
Object-Oriented Protocol Hierarchies

for Distributed Workow Systems

P. C. Lockemann, H.-D. Walter

Interner Bericht 42/95

��

@@
���������������������������
����������������������������
���������

��
���������������������������
����������������������������
���������

@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@

Universit�at Karlsruhe

Fakult�at f�ur Informatik

(Submitted for publication)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197597956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Distributed software systems such as groupware and workow systems will play a key role in the
near future. While numerous models which promise highly sophisticated functionality are proposed

in the literature their implementation is still a di�cult and very expensive task. Therefore existing

systems fall far behind their promises.
Entities of the workow level are often autonomous. Consequently, they are related to each other

in more than a �xed client/server con�guration: they often perform their activities in collaboration.

Workow models also contain a lot of information about the system's dynamics. If one uses objects
as an implementation model | which is the most preferable of all possible choices today | all these

aspects must be mapped onto the same abstraction which is mainly concerned with functionality of

entities but neglects relationships almost completely, i.e. treats entities in isolation. The dynamics
is hidden inside object implementation, including and especially those concerned with cooperation.

We therefore propose an extended object model which allows the de�nition of dynamic rela-

tionships, called alliances, between objects. Alliances de�ne and enforce cooperation protocols at
the object level. The semantically enriched object model can be implemented on top of common

distributed object technology which for its part relies on standard database and communication ser-

vices. Both an enriched implementation model and the utilization of standard software contributes
to the reduction of development costs.

1

1 Introduction

Future software systems will be distributed running on multicomputer systems1 where distribution is

not only a means for optimization but mainly the prerequisite for o�ering additional functionality. One

example for such kind of software is groupware which includes among others workow systems. Workow

systems add computer support to the execution of business or engineering processes. They mainly di�er

from conventional software in two aspects: First, they are no longer passive tools which act exclusively

on users' requests but become proactive systems which invoke operations on their own initiative. Second,

the interaction of their components is no longer solely governed by a client-server relationship. Instead,

autonomous components cooperate with each other where all components have equal rights. Distribution

and autonomy of components imply that cooperation must be communication based2.

Hence, workow systems seem to promise users a great deal of functionality. But implementations by

far do not keep these promises. Among the reasons responsible for this unsatisfying situation are unsolved

technical problems [14]. A number of requirements which are hard to meet make workow systems di�cult

and costly to implement. It must be possible to extend a workow system incrementally because neither

its type and its number of workows nor its users nor its components are completely known a-priori. A

workow system must be designed around autonomous components because these need the autonomy

to be able to optimally perform their tasks. As stated in the beginning, workow systems must run in

distributed multicomputer environments where not only distribution but also heterogeneity of hardware

and system software has to be considered. Since numerous standard software which solves problems of

distribution and heterogeneity are available today or will be available in the near future (e.g., database

standards as [10] or distributed system standards as [42, 41]) it is essential that workow systems use

these standards as far as possible in order to reduce development costs, keep the system open for future

extensions, and enhance its portability. The components of a workow system must be interactive because

they can solve their tasks often only if they cooperate with human users or other software components.

Autonomy, interactivity, and distribution imply that components should be pro-active and the workow

system internally concurrent. Finally, due to the autonomy the temporal order of arising situations and

possible executions of processes are unknown at speci�cation time. Consequently, a workow system

must be able to react exibly to situations, which is only possible if one avoids a strictly procedural

description and speci�es the interaction in a more declarative manner.

These requirements | especially distribution, autonomy, and interactivity of components | suggest

to use object-oriented technology to implement workow systems. This would lead to a three-layered

architecture which would implement workow systems on top of distributed object management systems

as, e.g., CORBA-based systems, which rely on standard services. Unfortunately, today's distributed

object management systems consider communication based cooperation only in the narrow request-reply

context (e.g., RPC). High-level cooperation contexts as workows are not expressible. This leads to

considerable programming e�ort in order to close the gap between workow and object models.

Cooperation rules play a key role in the task to bring objects together. It has been recognized

for years that it is very di�cult to express these cooperation rules such as, e.g., temporal ordering of

messages between a set of objects, especially if objects are autonomous (i.e., may act in an unforeseen

way) and have been implemented unaware of the cooperation contexts they are used in. In essence,

expressing multi-object constraints in today's distributed object management systems can only be done

by \hardwiring" them into the object implementationand, for that matter, spreading them across multiple

implementations. If we consider that an object may participate in a number of tasks which di�er in their

constraints, object implementation may become di�cult to control. It further obstructs reusability of

objects | a strength often claimed for the object-paradigm. A programmer must also anticipate all

possible \misbehaviors" of cooperation partners which is an unsolvable task in complex environments.

Therefore, we propose to enrich the object layer by a novel construct called alliance which de�nes a

dynamic relationship between cooperating objects and materializes cooperation protocols. This construct

extends comparable approaches in the literature, e.g., [3, 4, 22, 33, 34, 52] | which are mainly intended

to bridge type incompatibilities of two communicating objects or extend interfaces of server objects

1We use the term multicomputer to refer to all systems with interconnected autonomous processors with their own
memory [48]. Both tightly coupled systems as transputers and hypercubes and computer networks as LAN and WAN
belong to this category. For the applications discussed in this paper, computer networks are the prevailing multicomputer
architectures.

2This is in contrast to \shared-memory" based cooperation where we mean \shared-memory" in its broadest sense.

2

by protocols which constrain sequences of possible client invocations | by supporting large evolving

sets of cooperating objects, long-living tasks, compensation of errors, and integration into a distributed

environment.

Standard Services (Section 8)

Distributed Object Management

(Section 6)

Objects and Alliances

(Sections 3 and 4)

Workow Model (Section 2)

resources ! objects (Section 3)
workows ! alliances (Section 5)

Centralized or distributed implementation

of alliances (Section 7)

Standard protocols (RPC, 2PC, : : :)

(Section 8)

?

?

?

Figure 1: Layers of a distributed workow system

As a consequence we can view a workow system as a stack of four layers as shown in Figure 1. A

workow model which de�nes activities, resources, and dependencies between activities is mapped onto

an object-alliance model. Objects and alliances on their part use common distributed object technology

which is based on standard services.

The outline of this paper is as follows (cf. Figure 1). In Section 2 we briey review workow systems

and their implementation requirements. Section 3 discusses how workow models can be mapped to

objects. Section 4 is dedicated to a novel concept of dynamic relationships between objects. We use these

dynamic relationships as implementation model for cooperative workows. The mapping is discussed

in Section 5. Section 6 shows how distributed object management systems can be used to implement

\services" o�ered at the object and alliance level. The implementation of alliances is treated separately

in Section 7. Distributed object management relies on standard services, as, e.g., communication services

and database services, and their related protocols. Section 8 is dedicated to them. Section 9 discusses

advantages and shortcomings of an alliance-based implementation of distributed workow systems. Sec-

tion 10 summarizes the main results of this paper, gives a brief overview of our prototype implementation,

and sketches ongoing and future work.

2 Distributed Workow Systems

McCarthy and Bluestein [36] de�ne workow systems as follows:

\Workow management software is a proactive computer system which manages the ow of

work among participants, according to a de�ned procedure consisting of a number of tasks.

It coordinates user and system participants, together with the appropriate data resources,

which may be accessible directly by the system or o�-line, to achieve de�ned objectives by set

deadlines. The coordination involves passing tasks from participant to participant in correct

sequence, ensuring that all ful�ll their required contributions, taking default actions when

necessary."

3

This de�nition implies that workow systems need an integrated view on activities or tasks of a process,

e.g., a business process in an o�ce environment or a technical process in a production environment, on

actors which do the work, and on required resources, as well as on dependencies between activities.

Workow models o�er this overall view. A workow management system (WFMS) which coordinates all

activities at run-time takes a workow model as input.

A distributed workow system is a workow system where the execution of a workow may involve

several nodes of a network and where the WFMS itself is distributed and not realized as a monolithic

server. When we use the term workow system in the sequel we will always refer to distributed workow

systems if not stated otherwise.

2.1 Workow Models

A workow model describes activities, actors, resources, and dependencies between activities [25]. Fig-

ure 2 shows an example workow. It models the processing of a client's order in a transportation company.

The company consists of a set of sites which are distributed over the area which is covered by the company

(e.g., central Europe or the U.S.). A client turns to its local site (e.g., Munich) with some transportation

task (e.g., he or she wants a piano to be carried from Munich to London). The local site, i.e. Munich, is

automatically assigned as coordinator in what follows. Depending on the order the coordinator selects a

set of relevant partner sites (e.g., Munich, Brussels, Paris, London). All partners simultaneously evaluate

the order with respect to their current load, capacity and the order's value. They communicate the result

of their evaluation to the coordinator who eventually decides which partner (or in some cases which

subset of partners) shall execute the order. Due to unforeseen events, such as truck failures, accidents,

or congested highways, the execution of an order must be replanned occasionally. Finally, invoicing and

payment concludes the process.

2.1.1 Activities (Workows)

Activities (or workows) de�ne what has to be done. Often they are structured hierarchically, i.e., a

workow consists of sub-workows. The leafs of a workow hierarchy normally are applications (programs

or transactions). Leafs are atomic computational units that are not further divided.

In our example the root workow \order processing" consists of four sub-workows \accept order",

\planning", \execution", and \invoicing". Workow \planning" is further divided into two sub-workows

\evaluation" and \assignment".

2.1.2 Actors

Actors de�ne who executes workows. Actors are assigned to activities dynamically at execution time.

Properties usually required from actors are statically de�ned as roles. Roles constrain the set of actors

which are quali�ed to play a certain role in a workow.

In our example the workow \accept order" has two roles, coordinator and client. When this workow

is instantiated at execution time the roles must be bound to concrete instances of actors3.

In some cases a role describes a set of actors where the cardinality of the set is not known at speci�ca-

tion time, e.g., the partner sites in workow \planning". Set-valued roles are denoted with curly brackets

in Figure 2.

Once a workow is instantiated, assigned actors must be noti�ed. Since actors may be assigned to

more than one workow at a time to-do-lists for actors must be maintained. For instance, a partner site

may be concurrently involved in more than one \planning" workow.

2.1.3 Dependencies

Dependencies between workows have to do with three issues [25]: execution control, data ow, and

logging.

Execution control determines the behavior of a workow at execution time. The description of exe-

cution control can either be procedure-like, or declarative, or trigger-based. In the �rst case constructs

which are well-known from imperative programming languages can be used to specify execution control.

3Thus, our example workow description can be regarded as workow type.

