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Abstract

An algorithm for computing inclusions for all global minimizers of a function f : IRn ! IR with

f 2 C2(IRn) in a compact interval vector and its implementation in PASCAL{XSC are presented.

The algorithm is based on the method of E. Hansen using branch-and-bound techniques and

interval arithmetic.

First, some basic concepts, the essential parts of the algorithm, and some modi�cations are

described. Subsequently, the comfortable programming of the algorithm in PASCAL{XSC and

the easy use of the optimization program is demonstrated. Due to the C-based implementation of

PASCAL{XSC the compiler as well as the optimization algorithm is portable. Thus, numerical

results and performance tests of di�erent computer types are presented for some optimization

problems.

1 Introduction

We present an implementation of an algorithm for computing guaranteed bounds for all
solutions of the global unconstrained optimization problem

minf(x) subject to x 2 X; (1)

where X � IRn is a compact interval vector (called box ) and f : IRn ! IR is twice
continuously di�erentiable inX. The algorithm is based on the branch-and-bound method

of Hansen [2]. It computes a list of boxes, enclosing the global minimizers of (1). The

whole area X is searched by branching in several boxes. Depending on the value of f over

a special subbox, it can be decided whether to continue the processing of this box or to

delete it. The main features of the algorithm and its implementation are

� interval arithmetic and di�erentiation arithmetic,

� subdivision (bisection) method,

� box-discarding tests (midpoint test, monotonicity test, concavity test),

� interval Newton step, and

� boundary treatment.
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The algorithm is implemented in PASCAL{XSC [6]. The compiler is portable, and the

optimization program runs on di�erent computers. We now describe the essential parts of

the implemented algorithm and give a short survey of the used PASCAL{XSC features to

demonstrate their comfortable programming. After explaining the use of our program, we

present test results for some examples. At last, we mention some planned modi�cations.

1.1 Interval Arithmetic

The basic tool for handling continua and for computing guaranteed bounds for the global

minimizers is interval arithmetic (Moore [8], Alefeld/Herzberger [1]) with the property

x 2 X =) f(x) 2 f(X) � F (X)

(inclusion isotonicity), with x 2 IRn, X � IRn, f : IRn ! IR, and F : IRn ! IR the

machine interval evaluation of f .

The machine interval arithmetic used in our implementation guarantees highest ac-
curacy for the elementary operations and function evaluations due to their de�nition by
semimorphism (Kulisch [7]).

In addition to the general rules for the interval operations, our algorithm deals with
cases in which an expression a � A=B occurs, with a 2 IR, A;B � IR, and 0 2 B. For
this special application, an extension of the interval arithmetic operations is introduced
(Kaucher [4], Moore [8], Hansen [2]). Let A = [a; a], 0 2 B = [b; b], and a; b 2 IR, then we

de�ne

A=B =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(�1;1) if b = b = 0

(�1;1) if a < 0 < a

[a=b;1) if a � 0 ^ b < b = 0

(�1; a=b] [ [a=b;1) if a � 0 ^ b < 0 < b

(�1; a=b] if a � 0 ^ 0 = b < b

(�1; a=b] if a � 0 ^ b < b = 0

(�1; a=b] [ [a=b;1) if a � 0 ^ b < 0 < b

[a=b;1) if a � 0 ^ 0 = b < b

and

a � [b;1) =(�1; a� b]

a � (�1; b] =[a� b;1)

a � (�1;1)=(�1;1):

The width of an interval A = [a; a] � IR or an interval vector X = [x; x] � IRn is de�ned
by w(A) = a� a and w(X) = max

i

(w(Xi)).

