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Abstract

Six learning algorithms are investigated and compared empirically. All of them are based on
variants of the candidate training idea of the Cascade Correlation method. The comparison
was performed using 42 di�erent datasets from the Proben1 benchmark collection. The
results indicate: (1) for these problems it is slightly better not to cascade the hidden units,
(2) error minimization candidate training is better that covariance maximization for regres-
sion problems but may be a little worse for classi�cation problems, (3) for most learning
tasks, considering validation set errors during the selection of the best candidate will not
lead to improved networks, but for a few tasks it will.
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1 Introduction

In order to obtain good generalization performance when training a neural network, it must

have the right size. Networks that are too small cannot represent the required function, while

networks that are too large are prone to over�tting (Geman et al., 1992). To limit the e�ective

size of a network in order to avoid over�tting one can either use additive or subtractive methods

or regularization. Additive (often called constructive) methods start out from a small network

and then insert additional units (also known as nodes or neurons) and connections (also known as

weights or links) until the network can represent the required function (Ash, 1989, Fahlman and

Lebiere, 1990, Frean, 1990, Gallant, 1986, Hanson, 1989, M�ezar and Nadal, 1989, Simon, 1993,

Wang et al., 1994, Wynne-Jones, 1991, Zollner et al., 1992). Subtractive (often called pruning)

methods start out from a large network and remove superuous parts until the network can

just still represent the required function (Le Cun et al., 1989, Finno� et al., 1993, Hassibi and

Stork, 1993, Levin et al., 1994). Regularization methods use a network with a large number of

parameters, but limit the size of each parameter dimension by imposing additional constraints

on each weight besides error minimization; examples are weight decay (Krogh and Hertz, 1991),

soft weight sharing (Nowlan and Hinton, 1992), and others; see (Finno� et al., 1993, Reed, 1993)

for an overview.

Although additive methods seemed to be quite interesting in terms of computation time and

ease of use, only few of them have actually been used in real applications. The notable exception

is the Cascade Correlation (CasCor) algorithm proposed by (Fahlman and Lebiere, 1990), which

has been used in many applications and is implemented in most larger NN simulator programs.

The idea of the CasCor algorithm is to add hidden units one by one, each on a separate hidden

layer, to form a multi layer perceptron capable of solving a learning problem without prior

assumptions about its size and structure. Each new unit is selected from a pool of several which

are trained concurrently before one is being inserted into the network permanently; this reduces

the sensitivity of the algorithm with respect to the random initialization of the weights.

There are a number of possible problems with and improvements for CasCor. Therefore, the

present study investigates the behavior of CasCor and �ve variants of it on a variety of classi�-

cation and approximation (regression) problems. Three of the variants have not been described

in the literature before.

The next sections describe the original CasCor algorithm, point out possible problems with it

and proposed solutions, and describes the members of the CasCor algorithm family considered.

Then the empirical study is described and its results are interpreted.

2 Cascade Correlation

CasCor works as follows: Initially, we train a network without hidden units by gradient descent.

Then, in subsequent training phases, one hidden unit each is inserted into the network. This

is done in two partial phases: First, we generate a pool of candidate units. Each of them is

initialized di�erently and trained independently of the others. Afterwards, the best candidate is

selected and inserted into the network permanently. Second, the rest of the network is adjusted

for best cooperation with the new unit. Here is a more precise description in pseudo code:

Cascade Correlation:

Generate network without hidden units;

REPEAT
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IF NOT Is �rst iteration

THEN Generate and train candidates ;

Insert best candidate into the network ;

END;

Train output connections ;

UNTIL End ;

The output connections are those that lead to output units. CasCor trains those connections

that lead to a hidden unit only before the unit is inserted into the network and leaves them

constant later on. The structure of the initial network used in CasCor is shown in Figure 1.

input units

output units

Figure 1: Initial CasCor net.

input units

output units

candidates

fixed connection

connection under training

‘ghost’ connection

Figure 2: CasCor net during �rst candidate

training phase.

Generate and train candidates:

Generate m new candidate units C1 to Cm;

Connect their inputs with the outputs of the input units

and previously existing hidden units;

REPEAT

Perform a gradient ascent step for covariance of

candidates' activation with output deviation;

UNTIL End of candidate training ;

The structure of the network during the �rst candidate training phase is shown in Figure 2;

a network during the third candidate training phase (i.e., with two installed hidden units) in

Figure 4.

Using gradient ascent on the covariance is based on the following idea: train the candidates to

have a large activation whenever the rest of the network produces a di�erent deviation from the

target output than it does on average (which is close to zero usually). Such a unit can later be

used to reduce that component of the network error with which it is correlated. The covariance

S of a candidate with activation Cp and output deviation Eo at output unit o over the set of all

training examples p in the formulation of Fahlman and Lebiere is

S =
X
o

�����
X
p

(Cp � C)(Ep;o � Eo)

�����
where C is the average activation of the candidate and Eo is the average linear deviation at

output unit o, i.e., the di�erence between the actual and target output value. The partial
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derivative of S by the weights wi from unit i into the candidate is

@S

@wi

=
X
p;o

�o(Ep;o � Eo)f
0
p
outi;p

where f 0
p
is the derivative of the candidate's activation function with respect to the sum of its

inputs and outi;p is the output of unit i for example p. �o is the sign of the covariance for

output unit o, i.e., the derivative of the absolute value function in the covariance expression.