4

Order processing

accept order planning execution invoicing

planning

evaluation assignment

partner coordinator

coordinator, client coordinator, {partner} partner, {truck} coordinator, client

Figure 2: Example workow

The most important operators are sequential execution (of workows) (w1;w2), conditional execution

(b?w1 : w2), loops (while b : w), and parallel execution (kw1; w2; : : :). Approaches which use this kind

of execution control description are among others Sagas [17], ConTracts [51], Interactions [40] which are

based on transactions, and, e.g., the commercial workow product FlowMark [31]. The speci�cation of

our example workow in Figure 2 belongs to this class of description techniques, too.

In the declarative case possible executions of workows are constrained by temporal ordering condi-

tions and existence conditions [7]. Temporal ordering of workows (w1 < w2) expresses that w1 must take

place before w2 if both w1 and w2 take place. Existence condition (w1) w2) denotes that if w1 takes

place then w2 must also take place (which does not impose any restriction about the sequence in which

they take place). In our example one might specify \accept order" < \planning" which allow planning of

orders without any order acceptance (e.g., one might think of company internal \pseudo"-orders which

are not initiated by a client) and assignment of a partner without any planning (which, e.g., might be

5

necessary due to time constraints). But if both workows take place, the constraint must not be violated.

It would be further reasonable to demand that \invoicing") \execution" which would protect a client

against unjusti�ed invoices.

Declarative descriptions of execution control allow users and WFMS to react in a more exible way

on exceptional events than procedure-like descriptions. Of course, the lack of execution semantics must

be added at some point later, latest at execution time. Usually a global scheduler is responsible that

workows are executed in a manner consistent with all dependencies [45].

A mix between procedure-like and declarative approaches are trigger-based techniques in the context

of active database systems. Trigger-based approaches assume that leafs of a workow hierarchy are

transactions. Execution of transaction can be controlled by way of event-condition-action rules (or active

rules) [12] where the detection of an event may lead to the execution of a transaction if some prede�ned

condition over the database state holds. Active rules are either orthogonal to the data model of the DBMS

(e.g., [12, 8, 18, 9]), or they are added to objects in object-oriented models (e.g., [13, 20, 5]). Active rules

de�ne execution control of workows on a low level of abstraction. Thus, as the approach proposed in

this article, they are better suited as a platform for implementing a WFMS | to which especially their

active functionality can contribute | and not so much as part of the interface of a workow system where

users have to specify their workows by means of active rules.

In large-scale distributed systems trigger-based approaches exhibit severe disadvantages as a means

to implement workow systems. First, active rules are stored globally and independent from a certain

application in a database system. Storing active rules globally and independent from applications is �ne

for their original purpose as a exible means to ensure database consistency [29]. It is disadvantageous

in the context of workow systems, since it is very hard to extract those active rules which de�ne the

dependencies in a certain workow in a system where many di�erent workows must coexist, which we

expect to be the normal case. Further, it is possible that active rules which de�ne dependencies of di�erent

workows may inuence each other which makes it a very hard task to verify whether a set of active rules

guarantees some given dependencies. This is also a consequence of the fact that the relationship between

active rules and workows is not made explicit.

A second disadvantage is related to the implementation of active rules systems in distributed envi-

ronments. We postpone the discussion of this issue to Section 2.3.

The second issue, data ow, has to do with shared data that may lead to dependencies between

workows, too. First, workows will exchange data among each other, second, di�erent workows might

access common data which might lead to sequentialization of workows although a user might have

de�ned them as independent.

The last aspect concerning dependencies of workows is logging of workow execution which might

be used to enhance the reliability of a workow system.

2.2 Architecture of Workow Management Systems

Figure 3 shows the conceptual architecture of a WFMS (taken from [25]). A WFMS can be divided into a

kernel and a shell. The �rst consists of a controller which supervises all dependencies between workows

and evaluates the execution control speci�cation. In order to live up to its task the controller relies on

various components of the WFMS shell: a pool of software tools (e.g., planning systems and accounting

systems) which are part of the workow system (tool manager), a log manager, a component which is

used to assign actors to roles (role binding), a component which o�ers noti�cation services, e.g., an email

system, (noti�cation), and a data manager which o�ers persistence services. Each actor has a to-do list

which contains its tasks to perform (e.g., a list of client orders to evaluate).

Both actors and tools are represented as programs in a workow system4. They di�er with respect to

their active behavior in the system. While tools are reactive, i.e., they only do some work if some actors

request it, actors are proactive, i.e., can take the initiative to do some work on their own (or on some

external input).

4Many authors stress that actors include human users or machines, i.e., components external to the system. Since every
external component needs an interface to the computer in order to be integrated into a computer-systemwe assume without
loss of generality that every external component is represented as some program in the workow system.

6

actoractor

to-do list c
to-do list b

tool 3

WFMS shell

WFMS kernel

controller

data manager

role binding

notification

log manager

tool manager

tool 2

tool 1

to-do list a

actor

Figure 3: WFMS architecture

2.3 Implementation Requirements

In this section we discuss the requirements a WFMS must meet.

2.3.1 Scalability and Extensibility

Workow systems must be scalable according to workows, workow instances, actors, and tools. A

workow system should not restrict the types of workows which can be executed. Users should be able

to de�ne new workows and add them to the system whenever this is necessary. Nor should the number

of workow instances which are concurrently active in the system simultaneously be restricted. It should

be possible to dynamically extend the workow system by new actors and tools.

Since today's implementations of WFMS use some kind of client-server architecture (see, e.g., [31]),

i.e., the WFMS kernel and shell are realized as servers while actors, tools, and data storages might be

distributed over a network, their performance depends on the number of active workows. The WFMS

kernel might become a bottleneck of a workow system. Consider for instance our eet control example:

execution of workows at some partner site depend on a WFMS server which might be situated at some

other site of the transportation company.

2.3.2 Integration of Autonomous Components

It should be easy to integrate new actors and tools into the workow system. In order to meet this

requirement a workow system should make only few assumption about these components, i.e., it should

consider them as being autonomous as far as possible. For example, we cannot expect that software

is always developed with respect to its future application in workow systems (e.g., legacy systems).

Another reason to allow components to be autonomous is to give components the necessary latitude to

ful�ll their highly specialized task in the most optimal way.

7

Many WFMS are based on distributed transaction systems [45] which implies that the components

must o�er special functions at their interfaces (e.g., commit and abort of transactions) and must possess

certain internal states (e.g., prepared-to-commit) [7]. Components which do not ful�ll these far-reaching

requirements are excluded from being integrated into the workow system. On the other hand, workow

systems require a high degree of consistency which can only be achieved by transaction-based systems.

2.3.3 Distribution

Obviously, workow systems must run in a computer network. Components of the WFMS (kernel and

shell) must be accessible from everywhere in the network without regard to their physical location, i.e.,

the WFMS must o�er distribution transparency which in the past lead to the already mentioned client-

server architecture of WFMS: controlling, logging, and role binding takes place at the server, actors,

tools, and data may be distributed over the network, but all relevant events during workow execution

(e.g., termination of a workow) must be propagated to the server.

Client-server architectures are only feasible in narrow organizations. In large and distributed orga-

nizations, as we envision by our transport company example, WFMS cannot be realized as client-server

systems. Also, replication of WFMS at some or all nodes would not help since WFMS server are not

stateless and, thus, must closely cooperate.

Distribution is also a fact hard to swallow for WFMS based on active-rule technology. Since there

is no context for rules events must be made globally visible to check whether there is some rule in the

rule base which is a�ected by the event. This leads to tremendous communication costs in distributed

environments. Newer approaches try to solve this problems by evaluating events in two steps [5]: �rst,

all events which occur at one site are checked by a local event handler and only a prede�ned subset of

events is propagated to a global event handler. By this, event handling is governed by system structure

but not by the application semantics.

2.3.4 Cooperation

Often tasks can only be solved by cooperation between actors or tools. Cooperation here means that in

a group of actors and/or tools each actor or tool can take the initiative to communicate with others to

solve a problem (in contrast to the usual client-server relationship between components). The cooperation

consists of a bundle of communications between instances (actors or tools). Since cooperation is aimed to

solve a problem, communication along a cooperation must obey certain rules | a cooperation protocol.

Technically speaking, the execution of a workow (or task) cannot be mapped to a procedure (or single

control ow) but has to be mapped to interactions between several pro-active and re-active components.

In our example workow (Figure 2) workow \planning" is a typical example of a cooperative task.

While the coordinator de�nes the set of partners the partners evaluate the order using local information

such as the current amount of orders to execute, tra�c situation and so on. The coordinator �nally

decides who will carry out the order. During the whole process all cooperation partners might take the

initiative to communicate with each other. For instance the coordinator might cancel the evaluation

process due to some unforeseen event or a partner might request further relevant details concerning the

freight.

Usually cooperation in WFMS is implemented by sharing information between components, e.g. by

input- and output streams as in FlowMark [31] or by accessing common databases [45], but explicit

communication between components is not supported. We refer to the �rst as cooperation by shared

information in contrast to cooperation by message passing in the sequel. Cooperation by shared informa-

tion is natural in client-server environments where control ows and access to data underlies centralized

control. In distributed and cooperative environments where multiple control ows may concurrently be

active without any centralized control and may need to exchange information with each other without

any restriction as to who initiates an information exchange, the message passing paradigm seems more

adequate to implement cooperation.

2.3.5 Flexibility

Applications as, e.g., the processing of an order in a transportation company are very complex. Thus, it

is normally not feasible to enumerate a-priori all possible workow executions. Instead one would prefer

to describe workows in an abstract manner. The concrete execution of a workow will dynamically be

8

determined at execution time. Unfortunately, events may occur at execution time which have not been

considered in the abstract description of the workow. There are many sources of such events: autonomy

of objects (which also includes their potential misbehavior), distribution (e.g., unreliable communication

systems), heterogeneity etc.

Take for example our order processing workow. Congested highways, accidents may disturb the

execution of a client's order. Execution of sub-workows may last an unexpected long time due to the

current load of the executing actor (i.e., length of its to-do list). Since components are autonomous they

may act in an unexpected manner. For instance, a partner may not evaluate an order although it has

been asked to do so, or rejects the execution of an order assigned to it although it accepted it during

evaluation. In addition, physical distribution of components can add uncertainty. For instance, a partner

site may not be reachable.

Consequently, execution control of workows must be able to react spontaneously on exceptional

events. This exibility requirement is a further argument to favor declarative workow models.

3 Object-based Implementation of Workow Systems

3.1 Mapping Resources to Objects

Object technology appears as a natural technology to meet the requirements of autonomy, distribution,

and cooperation because objects are a natural model of interactive components that act in a distributed

environment. Consequently, a major premise underlying this paper is that object-systems are a vehicle

particularly well-suited to the implementation of workows. Figure 1 reects the premise.

We map all resources of the workow model alike actors, tools, and data to objects. This allows

us to treat them interchangeably if this is required in an application context. For instance, actors and

tools might be \data" for some applications as, e.g., in an integrated production information system

where both planning and production control systems are used together in an integrated environment.