1.2 Di�erentiation Arithmetic

To avoid explicit programming or entering of formulas for the gradientrf = ( @f

@x1
; : : : ; @f

@x1
)

and the Hessian r2f = ( @2f

@xi@xj
) i;j=1;:::;n of the objective function f , a di�erentiation

arithmetic (Rall [10]) based on interval arithmetic is used. Thus, we can calculate the value

of the gradient and the Hessian matrix automatically when calculating the function value.
Also, we can improve the function evaluation by using centered forms (Ratschek/Rokne

[11]).
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2 The Algorithm

2.1 Subdivision

The basic subdivision algorithm of Hansen [2] can also be applied to non-di�erentiable

functions. For the starting box X and the objective function f , it is given by

1. Y := X.

2. Calculate F (Y ) and ify := inf F (Y ).

3. Initialize L := (Y; ify).

4. (Y; ify) := head of (L).

5. Choose k 2 fi : w(Yi) = w(Y )g.

6. Bisection: (V1; V2) := bisect (Y; k), that is: Y = V1 [ V2.

7. Calculate F (V1), F (V2), ifv1 := inf F (V1), and ifv2 := inf F (V2).

8. L := L + (V1; ifv1) + (V2; ifv2) (adding at the end of L).

9. L := L � (Y; ify) (eliminating).

10. If termination criteria does not hold, then goto 4.

The convergence of this method is arbitrarily slow (Ratschek/Rokne [12]). Accelerating
devices like midpoint test, monotonicity test, concavity test , and interval Newton step are
necessary.

2.2 Midpoint Test

The midpoint test is used to reduce the number of intervals in the list L. We choose the
pair ( eY ; fify) out of the list L which satis�es fify � ifz for all pairs (Z; ifz) of L. Then, we
compute ef = supF (c), with c = mid eY . Now, all pairs (Z; ifz) satisfying ef < ifz can be
discarded from the list L. The test remains valid, if an arbitrary c0 2 eY is used instead
of c = mid eY . Also, a new pair (W; ifw) must only be entered in the list L if ef � ifw is

satis�ed.

2.3 Monotonicity Test

The monotonicity test is used to �gure out whether the function f is strictly monotone in

a whole subbox Y � X. Then, Y cannot contain a global minimizer in its interior. Thus,

a global minimizer can only lie on a part of the edge of Y , if this part is also a part of X.

Therefore, if f satis�es

@f

@xi
(y) < 0; for all y 2 Y , or

@f

@xi
(y) > 0; for all y 2 Y ;

for any i, then the subbox Y can be deleted or reduced to one of its edges with respect

to the i-th component.

With Y = [y; y], X = [x; x], and riF =
@F

@xi
, the monotonicity test is:
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for i := 1 to n do

if 0 < infriF (Y ) then

if xi = yi then Yi := [yi; yi]

else Delete Y and Exit i-loop

else if supriF (Y ) < 0 then

if xi = yi then Yi := [yi; yi]

else Delete Y and Exit i-loop

2.4 Concavity Test

The concavity test (non-convexity test) in IRn is used to �gure out whether the function

f is not convex in a subbox Y � X. Then, Y cannot contain a global minimizer in its

interior. A global minimizer can only lie on a part of the edge of Y if this part is also a

part of X.

A function f is convex in y, if the Hessian r2f(y) is positive de�nite. To be positive
de�nite, it is necessary that all diagonal elements of r2f(y) are positive. Therefore, if f
satis�es

@2f

@x2
i

(y) < 0; for all y 2 Y ;

for any i, then there is no positive de�nite matrix within the interval matrixr2f(Y ), and
the subbox Y can be deleted or reduced to its edges with respect to the i-th component.

With Y = [y; y], X = [x; x], and r2
ii
F =

@2F

@x2
i

, the concavity test is:

for i := 1 to n do

if supr2
ii
F (Y ) < 0 then

if (xi = yi) and (xi = yi) then Yi := [yi; yi] [ [yi; yi] f pair of intervals g

else if xi = yi then Yi := [yi; yi]

else if xi = yi then Yi := [yi; yi]

else Delete Y and Exit i-loop

if Y was not deleted then

Resolve pair notation of the edge parts and store the remaining vectors.