During covariance training there are no real connections from the candidates to the output units,

because the candidates must not all inuence the output at the same time. Instead, there are

\ghost" connections that are used only to back-propagate error information but not to forward-

propagate output activation. These ghost connections become normal trainable connections

when a candidate is selected.

In original CasCor, the termination criterion End candidate training has three user selectable

Parameters. It is Permitted number e of candidate training epochs trained OR candidate training

stagnates , where stagnation means that the highest covariance produced by any of the candidates

has increased by less than a certain amount a during the last k epochs. This criterion, however,

is too simple; therefore, we will derive a better one below.

The covariance developed by a candidate during training depends on the random initialization

of its input weights. For this reason, not only a single candidate is being trained, but a whole

pool of them (typically about 8 to 16). This is possible because during covariance training, the

candidates do not inuence the outputs of the network; thus, they are independent of each other.

The capability to train such a candidate pool is one of the big advantages of CasCor. After the

end of the candidate training, the best candidate is inserted into the network, the others are

deleted:

Insert best candidate into the network:

Select candidate with highest covariance;

Delete all other candidates;

Connect remaining candidate to the output units;

This turns the best candidate into a new hidden unit. The resulting con�guration is shown in

Figure 3. The weights of the new output connections are initialized with small values, the sign

of which is the inverse of the covariance with the respective output unit. The weights of the new

unit's input connections are held constant for the rest of the training process. Such a hidden unit

could be called a feature detector for a component of the input data that was responsible for a

part of the remaining network error. This component of the remaining error can now be reduced

by proper adjustment of the output connection weights: After the insertion of a hidden unit

(and before the insertion of the �rst), the output connections are trained. Output connections

are exactly all those that lead to output units.

Train output connections:

REPEAT

Perform gradient descent step for output error on the output weights;

UNTIL End of output training ;

This training phase works exactly like training a network without hidden units; the hidden units

are treated just like additional input units. A backward propagation of errors through hidden

units is not necessary.

In original CasCor, the termination criterion End output training is: Permitted number of output

training epochs done OR output training stagnates , similar to the criterion for candidate training
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connection under training

Figure 3: CasCor net after end of �rst candi-

date training phase.
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. . . . . . . . .

Figure 4: CasCor net during third candidate

training phase. Two of the input units are not

shown.

shown above. The termination criterion End for the overall training is: Permitted number of

hidden units inserted OR last hidden unit not resulted in su�cient decrease of error OR error

small enough. In the original formulation of CasCor, the parameters for these criteria must

explicitly be set by the user, which is not acceptable for an easily usable training algorithm.

Therefore, we discuss �xed criteria in Section 3.1 below.

2.1 Possible problems

Cascade Correlation has two main problems:

1. In principle, the covariance is an ill-suited target function for training the candidates. Max-

imizing covariance trains candidates to have a large activation (exact: large deviation from

average activation) whenever the error at their output is not equal to the average error. That

is, even when the error deviation is only small, a large activation leads to higher payo� (higher

covariance) than a small one, although the latter would be more appropriate. Therefore, Cas-

Cor has a tendency to overcompensate errors. This makes the algorithm not well suited for

regression tasks, it works better for classi�cation tasks.

2. Cascading the hidden units results in a network that can represent very strong nonlinearities.

Although this power is in principle useful, it can be a disadvantage if such strong nonlinearity

is not required to solve the problem and no su�cient number of training examples is available

to control the power (Sj�gaard, 1991).

2.2 Possible solutions

1. To remedy the �rst problem, one can change the learning rule and train directly for mini-

mization of the output errors instead of for maximization of covariance. This error minimiza-

tion approach for candidate training is used in the as yet unpublished Cascade2 algorithm of
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Fahlman1 and, in a somewhat di�erent form, the CasEr algorithm (Littmann and Ritter, 1992).

The form given below is similar to that of Cascade2 (except where noted).

For direct error minimization we must create virtual output connections for the candidate units.

