
Universit�at Karlsruhe
Rechenzentrum
76128 Karlsruhe

Germany

Interner Bericht Nr. 74/99

Properties of Approximate Inverses

and

Adaptive Control Concepts

for
Preconditioning

Author: Claus Koschinski

cUniversit�at Karlsruhe

Datum: 16. Dezember 1999

Properties of Approximate Inverses

and

Adaptive Control Concepts

for

Preconditioning

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakult�at f�ur Mathematik der
Universit�at Karlsruhe

genehmigte

Dissertation

von

Dipl.-Math. Claus Peter Koschinski
aus Essen

Tag der m�undlichen Pr�ufung: 15. Dezember 1999

Referent: Priv. Doz. Dr. R. Weiss

Korreferent: Prof. Dr. W. Sch�onauer

Abstract

In this work, we consider projection methods { a class of methods for calcu-

lating approximate inverses of general Hermitian and non-Hermitian matrices

{ and we consider the properties of these approximate inverses applied as ex-

plicit preconditioners of Krylov subspace methods.

We develop a theoretical framework for general projection methods. This

framework includes an explicit representation of approximate inverses given

by projection methods for given sparsity patterns, and, importantly, a state-

ment on the quality of the approximation of such an approximate inverse to

the exact inverse in form of a minimization property.

We introduce two strategies for the adaptive generation of sparsity patterns

for general projection methods. Since these strategies depend on parameters,

they are tunable with regards to the available computer architecture and to

the characteristics of the considered linear system. Further, with the adaptive

pattern derivation, projection methods can be considered as iterative methods

for approximating the exact inverse. Thus, if necessary, a once calculated

approximate inverse can be improved easily.

Based on the general de�nition of projection methods, we derive three new

explicit preconditioning techniques { namely LTL-projection, LU-projec-

tion and Plain projection { that include the adaptive generation of the

sparsity pattern for the corresponding approximate inverses. Importantly,

these new preconditioning techniques are inherently parallel, and hence well

suited for today's supercomputers. We compare the performance of our new

preconditioning techniques to both implicit and explicit state-of-the-art pre-

conditioning methods. The results of these numerical experiments indicate

that our new preconditioning techniques are competitive to the state-of-the-

art preconditioning techniques as regards convergence rates. Since the three

new preconditioning techniques can be parallelized easily, they will perform

better on parallel computers. However, this investigation is beyond the scope

of this thesis.

Danksagung

Diese Dissertation entstand zum gr�ossten Teil w�ahrend meiner T�atigkeit am Rechen-
zentrum der Universit�at (TH) Karlsruhe.

Meine gro�e Dankbarkeit gilt Priv. Doz. Dr. R�udiger Weiss, der das Thema an-
regte, und der das Fortschreiten der Dissertation mit gro�em Interesse verfolgte. Die
zahllosen mit R�udiger Weiss gef�uhrten Diskussionen und seine vielen Anregungen
waren mir w�ahrend der gesamten Zeit der Anfertigung der Dissertation eine gro�e
Hilfe.

Prof. Dr. W. Sch�onauer danke ich f�ur die freundliche �Ubernahme des Korreferats,
sowie f�ur zahlreiche Vorschl�age zum Inhalt und zur Darstellung der Dissertation.

Ich danke Dipl.-Inf. W. Fries, der mir w�ahrend meiner T�atigkeit in der Netzwerke-
Abteilung des Rechenzentrums der Universit�at (TH) Karlsruhe ein geduldiger und
ermutigender Chef war.

Mein Dank gilt Dr. Thomas Zeggel, der mit seinem scharfen Blick und gro�er
Geduld zur Klarheit der formalen und inhaltlichen Struktur beigetragen hat. Si-
mone Ritter danke ich f�ur ihre Hilfe zur englischen Sprache, insbesondere was die
Interpunktion angeht. Ich danke Dipl.-Ing. J�org Hagenlocher f�ur seine Hilfsbereit-
schaft und Gastfreundschaft.

Contents

1 Introduction 1

2 Notation 5

3 Linear Solvers and Preconditioning 9

3.1 Iterative Solvers for Linear Systems 9

3.2 Preconditioning Iterative Solvers . 11

3.3 Orthogonalization Methods . 18

3.4 Residual-Minimizing Smoothing . 24

3.5 Krylov Subspace Methods . 29

3.5.1 The CG-method . 34

3.5.2 The PRES20-method . 35

3.5.3 The BiCGstab-method . 36

3.5.4 The ATPRES-method . 40

4 Projection Methods 43

4.1 The General Concept . 43

4.2 Approximation Properties . 53

5 Adaptive Pattern Derivation for Projection
Methods 65

5.1 The Basic Concept of the Pattern Derivation 65

5.2 Multivariate Minimizing Pattern Adaption 76

5.3 Univariate Minimizing Pattern Adaption 88

6 Practical Preconditioning Algorithms 99

6.1 Normalization in Terms of Projection Methods 100

6.2 Frobenius Norm Minimizing in Terms of Projection
Methods . 103

6.3 The Plain projection method . 107

6.4 Incomplete LU -decomposition . 115

6.5 Incomplete Cholesky-decomposition 116

6.6 Incomplete A-Biconjugation . 117

6.7 Approximate Inverses of Triangular Factors 120

6.7.1 The Hermitian Positive De�nite Case 121

6.7.2 The Non-Hermitian Case . 131

6.8 Summary and further Methods . 144

7 Numerical Tests 151
7.1 Implementation Details . 154

7.1.1 The Linear Solvers for the Preconditioned Linear Systems . 155
7.1.2 The Implementation of the Projection Methods 157

7.2 The Test-Problems . 160
7.3 An Illustrated Example . 166
7.4 Numerical Experiments for the Symmetric Matrices 175
7.5 Numerical Experiments with the Non-Symmetric Matrices 186

7.5.1 The Plain projection Method 186
7.5.2 The LU-projection algorithm 203
7.5.3 Comparison of Plain projection and LU-projection to the

Standard Preconditioning Techniques for Non-Symmetric Lin-
ear Systems . 216

8 Summary and Outlook 233

List of Tables 237

List of Algorithms 237

List of Figures 238

References 240

Introduction 1

1 Introduction

Many problems in engineering, physics and chemistry can be formulated by systems
of partial di�erential equations. The discretization of those equations with the �nite
di�erence or the �nite element method brings forth large sparse linear systems of
the form Ax = b, with A 2 IRn�n and x; b 2 IRn. The solution of such sparse linear
systems is one of the key problems in today's scienti�c computing research.

Direct factorization methods, like e.g. the Gaussian elimination, are not recom-
mendable for the solution of large sparse linear systems, since during such a compu-
tation the sparse structure of the coe�cient matrix is destroyed and an inadmissible
amount of computer memory is required.

In the last decades, a lot of research has been devoted to the construction of it-
erative solvers for linear systems and many methods have been proposed. Most
state-of-the-art iterative solvers for linear systems belong to the family of Krylov
subspace methods. One favorable property of Krylov subspace methods is that {
apart from the coe�cient matrix A { only a very small amount of computer memory
is additionally needed. The computational complexity of Krylov subspace methods
is dominated by matrix-vector multiplications { operations that can be implemented
very e�ciently on today`s vector and parallel computers.

A severe drawback of iterative methods for solving linear systems is their lack of
robustness: the iterative solution process may fail to converge or be very slow. For
Krylov subspace methods, the convergence speed of the iterative solution depends
{ by a rule of thumb { on the spectral properties of the coe�cient matrix A, which
is unknown in practical applications.

In the last years numerous strategies to enhance the robustness of Krylov subspace
methods have been proposed. The concept of those preconditioning strategies is to
consider a more easily solvable, related linear system instead of the original linear
system Ax = b. Although all of these preconditioning strategies were found to be
more or less successful for some problems, no stable, all-purpose preconditioning
strategy is known up to now.

In general, all preconditioning methods can be classi�ed as being either implicit
or explicit. Implicit preconditioning methods are characterized by requiring addi-
tional equation solves in each step of the applied Krylov subspace method. Those
preconditioning methods are successful for a relatively wide range of problems and
computable in a small set-up time. On the other hand, implicit preconditioning
methods are inherently sequential, and thus not well suited for today's vector and
parallel computers. Explicit methods are characterized by requiring only one or
more additional matrix-vector multiplications in each step of the applied Krylov
subspace method. Those preconditioning methods seem to be less stable than the
implicit methods. On the other hand, they o�er a strategy dependent degree of
parallelism in the set-up phase and full parallelism during the iterative solve.

2 Introduction

In this work, we consider projection methods, which form a general class of methods
for calculating approximate inverses and we consider the theoretical and the practi-
cal properties of preconditioning iterative methods with such approximate inverses.
We develop a new theoretical framework and we present new adaptive strategies for
deriving sparsity patterns for approximate inverses given by projection methods.
Furthermore, we propose three new preconditioning techniques, which essentially
are particular projection methods with adaptive pattern derivation, and we con-
sider the practical and numerical properties of these new algorithms by comparing
them to the state-of-the-art preconditioning techniques.
This work is organized in the following way:
In chapter 2, we summarize the notation used throughout this work.
We begin chapter 3 by describing the general concept of iterative solvers for linear
systems. In section 3.2, we discuss the general concept of enhancing the e�ciency
and the robustness of iterative solvers by preconditioning. Many of the state-of-
the-art iterative solvers for linear systems belong to the family of orthogonalization
methods. This family of iterative methods is described in section 3.3 and statements
on the convergence of such iterative methods (with and without preconditioning) are
given. In section 3.4 Residual-Minimizing smoothing, a helpful tool for observing
the convergence of iterative methods, is described. The family of Krylov subspace
methods { a subclass of orthogonalization methods { is described in section 3.5. The
iterative solvers considered in our numerical tests belong to the family of Krylov
subspace methods. We describe these iterative solvers in greater detail and we give
a pseudo-code formulation of these solvers containing preconditioning.
We consider the theoretical properties of projection methods in chapter 4. At the
beginning of section 4.1, we give a bundle of de�nitions and nomenclature for the
treatment of sparse vectors and matrices, and the corresponding sparsity patterns.
These technical terms for sparse vectors and matrices are employed in the remainder
of this work. Then we state the de�nition of projection methods and we discuss the
basic concept behind projection methods and their application for preconditioning
iterative solvers. We deduce criteria for the existence and formulae for the explicit
representation of approximate inverses given by projection methods. Further, we
state the explicit calculation of approximate inverses by projection methods in form
of pseudo-code algorithms. Importantly, these pseudo-code algorithms are inher-
ently parallel, since the major part of their computational complexity consists in
solving many small independent linear systems.
In section 4.2, we develop statements on the quality of the approximation of an
approximate inverse calculated by a projection method to the corresponding exact
inverse. These statements compare the columns of the approximate inverse to the
corresponding columns of the exact inverse; the di�erence between two such columns
is measured in form of a columnwise minimization property in a subspace with a
dimension equal to the number of non-zeros allowed in the corresponding column of