In the planning context machines, personnel etc. are subject to planning, i.e., they are \data". In the

production control context they take the role of actors and/or tools.

There are di�erences, of course. Actors and tools di�er in their active behavior | as we have already

stated above. The �rst are proactive, the latter merely reactive. However, taking, e.g., the object notion

of CORBA this seems more an issue of how objects are implemented and less an issue of the expressiveness

of an object model. For instance, as a rule of thumb we expect that actors will often be implemented as

client objects and tools as server objects. But the distinction between actors and tools is more important

at the workow level than at the object level.

Under these assumptions the WFMS architecture of Figure 3 is revised the architecture of Figure 4.

We replace the data manager and tools manager by an object manager. Objects replace both actors and

tools.

3.2 Shortcomings of a Pure Object-Based Implementation of a WFMS

Mapping objects to resources let us now face the question how to model workows. At the leaf-level

of workow hierarchies we use object procedures (or methods) to implement activities. Methods are a

natural model for elementary computational units. In some cases procedures may be also an alternative

implementation for simple tools. But where would we �nd complex non-leaf workows in Figure 4?

Clearly, the controller is responsible for their execution | or in the declarative case which we consider our

�rst choice for the workow level | for guaranteeing the speci�ed interdependencies between activities.

Conceptually one can think of workows as contexts for the cooperation of those objects that imple-

ment resources of a workow. The cooperation between objects must follow task-speci�c rules that go

beyond the rules which govern the behavior of an individual object and which guarantee the dependen-

cies between activities on individual objects. Thus, dependencies between workows have to be mapped

onto cooperation protocols where dependencies can be described by temporal ordering conditions of mes-

sages between objects. The question which now arises is how these cooperation protocols can be best

implemented in a distributed object system.

It has been recognized for several years that considerable programming e�ort is required to express

multi-object constraints such as temporal ordering of messages in terms of the traditional message-passing

mechanism. In essence, expressing the constraints by explicit message passing \hardwires" the constraints

9

objectobject

to-do list c
to-do list b

WFMS shell

WFMS kernel

role binding

notification

object manager

log managercontroller

to-do list a

object

Figure 4: Architecture of an object-based WFMS

into the object implementation and, for that matter, spreads them across multiple implementations. If

we consider that an object may participate in a number of tasks which di�er in their constraints, object

implementation may become overloaded, di�cult to understand, and, hence, prone to errors that are

extremely di�cult to dissect and correct. It further obstructs reusability of objects | a strength often

claimed for object-oriented models. A programmer also must anticipate all possible \misbehaviors" of

cooperation partners. Otherwise, the object state may be left inconsistent. In complex environments like

our transportation scenario such misbehavior may not always be predictable at the time the objects are

implemented.

In order to overcome these de�ciencies a promising approach seems to separate the constraints from

the objects into communication abstractions as has been proposed, e.g., in [3, 4, 22, 33, 34, 52]. A separate

construct de�nes a set of communication participants, each playing a certain role, and a set of constraints

regulating the inter-object communication. We claim that all these approaches are too limited to deal

with the uncertainties inherent in applications that are part of a large information system. Consequently,

we introduce an extended construct which we call an alliance.

4 Alliances as a Model of Cooperation in Distributed Object

Systems

4.1 Cooperation in Object Systems

We start this section with a brief review of work which in some way relates to our approach.

It has long been recognized that communication abstraction is necessary in object-oriented models.

One class of approaches extends interface descriptions of objects by protocols (e.g., [39, 50, 15, 30, 28])

or by a declarative description of object behavior (e.g., by using �nite state machines as in [52]). In

some cases the separation of interface and implementation was completely abandoned (as e.g., in [53]).

All these approaches limit themselves to object-speci�c synchronization | we called objects with this

capability autonomous objects | but continue to treat objects as islands, and thus do not touch on the

10

problems mentioned in Section 1.

Active objects in active object-oriented database systems (OODBS), as, e.g., in [11, 13, 18, 20], are

able to detect events and to execute | also asynchronously | some prede�ned code as a reaction. But

they are not able to limit method invocations. One can interpret the raising and detection of an event as

a communication between raising object and detecting objects. Following this interpretation, an object

that raises an event \broadcasts" some information to all objects that are interested in that event |

which is speci�ed by an appropriate trigger as part of the object implementation. Consequently, besides

the directed method invocation active OODBS o�er the anonymous broadcast as a second communication

paradigm. Unfortunately, this form of communication is largely unregulated and indiscriminate, and any

control over the communication is by purely local condition checking. This is a far way from our target

to allow for arbitrary but controlled multi-party communication patterns.

Today, transactions are the most common means to guarantee multi-object consistency [21]. Trans-

action concepts de�ne consistency more or less independent from application semantics. In most cases

correctness is based on serializability or some extension of it. Therefore, all objects must obey a glob-

ally de�ned synchronization scheme [35]. Consequently, transaction concepts limit object autonomy and

impose a �xed protocol that cannot be adapted to task-speci�c constraints on temporal orderings of

messages in the context of an activity. These constraints remain hidden in the implementation of the

participating objects. There is a bit more exibility in script-based approaches (e.g., [40, 51]), but they

require a rigorous and complete a-priori de�nition of the ordering of transactions and method invoca-

tions, thus denying all evolution. However, transactions can be expected to play an important role in an

implementation of alliances.

Interoperable transactions [37] provide a language based on temporal logic to specify the temporal

ordering of messages between a group of cooperating objects. The participants in an interoperable

transaction are determined at the beginning of a cooperation and cannot change later on. The approach

is exclusively intended for speci�cation and veri�cation of cooperation protocols. Nothing is said about an

implementation of a cooperative application speci�ed in the proposed language. Consequently, integration

with a communication subsystem in a distributed environment and compensation of protocol violations

are not considered.

Similar arguments hold for the concept of connectors [4], a CSP-based formal description language for

software architectures, since this concept is also restricted to the speci�cation level. Connectors specify

interactions between a �xed number of software modules. Consequently, enforcement of protocols at

runtime or distribution aspects are not part of this research.

Closest to the intention of our approach are contracts [22, 23], synchronizers [3], and adaptors [52].

Each of them collects some aspects of an intended cooperation into a separate construct which has

also a run-time representation. A contract de�nes a set of communicating participants | which must

be completely known at the time of the contract's instantiation | and their contractual obligations.

Contracts are not intended to de�ne multi-object constraints but utilize their contexts to describe the

behavior of participating objects, i.e. the methods required to conform to the contract.

A synchronizer simply limits the invocations accepted by a group of objects. Adaptors allow for the

behavioral composition of two objects, which are functionally but not necessarily type compatible. In

contrast to synchronizers adaptors are not restricted to the limitation of method invocations but have

some limited control over messages as well. For instance, they can map messages between sender and

receiver, or they can synthesize a set of messages originating from a sender object into a single one which

is actually delivered. Therefore, adaptors are equipped with their own memory. Adaptors are restricted

to two participants.

Synchronizers and adaptors can be integrated with an object model without touching the object

paradigm. Both models support autonomous objects | which is in contrast to contracts. All three

models are restricted to a �xed number of participants which cannot evolve during a cooperation. None

of the models deals with persistence or distribution. [3] mentions distribution but considers it strictly an

implementation issue to be solved, e.g., by RPC-style calls.

4.2 Alliances as Materialized Cooperation Protocols

Very crudely speaking, and following the terminology of the ISO/OSI reference model [24], one may view

an alliance as an \intelligent" communication channel between two objects, which must be established

between them before they can communicate. In fact, however, a more powerful construct is needed.

11

Object Object

Alliance

msg

req(msg)

cnf(msg) ind(msg)

rsp(msg)

Figure 5: Alliances as communication media between objects

Hence, alliances allow multi-object cooperation where all objects may have the same rights (in contrast

to client-server models), may have a life-time that exceeds the life-time or connection time of a connected

object, and support a wealth of semantically rich messages. For the objects we assume that they have

(at least) one own thread-of-control and, consequently, perform their computations concurrently.

Now suppose that our objective is to express and control multi-object constraints on the messages

exchanged between the participating objects. These constraints are always de�ned in the context of a

particular task the objects cooperate on. Therefore, by initiating an alliance with the onset of executing a

task, the constraints are being established. The control of the constraints makes use of the communication

metaphor as seen in Figure 5: a one-way message passing (msg) between two objects is mapped onto

two events | message request (req(msg)) and message indication (ind(msg)). The sender object raises

the �rst with the alliance. The alliance raises the second with the receiver object. Often messages are

expected to be answered. In this case we speak of acknowledged messages. Two further events will take

place when the receiver of a message answers: a message response (rsp(msg)) and a message con�rmation

(cnf(msg)). Consequently, no message exchange escapes the attention (and, thus, control) by the alliance.

From a purely structural viewpoint, alliances can be viewed as (dynamic) relationships of a conceptual

information system model. Figure 6 shows an excerpt of such a conceptual model of our transportation

company using an OMT -like notation [44]. According to our discussion of Section 3 resources such as

sites, trucks, order, and client are mapped to object types. Likewise, alliances with similar properties are

classi�ed into types. Alliance types are denoted as relationship types (diamonds in Figure 6).

Alliances and objects are connected by roles (e.g., coordinator, partner etc. which are denoted as

associations between object types and alliance types in Figure 6). We map roles of the workow level

directly onto roles of the object level. On both levels roles de�ne conditions that must always hold for

all objects that play this role.

In summary, then, alliances combine static aspects (in the form of relationships with roles) and

dynamic aspects (in the form of a communication channel with communication events). We reect the

two aspects in separate parts of the speci�cation of an alliance.

Take the static part. It consists of requirements concerning the message interface of objects. It de�nes

which messages an object can (at least) receive and which messages it can (at most) send. Thus, these

conditions constrain the types of objects that can be bound to a role. Figure 7 shows the role de�nition

of the alliance type planning taken from our transportation scenario (roles clause).

Each role de�nition consists of two sets of message type declarations and a role name. Take, e.g., role

coordinator. An object which plays this role need not be able to receive any messages and will send no

messages other than of type evaluate(: : :) and assign. While assign is a one-way message (i.e., no answer

is expected) evaluate is an acknowledged message with Votes(: : :) as reply message5.

Role Partner is set-valued, i.e., an arbitrary number of objects can play this role simultaneously.

All members of a set-valued role must be type-compatible to the role speci�cation, e.g., in the case of

role Partner they must understand messages of type evaluate and must not send any messages. The

message type evaluate of role Partner de�nes again acknowledged messages but this time the message is

not answered by a separate message (or call-back) but by an unnamed reply6. Unnamed replies allow

objects to take part in an alliance and to answer messages without any knowledge about this alliance

and interfaces of their cooperation partners. This is necessary to build pure server objects (or tools)

independently from possible collaborations.

