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� Introduction

In this position paper we present some ideas that aim to improve analytic ta�
bleau for temporal logics with the ultimate goal of reviving the interest in using
them for temporal logic satis�ability checking� Although tableau formulations
for several propositional temporal logics exist ���	 these are not used much in
practice	 because the tableau size becomes intractable already for quite small
formulas� Moreover	 checking tableau closure is complicated and expensive to
implement� For practical purposes	 usually automata theoretic approaches are
preferred �
�� It might	 however	 still be interesting to have competitive tableau
formulations as will be pointed out in Section ��

The ideas for the research reported here were stimulated by ��	 
� where an
extension of analytic tableau with linear constraints led to an e�cient �mixed�
integer programming formulation of a tableau system for �nitely and in�nitely�
valued propositional logics� The usefulness of linear constraints for many�valued
logics comes from the fact that the set of truth values can be identi�ed with
�a subset of� the integers	 hence many�valued connectives can be characterized
using integer constraints� If we consider	 say	 a discrete linear temporal logic
without past time operators	 then the always	 sometimes	 etc� operators realize
certain properties of the natural numbers when Kripke worlds are identi�ed
with numbers and the linear order on the worlds with the successor function� It
is tempting	 in our opinion	 to try using linear constraints over world variables
in order to give more concise tableau systems for such logics than it is possible
without the use of constraints� In this note we give one possible formulation of a
constraint tableau system for one of the simplest propositional temporal logics	
namely for discrete linear temporal logic with �future� always and sometimes�

� Basic De�nitions

Let L � hL�����������i be a propositional language of linear temporal logic

�LTL� with negation	 disjunction	 conjunction	 always	 and sometimes de�ned
as usual over a non�empty set of propositional variables L��

Call S � fk� x� � � � �� xnjk� n � IN�� x�� � � � � xn � S�g the set of signs over
a non�empty set S� of world variables disjoint with L�� The language of signed
linear temporal logic �S�LTL� is L� � fs � �js � S� � � Lg�



An S�LTL�Interpretation v maps each propositional variable p � L� to the
set of time points p holds at and each world variable s� � S� to a time point�
The extension to formulas f � L and to signs s � S is immediate�

Let s � � � L�	 then s � � is satis�able if there is an S�LTL interpretation v

such that v�s� � v���� The extension to sets of S�LTL�formulas is immediate�
C � fs� �IN�

s�js�� s� � Sg is the set of S�LTL constraints� Usually we omit
the subscript of �� We make use of the standard abbreviations ���� �� etc�

� Constraint Tableau Calculus

We assume the reader is familiar with tableau calculi for propositional logics	 and
in particular with uniform notation for propositional modal formulas as de�ned
in ���� Just recall that type � formulas are conjunctive	 type � are disjunctive	
type � are universal or �always�	 and type 	 are existential or �sometimes��

In contrast to classical propositional tableaux	 nodes consist of sets of signed

formulas rather than single formulas� Moreover	 we must accomodate linear con�
straints� Hence	 a tableau node K is a pair h
�Ci � ��L

�

	�C�� A nodeK � h
�Ci
is satis�able if 
 has a model v which as well solves C�

In Table � we give correspondences between premises and conclusions of ta�
bleau rules for all types of compound formulas� The superscripts �� � � � � in the
� rules are to be understood as markers indicating that no logical rule is to be
applied anymore to the formula thus superscribed� This is a crucial di�erence
to conventional temporal tableau systems	 and we will see how completeness is
restored by di�erent means� There are four types of tableau rules which will be
explained in the following�

Logical tableau rules can be speci�ed as in Table �� Note that taking the
disjoint union in the premise implies that the main formula of the premise does
not occur anymore in the conclusion� The letter k in the 	 rules is a new variable
from S� that occurs not on the current branch� Informally	 the conclusion of a
	 rule says that there is some point in the future when � comes true�

Table �� Correspondence between premises and conclusions of temporal constraint
tableau rules	
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The r�ole of the linear constraints is to record the information on possible
models for each branch in a more concise form than in conventional tableaux�



Table �� Temporal tableau rules for compound formulas	

hf�g ����Ci

hf��� ��g � ��Ci

hf�g ����Ci

hf��g � ��Ci hf��g � ��Ci

hf�g ����Ci
hf��� ��g � ��Ci

hf�g ����Ci
hf���k�g � ��fc��k� �Cgi

The justi�cation is that every class of counter models can in fact be characterized
by a set of linear inequations with integral solutions� One link between formulas
and constraints is constituted by the 	 rules as we have seen	 another link is
obtained from the observation that	 obviously	 a formula and its complement
cannot be true simultaneously at the same time point� This concept is formalized
in the following con�ict rule�

hfs 
 �� t 
 ��g � ��Ci
hfs 
 �� t 
 ��g � ��C � fs �� tgi

As a matter of fact	 there are other possible constraints one could generate	
for instance	 s � t from s � � and t � ��� etc�	 but these are being subsumed by
the synchronization rule below which we need for completeness anyway�

In conventional temporal tableau systems such as in ��� two more ingredi�
ents are needed for which we have no substitute so far� First	 for completeness
one must have the information that an always�formula does hold in all subse�
quent states� Usually this is achieved by reintroducing always�formulas in the
conclusion of a rule and thus allowing them to be applied more than once� As a
consequence	 in order to obtain an e�ective tableau system	 nodes N all whose
formulas have occurred already in a previous node M are �looped back� to this
node M such that temporal tableaux really are directed graphs with a unique
root� We intend to combine both rules	 the �restart� rule on always�formulas and
the �loop back� rule	 into a single rule called synchronization rule� The rationale
behind it is to �synchronize� always�formulas so that they are available in the
�present� state� This has a similar e�ect as the restart rule	 but because in the
constraint part of a node we can accumulate information from di�erent time
points	 a �nite number of applications of this rule is su�cient�

In slight abuse of notation let now � denote the unsigned part of an always�
formula	 and �� the unsigned part of its correspondent according to Table ��
let � � L� 
 f�pjp � L�g	 i�e� � is a literal� Then we can write down the
synchronization rule as follows�

hfs 
 	� t 
 �g � ��Ci
hfs 
 	� t 
 �g � ��C � fs � tgi j hfs 
 	� t 
 �� �s 
 ���

syng � ��C � fs 
 tgi

The syn marker prevents inde�nite application of the synchronization rule	
because the synchronization rule can only be applied to formulas without a syn

marker�



But there are examples where the synchronization rule must be applied to a
formula which itself is a synchronization result �see Fig� ��� So we need a rule
which activates formulas with a syn marker	 called activation rule� The idea is
to activate a literal �s � ��syn � 
 if a literal s� � � � 
 together with an S�LTL�
interpretation v which maps v�s� � v�s�� cannot be found	 and to activate an
always formula �s � ��syn � 
 if an always formula s� � � � 
 together with an
S�LTL�interpretation v which maps v�s� � v�s�� cannot be found� There is an
e�ective test for the applicability of the activation rule	 but the details must be
omitted due to lack of space� Let �s � ��syn be a formula to be activated� Then
the activation rule is simply the following�

hf�s 
 ��syng � ��Ci
hfs 
 �g � ��Ci

A node K � h
�Ci in our tableau is contradictory if C is unsolvable� A
tableau is closed if every branch contains a contradictory node� A formula � � L
is valid i� the tableau with root hfs � ��g� fs � �gi	 s � S�	 is closed� In Fig� �
we give a tableau proof of ���p� ����p�
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Fig� �� We omitted the �rst steps which are purely propositional	 The next two steps
are straightforward � and � rule applications	 Next follow two applications of the syn�
chronisation rule that split the proof into three branches	 The �rst and the third of
these can be closed after a con�ict rule application	 The second branch can be closed
after the activation rule and again the synchronization rule are applied	 �Due to space
restrictions only such formulas and constraints are displayed that are newly gener�
ated or that are needed in that step	 The formulas between which a synchronization
takes place appear as the �rst two formulas in the left leaf which is generated by the
synchronization rule	�



� Conclusion

It is fairly easy	 if somewhat tedious	 to prove that our rules preserve satis�abi�
lity� Completeness	 however	 is a much tougher question	 and the proof is quite
involved� This is one of the reasons why the present note is merely a position
paper� The other reason is that so far we did not show that the idea of incor�
porating linear constraints into temporal logic tableaux is in some sense a real
improvement over the current state of the art� On the other hand	 we would like
to point out at least a few advantages that might be gained from it�

� Better performance if compared to conventional temporal tableaux� Admit�
tedly	 this is not obvious from the present appearance of the rules	 but there
is ample room for optimisation	 for example	 in the synchronisation rules�

� Implementing real�time logics like the ones suggested in ����
� Extend the use of linear constraints to a translation of temporal logic satis�
�ability into integer programming �as it has been done in ��� for many�valued
logic�� This would allow easy amalgamationwith other non�standard features
like multiple truth values �needed	 for instance	 for hardware veri�cation at
the switch level ���� or non�monotonicity ��� in a homogenous framework�

� Perspective of a constraint�based approach to non�classical deduction if in�
tegrated with ideas from ����

� Lifting to restricted �rst�order versions�
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