Introduction 3

the approximate inverse. For illustrating the potential of the theoretical framework
for projection methods developed in sections 4.1 and 4.2, we conclude section 4.2
with considering two particular projection methods and their theoretical properties
in greater detail.
The design of strategies for the adaptive derivation of sparsity patterns for ap-
proximate inverses calculated by projection methods is considered in chapter 5. In
practical applications, the shape of the sparsity pattern utilized for calculating an
approximate inverse given by a projection method is decisive for the resulting accel-
eration of the preconditioned iteration. Since in general practice no information on
a suitable sparsity pattern for an approximate inverse given by a projection method
is available, the issue of adaptively determining a suitable sparsity pattern is of
great importance.
In section 5.1, we give an outline on the general design of the new adaptive pattern
derivation strategies for projection methods, and we discuss strategies for control-
ling the way of selecting the adaptive sparsity pattern as well as controlling the
maximum amount of non-zeros in the resulting approximate inverse. The basic idea
behind these pattern derivation strategies rests on augmenting a given sparsity pat-
tern of the approximate inverse. The indices added to the given sparsity pattern
are selected in such a way that the approximation statements given in section 4.2
yield the best possible approximation of the augmented approximate inverse to the
exact inverse. For this purpose, auxiliary quantities { namely the decrease rates
{ are calculated. For reasons of simplicity, we postpone the actual calculation of
these decrease rates to sections 5.2 and 5.3. Based on the general considerations
in section 5.1, we present and discuss two new algorithms for the adaptive pattern
derivation for projection methods in a pseudo-code formulation, and we consider
ways for choosing the parameters, which control these algorithms, with regards to
the available computer hardware and to problem dependent speci�cs. Importantly,
these new adaptive pattern derivation algorithms are inherently parallel, and hence
appealing for today's supercomputers.
In sections 5.2 and 5.3, we consider two approaches for the calculation of the decrease
rates, which are required for the adaptive pattern derivation algorithms presented
in section 5.1.
In chapter 6, we consider practical preconditioning techniques. We describe some of
the state-of-the-art preconditioning methods, and we introduce three new precondi-
tioning techniques, which are projection methods with adaptive pattern derivation.
In section 6.1, we discuss the concept of normalization. Two variants of normaliza-
tion are classi�ed in terms of projection methods.
In section 6.2, the Frobenius norm minimizing preconditioning approach is con-
sidered. This preconditioning method has been classi�ed in terms of projection
methods by Zimmermann in [83]. This preconditioning technique is, since it is a
projection method, inherently parallel, and much attention has been devoted to

4 Introduction

re�ning this method in the last years (see e.g. [17], [20], [32] and [39]).
In section 6.3, we propose a new preconditioning technique { the Plain projec-

tion algorithm. This preconditioning technique is based on a method proposed by
Kolotilina and Yeremin in [46], which we classify in terms of projection methods,
combined with the adaptive sparsity pattern derivation developed in chapter 5.1.
Importantly, the Plain projection algorithm is fully parallelizable.
The concepts of the families of incomplete LU -decompositions and incomplete Cho-
lesky-decompositions are briey described in sections 6.4 and 6.5. These families of
methods have been re�ned for decades, and numerous variants have been proposed.
Both approaches are known to be quite robust and e�cient, but unfortunately
the resulting algorithms are inherently sequential, and are thus not well-suited for
parallel environments.
In section 6.6, we describe a preconditioning technique recently proposed by Benzi,
Meier and T _uma for symmetric positive de�nite matrices, and by Benzi and T _uma
for non-symmetric matrices. This preconditioning technique is based on an incom-
plete A-Biconjugation process. The resulting algorithm is called AINV. On output,
the AINV algorithm furnishes approximate inverses for the triangular factors of the
Cholesky-decomposition, or the LU -decomposition of the coe�cient matrix, respec-
tively. Recent results of a parallel implementation of the AINV algorithm published
in [5] indicate that this preconditioning approach, although sequential in principle,
can e�ciently be implemented in a parallel environment.
In section 6.7, we propose two new preconditioning techniques, the LTL-projection
algorithm and the LU-projection algorithm. With the LTL-projection algorithm
the inverse of a triangular factor of the Cholesky-decomposition of a hermitian
positive de�nite coe�cient matrix is approximated. The LU-projection algorithm
approximates the inverses of the triangular factors of the LU -decomposition of the
coe�cient matrix. Interestingly, for both algorithms no information on the actual
shape of the triangular factors is required. Essentially, both algorithms rest on
the FSAI preconditioning technique proposed by Kolotilina and Yeremin in [46] for
�xed sparsity patterns. We classify the methods of Kolotilina and Yeremin in terms
of projection methods, and combine them with the adaptive pattern derivation
strategies developed in chapter 5.1. The resulting LTL-projection algorithm and
the LU-projection algorithm are inherently parallel.
In chapter 7, we compare the state-of-the-art preconditioning methods with our new
approaches { the Plain projection algorithm, the LTL-projection algorithm and
the LU-projection algorithm { by applying them to numerous symmetric and non-
symmetric test problems.
In chapter 8, we comprise the results of our numerical tests, and we give an outlook
on open questions.

Notation 5

2 Notation

In this section, we introduce the notation that is used throughout this paper.

Letters
We denote integers and vectors by lower-case Latin letters and matrices by capital
Latin letters. The letter n always denotes an element of IN . For notational conve-
nience we de�ne the �eld IK by IK 2 fIR; ICg.
The entries of a matrix A 2 IKn�n are designated by aij. Real or complex scalars
are denoted by lower case Greek letters. The real part of a complex number is
denoted by Re ().

Matrices
The transposed of a matrix A 2 IKn�n is denoted by AT and the conjugated trans-
posed is denoted by AH . By �(A) we denote the spectral radius of a (n�n)-matrix
A, which is de�ned as

�(A) := max
1�i�n

j �i j;

where �i for i = 1; : : : ; n are the eigenvalues of A.
For a tridiagonal matrix A 2 IKn�n with the main diagonal ai;i for i = 1; : : : ; n and
with the left-hand and right-hand side neighbouring diagonals ai+1;i and ai;i+1 for
i = 1; : : : ; n� 1, we write in abbreviation

A = tridiag (ai+1;i; ai;i; ai;i+1) :

We call a matrix A 2 IKn�n structural symmetric, if the relation

ai;j 6= 0() aj;i 6= 0

holds for i; j = 1; : : : ; n.
The (n� n)-identity matrix is denoted by I, the i-th unit vector in IKn by ui.
The symmetric part of an arbitrary real square matrix is de�ned by

MA :=
1

2
(A+ AT);

and its skew-symmetric part by

NA :=
1

2
(A� AT):

For notational convenience, we introduce some not strictly mathematical nomencla-
ture:
We call a matrix A 2 IKn�n dense , if only a few elements of A are zero. Conversely,
we call a matrix sparse, if only relatively few elements of A di�er from zero.

6 Notation

Let the matrices BL; BR 2 IKn�n be such that the product matrix BRBL is an
approximation to the inverse A�1 of a non-singular matrix A 2 IKn�n, i.e.

BLABR � I

() BRBL � A�1:

Then, we call BRBL approximate inverse of A. If BL = I (or BR = I), we call BR

right-hand (or BL left-hand) side approximate inverse of A.

De�niteness
A Hermitian matrix A 2 IKn�n is called positive (negative) de�nite, if xTAx >
0 (xTAx < 0) holds for all x 6= 0; x 2 IKn.
We refer to a non-symmetric matrix A 2 IRn�n as positive (negative) real, if its
symmetric part is positive (negative) de�nite.

Vector Norms / Dot-Products
Let the matrix A 2 IKn�n be Hermitian positive de�nite, then for the vector x 2 IKn

the quantity x
A
:= (xHAx)

1
2

is a norm on IKn. This norm is called A-norm of the vector x. In particular, we
have

x
I
=
x

2
, where

:
2
denotes the Euclidian norm.

If A 2 IRn�n is positive real and MA is the symmetric part of A, we write
x

A
in

abbreviation of
x

MA
.

For an inde�nite matrix A 2 IKn�n and the vector x 2 IKn, the quantity
x2

A
is

the mnemonic abbreviation of xHAx.

Matrix Norms
Let the matrix B 2 IKn�n be Hermitian positive de�nite. Then the matrix norm
induced by the vector norm

:
B
is de�ned by

A
B
:= sup

x6=0

Ax
Bx
B

;

where A is a matrix in IKn�n and the vector x is in IKn.
In particular for A 2 IKn�n for the matrix norm induced by the Euclidian norm,
the identity A

2
=
q

max
1�i�n

�i

holds, where the �i denote the eigenvalues of A
HA for i = 1; : : : ; n.

Notation 7

The Frobenius norm of a matrix A 2 IKn�n is de�ned by

A
F
:=

nX
i=1

Aui22
! 1

2

:

We denote the condition number of a matrix A 2 IKn�n by

�(A) :=
A

2

A�1
2
;

where
A

2
denotes the Euclidian matrix norm.

8 Notation

Linear Solvers and Preconditioning 9

3 Linear Solvers and Preconditioning

In this chapter, we give a brief sketch of iterative methods for solving linear systems,
and we describe the general concept for preconditioning those iterative solvers.
In section 3.1, we give the general approach and some nomenclature for iteratively
solving linear systems.
The general concept for preconditioning iterative solvers is sketched in section 3.2.
Furthermore, some demands for the design of e�cient preconditioning methods are
considered. For ample surveys on iteratively solving linear systems and precondi-
tioning see e.g. [11], [12], [54], [62] and [80].
In section 3.3, we describe orthogonalization methods (see [80]), a general class of
iterative methods for solving linear systems, which provides us with a theoretical
framework for handling iterative methods.
A helpful tool for controlling the convergence of iterative solvers { the Residual-
Minimizing smoothing algorithm { is described in section 3.4.
In section 3.5, we give a brief introduction to Krylov subspace methods, and we
shortly describe four particular Krylov subspace methods for solving both symmet-
ric and non-symmetric linear systems. We performed our numerical tests of precon-
ditioning strategies (presented in chapter 7) using those four iterative solvers.

3.1 Iterative Solvers for Linear Systems

In this section, we give a brief description of the iterative solution of the linear
system

Ax = b; (3.1)

where A is a non-singular matrix in IKn�n, and x and b are vectors in IKn. The
vector x is the desired solution of the linear system with the coe�cient matrix A
and the right-hand side vector b.
Starting with an initial guess x0 2 IKn, iterative solvers generate a sequence xk 2
IKn, with k 2 IN , of approximation vectors. The construction of a new approxima-
tion involves one or more preceeding approximations, as well as the matrix A and
the right-hand side vector b. Formally, the construction of the k-th approximation
can be written as

xk := fk(x0; : : : ; xk�1; A; b)

with a function fk : IKn�(n+k+1) ! IKn. In theory, the functions fk are chosen
such that the sequence (xk)k2IN converges towards the exact solution x, i.e.

xk ! x for k !1:

10 Linear Solvers and Preconditioning

In practice, the iteration process is stopped after a �nite number of steps when a
su�cient approximation is reached. The natural choice for the stopping criterion
would be based on the norm of error ek 2 IK

n, de�ned by

ek := xk � x; (3.2)

where x denotes the exact solution of the linear system (3.1). If the norm of the
error becomes smaller than a prescribed threshold, the iteration is stopped.
Since in practice the errors ek are not known, the norm of the residuals rk 2 IKn,
de�ned by

rk := Axk � b; (3.3)

are used as stopping criterion, i.e. the iteration is stopped when the norm of the
residuals becomes smaller than a threshold value.
Errors and residuals are connected by

rk = Aek: (3.4)

The following considerations show the connection of the Euclidian norms of the
residuals and errors. By equation (3.4) we haverk2 = Aek2 � A2 � ek2
and ek2 = A�1rk2 � A�12 � rk2 :
With the two statements above, the following inequalities hold:

1

�

rk2r02 �
ek2e02 � �

rk2r02 � �2
ek2e02 ; (3.5)

where � denotes the condition number of the matrix A. If the condition number of A
is small, the norms of the residuals and errors are strongly connected by inequalities
(3.5). In this case, the reduction of the norm of the residuals implies that the norm
of the errors decreases as well. If the condition number of A is large, the connection
of the norms of the residuals and errors is weak, and it is possible that, although the
norms of the residuals decrease, the norms of the errors may stagnate, or even grow.
In this case, the iterative method may fail to produce an acceptable approximation
to the solution of the linear system.