5A reply message can be compared with a call-back function.
6Nierstrasz introduces private channels for this purpose [39].

12

evaluate : Vote
Votes : set<Vote>
assign
...

Truck

load (...)
unload (...)
...

remind (...)
...

Order

from : Location
to : Location
...

invoicing

planning

accept
order

order
processing

execution

Person

Company

Order

Company Client

Order

Client

Order

Order

Site

Coordinator

Partner

site_in_charge

Order

Client

Company

Transportation Company

Transportation Unit

Figure 6: Conceptual schema of a transportation company

The dynamic part of an alliance is subject of the next section.

4.3 Rule-based Speci�cation of Alliances

The dynamic part of an alliance takes its cues from telecommunications where the interrelationships

between and constraints on events are speci�ed in the form of a protocol. The protocol speci�cation of

an alliance consists of three parts: a de�nition of a set of possible states, an initialization, and a set of

communication rules that de�ne upon which events (req and rsp, cf. Figure 5) the alliance changes its

state, what state is reached, which events the alliance raises with objects, and how the set of participants

evolves. Rules are a proven technique for protocol speci�cation in telecommunications [46].

4.3.1 An Example Protocol

In order to illustrate our example protocol we �rst give an abstract speci�cation of this protocol as an

automaton. We use an OMT-like notation to describe the dynamics of alliance type planning (Figure 8).

When the coordinator sends an evaluation message to its partners (eval?) the alliance reaches the state

eval in progress. As long as partners answer to this message (vote!) the alliance remains in this state.

When all partners have voted condition ([all eval]) is satis�ed and the state eval complete is reached.

Now the coordinator can repeat the evaluation process which would cause the alliance to return to the

state eval in progress, or it can assign a partner to execute the order (assign!) which terminates the

alliance. In each state the coordinator may �nish the evaluation process and direct a partner to execute

the order (assign!), e.g., because there is no time left for planning.

13

alliance planning f

roles:

f // can receive

// nothing

g

f // can send

evaluate(set<Object>) ! Votes (set<Vote>);

assign (Object);

g coordinator;
f // can receive

evaluate() ! evaluate()::reply(Vote);

g

f // can send

// nothing

g set<Partner>;
f // can receive

assign();

g site in charge;
f: : : gf: : : g Order;

f // can receive

timeout(int);
g

f //can send

alarm(int);
g Timer;

: : :

Figure 7: Alliance type planning: roles

eval in progress eval complete assigned
eval? assign!

eval?

vote!

[all eval]

assign!

assign!

Figure 8: Example protocol speci�cation

4.3.2 States

We implement this protocol using the alliance construct. We �rst have to de�ne the set of possible states.

This is done by a set of typed variables as can be seen from Figure 9.

The boolean variable eval in progress models the states eval in progress and eval complete. We do not

need a third value to represent assignment because this state is redundant with the �nal state, and has

only been introduced above to clarify the semantics of the protocol. The second variable votes is used

to re�ne the de�nition of state eval in progress. It contains the votes for the orders as returned by the

14

alliance planning f

roles: : : :

states:

bool eval in progress;

set<Vote> votes;

: : :

Figure 9: Alliance type planning: states

partners.

4.3.3 Initialization

alliance planning f

roles:

states:

initialization:

planning (Object k, Object a, set<Object> p set) f

Coordinator = k;
Order = a;

Partner.insert(p set);

Timer = new Clock;
eval in progress = false;

votes.empty();

persistent;
g

: : :

Figure 10: Alliance type planning: initialization

When an alliance is instantiated it has to be initialized. The initial state is de�ned by assigning values to

the state variables. Additionally, roles may initially be bound to objects. Figure 10 shows the initializion

part of our example alliance. At instantiation time the coordinator, the order to plan, and an initial set

of partners are determined. We use simple assignment operators and a prede�ned insert operation on set-

valued roles to denote this. But as we will see in Section 7 role binding cannot be done by simply writing

a value to a memory location but is a quite complex operation. Besides binding objects to roles that have

been given as parameters of the initialization operation or| as we will see later | of messages, an alliance

can create objects on its own as can be seen from Figure 10 where an new object of a prede�ned type

Clock is created and bound to role Timer. We will later use this object to implement exception handling

by a timeout mechanism. The statement persistent denotes that the newly created alliance is to be made

persistent. This does not imply that all participants of a persistent alliance must be persistent. Thus,

persistence of alliances is treated independently from persistence of objects. In particular, this allows to

include transient objects in an alliance. We will return to the issue of persistence in Section 7.

4.3.4 Communication Rules

The communication rules of our example alliance are given in Figure 11. Communication rules map

message requests guarded by an optional condition to a reaction. The de�nition of a message request

consists of a message (perhaps parameterized) and a role name (following `@') which denotes the originator

of the message request.

The condition is given by the expression following if. A communication rule can only \�re", i.e., the

speci�ed reaction (the code between f g) is executed, if the given condition evaluates to true. Thus,

15

alliance planning f

roles: : : : states: : : : initialization: : : :

rules:

(1) evaluate(p set)@coordinator if not eval in progress f

Partner.insert(p set);

timeout(TIMEOUT)@Timer; evaluate()@Partner�;
eval in progress = true;

g

(2) evaluate(p set)@coordinator if eval in progress f
// ignore multiple evaluation requests

g

(3) evaluate()::reply(w)@Partner if eval in progress f
votes.insert(w);

g

(4) if votes.size == partner.size f
coordinator.Votes(votes);

votes = set<Vote>::empty; sites = set<Object>::empty;

eval in progress = false;
g

(5) assign(f)@coordinator f

assign()@site in charge;
site in charge = f; Timer.delete();

terminate();

g

(6) alarm()@Timer if eval in progress f

coordinator.Votes(votes); // only partial votes are delivered

votes = set<Vote>::empty; sites = set<Object>::empty;
eval in progress = false; Timer.delete();

g

g;

Figure 11: Alliance type planning: protocol rules

the code of the �rst rule in Figure 11 is only executed when the speci�ed message request of the coor-

dinator has occurred and the variable eval in progress evaluates to false. Conditions are restricted to a

boolean expression over state variables and message parameters of the request, and must not contain any

interaction with objects.

On detection of a message request or on reaching a certain state (as, e.g., in rule (4) of Figure 11

where size is a prede�ned operation on set-valued roles and state variables which returns the number of

elements) an alliance may react by modifying some local state variables (e.g., in the �rst rule the variable

eval in progress is set) and/or by modifying some role bindings (again the �rst rule is an example: the

coordinator can extend the set of partners he wishes to cooperate with), and/or by indicating messages

at roles (e.g., an evaluate-message is indicated at role Partner in the �rst rule), and/or by terminating

(e.g., rule (6) will lead to termination). Termination means that the alliance will not handle any further

message requests (the \connection is closed").

In the case of set-valued roles messages can either be indicated with all objects bound to that role

which is denoted by `�' (as, e.g., in the �rst rule), or to one arbitrary member selected indeterministically

by the system. The �rst option is useful to implement queries to object sets. For instance, we can view

the evaluation of an order by a set of partners as a query from the coordinator to a set of partner objects.

The latter option is useful if a set of objects o�ers equivalent services and it does not matter which

individual object does actually perform the service, but where redundant objects may help to enhance

the overall reliability of the system.

In order to deal with message requests from set-valued roles we allow to refer to the originator of the

message by binding it as a special event parameter. For example, one might be interested in the sender

of each vote in the planning alliance, which can be speci�ed as follows:

16

evaluate()::reply(w)@Partner p if hsome condition over pi f
hdo something with pi

g

Set-valued roles play an important role because they ease the task to implement set-oriented compu-

tations in distributed environments and may be of particular bene�t to object systems containing large

sets of objects.

Alliances can control communication between objects in many ways. They can simply transport

messages from a sender to a receiver. They can ignore unexpected messages in order to protect objects

from illegal invocations. The second rule of Figure 11 gives an example: once the evaluation has been

started no further evaluation-messages from the coordinator are delivered. They can accumulate messages

using their internal state, and indicate at an object just an aggregation of all messages. Rules (3) and

(4) of Figure 11 use this mechanism to collect all votes of the partners and indicate them as one message

with the coordinator (Votes in rule (4)). The evaluation is complete if the set of votes contain the same

number of elements as the set of partners. But we cannot be sure that this state is ever reached. By using

special clock objects alliances can realize timeout mechanisms which put alliances into a position to cope

with a situation in which expected messages do not arrive. We used this in our example to guarantee

an upper time limit for the evaluation process. When the coordinator requests an evaluation (�rst rule

in Figure 11) a timeout is de�ned by indicating an appropriate message at the Timer. When a timeout

occurs (rule (6) in Figure 11) the partial result of the evaluation is delivered to the coordinator. This is

an example of a fault-tolerant \query protocol" which might often be applicable in the case of large sets

of queried objects in a distributed environment where it is a better solution to deliver partial results of

a complex query than nothing at all.

As a consequence of these sophisticated communication control mechanisms alliances can be used to

bridge type incompatibilities between cooperating objects and, hence, o�er the functionality of adaptors

[52]. Synchronizers [3] can also easily be realized using alliances. Beyond this alliances can provide their

participants with guarantees with respect to temporal ordering of messages (or method invocations). As

a consequence of our assumption that objects are autonomous entities, alliances cannot prevent objects

from behaving erroneously but they can protect other participants against faults. In a nutshell we accept

the fact that in a complex and distributed system there will be always erroneous or inconsistent objects,

but we try to prevent them from doing any harm within the object system.

4.4 Semantics and Execution Model

The semantics of alliance speci�cations can be de�ned by labeled transition systems (LTS) [6]. A LTS

consists of a set of states and a set of transitions. The transitions are labeled. The set of states of an

alliance is derived from the state variables. The role speci�cations de�ne the set of labels. We skip the

details of mapping alliance speci�cations to LTS because they not relevant in the context of this paper.

The transition system semantics of alliances implies that alliances work sequentially. Since objects act

concurrently and, thus, may request messages simultaneously, message requests must be ordered in a

system-de�ned way. This ordering is performed by a so-called evaluation cycle through which an alliance

loops from instantiation until termination and which de�nes the execution model of alliances. The

evaluation cycle works like follows:

I. Select a role indeterministically and fairly. Set-valued roles are treated as a set of single-valued

roles.

II. If there is a message request with the selected role execute the following steps:

(a) Compute the set of rules which wait for this message request and for which their conditions

evaluate to true (i.e., the rules that can \�re").

(b) If more than one rule quali�es select one indeterministically.

(c) If no rule quali�es for execution go to step I.

(d) Execute the speci�ed reaction by evaluating the speci�ed e�ects in the following order:

1. role bindings

2. indications

17

3. state transitions

(e) Discard the message and go to step I

Evaluation of a message request, i.e. step II, is executed atomically. The transition system semantics

of alliances implies atomicity of rule execution.