These connections do not propagate an activation to the output units, but nevertheless receive

an error signal during the backward pass. This signal is corrected by the would-be contribution

of the candidate unit and is then handled like in normal backpropagation; but only the candidate

units are being trained while the rest of the network is �xed. That is, a virtual connection from

a candidate i to an output unit j does not compute its gradient contribution �wij like a normal

connection as

�wij =
@E(yj � f(inj))

@f(inj)

@f(inj)

@inj| {z }
=:�j

outi

(where inj is the summed input to the unit, E the error function, yj the target output value,

and f the activation function of j), but instead as

�wij =
@E(yj � f(inj + wijouti))

@f(inj + wijouti)

@f(inj + wijouti)

@(inj + wijouti)
outi

This computation becomes simpler, if f is the identity function (i.e., we use linear output units)

and E is the squared error function. In this case the correction can be computed locally in

the connection, because its contribution adds linearly to the delta value to be backpropagated,

which is routinely available as �j . The resulting computation becomes

�wij = (�j � wij outi)| {z }
=:�̂j

outi

In the following we always assume the squared error function, although others would be possible

as well.

The goodness G of a candidate can be expressed using the quotient of total error of the network

with and without the candidate. We normalize this value to zero for candidates without any

e�ect and otherwise measure in percent, that is

G := 100

�
Enet

Ecand

� 1

�
= 100

 P
j;p
(yj(p)� oj(p))

2P
j;p
�̂j(p)

� 1

!

This value can be negative, namely if the candidate increases the total error. This is common at

the beginning of the candidate training or for the errors in a validation set. A unit with negative

goodness may nevertheless improve the network, because the subsequent training of the output

connections can turn it into a positive overall e�ect.

In contrast to the above, Cascade2 uses nonlinear activation functions in the output units and

nevertheless trains using the simpli�ed error correction term. The same is true for CasEr (tanh

activation function), with the additional restriction that the output weights are assumed to have

constant value 1, i.e., are not trained.

The CasEr article (Littmann and Ritter, 1992) evaluated the algorithm for classi�cation prob-

lems only (plus a failed attempt to learn the Mackey-Glass time series) and concludes that

CasCor works better than CasEr. However, for regression tasks the covariance learning rule is

obviously ill-suited and should be replaced by direct error minimization.

1All information about Cascade2 is from personal communication with Scott Fahlman, April 1994 and later.

6



2. For the second problem (Sj�gaard, 1991) shows that networks generated with CasCor can

systematically have worse generalization than networks trained with the same method without

cascading of the hidden units. He places all hidden units in one hidden layer. Unfortunately,

Sj�gaard uses but a single arti�cial learning problem with only two inputs and one output.

(Yeung, 1991) had the same algorithm idea and concludes that there is almost no di�erence to

CasCor for a number of learning problems. Fahlman says that the cascading is important for

some problems and will not hurt for the others. Obviously additional empirical data is required

to �nd out who is right. Such data is presented in the study at hand.

2.3 Related work

There are many other suggestions for additive learning besides the CasCor family. Among

the earliest are Gallant's tower and inverted pyramid proposals based on simple perceptrons

(Gallant, 1986) followed by several re�nements, extensions, and re-inventions, e.g. (Ba�es and

Zelle, 1992, Frean, 1990, M�ezar and Nadal, 1989, Simon, 1993).

Several methods, e.g. (Ash, 1989, Wang et al., 1994), propose addition of units in the hidden

layers of standard MLPs during normal backpropagation training, but this approach severely

disturbs the training process because of the interaction of hidden units. Not even constructive

unit splitting with reasonable initializations for the new units works well (Hanson, 1989, Wynne-

Jones, 1991). (Littmann and Ritter, 1993) propose direct cascading where local linear maps or

di�erent neural modules are cascaded and produce the output from the union of the original

network inputs and the outputs of previous modules. This approach works well e.g. for predicting

the Mackey-Glass time series.

A number of completely di�erent approaches to additive learning are based on radial basis

functions (RBFs) that cover the input space with regions instead of segmenting it with borders

as MLPs do. One of the most sophisticated RBF methods is the supervised version of Growing

Cell Structures (Fritzke, 1994) . It uses a front-end network based on an approximated k-

dimensional Voronoi tessellation of the input space using k-dimensional simplices of units and

unsupervised local learning and a back-end to re-interpret the front-end network units as RBFs

and to compute outputs from them. The learning rule inserts new units in regions where large

errors occur and thus allows to learn both the number and the position of the RBFs; a suitable

value of k has to be selected by hand, though.

3 The algorithm family

In this section I will present those six members of the CasCor family that have been investigated

in the study. All these algorithms are speci�ed with �xed values for all control parameters, so

that no user tuning is required and the algorithms could be called \automatic".

3.1 Termination criteria

All members of the CasCor family are very sensitive to changes in the stopping criteria of the

candidate and output training phases. If training is too short, the components of the network

will not work together well enough for good results. If training is too long, it costs much

computation time and may result in over�tting and bad generalization. In the original version of

CasCor and the other published candidate training algorithms, no measures against over�tting
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are described. Therefore, we extend the criteria for changing training phases accordingly by

applying the method of early stopping using a validation set.