By the considerations above, the general concept of iterative methods for linear
systems is briey expounded. In the following section, we describe the basic idea of
enhancing both the speed of convergence and the robustness of iterative solvers for
linear systems by preconditioning.
In sections 3.3 { 3.5, we consider general classes of iterative solvers and we give
theoretical and practical considerations on preconditioning those iterative methods.

3.2 Preconditioning Iterative Solvers 11

3.2 Preconditioning Iterative Solvers

A severe drawback of iterative solvers for linear systems is their lack of robustness
in contrast to direct solvers. If the iterative solver fails to converge, no approximate
solution for the linear system (3.1) is obtained. This situation is unacceptable in
practice.
The objective of preconditioning iterative solvers is to remedy this problem by
enhancing both their e�ciency and their robustness.

Basic Concept
In general, for preconditioning the original linear system Ax = b from (3.1) two
non-singular matrices PL; PR 2 IK

n�n are determined such that the preconditioned
linear system

PLAPRy = PLb; with x = PRy; (3.6)

is easier solvable by an iterative method than the original linear system, i.e. the
general strategy of preconditioning iterative solvers is:

1. Choose the preconditioning matrices PL and PR.

2. Solve the preconditioned system PLAPRy = PLb iteratively. This yields the
approximate solution yk of the preconditioned linear system (3.6).

3. Obtain the desired approximate solution xk of the original system (3.1) by
xk := PRyk.

The matrix PL is called left-hand and PR is called right-hand side preconditioning
matrix. If PL 6= I and PR 6= I, we talk of two-sided preconditioning; if PL equals
the identity matrix, we talk of right side, and if PR equals the identity matrix, we
talk of left side preconditioning. In practice, preconditioning from the left, from the
right and from both sides is applied.

Theoretical Properties
The residuals �rk 2 IKn and the errors �ek 2 IKn of an iterative method applied to
the preconditioned linear system (3.6) are by (3.2) and (3.3):

�rk := PLAPRyk � PLb (3.7)

and

�ek := y � yk; (3.8)

where yk denotes the iterates of the iterative method applied to the preconditioned
linear system (3.6).

12 Linear Solvers and Preconditioning

The following de�nition establishes the connection between the iterative method ap-
plied to the preconditioned linear system (3.6) and the desired approximate solution
of the original linear system (3.1).

De�nition 3.1 (Induced Iteration)
Let yk 2 IK

n denote the iterates of an iterative method applied to the preconditioned
linear system (3.6). Then, by

xk := PRyk (3.9)

for k � 1, a sequence of approximate solutions of the original linear system Ax = b
from (3.1) is de�ned. In this sense, applying an iterative method to the precondi-
tioned linear system (3.6) induces an iterative method for the original linear
system (3.1).

The following lemma connects the residuals and errors of the preconditioned itera-
tion and the induced iteration for the original linear system.

Lemma 3.2
Let the residuals and errors of an iterative method applied to the preconditioned
linear system (3.6) be denoted by �rk and �ek. Then, the following equations hold:

�rk = PLrk; (3.10)

and

�ek = P�1
R ek; (3.11)

where rk and ek denote the residuals and errors of the induced iterative method for
the original linear system (3.1).

Proof.

We give the proof for the assertions, although they are well known (see e.g.
[80]), to enlighten the relation between the residuals and errors of the original
and the preconditioned linear system.
Let x and y denote the solution of the original linear system (3.1) and the
preconditioned linear system (3.6), respectively. By (3.7) and (3.8) we have

�rk
(3.7)
= PLAPRyk � PLb

(3.9)
= PLAxk � PLb

= PLrk;

3.2 Preconditioning Iterative Solvers 13

and

�ek
(3.8)
= y � yk
(3.9)
= P�1

R x� P�1
R xk

= P�1
R ek:

}

The crucial point to preconditioning is the choice of the preconditioning matrices
PL and PR. The optimal choice would be

PRPL := A�1;

since then, with A = P�1
L P�1

R , the desired solution x of the original linear system
(3.1) would be known at once by

y = PLAPRy = PL
�
P�1
L P�1

R

�
PRy

(3.6)
= PLb

and

x = PRy = PRPLb = A�1b:

The choice PRPL := A�1 is not of practical relevance, since explicitely calculating
A�1 is a far more di�cult problem than solving the original linear system (3.1).
However, most preconditioning strategies intend to determine PL and PR such that
PLAPR is closer to the unit matrix than the original matrix A in some sense. Thus,
for those methods the matrix PRPL is an approximate inverse of A.
The residuals �rk and errors �ek of an iterative method applied to the preconditioned
linear system (3.6) are connected by

�rk = PLAPR�ek:

Analogously to (3.5), the Euclidian norms of the residuals and errors of the precon-
ditioned system are connected by the following inequalities:

1

�p

�rk2�r02 �
�ek2�e02 � �p

�rk2�r02 � �2p

�ek2�e02 ; (3.12)

where �p denotes the condition number of the matrix PLAPR. Thus, if the inverse
of A is approximated by PL and PR, so that the condition number of PLAPR is
smaller than the condition number of the original coe�cient matrix A, the residuals

14 Linear Solvers and Preconditioning

and errors of the preconditioned system are connected more strongly than the ones
of the original system (3.1).

Some preconditioning methods, for instance the SPAI-methods (see section 6.2),
furnish only one-sided, i. e. either left-hand side or right-hand side, approximate
inverses. But in general applications, it is not known whether a left-hand side or a
right-hand side approximate inverse is favorable to the other.
The following theorem from [53] states on the di�erence between calculating right-
hand side and left-hand side approximate inverses of non-singular matrices in IRn�n.

Theorem 3.3 ([53], p. 287)
Let � and � be two arbitrary positive real numbers. Then, for each n � 2 there
exist non-singular (n� n)-matrices A and X such that XA has each of its elements
di�ering from the corresponding element of the identity matrix by less than � and
such that AX has all of its elements greater in absolute value than �.

The above theorem states, that a one-sided approximate inverse may be a good
preconditioner for the one side while being a poor preconditioner for the other side.
Further, in [53] it is shown, that if theorem 3.3 applies for a matrix A 2 IRn�n and
a corresponding approximate inverse X with small � and large �, then the matrix A
is ill-conditioned. Thus, for one-sided preconditioning, the side of preconditioning
may be important. Therefore, at least in tendency, preconditioning methods that
calculate two-sided approximate inverses may be more robust than methods which
calculate only one-sided approximate inverses.

Practical Considerations
If the coe�cient matrix A of the original linear system (3.1) is Hermitian, the coef-
�cient matrix PLAPR of the preconditioned linear system (3.6) should be Hermitian
as well, since in this case special iteration algorithms which exploit this property can
be applied. This can easily be obtained by two-sided preconditioning with PL = PH

R .

Most of today's preconditioning approaches can be classi�ed as being either implicit
or explicit. A preconditioning approach is called implicit, if the preconditioning
matrices PL and PR are not known explicitly, so that the application of the pre-
conditioning matrix involves solving a supplemental linear system in each iteration
step of the utilized iterative solver. Such preconditioning methods are for example
incomplete decompositions like ILU (this method is briey sketched in section 6.4,
see e.g. [40], [82] for detailed surveys), IC (see section 6.5 for a brief description,
see [48], [52], [76] for detailed surveys).
Conversely, a preconditioning approach is called explicit, if the preconditioning ma-
trices PL and PR are known explicitly. Such methods are for instance the SPAI-
method (see section 6.2 for a brief description, and e.g. [32], [39] for more details)

3.2 Preconditioning Iterative Solvers 15

or the AINV-method (see section 6.6 for a brief description, and [8], [9] for detailed
investigations). If the utilized iterative solver is a Krylov subspace method (see sec-
tion 3.5), each iteration step of the chosen Krylov subspace method applied on the
preconditioned linear system only requires additional matrix-vector multiplications,
compared to the iteration steps of the chosen solver applied to the unpreconditioned
linear system. Since matrix-vector multiplications are e�ciently vectorizable and
parallelizable, using explicit preconditioning with Krylov subspace methods is well
suited for the implementation on today's supercomputers (this point is surveyed in
greater detail in section 3.5).

In general, all preconditioning techniques are characterized by choosing particular
strategies for answering the following two questions:

1. Which locations of the preconditioning matrices PL and PR should contain
non-zero entries?

2. How should the values of the non-zero entries be computed?

Due to limited CPU-time and memory in practical applications, constraints to the
maximum number of non-zeros in the preconditioning matrices PL and PR must be
imposed. Thus, the matrix PRPL in general is an approximate inverse of the matrix
A, where PL; PR and A are from (3.6).
It is an open { and highly problem dependent { question whether or not the in-
verse A�1 of a given non-singular matrix A 2 IKn�n can be approximated by an
approximate inverse such that the convergence of the preconditioned iteration is
substantially accelerated. If the inverse A�1 has relatively few entries of "large"
magnitude while all other entries are "small" or zero, it is likely { but by no means
guaranteed { that an appropriate approximate inverse can be an e�cient precondi-
tioner. On the other hand, if the inverse A�1 has "many" entries of the same size,
it may be di�cult to determine an approximate inverse of A, which is an e�ective
preconditioner. The following lemma from [16] considers this problem for right-hand
side approximate inverses:

Lemma 3.4 ([16], pp. 15 {16)
Let the matrix A 2 IKn�n be non-singular, and let the matrix P 2 IKn�n be an
approximate inverse of A. Further, let B := A�1, let the numbers �k 2 IR be such
that the relations (AP � I) uk

1
� �k (3.13)

hold for k = 1; : : : ; n, where uk 2 IK
n denotes the k-th unit-vector, and let

� := max
1�k�n

�k: (3.14)

16 Linear Solvers and Preconditioning

Then the following assertions hold:

i) If the inequality

j bij j> �j max
1�k�n

j bik j (3.15)

holds for any element bij of the matrix B, then the element pij of the approxi-
mate inverse P is non-zero.

ii) If the inequality

j bij j> � max
1�k;t�n

j bkt j (3.16)

holds for all non-vanishing elements bij of the matrix B, then the matrix-
pattern of the sparse approximate inverse P contains the matrix-pattern of the
exact inverse A�1. Thus, in this case, if A�1 is dense, the approximate inverse
P is dense as well.

The numbers �k de�ned in (3.13) form a column-wise measure of the quality of the
approximation of the approximate inverse P to the exact inverse A�1 in the one-
norm. The smaller the numbers �k are, the closer the approximate inverse P to the
exact inverse A�1 is.

Assertion i) of lemma 3.4 states that the large entries of the exact inverse A�1 in
the sense of (3.15) indicate non-zero elements in the approximate inverse P .
Assertion ii) states that a good approximation of P to the exact inverse A�1, in the
sense of a small number � from (3.14), may require a dense approximate inverse P .

Because of CPU-time and memory restrictions in practice, all preconditioning ap-
proaches compromise between the conicting goals of approximating A�1 as good as
possible and still preserving some kind of sparsity for the preconditioning matrices.
Preserving the sparsity of PL and PR usually involves some dropping strategy or
some restriction to the amount of �ll-in. If a dropping strategy is applied, all entries
of the preconditioning matrices with an absolute value smaller than some prescribed
threshold are set to zero. If the amount of �ll-in in the preconditioning matrices is
restricted, the computation of the entries of the preconditioning matrices is stopped
when the number of non-zeros in PL and PR has reached the prescribed limit.
As for the CPU-time of preconditioning techniques, to be of practical relevance
the sum of the CPU-time for constructing the preconditioner and the CPU-time of
the preconditioned iteration must be considerably less than the CPU-time for the
unpreconditioned iteration.