Rules without any message request, so-called immediate rules as, e.g., rule (4) in Figure 11 concep-

tually �re on the occurrence of an event raised at a so-called anonymous role. This role can be selected

as the result of step I just like any other role of the alliance. Thus, every immediate rule

condition f g

can be translated into

local event@anonymous role if condition f g

where always a local event has occurred when anonymous role is selected for evaluation.

4.5 Alliance Hierarchies

As Figure 2 indicates the planning of an order is a sub-activity of overall processing of an order. One

should be able to model hierarchical structures of activities with alliance as well. In order to meet this

requirement we have to add two minor extensions to the alliance model: First, we allow that alliances

can create sub-alliances. Second, we must notify an alliance if one of its sub-alliances terminates. Sub-

alliances must be registered as part of the state of their father. The evaluation-cycle of sub-alliances is

executed concurrently to that of their father, i.e., sub-alliances are executed independently from their

father.

alliance order processing f

roles:

f: : : gf: : : g Company;

f: : : gf: : : g Client;

f: : : gf: : : g Order;
states:

enum(acceptance, planning, execution, invoicing) current;

anAlliance sub;
initialization:

order processing(Object c, Object s, Object o) f

Client = c;
Company = s;

Order = o;

current = acceptance;

sub = new acceptance(Client, Site, Order);

g

rules:

: : :

terminate(sub) f

current = planning;
sub = new planning(Site, Order);

g

: : :

Figure 12: Alliance type order processing with sub-alliances

Figure 12 shows a part of the alliance type order processing. At instantiation time a new sub-alliance

of type acceptance is created. On its termination a second sub-alliance, now of type planning, is created.

18

5 Mapping Workows to Alliances

In this section we will illustrate by examples how elements of a execution control speci�cation of workow

models can be mapped onto alliances. We discuss the implementation of procedure-like (i.e. imperative)

and declarative control structures.

In the sequel we denote by i, i1, i2, : : : arbitrary events (requests, local events) that may lead to the

execution of a rule. a, a1, a2, : : : denote either message indications or creation of new alliances. c, c1,

c2, : : : are response or termination events with c matching a and ci matching ai. Finally b, b1, b2, : : :

are boolean variables.

5.1 Mapping Imperative Execution Control

The elementary building blocks of procedure-like (imperative) execution control descriptions are sequen-

tial execution, conditional execution, loops, and parallel execution (Section 2.1.3). Sequentialization of

activities (a1; a2) can be enforced by chaining rules as shown in the following example (we assume that

b is initially false and will not be set to true by any other rule):

i fa1; b = trueg
b fa2g

Note that due to the execution model for alliances the rules only enforce that a1 takes place before

a2 and that no additional requests from objects are necessary to let a2 take place. Hence, the alliance is

indeed the driving force to let a2 take place after a1. On the other hand, alliances add a certain degree of

ambiguity. They do not preclude that other events may occur between the execution of a1 and a2, or that

other rules may �re in between. If, true to strict sequential execution, this is to be prevented all other

rules of the alliance type must be masked with not b, i.e. must have the form : : : if not b f g. In general

rule-based protocol speci�cation allows for much more varieties of \sequential execution semantics" than

can be expressed by a script-like speci�cation.

Conditional execution of activities (b?a1 : a2) can be realized by alliances with the following rules,

i if b fa1g
i if not b fa2g

under the further assumption that no other rules can �re on the occurrence of i.

An easy implementation of loops (while b : a) might look as follows:

i if b fa; b = : : : g

b fa; b = : : : g

Of course, there may be rules that �re in an interleaved fashion with our \loop rules". This has

two consequences: First, the loop variable b might be a�ected by other \non-loop rules" which might

either lead to an unexpected termination of the \loop" or to in�nite \loop execution". Second, activities

(indication and instantiation of new alliances) may be initiated between two executions of the loop body

(i.e., the action part of both loops). To preclude interleaving, i.e. to obtain the traditional atomic

behavior of loops, requires additional linguistic e�ort, for example by masking all other rules with not b,

i.e. each other rule must have the form : : : if not b f: : :g.

Realization of parallel execution of activities (ka1; a2; : : :) is trivial due to our assumption that objects

perform their operations concurrently (cf. Section 4.2):

i fa1; a2; : : : g

5.2 Mapping Declarative Execution Control

For the elementary building blocks see again Section 2.1.3. Temporal ordering conditions (a1 < a2) can

be implemented by alliances as follows (we assume that b1 has initially been set to false):

i1 if not b1 fa2; b2 = trueg

i2 if not b2 fa1; b1 = trueg

c1 fb1 = falseg

19

In order to guarantee that a1 does not take place once a2 took place each rule that contains a1 in

its action part must be masked with not b2. The third rule ensures that a2 does not take place until

termination of a1 (c1 is either a response or a termination event). The rules realize a special interpretation

of the temporal ordering condition, i.e, that a response to a1 or a termination event must have occurred

(i.e., the activity represented by a1 must have been completed) before a2 can start. One can realize this

interpretation only if the �rst activity is represented by an acknowledged message.

Existence conditions (a1) a2) can be translated to rules as follows (we assume that b initially is

false):

i1 fa1g

c2 fb = trueg
i2 if b fterminateg

Once a1 took place the variable b ensures that the alliance does not terminate before a2 terminates

(c2) if we assume that all rules containing termination in their action part are masked by b, i.e., have the

form : : : if b f: : : ; terminateg and no other rules than those reacting on c2 set b to true. There must be

one or more rules which let a2 take place in their action parts. If the existence condition had a slightly

di�erent semantics, e.g., requiring only that a2 has been started but does not depend on its termination,

rules which have a2 in their action part must also set b to true.

6 Integration of Alliances into Distributed Object Systems

If we wish to integrate alliances into distributed object management systems this should be done on the

basis of one of numerous existing approaches of distributed object management. In this section we discuss

how this can be done. We choose OMG's CORBA [41] as an example.

6.1 Distributed Object Management

Distributed object management software is a system that allows the storage, activation, and communica-

tion of objects in a computer network. An object consists of a system-wide unique logical, i.e., state and

location independent, identi�er (OID), a set of message types (services), a hidden state, and a hidden

implementation of the services. Objects are units of distribution, i.e., they are neither distributed across

more than one process nor across more than one database.

In a distributed object system an object can invoke an operation (send a message) at another object

at a di�erent process or node of the network | a remote object | almost as easily as it can invoke an

operation on an object within the same process.

Object

Stub

Object

DII Stub

ORB

Adapter AdapterDII

Figure 13: Distributed Objects in CORBA

If an object contains a reference to a remote object, requests to this object are redirected to a so-called

request broker which localizes the referenced object, \activates" it if necessary, i.e., assigns a process to

it7, and indicates the request. CORBA o�ers two common techniques to achieve this: a stub and a

dynamic invocation interface (DII) to the request broker (ORB) (cf. Figure 13). The �rst allows for

static type checking of remote references and invocations. A stub | also often called a proxy [47] | is a

7A set of objects can share a single process to save resources (cf. Section 8).

20

local representative of a remote object and is created in the client's process when the client assigns the

identi�er of a remote object to a reference variable. In the case of dynamic invocation requests are objects

which a client creates when he invokes a remote object. The necessary type information is provided as

run-time parameters. Dynamic invocation is useful when type information for remote objects cannot be

provided statically, or when script languages are used to implement objects. The ORB uses an adapter

to deliver requests to an object.

Method invocation on remote objects can either be synchronous, i.e., the client is blocked until the

method is executed and the server returns a result, or asynchronous, i.e., non-blocking. Asynchronous

communication is important in cooperative environments since, as we have already outlined above, in most

cases activities are too complex to use procedures as an adequate abstraction. Also, cyclic communication

structures (e.g., A requests B to perform a service S, subsequently B asks A for further information in

order to perform S) are quite common. Here, asynchronous communication is required to avoid activities

to become \deadlocked".

6.2 Integration of Alliances

In order to integrate alliances into CORBA-like distributed object systems there are two options: Either

alliances are implemented as \�rst-class" objects (cf. Figure 14), or their implementation is distributed

pretty much like the distributed implementation of a layer in a protocol stack (cf. Figure 15). In the �rst

case alliances could be compared with some kind of adapter- and mediator-objects as identi�ed in [16]

and extended to a distributed and concurrent environment. Our contribution would then be more in the

direction of a design methodology for distributed applications than a technical innovation.

Stub DII Stub

ORB

Adapter AdapterDII

Object

DII Stub Adapter

ObjectAlliance

Figure 14: Alliance as \�rst-class" objects in CORBA

The main disadvantage of this solution is that the objects must use communication subsystem to

interact with alliances which leaves it to the objects to add higher-level communication functionalities to

deal with its hazards and uncertainties (Figure 14). These are more naturally to hide if the second, the

distributed implementation variant, is used (Figure 15).

In this variant each participant object of an alliance references its own local representative of the

alliance. Alliances become generalized smart proxies: Generalized in the sense that they connect a

collection of objects and are not restricted to two objects; smart because they realize a context-sensitive

cooperation protocol, i.e., contain their own state information and program code. Figure 15 illustrates

how this idea can be extended into the CORBA architecture. Each participant of an alliance interacts

with a local representative of this alliance (Alliance rep. in Figure 15). The representatives of an alliance

communicate with each other by using standard communication services.

The interface between objects and alliances can be statically or dynamically typed. In the �rst case we

must extend the object language by constructs to mark reference variables of object types as references

to alliances. A possible ODMG-like [10] syntax is shown in Figure 16. In this case conformance to role

speci�cations can be checked statically when objects are compiled. The keyword as which we used in

Figure�g:Object:Interface can be interpreted as a generalized inverse-clause as proposed in the ODMG

standard to model binary relationships (also known as inverse references). In this case it does not point

to an attribute of the object which is referenced but to a role name of an n-ary dynamic relationship.

Note, that it is not always necessary to declare references to alliances explicitly. In the case that

objects are mere \servers" in an alliance, i.e., do not take the initiative for any communication on their

21

Object

Stub

Alliance rep.

Object

DII Stub

Alliance rep.

ORB

Adapter AdapterDII

Stat./Dyn. Typed
Event Interface

Stat./Dyn. Typed
Event Interface

Figure 15: Alliances as \protocol layer" in CORBA

interface Transportation Company f

: : :

partner: set<planning> as planning::coordinator;
// I'm the coordinator and this is the \pointer" to my partners

coordinator: set<planning> as planning::partner;

// I'm a partner and this is the \pointer" to my coordinator
: : :

g;

Figure 16: Statically typed event interface

own (formally: do not send any other messages besides unnamed replies) no reference to an alliance must

be declared. Consequently, the variable coordinator in Figure 13 could be left out.