2.5 Interval Newton Step

For our global optimization method, we apply one step of the interval Newton method

(Alefeld/Herzberger [1]) to the problem

rf(y) = 0; y 2 Y:

That is, we compute

Y := mid (Y )� (r2f(Y ))�1 � rf(mid(Y ))
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by solving

r2f(Y ) � (mid (Y )� Y ) = rf:

For practical computations, a preconditioning and an intersection with the old value is

used. For preconditioning, we �rst calculate J = r2f(Y ), M � (midJ)�1, and m =

midY . Then we calculate A = M � J and b = M � rf(m) and we solve

A(m� YN ) = b:

using the Gauss-Seidel method [9]. The new Y is given by the intersection of the old Y and

YN . This intersection is performed componentwise in the single steps of the Gauss-Seidel

method.

The following theorem (Moore, Nickel, Krawczyk, Kahan, Hansen, Sengupta, Neu-

maier and others [9]) provides a computational existence and uniqueness test for a zero

y 2 Y .

Theorem: Suppose rf : Y � IRn ! IRn is Lipschitz continuous on Y and YN is the
result of applying one interval Newton step for rf to Y , then:

(a) Every zero y� 2 Y of rf satis�es y� 2 YN .

(b) If YN \ Y = ;, then rf contains no zero in Y .

(c) If YN
�

� Y (contained in the interior), then rf contains a unique zero in Y .

The following algorithm speci�es one step of the interval Newton (Gauss-Seidel) method
in IRn applied to the gradient of f .

1. Calculate J = r2f(Y ) and M � (midJ)�1.

2. Calculate m = midY , A = M � J , and b = M � rf(m).

3. For i = 1; 2; : : : ; n:

(a) Calculate Yi :=

0
@mi �A�1

ii

0
@bi +

nX
j=1;j 6=i

Aij(Yj �mj)

1
A
1
A \ Yi.

(b) If Yi = ;, goto 6.

(c) If Yi has a gap (0 2 Aii), then save i and the gap.

4. If there is no gap, then set V1 := Y and goto 7.

5. Use the largest gap to split Y in V1 and V2 after closing all other gaps. Goto 7.

6. Y := ;.

7. End.

It is a simpli�ed form of the special relaxation method (Gauss-Seidel method) used by

Hansen-Greenberg [3].
In our implementation, we do evaluate the whole sum

bi +
nX

j=1;j 6=i

Aij(Yj �mj)

with highest accuracy, by using an accurate expression provided by PASCAL{XSC [6].
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2.6 Boundary Treatment

We have to take special care of the edge of the starting box X because it is possible, that

a global minimizer lies on the edge. Thus, after each step of the algorithm which possibly

deletes parts of the edge of X (Newton step), a special treatment of the boundary points

is necessary. This can be achieved by entering the corresponding parts of the edge into

the list L as degenerated boxes (dimension < n).

2.7 The Implemented Algorithm

In our implementation we enter the pairs (Y; ify) in the list L by satisfying the two

conditions:

� The second components of the list elements may not decrease.

� The new box is entered behind all older boxes having equal second components.

We use the following modi�cation of the algorithm of Hansen:

1. Y := X.

2. Calculate F (Y ) and ef = supF (c), where c = midY .

3. ify := inf F (Y ).

4. Initialize L := (Y; ify).

5. Choose k 2 fi : w(Yi) = w(Y )g.

6. Bisection: (V1; V2) := bisect (Y; k), that is: Y = V1 [ V2.

7. For i = 1; 2 :

(a) Monotonicity test for Vi. If deleted: Exit i-loop.

(b) ifvi := inf F (Vi).

(c) Midpoint test for Vi. If ef < ifvi: Exit i-loop.

(d) Concavity test for Vi. If deleted: Exit i-loop.

(e) Newton step applied to Vi, getting at most two boxes Wi1, Wi2.

p := \number of boxes" (= 0, 1, or 2).

(f) Boundary treating.