In practical applications, it may be di�cult to determine whether or not the pre-
conditioning matrices PL and PR, calculated with any preconditioning technique,

3.2 Preconditioning Iterative Solvers 17

accelerate the iterative method, when applied to the preconditioned linear system
(3.6), su�ciently or are even non-singular. The following proposition from [16]
considers this problem for right-hand side approximate inverses:

Proposition 3.5 ([16], p. 14)
Let the matrix A 2 IKn�n be non-singular, let the matrix P 2 IKn�n be an approxi-
mate inverse of A, and let the real number � be de�ned by

� := max
1�k�n

(AP � I) uk

1
;

where uk denotes the k-th unit-vector in IKn. Then the following assertions hold:

i) Any eigenvalue � 2 IC of the matrix AP is located in the disc

j �� 1 j< �: (3.17)

ii) If � < 1, then the matrix AP is non-singular.

iii) If the columns Puj1; : : : ; Pujs with 2 � s � n, of the matrix P are linearly
dependent, then (AP � I) uj

1
� 1 (3.18)

holds for at least one index j 2 fj1; : : : ; jsg.

Thus, if the number � from (3.17) is less than one, the preconditioned linear sys-
tem (3.6) has two favorable properties: the coe�cient matrix is non-singular, and
the eigenvalues of the coe�cient matrix are clustered around one in the positive
half-plane of IC. Unfortunately, in practical applications it may be impossible to
determine the approximate inverse P such that the number � from inequality (3.17)
is smaller than one, since this may force the approximate inverse P to be too dense.

In this section, we have presented the basic concept of preconditioning iterative
solvers, and we have stated theoretical and practical points on that matter. For
supplemental discourses on iterative linear solvers and preconditioning, we refer to
[11], [12], [54], [62] and [80].
In the remainder of this chapter, we consider iterative solvers in more detail. We
present general classes of iterative methods, and we give remarks and the algorithmic
formulation of four particular iterative methods for linear systems. Those are the
iterative methods considered in our numerical tests on preconditioning (presented
in chapter 7).

18 Linear Solvers and Preconditioning

3.3 Orthogonalization Methods

In this section, we describe a general class of iterative methods for linear systems {
the orthogonalization methods. Importantly, many of the state of the art iterative
methods for linear systems, e.g. all Krylov subspace methods, are orthogonalization
methods as well. Thus, the following theoretical results for orthogonalization meth-
ods furnish a unifying framework for many of the state of the art iterative solvers
for linear systems.

The approximation theorem for orthogonalization methods given in this section
provides some insight on the convergence behavior of iterative methods, and is
hence the starting-point for the development of the preconditioning methods in the
remainder of this work.
An ample overview and a classifying theory on orthogonalization methods is given
in [80].
The following de�nition of orthogonalization methods was given in [80] for IK = IR.
We extend it to the complex case:

De�nition 3.6 (Orthogonalization Method, [80], p. 29)
Let the matrix A in IKn�n be non-singular and let x and b denote vectors in IKn.
An iterative method for the solution of the linear system Ax = b with the iterates
xk 2 IK

n is called orthogonalization method, if the following relations hold:

For k � 1

xk 2 ~xk + span (qk�lk;k; : : : ; qk�1;k) ; (3.19)

where lk � k, ~xk 2 span(xk�lk ; : : : ; xk�1), qk�i;k 2 IKn for i = 1; : : : ; lk, and
for some auxiliary non-singular matrix Zk 2 IK

n�n the orthogonality condition

rHk Zkqk�i;k = 0 (3.20)

is satis�ed for i = 1; : : : ; lk.

The vectors qk�i;k are called search directions, and the matrices Zk are called
orthogonalization matrices.
Let lres and lmax be positive integers. The orthogonalization method is called

- exact, if lk = k, i. e. all k search directions are used for the calculation of
the new iterate,

- restarted, if lk = (k � 1) mod lres with lres 2 IN , i. e. periodical restarts
are made after lres steps,

3.3 Orthogonalization Methods 19

- truncated, if lk = min(k; lmax) with lmax �xed, i. e. only lmax search direc-
tions qk�i;k are used for the calculation of the new iterate,

- combined, if lk = min((k � 1) mod lres + 1 ; lmax), i. e. if the truncated
method is restarted.

This de�nition covers all Krylov subspace methods1 like CG, generalized CG as well
as error-minimizing methods like CGNE, and classical iterative methods like SOR and
Gauss-Seidel (see [42], [80]).
Any particular iterative method is characterized by the choice of the search direc-
tions qk�i;k; by lk and by the orthogonalization matrices Zk.
Despite of the generality of de�nition 3.6, some particular convergence estimates
are possible. The following approximation theorem was given by Weiss in [80] for
real linear systems. We augmented it by an analogous statement for complex linear
systems.

Theorem 3.7 (Approximation Theorem for Orthogonalization Methods, [80], p.
32)
Let xk denote the iterates, let qk�i;k with i = 1; : : : ; lk denote the search directions
and let Zk denote the orthogonalization matrices of an orthogonalization method
applied to the linear system Ax = b from (3.1). Let relation (3.19) have the form

xk 2 ~xk + span (qk�lk;k; : : : ; qk�1;k) ;

and let ~rk = A~xk � b and ~ek = ~xk � x.

i) Let the matrix ZkA
�1 2 IRn�n be positive real. Let ZkA

�1 = M + R, where
M is the symmetric and R is the skew-symmetric part of ZkA

�1. Let �(R)
denote the spectral radius of R and �m(M) denote the minimal eigenvalue of
M .
Then for all orthogonalization methods the following inequalities hold:

rkZkA�1 �
s
1 +

�2(R)

�2m(M)
min

�1;:::;�lk

Plk
i=1 �iAqk�i;k + ~rk

ZkA�1

(3.21)

and

ekATZk �
s
1 +

�2(R)

�2m(M)
min

�1;:::;�lk

Plk
i=1 �iqk�i;k + ~ek

ATZk

; (3.22)

with �i 2 IR for i = 1; : : : ; lk.

1see section 3.5

20 Linear Solvers and Preconditioning

ii) Let the matrix ZkA
�1 2 IKn�n be Hermitian positive de�nite.

Then the following equations hold for all orthogonalization methods:rkZkA�1 = min
�1;:::;�lk

Plk
i=1 �iAqk�i;k + ~rk

ZkA�1

(3.23)

and

ekAHZk = min
�1;:::;�lk

Plk
i=1 �iqk�i;k + ~ek

AHZk

; (3.24)

with �i 2 IK for i = 1; : : : ; lk.

Proof.

For the proof of assertion i) and assertion ii) with IK = IR, we refer to [80].
We give the proof for assertion ii) with IK = IC, which proceeds analogously
to the proof for the real case.
We prove assertion (3.23):

First, we show that the equation

rHk ZkA
�1rk = rHk ZkA

�1

lkX
i=1

�iAqk�i;k + ~rk

!
(3.25)

holds for arbitrary �i 2 IC with i = 1 : : : ; lk:

By (3.19), we know that

rk =

lkX
i=1

i;kAqk�i;k + ~rk (3.26)

with some complex numbers i;k. Now we have

rHk ZkA
�1rk = rHk ZkA

�1

lkX
i=1

i;kAqk�i;k + ~rk

!

(3.20)
= rHk ZkA

�1

lkX
i=1

�iAqk�i;k + ~rk

!
;

where �i are arbitrary complex numbers for i = 1; : : : ; n and the proof of
equation (3.25) is complete.

3.3 Orthogonalization Methods 21

We de�ne the vector r̂k :=
Plk

i=1 �iAqk�i;k + ~rk 2 ICn with �i 2 IC for i =
1; : : : ; jk, such thatr̂kZkA�1 = min

�1;:::;�lk

Plk
i=1 �iAqk�i;k + ~rk

ZkA�1

:

By equation (3.25), we can writerk2ZkA�1 = rHk ZkA
�1r̂k

�
rkZkA�1 r̂kZkA�1 (3.27)

by the Cauchy-Schwarz inequality. Division by
rkZkA�1 gives usrkZkA�1 � r̂kZkA�1 : (3.28)

The equality follows by noting that rk has the same representation as r̂k by
(3.26), and r̂k is by de�nition the minimizer of the ZkA

�1-norm of all such
vectors.

Equation (3.24) follows with Aek = rk.

}

Theorem 3.7 gives both a qualitative and a quantitative statement on the conver-
gence of orthogonalization methods. If the root-expression in inequality (3.21) is
relatively small, the convergence speed of the iterative solve is settled by the norm-
expression in the right-hand side of (3.21), and hence the quantitative speed of
convergence is determined by the search directions qk�i;k of the particular orthogo-
nalization method. The quality of the approximation of the iterates xk to the exact
solution depends on the vector norm induced by the matrices ZkA

�1.
We remark that for particular projection methods more sophisticated estimates
may be possible. A major attainment of the theorem 3.7 is its generality. Since the
assertions of theorem 3.7 apply for general projection methods, a unifying theoretical
framework is established for the large variety of known orthogonalization methods.
For an ample interpretation of theorem 3.7 and for a circumstantial discourse on the
classi�cation of iterative methods in terms of orthogonalization methods, we refer
to [80].
By theorem 3.7, the norms of the residuals decrease monotonously in the vector norm
induced by the matrices ZkA

�1. But it depends on the particular orthogonalization
method, or more precisely on the particular choice of the orthogonalization matrices
Zk, whether or not the residual norms, which are applied as the stopping-criterion

22 Linear Solvers and Preconditioning

for the iteration in practice, can be calculated in the vector norm induced by the
matrices ZkA

�1. If this is not possible, the Euclidian norms of the residuals can be
applied instead as a stopping-criterion for the iteration. Since in this case the norms
of the residuals may oscillate, using them as the stopping-criterion for the iteration
may be somewhat unreliable. As a remedy for this problem the smoothing algorithm
presented in section 3.4 can be applied. By this algorithm two supplemental vectors
{ the smoothed iterates and residuals { are calculated in each iteration step of the
orthogonalization method. The Euclidian norms of the smoothed residuals decrease
monotonously and are thus well suited for judging the convergence of the iterative
solve.

We consider the statement of theorem 3.7 applied to the preconditioned linear sys-
tem (3.6):

Corollary 3.8 (Approximation Theorem for Preconditioned Linear Systems, [80],
pp. 150{151)
We consider the linear system Ax = b from (3.1) and the corresponding precon-
ditioned linear system PLAPRy = PLb; PRy = x from (3.6). Let yk denote the
iterates, let �qk�i;k with i = 1; : : : ; lk denote the search directions and let Zk de-
note the orthogonalization matrices of an orthogonalization method applied to the
preconditioned linear system. Let relation (3.19) have the form

yk 2 ~yk + span (�qk�lk;k; : : : ; �qk�1;k) ;

and let ~rk = APR~yk � b, and ~ek = PR~yk � x.

i) Let the matrix Zk(PLAPR)
�1 2 IRn�n be positive real, let M denote the sym-

metric part and let R denote the skew-symmetric part of Zk(PLAPR)
�1. Let

�(R) denote the spectral radius of R and �m(M) denote the minimal eigen-
value of M . Let rk and ek denote the residuals and errors of the original
system (3.1) obtained from equations (3.10) and (3.11).
Then for all orthogonalization methods the following inequalities hold:rkPTL Zk(APR)�1 � (3.29)s

1 +
�2(R)

�2m(M)
min

�1;:::;�lk

 lkP
i=1

�iAPR�qk�i;k + ~rk

PTL Zk(APR)

�1

and ekATPTL ZkP�1R

� (3.30)s
1 +

�2(R)

�2m(M)
min

�1;:::;�lk

 lkP
i=1

�iPR�qk�i;k + ~ek

ATPTL ZkP

�1
R

3.3 Orthogonalization Methods 23

with �i 2 IR for i = 1; : : : ; lk.

ii) Let the matrix Zk(PLAPR)
�1 2 IKn�n be Hermitian positive de�nite. Then

the equationsrkPHL Zk(APR)�1
= min

�1;:::;�lk

 lkP
i=1

�iAPR�qk�i;k + ~rk

PH
L
Zk(APR)�1

(3.31)

and ekAHPHL ZkP
�1
R

= min
�1;:::;�lk

 lkP
i=1

�iPR�qk�i;k + ~ek

AHPHL ZkP

�1
R

(3.32)

hold with �i 2 IK for i = 1; : : : ; lk.