In the dynamic case objects hold untyped references to alliances. Requests are issued by creating

new request objects which take the requestor's role name and the requested message (name and message

parameters) as parameters. Conformance to role speci�cations must be checked at run-time.

7 Distributed Implementation of Alliances

In this section we have a closer look at the distributed implementation of alliances as proposed in the last

section. We must considerate two major issues: �rst, how objects are associated to alliances (role binding)

and, second, how the evaluation cycle of an alliance can be implemented in a distributed environment.

This issue is closely related to the question how and where to maintain the state of an alliance.

7.1 Role Binding

Binding an object to a role is the process of establishing a typed bi-directional association between

an object and an alliance. Role binding takes place as part of the execution of some rule or during

initialization (see, e.g., Figures 11 and 10, respectively). It covers the following steps:

1. Given an OID of an object to be bound, the object's current location must be determined. For this

purpose the alliance accesses a global object index.

2. A new representative is created for the object to be bound.

3. In the case of dynamically typed event interfaces the type of the object to be bound can partially

be checked. If the interface speci�cation is available the set of receivable message types can be

22

checked. The set of send-able message cannot be checked statically because objects contain only

untyped references to alliances even if the implementation of object types is available. Consequently,

message requests that do not meet the role speci�cation can only be rejected when they actually

occur.

If the statically typed event interface is used no type errors can occur at run-time.

4. The role is updated with the new object identi�er.

5. The object is noti�ed about the new binding in order to let it update its state with a reference to

the newly created representative of the alliance.

7.2 Implementation of State and Evaluation Cycle

Objects are located across a network, where each object raises communication events with local rep-

resentatives of alliances to which it has been bound. Consequently, from a functional perspective an

alliance is itself distributed. This leaves considerable latitude to the implementation of alliances because

the questions how to implement the evaluation cycle, i.e., the internal control ow of an alliance, and

how to implement its state may now be answered in more than one way. Special care must be taken

on fairness of role selection and atomicity of rule execution. Since representatives are distributed across

several nodes and processes, the following dimensions de�ne a space of implementation variants:

1. Shall alliances be executed at one place or shall their execution be distributed across the set of

involved nodes?

2. Shall the state be stored at one place or shall it be replicated8 at all or a subset of involved nodes?

We must further distinguish between the main-memory representation of the state (subsequently

called transient state) and its representation on durable storage (persistent state).

We obtain eight implementation variants: control central or distributed, transient state central or

replicated, persistent state central or replicated. However, if control is distributed it does not make much

sense to keep the transient state at one remote node because we would not gain anything concerning

reliability but would have to pay additional communication costs. It also does not sound very clever

to replicate the transient state if control is at one node, since only the evaluation cycle needs access to

state information. As a general rule we can postulate that transient state information should always

be there where control is9, and access to transient state information should never be remote to reduce

communication costs. Consequently, we can immediately exclude four variants.

Figure 17 illustrates the remaining four variants. The upper left �gure shows a variant where both

state and control are centralized. Fairness can easily be achieved by simply iterating through all roles.

Those representatives which are temporally not reachable (e.g., because their nodes are down) can simply

be skipped to enhance fault-tolerance. Atomicity has to rely on services of the next lower layer (Figure 1).

For instance, execution of a rule could be an atomic transaction where transactions semantics must be

available for both updating the state and raising message indications with the (remote) representatives.

For example, if one of the nodes to which messages should be delivered is not reachable it must be

possible to roll back all updates on the state and all former message indications. In this variant the local

representatives are degraded to be mere event interfaces to objects (comparable to stubs). As the �gure

indicates one representative takes the role of the chief (the shadowed representative), i.e., executes the

evaluation cycle and maintains the alliance state locally.

This variant is easy to implement and requires a minimum of additional communication (compared

to the variants which we discuss subsequently). On the other hand it is vulnerable | as any centralized

architecture | against the failure of the chief or its node since all participants at the alliance will su�er

in this case.

The upper right �gure shows a fully distributed variant: state is replicated and control is executed

cooperatively at all nodes. In this variant control is always at the node where a message request that

8We do not consider fragmented states, since it is in general not possible to compute an appropriate fragmentation of
the state automatically from a given alliance speci�cation and we do not want to bother a system implementor with further

implementation overhead. But it could be worthwhile to investigate fragmentation in future research.
9Therefore, we will use the terms state and persistent state interchangeably in the sequel.

23

Object

Stub

Object

DII Stub

Alliance rep.

ORB

Adapter AdapterDII

Stat./Dyn. Typed
Event Interface

Stat./Dyn. Typed
Event Interface

Object

DII Stub Adapter

Stat./Dyn. Typed
Event Interface

Object Object Object

Alliance rep.

Object

Stub

Alliance rep.

Object

DII Stub

Alliance rep.

ORB

Adapter AdapterDII

Stat./Dyn. Typed
Event Interface

Stat./Dyn. Typed
Event Interface

Object

DII Stub

Alliance rep.

Adapter

Stat./Dyn. Typed
Event Interface

Object Object Object

Alliance rep. Alliance rep. Alliance rep.

central state / central control replicated state / distributed control

Object

Stub

Alliance rep.

Object

DII Stub

Alliance rep.

ORB

Adapter AdapterDII

Stat./Dyn. Typed
Event Interface

Stat./Dyn. Typed
Event Interface

Object

DII Stub

Alliance rep.

Adapter

Stat./Dyn. Typed
Event Interface

Object Object Object

Alliance rep.

Object

Stub

Object

DII Stub

Alliance rep.

ORB

Adapter AdapterDII

Stat./Dyn. Typed
Event Interface

Stat./Dyn. Typed
Event Interface

Object

DII Stub Adapter

Stat./Dyn. Typed
Event Interface

Object Object Object

Alliance rep. Alliance rep. Alliance rep.

central state / distributed control replicated state / central control

Figure 17: Implementation variants

is to be evaluated has occurred. The fairness of role selection can be guaranteed by choosing a token-

ring algorithm which skips non-reachable representatives only a �nite number of iterations. If the given

network and underlying services do not meet the requirements for reliable token-ring algorithms (e.g., if

the net might be partitioned or node failures cannot be detected) we could alternatively regard the set of

representatives as active replicates and choose some of the well-known replication algorithms (see, e.g.,

[26]). Note that in this case it is much harder to formally guarantee fairness of role selection. The ow

of control among the representatives is symbolized by dashed arrows in Figure 17.

Atomicity can be achieved in a similar way as in the �rst variant. But this time we have to apply

distributed transactions since all state replicates at several nodes must be atomically updated. In order

to guarantee consistency of replicated states well-known database algorithms can be applied (see, e.g.,

[43]).

Implementation of this variant is quite complex. Furthermore, we have to account for a considerable

additional communication overhead. One may wonder whether the disadvantages of distributed imple-

mentation of alliances do not outweigh their advantages such as increased reliability in that even if some

nodes are temporally not available the cooperation along an alliance will continue. After all quite reliable

standard services for communication and databases are available. But not only enhanced fault-tolerance

of the WFMS but also organizational restrictions may still require a distributed implementation. Con-

sider, e.g., our truck scenario. There, a manager at one site may wish to have a look at the state of

the alliance in order to control the progress of activities. Even if communication costs might not be

an argument because fast networks and protocols are available there may be organizational restrictions

which necessitate a replicated implementation. For instance, each site of our truck scenario may be an

independent company just loosely cooperating with a set of other truck companies. In this case our

manager would need direct access to resources of one of his or her partners which will not be granted

24

because of accounting or security reasons. Consequently, local availability of sharable state information

could be a functional requirement in situations where alliances are to be monitored at arbitrary locations

of a distributed system.

The third and forth variants (lower left and lower right in Figure 17) are mixes between the �rst

two variants. The variant illustrated in the lower left corner distributes control but maintains state

centrally. This prevents the overhead to keep the state consistent but retains the bene�ts concerning

fault-tolerance if we assume that a node failure does not prevent access to state information. The last

variant complements the third: it replicates the state but control is centralized. This variant might be

taken into consideration if fault-tolerance of alliance execution is not an issue but availability of state

information is important.

Whichever alternative is selected, a distributed implementation of alliances hides all inter-process-

communication behind the interface of alliances, and allows to handle errors, especially those which can

occur in distributed environments, in an application-speci�c and at least partially transparent manner.

Thus, alliances contribute to distribution transparency and add substantial functionality to the object

layer of Figure 1.

8 Standard Services and Protocols

Distributed object management and, hence, distributed implementation of alliances heavily rely on stan-

dard services such as database, thread, and process services. We distinguish between local and global

services. A local service is a service which is only available to one node10 in a network. Global services

must be available to all nodes in a like fashion. A similar distinction can be made for the information,

e.g., object types and states, which must be maintained in a WFMS. Some information is only required

locally, other information must be globally accessible via global services.

8.1 Local Services

8.1.1 Database Services

We use database services to make objects and alliances persistent which is required since both may be

long-living. In addition, database services can be used to de�ne atomic computational units of objects by

means of transactions. Databases need not to globally accessible because (a) objects are encapsulated, i.e.

the state of an object is only accessed by itself, and (b) the replicated state implementation alternatives

for alliances let representatives maintain state information locally and do not require access to shared

state information. A replication control algorithm can be used to keep the state consistent. In the case

the state of an alliance is centrally maintained we need global database services for this purpose.

Local database services can also be used to maintain type information for objects. As we saw above,

type information must be available when an alliance binds an object (referenced by an OID) to a role.

Since only the local representative must access the type information (interface and implementation) of

the object just a unique type identi�er is required globally.

8.1.2 Thread and Process Services

Objects must be assigned to threads and processes. For this we need thread and process services. Since

processes are only temporally active, alliances may indicate messages to objects which currently are not

assigned to a process but \sleep" in a database. Consequently, a process service must assign an object

to a process | either by creating a new process or by using an active one. In CORBA the adapter (cf.

Figure 15) provides process services [41].

Fine-grained active objects should be implemented using threads as, e.g., o�ered in OSF-DCE [42],

such that a set of active objects can share a commonprocess, since processes are a very expensive resource.

High-level language primitives which allow a programmer to implement active objects without having to

explicitly program the threads, as o�ered in so-called concurrent object-oriented programming languages

10A node is a logical unit in a network and does not necessarily refer to a workstation or PC. Depending on the given
network architecture and software a node may be a (temporally active) process together with a database, a workstation
or PC where a set of processes may maintain their databases by a common database server, or a LAN with a network �le
system where processes may be run on several processes but use a common database server to maintain their databases.

25

[2], ease the task of implementing �ne-grained active objects. There exist numerous approaches in the

literature, e.g., [27, 53, 19, 28].

8.2 Global Services

8.2.1 Distributed Database Services

Two types of information must be globally available: an object index which maps OIDs to their current

location, i.e. a node, and type information on alliances.