To formally describe the criteria, we need some de�nitions. Let E be the objective function

(error function) of the training algorithm, in our case the squared error. Then Etr(t) is the

average error per example of the network over the training set, measured after epoch t. Eva(t) is

the corresponding error on the validation set and is used by the stopping criterion. Ete(t) is the

corresponding error on the test set; it is not known to the training algorithm but characterizes

the quality of the network resulting from training.

Let Eopt(t) be the lowest validation set error obtained in epochs up to t:

Eopt(t) = min
t0�t

Eva(t
0)

Now we de�ne the generalization loss at epoch t to be the relative increase of the validation

error over the minimum-so-far (in percent):

GL(t) = 100 �

�
Eva(t)

Eopt(t)
� 1

�

High generalization loss will be one of the criteria used to stop training or training phases,

because it directly indicates over�tting.

However, we might want to suppress stopping if the training is still \progressing rapidly". To

formalize this notion we de�ne a training strip of length k to be a sequence of k epochs numbered

n+1 : : :n+ k where n is divisible by k. The training progress (in per thousand) measured after

such a training strip is then

Pk(t) = 1000 �

� P
t02t�k+1:::tEtr(t

0)

k �mint02t�k+1:::tEtr(t0)
� 1

�

that is, \how much was the average training error during the strip larger than the minimum

training error during the strip?" Note that this progress measure is high for instable phases of

training, where the training set error goes up instead of down.

For the candidate training termination criteria, we always consider the candidate with the best

goodness Ĝ(t) in some epoch t and de�ne the progress of candidate training for a sequence of k

epochs, measured in per thousand, to be

�Pk(t) = 10

 
max

t02t�k+1:::t
(Ĝ(t))�

1

k

X
t02t�k+1:::t

Ĝ(t)

!

The de�nition has to use a di�erence measure instead of a proportion measure, because Ĝ(t)

may become zero. This goodness is always goodness on the training set. There is also the

goodness Ĝva(t) on the validation set and we sometimes write Ĝtr(t) to mean Ĝ(t).

In analogy to the generalization loss GL we de�ne the goodness loss V Lva on the validation set

V Lva(t) = 100
maxt0�t(Ĝva(t

0))� Ĝva(t)

max
����maxt0�t Ĝva(t0)

��� ; 1�
This measure normalizes the di�erence of goodness values with their absolute value, except when

they are in the range �1 : : :1 because otherwise there would be a singularity at zero. We want
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to know the goodness loss for the training set as well; we write V Ltr and de�ne it in analogy to

V Lva above.

With these de�nitions we can describe the termination criteria. We start with the more critical

one, namely, candidate training:

1. Stagnation conditions for candidate training are known to be di�cult to �nd. Even with

CasCor, a candidate can show almost no improvement in covariance for, say, 10 epochs and then

suddenly rise further. Such e�ects are still more pronounced in error minimization candidate

training; the error curves over time are very turbulent, intermittent increase of the error happens

frequently. Therefore, termination criteria must not react to low progress too fast. We de�ne

the last improvement epoch as the last epoch t, for which �P5(t) > 0:5 and terminate candidate

training because of stagnation only when t is 40 epochs ago. Fahlman uses a similar criterion

with an interval of only 12 epochs; my experiments indicated that this value is too small for

many real datasets.

2. Candidate training exhibits over�tting as well, as is shown by the severe example in Figure 5.

Cascade2 is much more sensitive to candidate over�tting than CasCor. However, due to the

-4

-2

0

2

4

45 50 55 60 65 70 75

C1 training set
C2 training set
C3 training set

C1 validation set
C2 validation set
C3 validation set

Figure 5: Goodness values over time for three

candidates C1, C2, C3 on the training and the

validation set during �rst candidate training of

glass1 with cascade algorithm. There is severe

over�tting in all candidates and a turbulence

for C1.

turbulent development of the candidates, the termination criterion must not be too responsive

to over�tting. We terminate when V Lva(t) > 25, but not before epoch 25 and only when

V Ltr(t) = 0 at the same time, i.e., when goodness on the training set has not decreased. After

termination of candidate training, the weights of each candidate C are reset to their values in

epoch t̂C , where C had its highest goodness Gva(t̂C) on the validation set. Accordingly, the

goodness used to select the \best" candidate is the goodness on the training set at the same

point: Gtr(t̂C).

3. Even with both of the above termination criteria, candidate training may take very long.

Since multiple long candidate training phases would result in unacceptably long overall training

times, we also limit the absolute number of epochs per candidate training phase. This value

must not be too small, because otherwise the network will contain insu�ciently trained units.

150 epochs seems to be a good compromise; however, a higher value would probably lead to

slightly better results in some cases.