Proof.

The proof for assertion i) and for the real case of assertion ii) of the corollary
above is given in [80].
The proof of assertion ii) for IK = IC proceeds analogously:
By applying theorem 3.7 to the preconditioned linear system PLAPRy =
PLb; PRy = x, we obtain�rkZk(PLAPR)�1 = min

�1;:::;�lk

 lkP
i=1

�iPLAPR�qk�i;k + PL~rk

Zk(PLAPR)�1

: (3.33)

We consider the left-hand side of the above equation:�rk2Zk(PLAPR)�1 = rHk P
H
L Zk(APR)

�1P�1
L PLrk

= rHk P
H
L Zk(APR)

�1rk

=
rk2PH

L
Zk(APR)�1

:

We consider the norm expression in the right-hand side of equation (3.33): lkP
i=1

�iPLAPR�qk�i;k + PL~rk

Zk(PLAPR)�1

=

 PL

�
lkP
i=1

�iAPR�qk�i;k + ~rk

�
)

Zk(PLAPR)�1

=

 lkP
i=1

�iAPR�qk�i;k + ~rk

PHL Zk(APR)�1

:

Assertion (3.32) follows analogously with �rk = PLAPR�ek.

}

24 Linear Solvers and Preconditioning

Corollary 3.8 provides us with a qualitative and quantitative statement on the con-
vergence of the preconditioned iterative solve in terms of the residuals and errors
of the original linear system. Note that for the orthogonalization method applied
to the preconditioned linear system not only di�erent search directions �qk�i;k are
used in contrast to the unpreconditioned linear system, but that those search direc-
tions are multiplied with the right-hand side preconditioning matrix PR. Hence, the
quantitative speed of convergence is altered by preconditioning. As for the qualita-
tive speed of convergence, the residuals of the original linear system are minimized
in a di�erent induced matrix-norm in contrast to the unpreconditioned case.

3.4 Residual-Minimizing Smoothing

The following problem of iterative methods is known from practice: the norm of
the residuals may heavily oscillate along the iteration process. This makes stopping
criteria based on monitoring the residual norms unreliable. The purpose of the
algorithm resulting from the following theoretical considerations is to generate an
auxiliary sequence of vectors { the smoothed residuals { along the original residuals
of the iteration, which decreases monotonously in some norm. This norm of the
smoothed residuals is applied as stopping criterion for the iteration.
The smoothing algorithm described in the following was originally introduced by
Sch�onauer ([64], [66], [67]) with the purpose of getting a function of the residuals
which ensures a monotonous decrease of the Euclidian norm of the residuals for gen-
eralized conjugate gradient methods. However, the resulting smoothing algorithm
can be applied to any iterative method.
The following de�nition of the smoothed sequence for the case IK = IR is found in
[80]. We consider both real and complex linear systems, i. e. IK 2 fIR; ICg:

De�nition 3.9 (Smoothed Sequence, [80], p. 131)
Let the vectors xk 2 IK

n be the iterates and the vectors rk 2 IK
n be the residuals of

an iterative method for k 2 IN . Then we call the sequence

s0 :=r0; z0 := x0;

sk :=sk�1 + k(rk � sk�1);

zk :=zk�1 + k(xk � zk�1);

(3.34)

with sk; zk 2 IKn and k 2 IK, the corresponding smoothed sequence. The
vectors sk are called smoothed residuals and the vectors zk are called smoothed
iterates.

Since the introduction of smoothing, many variants of Sch�onauer's original approach
have been suggested which di�er as for the determination of the coe�cients k. We

3.4 Residual-Minimizing Smoothing 25

con�ne ourself to present Sch�onauer's Residual-Minimizing smoothing approach,
and refer for an ample discussion of smoothing to [80].

The following de�nition of the Residual-Minimizing smoothed sequence for the case
IK = IR is found in [80]. We consider both real and complex linear systems, i. e.
IK 2 fIR; ICg:

De�nition 3.10 (Residual-Minimizing Smoothing, [80], p.132)
Let the vectors xk 2 IK

n be the iterates and the vectors rk 2 IK
n be the residuals of

an iterative method for k 2 IN . Further, let zk and sk denote the smoothed iterates
and residuals from de�nition 3.9. Then the smoothed sequence obtained with

k := �
(rk � sk�1)

H sk�1rk � sk�1
2
2

; (3.35)

for k � 1, is calledResidual-Minimizing smoothed sequence, and the smoothed
iterates zk and residuals sk are called Residual-Minimizing smoothed iterates
and residuals, respectively.

The following lemma summarizes some properties of the Residual-Minimizing smoothed
residuals.

Lemma 3.11 (Properties of the Residual-Minimizing Smoothed Sequence, [64], pp.
261{262)
Let the vectors xk 2 IKn be the iterates and the vectors rk 2 IKn be the resid-
uals of an iterative method for k 2 IN . Furthermore, let zk and sk denote the
Residual-Minimizing smoothed iterates and residuals from de�nition 3.10. Then the
statements sk2 = min

�2IK

sk�1 + � (rk � sk�1)

2
; (3.36)sk2 � sk�12 (3.37)

and

sk2 � min
i=1;:::;k

ri2 (3.38)

hold for k � 1.

26 Linear Solvers and Preconditioning

Proof.

We prove the assertions for IK = IC only. The proof for the case IK = IR is
given in [64], pp. 261{262.
First, we verify assertion (3.36):
By (3.34) , it su�ces to show that the number k 2 IC de�ned in (3.35) is the
minimizer of

min
�2IC

sk�1 + � (rk � sk�1)
2
2
:

We consider in which location the function f : IC ! IR de�ned by

f (�) :=
sk�1 + � (rk � sk�1)

2
2

attains its absolute minimum. With elementary algebraic conversion we obtain

f (�) =
�
� 21 + � 22

� rk � sk�1
2
2
+ 2 (�1�1 � �2�2) +

sk�122 ;
with � := �1 + i�2 and �1 + i�2 := sHk�1 (rk � sk�1).

In order to �nd a minimum of the function f we consider where its �rst
derivative vanishes:

f 0 (�) =
�
2�1
rk � sk�1

2
2
+ 2�1; 2�2

rk � sk�1
2
2
� 2�2

�
= (0; 0)

() � = �
�1rk � sk�1

2
2

+ i
�2rk � sk�1

2
2

= �
(rk � sk�1)

H sk�1rk � sk�1
2
2

(3.35)
= k;

and the proof of assertion (3.36) is complete.
Assertions (3.37) and (3.38) follow directly from (3.36) with � := 0 and � := 1,
respectively. }

Equations (3.37) and (3.38) state that the smoothed sequence sk decreases mon-
otonously in the Euclidian norm. Thus, by monitoring the norms of the Residual-
Minimizing smoothed residuals a reliable stopping-criterion for the iterative solve is
at hand.

3.4 Residual-Minimizing Smoothing 27

The Residual-Minimizing Smoothing Algorithm
We state the Residual-Minimizing smoothing algorithm for the Euclidian norm:

Let xk be the iterate and rk be the corresponding residual of an iterative method.
Let

z0 := x0

s0 := r0

Calculate for k � 1:

k :=
(rk � sk�1)

H sk�1rk � sk�1
2
2

zk := zk�1 + k(xk � zk�1)

sk := sk�1 + k(rk � sk�1)

Algorithm 1: Residual-Minimizing Smoothing for the Euclidian Norm

In �gure 1, we give a plot of the convergence of a Krylov subspace method (namely
the BiCGstab method, see section 3.5.3) applied to a linear system Ax = b (with
the coe�cient matrix orsirr2, see section 7.2, and a random right-hand side vector
b). The horizontal axes of the coordinate systems for the residuals and for the errors
denote the iteration steps of the iterative solver. The vertical axis for the residuals
denotes the decadic logarithm of the relative residuals, i.e. of the Euclidian norm
of the residual in each iteration step divided by the Euclidian norm of the very �rst
residual r0 := Ax0 � b, where x0 denotes the initial guess for desired solution of
the linear system. Analogously, the vertical axis for the errors denotes the decadic
logarithm of the relative errors.

Note how the oscillations in the residual norms are canceled out be applying the
Residual-Minimizing smoothing technique.

28 Linear Solvers and Preconditioning

-14

-12

-10

-8

-6

-4

-2

0

0 50 100 150 200 250 300

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 5e+06 1e+07 1.5e+07
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 50 100 150 200 250 300

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

no smoothing
 residual-minimizing smoothing

Figure 1: An example for Residual-Minimizing Smoothing

In �gure 1, the e�ect of canceling out the peaks along the decrease of the residuals
of the BiCGstab iteration can be observed. Since the matrix chosen for comparing
the Residual-Minimizing smoothed iteration to the original iteration (this is orsirr2,
see section 7.2) is relatively small and very sparse, the computational cost caused

3.5 Krylov Subspace Methods 29

by Residual-Minimizing smoothing is quite high for this example. For larger and
less sparse linear systems this additional computational cost becomes neglectable
compared to the cost involved with the two matrix-vector multiplications in each
iteration step of the BiCGstab solver.

The Computational Complexity of the Residual-Minimizing Smoothing Al-
gorithm
Suppose that the k-th iterate xk 2 IR

n and the corresponding residual rk 2 IR
n are

calculated by some iterative solver for the linear system Ax = b with A 2 IRn�n

non-singular and x; b 2 IRn. Then, for the calculation of the scalar k the vector
rk � sk�1, according to de�nition 3.10, and its Euclidian norm must be computed.
Furthermore, the dot-product sHk�1 (rk � sk�1) has to be calculated. Those opera-
tions require at most 5n oating-point operations. For the calculation of the k-th
terms zk and sk of the Residual-Minimizing smoothed iterates and residuals, the
triadic operations zk = zk�1 + k (rk � sk�1) and sk = sk�1 + k (rk � sk�1) are nec-
essary. Those operations require at most 4n oating point operations.
Note that in practice the number of oating-point operations may be substantially
less, if the involved vectors are sparse.
The smoothing algorithm presented in this section is a useful tool for controlling
the convergence of iterative methods. For a detailed investigation on the e�ect of
smoothing on iterative solvers, we refer to [67].

3.5 Krylov Subspace Methods

In this section, we briey describe Krylov subspace methods, a subclass of orthog-
onalization methods, which contains many of the state of the art iterative solvers.
Krylov subspace methods are particularly interesting for the implementation on vec-
tor and parallel computers, since their computational complexity is dominated by
matrix-vector multiplications, which are e�ciently vectorizable and parallelizable.
Furthermore, Krylov subspace methods applied with explicit preconditioning are
very interesting for the implementation on vector and parallel computers, since the
computational cost of applying them to preconditioned linear systems only origi-
nates from additional matrix-vector multiplications. For an ample survey on Krylov
subspace methods, we refer to [62] and [80].

