution taken for the project

Tsimmis [17] in [18, 19]. It is based on an enumera-

tion of views which can be served by an information

source. A query is rewritten in terms of these views.

The views can be parameterized to express in one go a

(maybe in�nite) set of views. They are attached with

semantic actions like done in our approach. The main

di�erence is that [18] starts with specialized (but pa-

rameterized) views, i.e. it is necessary to express each

supported query. In our approach in the �rst place it

is assumed that a source supports every query, i.e. it

starts with general views. It seems that the Tsimmis

approach is best suited to support arbitrary informa-

tion sources with the strangest (un-)abilities, while our

approach focuses on the support of the most common

weaknesses. Because of this focus, the development

environment for translator speci�cation in KOMET

provides more speci�c support and the algorithms for

translation are more e�cient. None of the approaches

mentioned support negation.

[9] presents a query representation comparable to

the box representation but not in all its details. [10]

�rstly pointed out that compiler techniques are appli-

cable for query translation.
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