These three parts together result in the following termination criterion for candidate training:

End of candidate training:

Last improvement epoch is 40 epochs ago OR

(V Lva(t) > 25 AND At least 25 epochs trained AND V Ltr(t) = 0) OR

Candidate training performed for 150 epochs.
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An interesting question for the the termination of the output training is how to discriminate it

from the overall termination of the training. Output training should have a minimum length,

just like candidate training, and I choose 25 epochs again. Apart from that, the same criteria

apply for output and overall training: high generalization loss, low progress, and exceeding a

maximum number of epochs. Experiments resulted in the following as reasonable choices:

End of output training:

At least 25 epochs trained in this output training AND

(Altogether more than 5000 epochs trained OR

Generalization loss GL(t) > 2 OR Progress P5(t) < 0:4)

Overall training is terminated when either the generalization loss is substantial or the last

insertion of a hidden unit resulted in hardly any progress:

End:

Altogether more than 5000 epochs trained OR

Generalization loss GL(t) > 5 OR

(Progress P5(t) < 0:1 AND Little improvement from last new hidden unit)

Little improvement from last new hidden unit:

Reduction of training set error due to last new hidden unit less than 0.1% AND

Validation set error increased due to last new hidden unit.

To derive the above criteria, I always used training set errors and validation set errors only; never

any test set errors. It is a little unsatisfactory that all of the criteria are heuristic. However, I

do not know of any theory that would allow the derivation of criteria that are both e�cient and

e�ective.

3.2 Six algorithms

This subsection presents the derivation of the six algorithms investigated in this study. They

have several things in common (except where noted): (1) output units use the identity activation

function, (2) hidden units use the x=(1 + jxj) activation function, (3) squared error is used as

cost function, (4) termination criteria are as described above, (5) the RPROP learning rule

(Riedmiller and Braun, 1993) is used for weight update, with the parameters �+ = 1:2, �� = 0:5,

�0 2 [0:05 : : :0:2] randomly per weight, �max = 50, �min = 0, initial weights from [-0.1: : :0.1]

randomly, and (6) nine units are used in each candidate pool.

The �rst three algorithms are already known from above:

cascor is the mother of the algorithm family;

cascade is CasCor with error minimization instead of covariance maximization for the candi-

dates;

cand is cascade with all hidden units in just one layer as suggested for CasCor by Sj�gaard and

Yeung. Hidden units receive input connections from the input units only.

The other three algorithms are based on the following idea: If we have already produced a

number of candidates with di�erent goodness on training set and validation set, why select one

of them solely based on training set results? If we used the goodness on the validation set as

well, we could often select a candidate with better generalization. So let us rede�ne the notion

of \best candidate" using a combination of Gtr and Gva as the measure.
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This idea has two possible drawbacks: First, if Gtr is not weighed high enough, the algorithm

will confuse itself, because the chosen candidate may be insu�ciently adapted to the training set

and thus disturb subsequent training progress. Second, using the validation set for the selection

strikes a \leak" through which small amounts of information about the validation set ow into

the training process. This may confuse the termination criteria, because they are built on the

assumption that the validation set results are not optimized by the algorithm directly.

Due to these two problems it is impossible to say in advance whether the advantage of using

Gva will indeed lead to better networks. To answer this question, I used three algorithms from

this class, which I call kogi . The chosen representatives are called kogi2, kogi3, and kogi9 for

historical reasons.

kogi2 is equivalent to cascade, except that it uses Gkogi instead of Gtr to select the best candi-

date, where Gkogi := 1=3(Gva + 2Gtr). The same criterion is used in the other kogi algorithms.

This weighting was found in pretests as a good compromise between robustness (due to prefer-

ence for Gtr) and possible improvements (due to use of Gva).

kogi3 is equivalent to cand, with two changes: First, the use of Gkogi and second the use of

several di�erent activation functions in the candidates. In each candidate training phase, the

same number of candidates use the activation functions x=(1 + jxj) (symmetric soft sigmoid),

1=(1 + e�x) (standard sigmoid), and e�x
2
=2 (Gaussian), respectively. This idea was already

suggested (but not tried) by Fahlman for CasCor; Sj�gaard �nds for his learning problem that

this approach makes training faster (with equal quality of the solutions) for the non-cascading

network, but makes generalization worse with CasCor. For that reason I do not use di�erent

activation functions for the cascading networks.

kogi9 tries to combine the advantages of kogi2 (powerful network due to cascading) and kogi3

(less inclination to over�tting). It is based on the observation that only rarely a result using a

static network is published that uses more than two hidden layers. A two hidden layer network is

generated by kogi9 by using two pools of candidates; pool 1 supplies the �rst hidden layer, pool 2

the second hidden layer, receiving connections from the input units and all previously inserted

hidden units in the �rst hidden layer. All candidates compete for selection. If only Gtr was used

for the selection, pool 1 units would hardly have a chance to be selected in later training phases,

because pool 2 units have more input information available. But this information may also lead

to over�tting so that the Gkogi selection measure picks the best candidate from either pool 1 or

pool 2, whichever is more appropriate depending on the learning problem and training stage.

This approach makes use of at least some of the power of a cascading algorithm, yet avoids most

of its dangers. Depending on the size of the pools, kogi9 training has a higher computational

cost than the other algorithms, because it uses more candidates. Just like kogi3, kogi9 also uses

di�erent activation functions.