As already mentioned in Section 7, alliances need access to a global object index in order to localize

objects which are to be bound to a role. It is natural to consider distributed database technology to

maintain this index. Both objects and alliances must access this index to update it when they create

new objects. Localization of objects, i.e. a read access, is only required for alliances when they bind

objects to roles. In order to avoid too many accesses to the possibly very large index, addresses can

be materialized inside the alliance, although this leads to the problem of potentially invalid addresses if

objects can change their location. As an ad-hoc solution for this problem the entry of a newly bound

object in the index could be extended by the identi�er of the alliance in order to be able to update the

address stored in the alliance when the object is moved. Alternatively a common proxy technique from

distributed systems can be used [47]. Future research should pay further attention to mobile objects

because they seem to become a very important feature for distributed applications.

Access to the object index must be synchronized by transactions since more than one object or alliance

may use it concurrently. Note that the object index need not contain the exact address of an object but

only its current node. Thus, its maintenance can be decoupled from the maintenance of local object

tables used by local database services (see above).

Alliance type information must be globally available since every object at every node may create a

new instance of a certain alliance type.

The atomicity of step II of the evaluation cycle (Section 4.4) can be achieved by embedding it into

a transaction. Since alliance states may be replicated a distributed commit protocol (e.g. 2PC) must

be used. A distributed commit protocol meets also our requirement for atomic propagation of message

indications to remote representatives.

8.2.2 Communication Services

It is obvious that communication services as, e.g., o�ered by the CORBA standard play a key role

in the implementation of WFMS. Alliance representatives use synchronous and asynchronous RPC to

communicate with each other. Multicast | though not yet included in CORBA | would be bene�cial

to support indications at set-valued roles. Note, however, that objects obtain high-level communication

services via alliances rather than the lower-level primitives still enforced by distributed platforms.

9 Discussion

First we briey review how we implemented the components of a WFMS as identi�ed in Figure 4 by

using alliances.

The set of alliances which exist in the system, and their evaluation cycles implement the controller

of the WFMS kernel in a distributed and decentralized fashion. Local databases and the global object

index implement the object manager also in a distributed way. Alliances realize noti�cation by indicating

messages with objects and notifying them about role bindings. The implementation of role binding has

been discussed in Section 7. Of course, a workow model should also o�er more abstract and declarative

ways to specify actors which qualify as participants at a workow rather than enumerate them individually

by their name. Thus, Section 7 assumes that a mapping from a declarative speci�cation of actors to OIDs

has already been done. We left out logging, the last component of the WFMS shell, in this paper.

Subsequently we discuss how the proposed implementation of WFMS meets the requirements listed

in Section 2.3.

Scalability and Extensibility mainly depend on the number of and access rates to centralized

components and global data structures in the system. The most important issue here is event handling.

26

Noti�cation and controller of Figure 4 are responsible for event handling. In a centralized solution their

performance would depend on the number of objects and workows which raise events.

In an alliance-based implementation event handling is independent of the number of active workows

because events are only visible in the context of a single alliance. The number of participants especially if

we consider set-valued roles with potentially large numbers of members can inuence the throughput of a

workow. But this is restricted to this particular alliance and leaves parallel active alliances una�ected.

Furthermore, an alliance-based system does not need any central server component. Every object

is its own server and uses only local services. Alliances uses local services and global communication

services.

An alliance-based implementation needs two kinds of global data structures: type information of

alliances (rules etc.) and an object index. If we assume that modi�cations on type information is quite

rare we can fully replicate all alliance types at all nodes. If objects use the statically typed event interface

run-time accesses to type information can be reduced.

The object index is more critical with respect to scalability, since this index must be accessed quite

frequently. Read accesses to the object index can be reduced if object addresses are kept with the roles in

alliances as already sketched in Section 8.2.1. But this does not inuence the overhead for maintaining the

index when objects are created or deleted. Some relaxation can be expected if the index is implemented

as, e.g., proposed in [32]. If objects are immobile the object index can be completely abandoned because

physical object identi�ers can be used. Note, that this problem is well-known in distributed database

technology [43] and has not been caused by the introduction of alliances. It should also be clear from

the former sections that there is no need for a global alliance index, i.e., alliances do not aggravate the

problem.

Integration of Autonomous Components How easy or hard it is to integrate an autonomous

component into a system depends on the requirements which the component has to meet in order to be

integrated. The more one expects from the behavior of a component the lower is the chance that some

given component can be integrated. WFMS which are based on distributed transaction systems make far-

reaching assumptions about objects they want to integrate [7]: objects must o�er certain messages at their

interface (e.g., commit and abort) and they must reach certain internal states (e.g., prepared-to-commit).

Components which do not meet these requirements are excluded from integration.

In contrast alliances expect very little from their participants. No special messages are required for

the objects' interfaces. Objects must just behave consistent with some \law of nature", i.e., elementary

causalities. This allows the integration of almost any objects.

In addition, integration is supported by the capability of alliances to bridge type and interface

protocol11 incompatibilities between cooperating objects.

Integration of legacy software has not explicitly be mentioned here. Usually legacy software is

\wrapped" to give it the odium of an object. This wrapper might contain references to alliances in

order to let a legacy object take part in a cooperation. This technique is mainly applicable to integrate

mere server objects. If legacy software should take the initiative to communicate in a cooperation, the

implementation of the wrapper will grow quite complex since communications initiated by the software

must be \trapped", i.e., caught and redirected to an alliance. In some cases even a reimplementation

might be necessary.

Distribution The contribution with respect to distribution should be obvious from the discussions

in Sections 6 and 7.

Cooperation is directly supported by alliances. Section 4 showed that alliances allow to specify

arbitrary cooperation protocols and are not restricted to client-server relationships. This way alliances

allow to integrate cooperative activities into WFMS besides mere procedure-oriented ones.

FlexibilityAlliances are event-driven. This way the initiative for communications and actions remain

with the objects. The rule-based speci�cation of alliances cover a large amount of possible messages

sequences but guarantee that dependencies between activities are not violated. On the other hand the

autonomy of objects is not restricted, since the initiative for communications and actions remains with

the objects. This way objects can act spontaneously, and user-interface objects | and consequently users

itself | can be easily integrated. This allows users to inuence the execution of workows.

Furthermore, alliances allow for modular handling of system internal errors, especially those caused

by distribution and inter-node communication. This helps to free the application code of objects from

11By type incompatibilities we mean syntactically di�erent but semantically equivalent messages between caller and
receiver. By interface protocol we mean object-local restrictions on sequences of invocations.

27

complex error handling chores. This way alliances contribute to enhance distribution transparency from

the objects' point of view.

10 Conclusion and Outlook

We consider this paper to make two contributions: Distribution of workow management systems and

cooperative behavior of objects in distributed systems. We also show how these two issues can be

We proposed a layered architecture for WFMS. The main focus was on the distributed implemen-

tation of a WFMS and on the support of cooperative execution of workows by autonomous actors.

We introduced a new construct called alliance which materializes inter-object cooperation protocols in a

distributed object space. We showed how workow models can be mapped to objects and alliances and

how alliances can contribute to a distributed implementation of the central components of a WFMS, its

controller, noti�cation, and object manager, and to a cooperative execution of workows. We further

demonstrated how objects and alliances can be implemented on top of a distributed object management

system which on its part uses standard services and protocols.

We have developed prototypical implementation of our approach. It includes two of the four versions

of the evaluation cycle outlined in Section 7: a centralized one with a �xed master and non-replicated

state, and the variant with distributed control but still a centralized state. For the latter we used a

majority consensus voting algorithm for active replicates as speci�ed in [26]. The voting algorithm is

used for role selection.

The prototype is based on a CORBA implementation. We use the persistent object management

system OBST [49] to implement the required database services. The current prototype does not use

any distributed database services, i.e., the object index is maintained centrally. Also the persistent state

of alliances is not replicated across several nodes but stored in a central database. The prototype does

not support �ne-grained active objects by threads since the CORBA implementation does not support

multi-threading. In order to gain experiences with �ne-grained active objects we did some promising

experiments with Concurrent C/C++ [19] to implement objects and alliances apart from the CORBA

based implementation . They proved the bene�ts of high-level language constructs to implement �ne-

grained active objects. As application example we selected the transportation company world which

accompanied us throughout this paper.

If one compares alliance-based communication with \classical" non-mediated object invocation | es-

pecially if we assume a distributed implementation variant of the evaluation cycle | it is not unexpected

that we have to pay for the additional functionality of alliances by performance losses. Consequently,

optimization is vital. The main performance parameter is communication costs. If the distributed im-

plementation variant is used communication costs which arise in connection with evaluating one message

request depend on the number of participants, i.e. representatives of the alliance. In the centralized

variant communication costs depend on the location of objects and the master, since we assume that

communication via an ORB or by RPC is far more expensive than communication costs inside one pro-

cess. Consequently, optimization should start with controlling the location of objects that cooperate with

each other. Putting participants of an alliance and representatives together at one node can considerably

reduce communication costs. Of course, this is not always possible due to the size of the objects or

because of special application requirements (e.g., security). We are currently investigating what kind of

distribution control primitives such as, e.g., object migration and attachment [1], are appropriate in order

to extend the functionality of alliances by application-speci�c distribution control strategies.

A second important issue is the design of alliances. This seems a non-trivial task even for small

examples. Given a declarative execution control description, a lot of additional execution semantics,

especially rules for error handling, must be added to bring alliances to work. Fortunately, one may

be able to rely on the experience of protocol design from the telecommunications �eld (e.g., [46]). We

are currently looking into how transition system logics as linear temporal logic or computational tree

logic (CTL)12 can be applied to de�ne correctness of alliance types13, how such a speci�cation can be

systematically transformed to protocol rules, and which techniques of static analysis of alliance types can

be applied to ensure their correctness.

12For instance, the temporal ordering condition of workows w1 < w2 introduced in Section 2.1 can be expressed as a
CTL formula.

13Ngu et al. recently proposed to use propositional temporal logic to specify and validate so-called interoperable transac-
tions which can be compared with \alliances" on a conceptual (workow) level [38].

28

References

[1] B. Achauer. The DOWL distributed object-oriented language. Communications of the ACM,

36(9):48{55, Sep. 1993.

[2] G. Agha. Concurrent object-oriented programming. Communications of the ACM, 33(9):125{141,

Sep 1990.

[3] G. Agha, S. Fr�lund, W. Kim, R. Panwar, A. Patterson, and D. Sturman. Abstraction and mod-

ularity mechanisms for concurrent computing. In G. Agha, P. Wegner, and A. Yonezawa, editors,

Research Directions in Concurrent Object-Oriented Programming, pages 3{21. MIT Press, 1993.

[4] R. Allen and D. Garlan. Formalizing architectural connection. In Proc. of 16th Intl. Conf. on

Software Engineering, pages 71{80, Sorrento, Italy, May 1994. IEEE.