(g) For j = 1 to p:

i. Monotonicity test for Wij . If deleted: Exit j-loop.

ii. ifwij := inf F (Wij).

iii. Midpoint test for Wij. If ef < ifwij: Exit j-loop.

iv. L := L+ (Wij; ifwij) (with respect to ifwij and age of boxes).

8. L := L � (Y; ify) (eliminating).

9. (Y; ify) := head of (L) (satisfying ify � ifz for all pairs (Z; ifz)).

10. c := midY and ef = min( ef; supF (c)).
11. Midpoint test: Remove all pairs (Z; ifz) satisfying ef < ifz from the list.

12. If termination criteria not satis�ed, then goto 5.
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3 The Use of PASCAL{XSC

The programming language PASCAL{XSC [6] is a powerful tool for programming our

global optimization algorithm. The important features for our implementation are

� operators and functions of arbitrary result type

� overloading of procedures, functions, operators, and assignments

� controlled rounding

� highly accurate interval arithmetic operators and elementary functions

� exact evaluation of expressions (#-expressions)

Concerning the implementation of our algorithm, many necessary features are already

available in PASCAL{XSC. The language concepts allow a comfortable programming of

all other features needed in the algorithm.

The prede�ned interval arithmetic for scalar, vector, and matrix types allows access
to all usual operations and functions in the usual mathematical notation. All basic oper-
ations and function evaluations are of maximum accuracy (1 or 2 ulp). Extended interval

arithmetic was implemented using the operator concept. So, all operations of the Newton
step can be written close to their mathematical notations.

Di�erentiation arithmetic was implemented using the operator concept and functions
with arbitrary result type covering all usual (trigonometric, hyperbolic, etc.) functions.
All objective function evaluations can be processed with automatic computation of the

gradient and the Hessian.
The list operations were implemented using a pointer type, operator concept, and

functions with arbitrary result type. So, the notations L := L+(Y; ify), L := L� (Y; ify),
or head of (...) used in the algorithm can be used for programming in the same way.

Controlled rounding of all input data is guaranteed by the overloaded input statements.

High accuracy in the Newton step (Gauss-Seidel step) is achieved by using the prede�ned
accurate expression. The sum bi+

P
n

j=1;j 6=iAij(Yj �mj) is calculated with high accuracy
by

## (b[i] + (for j:=1 to i-1 sum (A[i,j]*Y_minus_m[j]))

+ (for j:=i+1 to n sum (A[i,j]*Y_minus_m[j])))

where Y_minus_m is de�ned as Y - m.

Interactive input of objective functions was made possible by the implementation of a
procedure generating a post�x form and of corresponding functions for the evaluation of

the post�x form with automatic di�erentiation.

4 The Program

The features of our optimization program are

� Organization by menu technique.

� Input from �les which can be edited during the program sessions. The structure of

the input �les is as follows:
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------ Top of File ------

$n: <--- Name (optional)

Six-hump-camel-back-function

$f: <--- Function definition

4*x^2 - 2.1*x^4 + x^6 / b + x * y - 4*y^2 + 4*y^4;

$v: <--- Variables

x:=[-2.5,2.5];

y:=[-2.5,2.5];

$p: <--- Parameters

b:=3;

$e: <--- Tolerance

1e-10

------ End of File ------

� The objective function f can be speci�ed by a formula consisting of the unknowns

(variables), the operations +, -, *, /, and ^ (power), parentheses, all usual mathe-
matical functions, explicit constants, and named constants (parameters).

� The result is given as a list of boxes which can be displayed on screen and/or saved
on �le.

The implementation of the program is still in progress with respect to some planned im-
provements, but the actual version of the program is working very well. At the moment,
the program runs on personal computers (IBM and compatible), ATARI ST, HP worksta-
tions, and SUN SPARCstations. On the IBM 3090, an installation of the PASCAL{XSC

compiler is not yet completed, so it was not possible to run the program there. Due to
the portability of the compiler, the program is portable, too. Thus, the application of the
program is not restricted to special machines or operating systems.