4 Experimental results

To compare the six algorithms described above, a large set of experiments was performed using

a MasPar MP-1 16384 processor SIMD machine, a KSR-1 32 processor MIMD machine, and six

Sun workstations over several weeks. 8524 completed runs were made overall.

4.1 Setup

All experiments used the datasets of the Proben1 benchmark collection. 42 di�erent datasets

were used, representing 14 di�erent tasks, i.e., there are three versions of each task, each using
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a di�erent partitioning of the data into training set, validation set, and test set. The problems

have between 8 and 120 inputs, between 1 and 19 outputs, and between 214 and 7200 examples.

All inputs and outputs are normalized to range 0: : :1. 10 of the problems are classi�cation tasks

using 1-of-n output encoding (cancer, card, diabetes, gene, glass, heart, heartc, horse, soybean,

and thyroid), 4 are regression tasks (building, are, hearta, and heartac). All problems are real

datasets from realistic application domains; for a detailed description of the domains and the

datasets refer to (Prechelt, 1994). Due to technical problems that are hardly avoidable in such

a long series of experiments, the samples for each algorithm/dataset pair are not completely

balanced. On the average, 34 runs were made for each pair.

All runs used the parameters and termination criteria shown in the previous sections. The

results of the runs were tested for statistically signi�cant di�erences in the mean of the resulting

squared error on the test set between the samples for the same dataset but di�erent algorithms.

The test used was a t-test with Cochran/Cox-approximation for the case of unequal variances as

implemented in the SAS system. The values tested were the logarithms of the mean squared error

on the test set using that state of the network that exhibited the lowest error on the validation set.

Logarithms are used, because the test set errors are usually log-normally distributed. There are

some samples (16% overall), with substantial deviations from a log-normal distribution; these

make the t-test underestimate the signi�cance of di�erences. The corresponding results are

marked accordingly in the tables below. Furthermore, many samples had a small number of

outliers, which where removed from the samples before the tests (3% of the runs overall).

Using the results of these tests, I tried to answer the following questions (for the set of domains

covered by Proben1):

1. Is cand better than cascade, as Sj�gaard's results would suggest, or is it the other way

round, as Fahlman assumes?

2. Is cascade better than cascor, as we would expect from theoretical considerations?

3. Is kogi3 better than cand?

4. Is kogi2 better than cascade?

5. How good is kogi9 compared to kogi2 and kogi3?

4.2 Results and discussion

The detailed results of the individual runs with error, classi�cation error, number of epochs,

number of units etc. are available for anonymous FTP from ftp.ira.uka.de in directory

/pub/neuron as �le nndata.tar.gz (774 kB). This �le also includes result data from several

other experiment series with the Proben1 collection.

4.2.1 cand vs. cascade

The �rst question can be answered by looking at the left part of Table 1: For the domains

considered here, cand is superior to cascade more often (building, glass, thyroid), than vice

versa (diabetes). In most cases, however, the di�erences, if any, are rather small.

It is interesting to examine the size of the networks built by cand and cascade, as shown in

Table 2. Two observations can be made: First, cascade does not always use less units than cand,

although this would be expected due to the higher representational power of cascaded units and

the higher number of connections for �xed number of units. This contradiction suggests that

cascade is not able to use its resources in a very e�cient way. Second, we observe a high variance
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Table 1: Comparison of cand, cascade, and cascor using t-test

cand (c) vs. cascade (C) cascade (C) vs. cascor (R) cand (c) vs. cascor (R)

Problem 1 2 3 1 2 3 1 2 3

building | c 0.0 (c 0.0) | R 1.9 C 9.7 R 0.7 c 0.0 c 0.0

cancer | (c 0.2) | R 0.0 (R 3.5) R 0.0 R 0.0 c 7.5 R 0.0

card | | (c 9.8) | | | c 4.8 | |

diabetes | C 2.6 C 2.2 C 0.0 (C 0.0) | c 0.0 (c 0.2) R 2.0

are | | | | C 0.0 C 0.7 | c 0.0 c 9.9

gene | | (C 2.5) | | | | | (R 0.3)