[5] E. Anwar, L. Maugis, and S. Chakravarthy. A new perspective on rule support for object-oriented

databases. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 99{108, 1993.

[6] Andr�e Arnold. Finite Transitions Systems. Prentice Hall, 1994.

[7] P. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz. Speci�ying and enforcing intertask dependencies.

In Proc. of The Conf. on Very Large Data Bases (VLDB), pages 134{145, Dublin, Ireland, Aug 1993.

[8] C. Beeri and T. Milo. A model for active object oriented database. In Proc. of The Conf. on Very

Large Data Bases (VLDB), pages 337{349, Barcelona, Spain, 1991.

[9] H. Branding, A. Buchmann, T. Kudrass, and J. Zimmermann. Rules in an open system: The

REACH rule system. In N.W. Paton and M. H. Williams, editors, Rules in Database Systems (Proc.

of the 1st Int. Workshop on Rules in Database Systems), Workshops in Computing, pages 111{126.

Springer Verlag, 1994.

[10] R. G. Cattell. Object Database Standard: ODMG { 93. Morgan Kaufmann, 1994.

[11] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events for active databases:

Semantics, contexts and detection. In Proc. of The Conf. on Very Large Data Bases (VLDB), pages

606{617, Santiago de Chile, Chile, Sep 1994.

[12] U. Dayal, M. Hsu, and R. Ladin. Organizing long-running activities with triggers and transactions.

In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 204{214, Atlantic City,

NJ, May 1990.

[13] O. Diaz, N. Paton, and P. Gray. Rule management in object oriented databases: A uniform approach.

In Proc. of The Conf. on Very Large Data Bases (VLDB), pages 317{326, Barcelona, Spain, 1991.

[14] J. Eder and W. Liebhart. The workow activity model WAMO. In Proc. of Int. Conference on

Cooperative Information Systems, pages 87{98, 1995.

[15] G. Florijn. Object protocols as functional parsers. In W. Oltho�, editor, ECOOP'95 | Object-

Oriented Programming, volume 952 of LNCS, pages 351{373. Springer, 1995.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1994.

[17] H. Garcia-Molina and K. Salem. Sagas. In Proc. of the ACM SIGMOD Intl. Conf. on Management

of Data, pages 249{259, May 1987.

[18] S. Gatziu and K. R. Dittrich. Events in an active object-oriented database system. In N.W. Paton

and M. H. Williams, editors, Rules in Database Systems (Proc. of the 1st Int. Workshop on Rules

in Database Systems), Workshops in Computing, pages 23{39. Springer Verlag, 1994.

[19] N. Gehani and W. D. Roome. The Concurrent C Programming Language. Silicon Press, 1989.

29

[20] N. H. Gehani and H. V. Jagadish. Ode as an active database: Constraints and triggers. In Proc. of

The Conf. on Very Large Data Bases (VLDB), pages 327{336, 1991.

[21] J. Gray and A. Reuter. Transaction Processing: Concept und Techniques. Morgan Kaufmann, New

York, 1993.

[22] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying behavioral compositions in

object-oriented systems. In Proc. of ECOOP/OOPSLA, pages 169{180, 1990.

[23] I. M. Holland. Specifying reusable components using contracts. In O. Lehrmann Madsen, editor,

Proc. ECOOP'92, LNCS 615, pages 287{308, Utrecht, The Netherlands, 1992. Springer-Verlag.

[24] International Organization for Standardization (ISO). Information Processing Systems | Open

Systems Interconnection | Reference Model, 1984.

[25] S. Jablonski. Workow-Management-Systeme: Motivation, Modellierung, Architektur. Informatik

Spektrum, 18(1):13{24, Feb. 1995, (in German).

[26] P. Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, Englewood Cli�s, 1994.

[27] D. G. Kafura and K. H. Lee. Inheritance in actor based concurrent object-oriented languages. In

S. Cook, editor, Proc. ECOOP'89, British Computer Society Workshop Series. Cambridge University

Press, 1989.

[28] A. Kemper, P. C. Lockemann, G. Moerkotte, and H.-D. Walter. Autonomous objects: A natural

model for complex applications. Journal of Intelligent Information Systems, 3(2):133{150, 1994.

[29] A. M. Kotz, K. R. Dittrich, and J. A. M�ulle. Supporting semantic rules by a generalized event-trigger

mechanism. In Proc. Intl. Conf. Extending Database Technology (EDBT), pages 76{91, Venice, Italy,

Mar. 1988.

[30] D. Lea and J. Marlowe. Interface-based protocol speci�cation of open systems using PSL. In

W. Oltho�, editor, ECOOP'95 | Object-Oriented Programming, volume 952 of LNCS, pages 374{

398. Springer, 1995.

[31] F. Leymann. Supporting business transactions via partial backward Recovery in Workow Manage-

ment Systems. In Datenbanken in B�uro, Technik und Wissenschaft (BTW), pages 51{70. Springer

Verlag, 1995.

[32] W. Litwin, M.-A. Neimat, and D. Schneider. RP�: A family of order-preserving scalable distributed

data structures. In Proc. of The Conf. on Very Large Data Bases (VLDB), pages 342{353, Santiago,

Chile, 1994.

[33] L. Liu and R. Meersman. Activity model: Declarative approach for capturing communication be-

haviour in object-oriented databases. In 18th International Conference on Very Large Data Bases,

pages 481{493, 1992.

[34] P.C. Lockemann and H.-D. Walter. Activities in object bases. In N.W. Paton and M. H. Williams,

editors, Rules in Database Systems (Proc. of the 1st Int. Workshop on Rules in Database Systems),

Workshops in Computing, pages 3{22. Springer Verlag, 1994.

[35] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan Kaufmann, 1994.

[36] J. C. McCarthy andW.M. Bluestein. The computing strategy report: Workow's progress. Technical

report, Forrester Research Inc., Cambridge, 1991.

[37] A. HH. Ngu, R. Meersman, and H. Weigand. Speci�cation and veri�cation of communication con-

straints for interoperable transactions. International Journal of Intelligent and Cooperative Infor-

mation Systems, 3(1):47{65, 1994.

[38] A. HH. Ngu, R. Meersman, and H. Weigand. Speci�cation and veri�cation of communication con-

straints for interoperable transations. In Proc. of 2nd Int. Conference on Cooperative Information

Systems, pages 15{22, Toronto, Canada, May 1994.

30

[39] O. Nierstrasz. Regular types for active objects. In Proc. of the ACM Conf. on Object-Oriented

Programming Systems and Languages (OOPSLA), volume 28 of ACM Sigplan Notices, October

1993.

[40] M. H. Nodine, N. Nakos, and S. B. Zdonik. Specifying exible tasks in a multidatabase. In Proc. of

2nd Int. Conference on Cooperative Information Systems, pages 3{14, Toronto, Canada, May 1994.

[41] The Object Management Group Inc. The Common Object Request Broker: Architecture and Speci-

�cation, OMG document no. 93.12.1. revision 1.2 edition, 1993.

[42] OSF. An Introdution to OSF-DCE. Prentice Hall, Englewood Cli�s, NJ, 1992.

[43] M. T. �Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall, Englewood

Cli�s, NJ, 1991.

[44] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and

Design. Prentice Hall, Englewood Cli�s, NJ, 1991.

[45] M. Rusinkiewicz and A. Sheth. Speci�cation and execution of transactional workows. In W. Kim,

editor, Modern Database Systems. Addison-Wesley, 1995.

[46] J. M. Schneider. Protocol Engineering: A Rule Based Approach. Vieweg Advanced Studies in

Computer Science. Verlag Vieweg, 1992.

[47] M. Shapiro. Structure and encapsulation in distributed systems: The proxy principle. In 6th

Intl. Conf. on Distributed Computing Systems, pages 198{205, Boston, Massachussetts, 1986.

[48] A. S. Tanenbaum. Distributed Operating Systems. Prentice Hall, 1995.

[49] J. Uhl et al. The Object Management System of STONE { OBST Release 3.4.3. Forschungszentrum

Informatik (FZI), Karlsruhe, 1994.

[50] J. van den Bos and C. La�ra. Procol: A parallel object language with protocols. ACM SIGPLAN

Notices, Proceedings OOPSLA'89, 24(10):95{102, Oct. 1989.

[51] H. W�achter and A. Reuter. The ConTract model. In A. K. Elmagarmid, editor, Database Transaction

Models for Advanced Applications, pages 219{264. Morgan Kaufmann, 1992.

[52] D. M. Yellin and R. E. Strom. Interfaces, protocols, and the semi-automatic construction of software

adaptors. In Proc. of the ACM Conf. on Object-Oriented Programming Systems and Languages

(OOPSLA), pages 176{190, Portland, Oregon, USA, Oct. 1994.

[53] A. Yonezawa, editor. ABCL|An Object-Oriented Concurrent System. The MIT Press, 1990.

31

Contents

1 Introduction 2

2 Distributed Workow Systems 3

2.1 Workow Models : 4

2.1.1 Activities (Workows) : 4

2.1.2 Actors : 4

2.1.3 Dependencies : 4

2.2 Architecture of Workow Management Systems : 6

2.3 Implementation Requirements : 7

2.3.1 Scalability and Extensibility : 7

2.3.2 Integration of Autonomous Components : 7

2.3.3 Distribution : 8

2.3.4 Cooperation : 8

2.3.5 Flexibility : 8

3 Object-based Implementation of Workow Systems 9

3.1 Mapping Resources to Objects : 9

3.2 Shortcomings of a Pure Object-Based Implementation of a WFMS : : : : : : : : : : : : : 9

4 Alliances as a Model of Cooperation in Distributed Object Systems 10

4.1 Cooperation in Object Systems : 10

4.2 Alliances as Materialized Cooperation Protocols : 11

4.3 Rule-based Speci�cation of Alliances : 13

4.3.1 An Example Protocol : 13

4.3.2 States : 14

4.3.3 Initialization : 15

4.3.4 Communication Rules : 15

4.4 Semantics and Execution Model : 17

4.5 Alliance Hierarchies : 18

5 Mapping Workows to Alliances 19

5.1 Mapping Imperative Execution Control : 19

5.2 Mapping Declarative Execution Control : 19

6 Integration of Alliances into Distributed Object Systems 20

6.1 Distributed Object Management : 20

6.2 Integration of Alliances : 21

7 Distributed Implementation of Alliances 22

7.1 Role Binding : 22

7.2 Implementation of State and Evaluation Cycle : 23

8 Standard Services and Protocols 25

8.1 Local Services : 25

8.1.1 Database Services : 25

8.1.2 Thread and Process Services : 25

8.2 Global Services : 26

8.2.1 Distributed Database Services : 26

8.2.2 Communication Services : 26

9 Discussion 26

10 Conclusion and Outlook 28

32