De�nition 3.12 (Krylov Subspace Methods)
We use the nomenclature of de�nition 3.6. Let S be a non-singular matrix in IKn�n,
and w be a vector in IKn. Krylov subspace methods are orthogonalization meth-
ods with

qk�i;k 2 Kk�i(S;w) = span(w; Sw; S2w; : : : ; Sk�iw) (3.39)

30 Linear Solvers and Preconditioning

and

~xk = xk�lk ; (3.40)

where w is a vector in IKn. The linear space Kt(S;w) is called t-th Krylov sub-
space of S applied to the vector w.

The following lemma states a property of Krylov subspace methods that makes
them appealing for the implementation on vector and parallel computers: the com-
putational complexity of Krylov subspace methods is dominated by matrix-vector
multiplications. For the derivation and the proof of the assertions, we refer to [80].

Lemma 3.13 ([80], p. 43)
Let xk; rk 2 IK

n denote the iterates and the residuals of a Krylov subspace method
applied to the linear system Ax = b from (3.1), and let the search directions qk�i;k 2
IKn be elements of the Krylov subspace Kk�i(S;w), with S 2 IKn�n non-singular.
Then the iterates xk and the residuals rk have the following representation:

xk =
kX
i=1

�i;kS
i�1w + x0 (3.41)

and

rk =
kX
i=1

�i;kAS
i�1w + r0; (3.42)

with �i;k 2 IK for i = 1; : : : ; k and k � 1.
If S 6= A, two matrix-vector products must be computed in each iteration step of
a Krylov subspace method: one involving the matrix S in order to determine the
search direction qk�1;k and another involving the matrix A in order to compute the
residual rk. If S = A, in general one matrix-vector multiplication per iteration step
is su�cient.

The above lemma states that the computational complexity of Krylov subspace
methods applied for solving the original linear system Ax = b from (3.1) is domi-
nated by matrix-vector multiplications. Since those operations are optimally vec-
torizable and parallelizable, those can be implemented most e�ciently on today's
supercomputers.

3.5 Krylov Subspace Methods 31

Short Recurrences
The representation of the iterates in (3.41) and of the residuals in (3.42) involves
all previous iterates and residuals. Due to memory and CPU-time restrictions,
in practice not all those vectors can be stored in computer memory during the
entire iteration process and be involved in the calculation of the new iterates and
residuals. However, for some Krylov subspace methods this is not necessary, since
their iterates and residuals can be calculated with a short recurrence, i.e. by a
calculation involving only two or three previous iterates and residuals. Methods
that have no short recurrence provided by theory are truncated in practice, i.e.
only a speci�ed number of previous iterates and residuals is taken into account for
calculating the new iterates and residuals. Although this introduces an error into
the iteration process, truncated methods are very e�cient for linear systems with
certain properties. A detailed discussion on that matter is given by Weiss in [80],
pp. 59{62.

Preconditioned Krylov Subspace Methods
We consider lemma 3.13 for Krylov subspace methods applied to the preconditioned
linear system PLAPRy = PLb; PRy = x from (3.6). The iterates yk and the residuals
�rk from (3.10) of a Krylov subspace method applied to the preconditioned linear
system PLAPRy = PLb; PRy = x can be written { by lemma 3.13 { as

yk =
kX
i=1

�i;kS
i�1w + y0 (3.43)

and

�rk =
kX
i=1

�i;kPL
�
A
�
PR
�
Si�1w

���
+ �r0; (3.44)

with �i;k 2 IK for i = 1; : : : ; k and k � 1, where the search directions are elements of
the Krylov subspace Kk�i(S;w) with w 2 IK

n. Thus, each iterate yk of the Krylov
subspace method applied to the preconditioned linear system requires the matrix-
vector product v1 := Sk�1w. Additionally, each residual of the preconditioned
Krylov subspace iteration requires the matrix-vector products v2 := PRv1, v3 := Av2
and PLv3. Hence, for Krylov subspace methods it is su�cient to know the coe�cient
matrix PLAPR in the form of matrix-vector multiples, i.e. it is not necessary to
calculate the matrix-matrix product PLAPR explicitly.
The iterative solvers considered in our numerical tests (CG, PRES20, BiCGstab and
ATPRES, see sections 3.5.1{3.5.4) belong to the family of conjugate Krylov subspace
methods. Conjugate Krylov subspace methods are Krylov subspace methods with

S = A

32 Linear Solvers and Preconditioning

and
w = r0

in (3.41) and (3.42), respectively. Thus, the iterates yk and the residuals �rk from
(3.10) of a conjugate Krylov subspace method applied to the preconditioned linear
system PLAPRy=PLb, PRy = x have by lemma 3.13 the representation

yk =
kX
i=1

�i;k (PLAPR)
i�1 �r0 + y0 (3.45)

and

�rk =
kX
i=1

�i;k (PLAPR)
i �r0 + �r0; (3.46)

where �i;k 2 IK for i = 1; : : : ; k and k � 1. The search directions qk�i;k from
(3.39) of conjugate Krylov subspace methods are elements of the Krylov subspaces
Kk�i (PLAPR; �r0). By equations (3.45) and (3.46), each iteration step of a conjugate
Krylov subspace method applied to the preconditioned linear system PLAPRy=PLb,
PRy = x involves three matrix-vector multiplications. With the vectors vl 2 IK

n for
l = 1; : : : ; 4 and with v1 := (PLAPR)

k�1 �r0 these matrix-vector multiplications are
v2 := PRv1, v3 := Av2 and v4 := PLv3.

Generalized CG-methods
In the following, we describe the four Krylov subspace methods for real linear sys-
tems, i.e. for linear systems with coe�cient matricesA 2 IRn�n, which we considered
in our numerical tests, in more detail. Further, we give the formulation of those
methods for the preconditioned linear system PLAPRy = PLb; PRy = x from (3.6)
in a pseudo-code.
Our choice of the Krylov subspace methods considered in our numerical tests on
preconditioning linear systems is representative in the following sense:
If the coe�cient matrix A of the linear system in question is symmetric positive
de�nite, the CG method (described in section 3.5.1, see e.g. [37], [70]) can be applied
to solve the preconditioned linear system. The iterates xk of the CG method can
be calculated with a short recurrence, which is equivalent to minimizing a certain
matrix functional (see (3.47) in section 3.5.1). If the coe�cient matrix A is not
symmetric positive de�nite, then CG can still be applied, but convergence is not
guaranteed, or may be slow, and additionally, the short recurrence is not equivalent
to minimizing the mentioned matrix functional (see (3.47) in section 3.5.1).
During the last decades, a lot of generalized CG methods have been proposed for
solving linear systems with an unsymmetric coe�cient matrix. There are three main
branches of generalized CG methods:

3.5 Krylov Subspace Methods 33

Truncated, restarted Those methods are obtained by ignoring the non-existence
of a short recurrence. The iterates and residuals are calculated by

xk =
kX

i=k�t

�i;kS
i�1w + x0;

rk =
kX

i=k�t

�i;kAS
i�1w + r0;

i.e. only the t preceeding iterates are involved in calculating the new iter-
ates and residuals. From practical experiences with real linear systems and
coe�cient matrices close to normal, it is known that the resulting methods
converge quickly, if the eigenvalues of the coe�cient matrix are clustered in
the positive halfplane close to the real axis, but such methods are not very
robust.

For our numerical tests, we chose the PRES20 method introduced by Sch�on-
auer in [64] as an representant for this branch of generalized CG methods. For
this method, the parameter t is set to �ve, and a restart, i.e. the explicit
calculation rk := Axk � b, is made every twenty iterations.

BCG Approach A variety of methods originate from considering the "doubled" lin-
ear system �

0 A
AT 0

��
x�

x

�
=

�
b
b�

�
instead of the original linear system Ax = b. The "doubled" linear system is
symmetric, but in general not positive de�nite. The resulting methods can
be implemented with a short recurrence, but the residuals are minimized in a
"complicated" induced matrix norm. Numerical experiments with real linear
systems and coe�cient matrices close to normal indicate that the resulting
methods work well, if the eigenvalues are scattered in the positive halfplane.

For our numerical tests, we selected the BiCGstab-method introduced by van
der Vorst in [78] as a proxy for this kind of generalized CG-methods.

Normal equations Those methods are based on considering the normal equations

ATAx = AT b

instead of the original linear system Ax = b. The coe�cient matrix ATA of
the normal equations is symmetric positive de�nite, and thus the CG-method
can be applied. Hence, methods resulting from this approach can be imple-
mented with a short recurrence. From extensive numerical tests with real

34 Linear Solvers and Preconditioning

valued coe�cient matrices close to normal (see e.g. [80], pp. 116{130), it is
known that methods of this origin are very robust, i.e. they converge, even if
the eigenvalues of the coe�cient matrix are scattered all across the complex
plane, but, since the condition number of the coe�cient matrix of the normal
equations �

�
ATA

�
equals (� (A))2, the square of the condition number of the

original coe�cient matrix A, those methods tend to converge relatively slow.

For our numerical tests, we chose the ATPRES-method introduced by Sch�onauer
in [68].

3.5.1 The CG-method

The CG-method was introduced by Hestenes and Stiefel in [37]. An easy to read
introduction is given in [70]. The CG-method can be implemented with a short
recurrence. The residuals rk are orthogonal to all preceeding residuals r1; : : : rk�1,
and, equivalently, the iterates are calculated such that the functional

F (x) :=
1

2
(Ax� b)T A�1 (Ax� b) (3.47)

is minimized, where A is an element of IRn�n.

In algorithm 2, we give a pseudo-code formulation of the CG-method with Residual-
Minimizing smoothing applied to the preconditioned linear system

PLAPRy = PLb; PRy = x

from (3.6).

3.5 Krylov Subspace Methods 35

Choose an initial guess y0, set ~y0 := y0, s := PRy0, t := As, ~r0 := r0 := PLt � PLb
and calculate for k � 1:

s := PR~rk�1

t := As

u := PLt

k := �
~rTk�1~rk�1

~rTk�1u

~yk := ~yk�1 + k~rk�1

~rk := ~rk�1 + ku

�k := �
rTk�1(~rk � rk�1)

(~rk � rk�1)T (~rk � rk�1)

rk := rk�1 + �k(~rk � rk�1)

yk := yk�1 + �k(~yk � yk�1)

Algorithm 2: CG + Residual-Minimizing Smoothing

In algorithm 2, the original iterates and residuals are denoted by ~yk and ~rk. The cor-
responding Residual-Minimizing smoothed iterates and residuals are yk and rk. Per
iteration step, three matrix-vector multiplications are made, namely s := PR~rk�1,
t := As and u := PLt are calculated. If no preconditioning is applied, i.e. PL =
PR = I, only one matrix-vector multiplication, namely u := A~rk�1, is necessary.

3.5.2 The PRES20-method

The name PRES20 is an abbreviation of Pseudo-RESidual method 20. This method
was introduced by Sch�onauer in 1987 (see [64]). The PRES20-method is a com-
bined orthogonalization method with Residual-Minimizing smoothing (see section
3.4). Restarts, i.e. the explicit calculations rk := Azk � b, where zk denotes the
Residual-Minimizing smoothed iterates, are made every twenty iterations and at
most �ve search directions are used. The truncation- and the restart-parameter
were optimized along extensive numerical tests. The orthogonalization matrix Zk is
constantly the identity matrix. The search directions from de�nition 3.6 qk�i;k are
elements of the Krylov subspace Kk�i(A; r0).
In algorithm 3, we give a pseudo-code formulation of the PRES20-method applied
to the preconditioned linear system PLAPRy = PLb; PRy = x from (3.6). The
Residual-Minimizing smoothed iterates and residuals of the PRES20 iteration are
denoted by yk and rk. The corresponding non-smoothed iterates and residuals are ~yk
and ~rk. Per iteration step, three matrix-vector multiplications, namely s := PR~rk�1,
t := As and u := PLt, are made. If no preconditioning is applied, i.e. PL = PR =

36 Linear Solvers and Preconditioning

I, only one matrix-vector multiplication, namely u := A~rk�1, is necessary. The
PRES20 method is a very e�cient iterative solver for matrices close to normal, if the
eigenvalues of the matrices lie in the positive half-plane close to the real axis. For
further details see e.g. [64], [80], or [81].