glass c 0.1 | c 0.0 R 0.0 | R 0.0 R 3.6 | |

heart | C 2.1 | | | | R 9.5 (R 0.1) c 1.1

hearta | | | R 4.2 C 1.4 | R 7.0 c 6.3 |

heartac | | | | | | | | |

heartc | | | | | | | R 1.8 |

horse | | C 1.3 | | | | | |

soybean c 0.0 (C 8.2) | R 0.9 R 0.0 | | (R 2.1) |

thyroid c 0.0 (c 8.3) (c 0.0) R 0.9 (R 0.0) (R 0.7) c 0.0 | c 0.0

Each entry represents the results of a t-test comparing the means of logarithmic test set errors for two
problem/algorithm pair samples on versions 1, 2, 3 of each problem. Dashes mean di�erences that are
not signi�cant on a 10% level, other entries indicate the superior algorithm and the p-value of the test in
percent, i.e., the probability that the observed di�erences are purely accidental. Results in parentheses
are imprecise, because at least one of the samples was not log-normally distributed; the given probabilities
in these cases are over-estimations.
cand vs. cascade: 26 times no signi�cant di�erence, 10 times cand better (\c"), 6 times cascade better
(\C"). For regression tasks: 10 times no signi�cant di�erence, 2 times cand better.
cascade vs. cascor: 24 times no signi�cant di�erence, 12 times cascor better (\R"), 6 times cascade better
(\C"). For regression tasks: 6 times no signi�cant di�erence, 4 times cascade better, 2 times cascor better.
cand vs. cascor: 19 times no signi�cant di�erence, 12 times cand better (\c"), 11 times cascor better
(\R"). For regression tasks: 5 times no signi�cant di�erence, 5 times cand better, 2 times cascor better.

of unit numbers for some of the problems. This is a sign for the inability of both algorithms to

reliably produce the \right" network.

4.2.2 cascade vs. cascor

For the second question (see middle part of Table 1), we must di�erentiate. As expected, cascade

is slightly better better than cascor for the regression tasks (building, are, hearta, heartac).

For classi�cation tasks, on the other hand, cascor seems to be a bit better despite the fact that

we do not compare the classi�cation errors but the squared errors (i.e., we interpret the task to

be the approximation of posterior probabilities). A possible explanation of this phenomenon is

the faster convergence of candidates with covariance training compared to error minimization

training. The limit of 150 epochs for candidate training is a harder restriction for cascade

candidates than for the faster developing cascor candidates. Furthermore, due to their stronger

tendency to over�t, cascade candidates can often not even use all of these 150 epochs. As we

can see from the right part of Table 1, cascor is roughly as good as cand.

It is an interesting observation that the not theoretically justi�ed learning rule of cascor has

(small) advantages over the \correct" rule for many learning problems.
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Table 2: Numbers of hidden units generated by cand and cascade

Number of units generated by cand Number of units generated by cascade

dataset 1 dataset 2 dataset 1 dataset 2

Problem � � min-max � � min-max � � min-max � � min-max

building 19 32 0{92 58 15 0{65 4 5 0{16 9 6 0{25

cancer 16 9 3{43 24 13 3{59 15 14 3{54 15 15 0{60

card 2 1 1{6 2 1 0{7 1 1 1{3 2 1 1{6

diabetes 12 8 3{34 8 6 0{32 8 8 0{33 9 7 0{34

are 3 2 1{8 3 1 2{5 3 2 1{8 3 1 2{7

gene 5 2 2{13 5 2 1{12 7 4 2{19 6 3 2{13

glass 9 3 4{21 2 3 0{20 12 9 2{38 3 5 0{29

heart 5 3 2{14 5 3 2{15 5 4 2{24 6 7 2{42

hearta 5 3 0{13 4 2 2{11 6 3 0{14 5 4 2{18

heartac 3 2 2{8 1 1 0{4 2 1 1{4 0 0 0{1

heartc 3 1 2{6 4 4 0{19 3 1 1{5 5 3 1{15

horse 1 1 0{2 2 1 0{5 1 1 0{2 1 1 0{3

soybean 25 6 11{39 25 10 1{44 32 9 13{43 25 12 2{43

thyroid 48 12 15{59 37 16 2{59 23 19 2{56 15 17 2{55

For two versions (1 and 2) of each problem: number of hidden units generated by cand and cascade
algorithm, respectively, described by the mean �, standard deviation �, minimum, and maximum over
all runs.

Table 3: Comparison of cand/cascade with kogi2/kogi3 using t-test

cand (c) vs. kogi3 (k) cascade (C) vs. kogi2 (K)

Problem 1 2 3 1 2 3

building | | (c 1.1) | | |

cancer (c 0.0) c 0.0 c 0.5 C 7.8 | |

card | | | C 2.3 C 9.4 |

diabetes c 0.0 | c 0.0 | | |

are | (c 0.6) c 0.1 | K 0.1 |

gene k 0.0 k 0.1 k 0.0 | | (C 4.0)

glass c 0.0 k 0.3 | | K 5.1 |

heart c 0.0 | c 0.0 | | |

hearta c 0.3 (c 0.1) (c 1.7) | (C 2.2) |

heartac c 1.8 | | | | |

heartc c 2.4 | | | | |

horse | | | | | |

soybean c 0.0 (c 3.1) c 0.0 | (C 0.9) |

thyroid c 0.0 | | | | |

The structure of the table is analog to Table 1.
cand vs. kogi3: 18 times no signi�cant di�erence, 20 times cand better (\c"), 4 times kogi3 better (\k").
cascade vs. kogi2: 34 times no signi�cant di�erence, 6 times cascade better (\C"), 2 times kogi2 bet-
ter (\K").
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4.2.3 cand/cascade vs. kogi3/kogi2