5 Test Results

5.1 Test Functions

The following list gives an overview of some test examples we used for our algorithm (see

[13] for a detailed description of parameters).

1. Hansen's function: 24x4 � 142x3 + 303x2 � 276x + 93; 0 � x � 3.

2. Shubert's function: �
5X

k=1

k sin((k + 1)x+ k); �10 � x � 10.

3. Function f1 of [13]: sin x+ sin
10x

3
+ lnx� 0:84x; 2:7 � x � 7:5.

4. Function f4 of [13]: (x+ sinx)e�x
2

; �10 � x � 10.

5. Six hump camel back function: 4x21� 2:1x41+
x61
3
+x1x2� 4x22+4x42; �5 � xi � 5.
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6. Branin's function: (
5x1

�
�
5:1x21
4�2

+x2� 6)2+(10�
10

8�
) cos x1+10; �5 � x1 � 10,

0 � x2 � 15.

7. Rastrigin's function: x21 + x22 � cos 18x1 � cos18x2; �1 � xi � 1.

8. Hartman's function: �
4X

i=1

ci exp

0
@�

nX
j=1

aij(xj � pij)
2

1
A ; 0 � xi � 1.

9. Shekel's function: �
mX
i=1

1

(x�Ai)(x�Ai)T + ci
; 0 � xi � 10.

10. Griewank's function:
nX
i=1

x2
i

d
�

nY
i=1

cos(
xip
i
) + 1; �6 � xi � 6.

11. Function of Goldstein and Price: (1+(x1+x2+1)2(19�14x1+3x21�14x2+6x1x2+

3x22)) � (30+ (2x1� 3x2)
2(18� 32x1+12x21+48x2� 36x1x2+27x22)); �2 � xi � 2.

5.2 Performance

We tested the examples with a tolerance 1E�2 for the function evaluation of f and the
enclosures of the global minimizers on an IBM PS/2 Model 70 (386-16), on a SUN SPARC
SLC workstation, and on a HP 9000/835 Turbo SRX workstation. In the following table
we compare the performance results of these machines using a PASCAL{XSC version
equipped with a software arithmetic.

No. of Dimen- Funct. Grad. Hess. Mini- Iterat. CPU time (min:sec)
Funct. sion Eval. Eval. Eval. mizers Steps PC SUN HP

1 1 53 109 37 1 20 0:07 0:04 0:02

2 1 30 131 27 3 27 2:26 1:25 0:50

3 1 8 26 6 1 6 0:14 0:07 0:04

4 1 7 35 10 1 6 0:11 0:06 0:03

5 2 89 406 120 2 81 0:55 0:29 0:16

6 2 20 56 14 3 13 0:19 0:10 0:06

7 2 17 39 9 1 7 0:11 0:06 0:03

8n=3 3 50 200 39 1 46 2:21 1:15 0:39

8n=6 6 4607 18682 3269 1 4504 411:21 218:15 115:39

9m=5 4 61 298 60 1 60 2:40 1:25 0:45

9m=10 4 84 413 83 1 83 5:20 2:50 1:31

10n=2 2 11 56 13 1 10 0:23 0:12 0:07

10n=5 5 62 404 96 1 61 7:23 4:00 2:06

11 2 9004 22002 8583 1 5178 94:50 50:43 26:07
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6 Future Works

Some modi�cations of the implementation are planned to improve the performance of our

optimization program and to spread its application �eld.

� Use of special preconditioners for the Gauss-Seidel step (suggested by Kearfott [5]).

� Use of local oating-point iterations in the Gauss-Seidel step (suggested by Hansen-

Greenberg [3]).

� Use of the prove of uniqueness of the global minimizer within the computed box.

� Improved boundary treatment.

� Use of new tests for updating the approximation ef and new branching strategies.

� Use of an approximation for the minimum computed with oating-point arithmetic.

� Extension of the program to handle constraint optimization problems.

� Development of an interface to make the optimization routine accessible by other
programs.
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