Choose an initial guess y0, set ~y0 := y0, s := PRy0, t := As, ~r0 := r0 := PLt � PLb
and calculate for k � 1:

s := PR~rk�1

t := As

u := PLt

�i;k := �
~rTk�iu

~rTk�i~rk�i
for i = 1; : : : ;min(k; 5)

�k :=
1Pmin(k;5)

i=1 �i;k

~yk := �k

0
@~rk�1 +

min(k;5)X
i=1

�i;k~yk�i

1
A

~rk := �k

0
@u+ min(k;5)X

i=1

�i;k~rk�i

1
A

k := �
rTk�1(~rk � rk�1)

(~rk � rk�1)T (~rk � rk�1)

rk := rk�1 + k(~rk � rk�1)

yk := yk�1 + k(~yk � yk�1)

If (mod (k; 20) == 0) Restart

Algorithm 3: PRES20

3.5.3 The BiCGstab-method

The BiCGstab-method was introduced by van der Vorst [78] in 1992. The name
BiCGstab is a short form of Bi-Conjugate Gradients STABilized.

In the following, we give a brief sketch on the derivation of BiCG-like methods for
A 2 IRn�n non-singular (detailed considerations on that matter are given e.g. in
[78] and [80]).

3.5 Krylov Subspace Methods 37

All BiCG-like methods are essentially based on working with a "doubled" system�
0 A
AT 0

��
x�

x

�
=

�
b
b�

�
; (3.48)

instead of the original linear system Ax = b. The "doubled" linear system is sym-
metric, but not necessarily positive de�nite. The vector b� 2 IRn is arbitrary. The
iterates xk and x

�
k 2 IR

n are determined by the following two formulae:

xk = xk�1 +
kX
i=1

'i;kri�1

and

x�k = x�k�1 +
kX
i=1

'i;kr
�
i�1;

where the residuals rk and r
�
k 2 IR

n are given by

rk = Axk � b

and
r�k = ATx�k � b�:

The coe�cients 'i;k 2 IR are obtained from the biorthogonalities

rTk r
�
k�i = 0

and
(r�k)

T rk�i = 0

for i = 1; : : : ; k. The orthogonality equations above can be considered as a weak
formulation for the vanishing of the residuals for the exact solution.
The residuals can be represented by a matrix polynomial �k (A) of the form

�k (A) :=
kX
i=1

iA
i + I;

where I denotes the (n� n)-identity matrix. The polynomial notation of the resid-
uals is then

rk = �k (A) r0 (3.49)

and
r�k = �k

�
AT
�
r�o;

38 Linear Solvers and Preconditioning

where ro and r�o denote the residuals of the initial guess xo and x�o. The basic
iterative solver obtained by this approach is called BCG.

In [73], a variation of this approach, the CGS algorithm, was introduced by Sonneveld.
Instead of considering the residuals in the form (3.49), residuals in the form

~rk := �2
k (A) r0

and the corresponding errors

~ek := �2
k (A) e0

are considered, i.e. instead of the polynomial �k (A), the squared polynomial �2
k (A)

is considered. The advantage of this approach is, that if �k (A) tends to zero, then
faster convergence is obtained with the squared polynomial �2

k (A). In practice, the
convergence of CGS often is faster than the convergence of the original BCG. On the
other hand, the convergence of CGS may be more erratic than BCG.

In order to obtain a more stable and smoother converging iterative solver than
CGS, the BiCGstab-algorithm was proposed by van der Vorst in [78]. The idea of
the BiCGstab-algorithm is to consider the matrix polynomial �k (A) multiplied by
a matrix polynomial 	k (A) instead of considering the squared matrix polynomial
�2
k (A) of the CGS-iteration, i.e. the iterates and the residuals of the BiCGstab-

iteration have the representation

rk := 	k (A)�k (A) r0

and the corresponding errors

ek := 	k (A) �k (A) e0:

The matrix polynomial 	k (A) is recursively de�ned by

	k (A) := (�kA + I)	k�1 (A) ;

where the coe�cient �k 2 IR is calculated by the one-dimensional minimization

rk2 = min
�k2IK

(�kA+ I)	k�1 (A)�k (A) ro

2
:

We give a pseudo-code formulation of the BiCGstab-method including Residual-
Minimizing smoothing applied to the preconditioned linear system PLAPRy = PLb;
PRy = x from (3.6) in algorithm 4.

3.5 Krylov Subspace Methods 39

Choose r�0 6= 0 and an initial guess y0, l := PRy0, m := Al, set r0 := PLm � PLb,
z0 := y0, g0 := r0, �0 := [r�0]

T r0, p0 := r0 and calculate for k � 1:

l := PRpk�1

m := Al

v := PLm

'k := �
�k�1
[r�0]

Tv
s := rk�1 + 'kv

l := PRs

m := Al

t := PLm

k := �
sT tt2

2

rk := s+ kt

yk := yk�1 + 'kpk�1 + ks

�k := [r�0]
T rk

�k :=
�k
�k�1

'k
k

pk := rk + �k(pk�1 + kv)

 k :=
gTk�1 (rk � gk�1)rk � gk�1

2
2

zk := zk�1 + k (yk � zk�1)

gk := gk�1 + k (rk � gk�1)

Algorithm 4: BiCGstab + Residual-Minimizing Smoothing

In algorithm 4, the original iterates and residuals of the BiCGstab iteration are
denoted by yk and rk. The corresponding Residual-Minimizing smoothed iterates
and residuals are zk and gk. Per iteration step, six matrix-vector products are
required; three for calculating PLAPRpk�1, i.e. l := PRpk�1, m := Al and v := PLm,
and three for PLAPRs, i.e. l := PRs, m := Al and t := PLm. If no preconditioning
is applied, only two matrix-vector multiplications involving the matrix A, namely
v := Apk�1 and t := As, are necessary. Extensive numerical tests on real valued
close to normal matrices suggest that this method performs well, if the eigenvalues
of the matrix A are spread across the positive half-plane. For results of numerical
tests, see e.g. [29], [71], and [72].

The BiCGstab-method is not yet classi�ed in terms of orthogonalization methods,

40 Linear Solvers and Preconditioning

because the orthogonalization matrices are unknown.

3.5.4 The ATPRES-method

The name ATPRES is an abbreviation for A Transposed Pseudo RESidual. This
method was introduced by Sch�onauer in [68] for real linear systems. It is based on
the CG-method applied to the normal equations

ATAx = AT b; (3.50)

with Residual-Minimizing smoothing (see section 3.4, [65], [66], [80]). The orthog-
onalization matrix Zk is constantly the matrix A.
We give a pseudo-code formulation of the ATPRES-method applied to the precondi-
tioned linear system PLAPRy = PLb; PRy = x from (3.6) in algorithm 5.
In algorithm 5, the Residual-Minimizing smoothed iterates and residuals are yk
and rk. The corresponding non-smoothed iterates and residuals are ~yk and ~rk.
Per iteration step, six matrix-vector products are necessary: three for evaluating
(PLAPR)

T ~rk�1, i.e. s := P T
L ~rk�1, t := AT s, u := P T

R t, and three for PLAPRu, i.e.
v := PRu, w := Av and n := PLw. If no preconditioning is applied, only the two
matrix-vector products u := AT ~rk�1 and n := Au are necessary in each iteration
step. Numerical experiments with the ATPRES-method on real linear systems with
coe�cient matrices not far from normal indicate that this method is the most robust
of the four and can be applied for any distribution of the eigenvalues of the matrix
A.

3.5 Krylov Subspace Methods 41

Choose an initial guess y0, set ~y0 := y0, s := PRy0, t := As, ~r0 := r0 := PLt � PLb
and calculate for k � 1:

s := P T
L ~rk�1

t := AT s

u := P T
R t

v := PRu

w := Av

n := PLw

�i;k := �
~rTk�in

~rTk�i~rk�i
for i = min(k; 2);

�k :=
1Pmin(k;2)

i=1 �i;k

~yk := �k

0
@u+ min(k;2)X

i=1

�i;k~yk�i

1
A

~rk := �k

0
@n + min(k;2)X

i=1

�i;k~rk�i

1
A

k := �
rTk�1(~rk � rk�1)

(~rk � rk�1)T (~rk � rk�1)

rk := rk�1 + k(~rk � rk�1)

yk := yk�1 + k(~yk � yk�1)

Algorithm 5: ATPRES

42 Linear Solvers and Preconditioning

Projection Methods 43

4 Projection Methods

In this chapter, we consider projection methods { a general class of methods for
calculating sparse approximate inverses for non-singular real or complex matrices.
We introduce algorithms for the calculation of approximate inverses by projection
methods, and we derive estimates on the "distance" between the true and the ap-
proximate inverse calculated by projection methods.

Because of the general de�nition of projection methods, some known preconditioning
approaches can be formulated in terms of projection methods. Thus, for those
methods a unifying theoretical framework is supplied (see chapter 6).
Further, the theoretical framework of projection methods can be utilized as building
kit for new preconditioning methods with both a theoretical framework and favor-
able algorithmic properties. In particular, the resulting preconditioning methods
o�er a large amount of parallelism, and thus are appealing for parallel computers
(see chapter 6).

We begin section 4.1 with introducing some nomenclature for the pattern of vectors
and matrices. We give the de�nition of projection methods and we derive an explicit
representation of the corresponding approximate inverses. Furthermore, we give two
pseudo-code algorithms for the calculation of approximate inverses with projection
methods.
In section 4.2, we establish an approximation theorem that gives a statement on the
"distance" between the approximate and the true inverse in form of a minimization
property.

4.1 The General Concept

By projection methods, the non-zero entries of one-sided (either left-hand side or
right-hand side) approximate inverses with �xed sparsity-patterns can be calculated.
Because of CPU-time and memory restrictions in practice, the approximate inverse
should be as sparse as possible. Thus, the choice of its pattern, i.e. the location of
the non-zero entries in the approximate inverse, is very important.
We introduce some notation for the pattern of vectors and matrices:

De�nition 4.1 (Pattern of a Vector/Matrix)
Let m 2 IN0, n 2 IN with m � n, and let the vector J := (j1; : : : ; jm) 2 INm have
pairwise di�erent entries with 1 � ji � n for i = 1; : : : ; n. Then we write i 2 J if
9l : jl = i. We call J the pattern of a vector x 2 IKn, if only the components xjl
for l = 1; : : : ; m, may be di�erent from zero, i.e.

xi = 0 for i 62 J:

44 Projection Methods

For a vector x = (x1; : : : ; xn) 2 IK
n that has the pattern J = (j1; : : : ; jm), we de�ne

the J-reduced vector x(J) 2 IKm of x by

x(J) := (xj1 ; : : : ; xjm)
T :

We refer to m as the length of the pattern J = (j1; : : : ; jm) and we write in
abbreviation #J := m. Further, we refer to the l-th entry of the pattern J by (J)l.
If the patterns I := (i1; : : : ; il) and J := (j1; : : : ; jm) are pairwise disjoint, we de�ne
the corresponding joined pattern ~J 2 IN (m+l) by

~J := I [J := (i1; : : : ; il; j1; : : : ; jm) :

We de�ne the relation "J � I" for two patterns J and I with #J � #I by

J � I :() (J)i = (I)i for i = 1; : : : ;#J;

and we call J sub-pattern of I.
We call S = (J1; : : : ; Jn) matrix-pattern of the matrix A 2 IKn�n, if the vectors
Jk =

�
jk1 ; : : : ; j

k
mk

�
2 INmk for k = 1; : : : ; n are the patterns of the columns Auk of

the matrix A, and we refer to Jk as the k-th column-pattern of the matrix A.
If the matrix A 2 IKn�n has the pattern S, and if A is upper triangular or diagonal,
we call the matrix-pattern S upper triangular , or diagonal respectively.
Let Ji be the pattern of a vector xi 2 IK

n for i = 1; 2. Then, for a matrix A 2 IKn�n,
the (J1; J2)-reduced matrix (A) (J1; J2) 2 IK

#J1�#J2 is de�ned by

((A) (J1; J2))ij := (A)(J1)i;(J2)j ;

for i = 1; : : : ;#J1; and j = 1; : : : ;#J2. Let the vector x 2 IKn have the pattern
J = (j1; : : : ; jm). Then the #J-dimensional subspace IKn

J of IKn de�ned by

IKn
J := span (uj1; : : : ; ujm)

is called J-induced subspace of IKn.