The comparison of cand and cascade with their counterparts kogi3 and kogi2, respectively, is

shown in Table 3. This data allows to answer questions 3 and 4: kogi3 and kogi2 are not generally

better than their conventional counterparts. For cand and kogi3 we �nd a clear inferiority of

kogi3 with one notable exception: for the gene problem, the kogi3 results are much better than

those of cand. An explanation for this discrepancy may be the high number of 120 input units

present in the gene problem, which is far more than in any other problem. The large number of

inputs may make the candidates particularly susceptible to over�tting and kogi3 can avoid such

over�tting better than cand can.

A corresponding inferiority of kogi2 compared to cascade is hardly present. Probably the relative

usefulness of using the validation set error is higher in this case due to the higher over�tting

capabilities of cascaded units. This hypothesis is supported by the direct comparison of kogi2

and kogi3 as shown in Table 4: In direct comparison, the cascading kogi2 is better than kogi3,

Table 4: Comparison of kogi2, kogi3, and kogi9 using t-test

kogi3 (k) vs. kogi2 (K) kogi3 (k) vs. kogi9 (Z) kogi2 (k) vs. kogi9 (Z)

Problem 1 2 3 1 2 3 1 2 3

building | k 0.0 | | k 0.0 | | Z 0.0 |

cancer (K 0.4) | | | | | | | |

card | | | | (Z 1.0) k 3.6 | Z 0.1 |

diabetes K 0.0 | K 0.0 | | | K 0.0 | K 0.0

are | (K 0.0) K 0.1 | | | | K 0.0 K 0.1

gene k 0.0 k 1.9 k 0.0 | | k 9.0 Z 0.0 Z 3.7 Z 0.0

glass K 0.8 k 4.1 k 4.2 | k 1.5 | K 0.8 | Z 2.0

heart K 0.0 K 0.3 K 0.1 | | | K 0.0 K 0.0 K 0.0

hearta K 8.6 (K 2.7) (K 5.5) | | | | (K 1.1) K 9.2

heartac K 3.3 | k 7.1 | | | K 4.9 | |

heartc K 1.0 | | | Z 8.8 | | | |

horse K 8.7 K 4.9 | | | | | | |

soybean K 0.0 (K 4.7) K 0.0 | | | K 0.0 (K 2.9) K 0.0

thyroid k 1.6 | (k 0.0) | | k 0.0 | (Z 1.4) (Z 0.0)

The structure of the table is analog to Table 1.
kogi3 vs. kogi2: 14 times no signi�cant di�erence, 19 times kogi2 better (\K"), 9 times kogi3 better
(\k").
kogi3 vs. kogi9: 35 times no signi�cant di�erence, 5 times kogi3 better (\k"), 2 times kogi9 better (\Z").
kogi2 vs. kogi9: 20 times no signi�cant di�erence, 14 times kogi2 better (\K"), 8 times kogi9 better
(\Z").

which builds single hidden layer networks | in contrast to the comparison of the conventional

cascade and cand algorithms. This suggests that the kogi idea of using validation set goodness

for selecting candidates seems to be particularly useful for cascading networks. However, the

kogi variants used in this study are probably not yet optimally tuned.

4.2.4 kogi2/kogi3 vs. kogi9

Finally, let us have a look at the hybrid kogi9, which builds a network with at most two hidden

layers. Comparisons of this algorithm to kogi3 and kogi2 are shown in Table 4.
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Obviously the crossing of kogi2 and kogi3 was successful: kogi9 sometimes is better than kogi2

and sometimes is better than kogi3. In general, its behavior seems to be quite close to that

of kogi3, to which only a few signi�cant di�erences were found. However, altogether kogi9 is

not better than either kogi3 or kogi2, except in cases where a network with exactly two hidden

layers seems to be a particularly good choice | the gene problem is such a case.

5 Conclusion

We have derived six members of the CasCor family by varying the following aspects:

1. Either cascade or not cascade the hidden units.

2. Either use covariance training or error minimization training for candidates.

3. Either use goodness on training set alone or on training set and validation set for selecting

best candidate.

The six algorithms were compared using the results of 8524 runs performed for 42 di�erent

datasets from the Proben1 benchmark collection. The comparisons indicate the following with

respect to the kind of domains represented by the datasets:

1. Not cascading hidden units is superior to cascading them for some problems and inferior

for others; the former case occurred more often. In most cases the decision does not make

a signi�cant di�erence at all.

2. Covariance candidate training is usually inferior to error minimization training for regression

problems. For classi�cation problems it is often superior because it converges faster.

3. Utilizing the goodness on the validation set to select a candidate can sometimes improve the

results, in particular for cascading networks. In most cases, however, no improvement occurs

and often the results will even become worse, in particular for non-cascading networks.
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