With the above de�nition all technical terms for the discussion of sparse vectors
and matrices with certain sparsity patterns are at hand.

4.1 The General Concept 45

We give the de�nition of projection methods:

De�nition 4.2 (Projection Method, [83], p. 21)
Let A be a non-singular matrix in IKn�n. A method for computing a right-hand side
approximate inverse P of the matrix A is called projection method, if auxiliary
square non-singular matrices ZL, ZR 2 IK

n�n exist, such that the equations

uHi Z
H
L [AP � I]ZRuk = 0 (4.1)

hold for i 2 Jk with k = 1; : : : ; n, where (J1; : : : ; Jn) is the matrix-pattern of the
product matrix PZR. This matrix-pattern is called projection pattern.
The matrix P de�ned by equations (4.1) is called projective approximate in-
verse.
The matrices ZL and ZR are called left-hand and right-hand side projection ma-
trices.

The Basic Idea of Projection Methods
Projection methods for matrices in IRn�n were investigated by Zimmermann in [83],
where projective approximate inverses with �xed sparsity patterns were tested for
two particular projection methods. The projection methods considered in [83] are
characterized by the choices ZL := ZR := I and ZL = A; ZR = I. The latter
projection method coincides with the Frobenius-norm minimizing preconditioning
technique introduced by Benson in [2] (see section 6.2, and e.g. [32] and [39] for
recent results).

Equation (4.1) can be considered as a weak formulation for the inverse of A: if the
matrix in the brackets disappears, then P equals the inverse of A. For the practical
application as a preconditioning matrix the �ll-in of the matrix P will be limited,
and thus the matrix P will be only an approximation to A�1.
The concept of approximating the inverse of a matrix with a projection method
becomes obvious for the special case ZL = ZR = I:
Instead of solving the (n� n) linear systems

Atk = uk

with tk 2 IKn and uk denoting the k-th unit vector in IKn, for k = 1; : : : ; n, which
would produce the true inverse A�1 = (t1; : : : ; tn), the (#Jk �#Jk)-linear systems

A (Jk; Jk) pk (Jk) = uk (Jk)

are solved for k = 1; : : : ; n, and the resulting matrix P = (p1; : : : ; pn) is regarded as
an approximation to A�1 (see de�nition 4.1 for the de�nition of the (Jk; Jk)-reduced
matrix A (Jk; Jk) and the Jk-reduced vectors pk (Jk) and uk (Jk)).

46 Projection Methods

Projection methods form an entire class of methods for computing one-sided ap-
proximate inverses. The choice of the projection matrices ZL and ZR speci�es the
particular projection method. Despite the generality of the above de�nition, par-
ticular estimates on the quality of the approximation of P to A�1 are possible. We
derive these estimates in section 4.2.
Note, that neither the existence, nor the uniqueness of the projective approximate
inverse P from de�nition 4.2 is guaranteed. Further, if the projective approximate
inverse P exists and is unique, it is unknown whether or not P is non-singular.
A necessary and su�cient condition for the existence and the uniqueness of the
projective approximate inverse P from de�nition 4.2 is given in lemma 4.4 and in
corollary 4.5.
In the following, we consider both general projection methods with ZL; ZR arbitrary
and projection methods with ZL arbitrary and ZR diagonal. For projection methods
with diagonal ZR, the projection pattern (J1; : : : ; Jn) is already the pattern of the
projective approximate inverse P . Importantly, projection methods with diagonal
ZR are interesting for practical implementations, since they can be implemented
completely in parallel.

We will use projection methods in three di�erent ways:

1. We classify some of todays preconditioning techniques in terms of projection
methods, and thus provide a new theoretical framework for these methods.

2. We derive new algorithms for computing approximate inverses by making
particular choices for the projection matrices ZL and ZR.

3. We propose strategies and algorithms for the adaptive determination of the
sparsity pattern of approximate inverses calculated by projection methods.

Left-Hand Side Approximate Inverses
The formulation of projection methods given in de�nition 4.2 considers right-hand
side approximate inverses. All considerations regarding projection methods carry
over for left-hand side approximate inverses W 2 IKn�n by noting that

uHi Z
H
L [WA� I]ZRuk = 0

() uHk Z
H
R

�
AHWH � I

�
ZLui = 0;

i.e. the matrix WH can be regarded as a right-hand side approximate inverse of
AH . For simplicity, we consider right-hand side approximate inverses P only.

Explicit Representation of the Approximate Inverse
If the projection matrices ZL and ZR are known and a projection pattern (J1; : : : ; Jn)

4.1 The General Concept 47

is prescribed, under certain circumstances the projective approximate inverse P can
be calculated directly from (4.1). For discussing that matter, we give the following
de�nition, which characterizes three catagories of projection methods:

De�nition 4.3 (Jk-Explicit, Explicit and Practical Projection Methods)
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL; ZR 2
IKn�n on the projection pattern (J1; : : : ; Jn) and let k 2 IN be arbitrary with 1 �
k � n.

i) If the (Jk; Jk)-reduced matrix�
ZH
L A
�
(Jk; Jk) 2 IK

#Jk�#Jk (4.2)

of the product matrix ZH
L A is non-singular, we call the projection method Jk-

explicit.

ii) If the projection method is Jk-explicit for all k = 1; : : : ; n, we call the projection
method explicit.

iii) An explicit projection method is called practical, if the Jk-reduced vectors�
ZH
L ZRuk

�
(Jk) 2 IK

#Jk are non-vanishing for all k = 1; : : : ; n.

The properties of projection methods introduced in the above de�nition are uti-
lized in the following lemma, which states, among other things, that the projective
approximate inverses of explicit projection methods have a unique explicit repre-
sentation.

Lemma 4.4 (Explicit Representation of the Projective Approximate Inverse)
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL; ZR 2
IKn�n on the projection pattern (J1; : : : ; Jn).

i) If the projection method is Jk-explicit according to de�nition 4.3 for some k
with 1 � k � n, then the Jk-reduced k-th column (PZRuk) (Jk) of the product
matrix PZR has the unique explicit representation

(PZRuk)(Jk) =
�
(ZH

L A)(Jk; Jk)
��1

(ZH
L ZRuk)(Jk); (4.3)

and with the matrix Qk is de�ned by

(Qk)ij :=

(��
(ZH

L A)(Jk; Jk)
��1�

lm
; for i = (Jk)l and j = (Jk)m

0 ; else;
(4.4)

48 Projection Methods

the equality

PZRuk = QkZ
H
L ZRuk (4.5)

holds. In (4.5), the matrix Qk is utilized to embed the (#Jk �#Jk)-matrix�
(ZH

L A)(Jk; Jk)
��1

into IKn�n along the pattern Jk for its rows and columns.
Further, the columns qki of the matrix Qk from (4.4) with i 2 Jk form a basis
of the Jk-induced subspace IKn

Jk
of IKn.

ii) If the projection method is explicit according to de�nition 4.3, then the projec-
tive approximate inverse P has the unique explicit representation

P =
�
Q1Z

H
L ZRu1; : : : ; QnZ

H
L ZRun

�
Z�1
R ; (4.6)

where the matrices Qk for k = 1; : : : ; n are as de�ned in (4.4).

iii) If the projection method is practical according to de�nition 4.3, then none of
the columns of the product matrix PZR is vanishing.

iv) If the projection method is explicit, but not practical, then at least one of
the columns (PZR)uk of the product matrix PZR is vanishing, and hence the
projective approximate inverse P is singular.

Proof.

We denote by (PZRuk)(Jk) the Jk-reduced k-th column of the matrix PZR,
and by (ZH

L ZRuk)(Jk) the Jk-reduced k-th column of the product matrix
ZH
L ZR for k = 1; : : : ; n.

We prove assertion i):
Let 1 � k � n be arbitrary �xed, and let the projection method be Jk-explicit.
Then equation (4.1) corresponding to this index k is equivalent to the linear
system

(ZH
L A)(Jk; Jk)(PZRuk)(Jk) = (ZH

L ZRuk)(Jk):

Since the matrix (ZH
L A)(Jk; Jk) is non-singular by assumption, we can rewrite

the above equation in the form

(PZRuk)(Jk) =
�
(ZH

L A)(Jk; Jk)
��1

(ZH
L ZRuk)(Jk):

4.1 The General Concept 49

With the matrix Qk from (4.4), we embed equations (4.3) into IKn and obtain

PZRuk = QkZ
H
L ZRuk:

Further, since the matrix
�
ZH
L A
�
(Jk; Jk) is non-singular by assumption, the

columns qki of the matrix Qk, for i 2 Jk are linearly independent and form a
basis of the Jk-induced subspace IKn

Jk
of IKn

We verify equation ii):
Since the projection method is explicit according to de�nition 4.3, equation
(4.5) holds for k = 1; : : : ; n, i.e. we have

PZR = (Q1ZLZRu1; : : : ; QnZLZRun)

() P = (Q1ZLZRu1; : : : ; QnZLZRun)Z
�1
R

where the matrices Qk are de�ned in (4.4). Since the vectors PZRuk are
uniquely de�ned by assertion i), the above representation of the projective
approximate inverse P is unique.
We verify assertion iii):
Since the projection method is practical according to de�nition 4.3 by as-
sumption, it is in particular Jk-explicit for all k = 1; : : : ; n. Since the vec-
tors ZLZRuk are non-vanishing by assumption, the right-hand sides in (4.3)
are non-vanishing, and thus the vectors PZRuk non-vanishing as well for
k = 1; : : : ; n.
We verify assertion iv):
Since the projection method is explicit, by assertion ii) the relation

PZR =
�
Q1Z

H
L ZRu1; : : : ; QnZ

H
L ZRun

�
holds, with the matrices Qk de�ned in (4.4). Since the projection method
is not practical, by (4.3) at least one of the columns of the matrix PZR is
vanishing. Thus the matrix�

Q1Z
H
L ZRu1; : : : ; QnZ

H
L ZRun

�
is singular. Because the right-hand side projection matrix ZR is non-singular,
we obtain that the projective approximate inverse P is singular.

}

The above lemma states, that for a given projection method with the projection ma-
trices ZL and ZR on the projection pattern (J1; : : : ; Jn) the projective approximate
inverse P is de�ned uniquely, if the n small linear systems�

ZH
L A
�
(Jk; Jk) tk =

�
ZH
L ZRuk

�
(Jk)

50 Projection Methods

for tk 2 IK
#Jk and k = 1; : : : ; n have unique solutions, i.e. if the considered projec-

tion method is explicit according to de�nition 4.3.
Further, if apart of the projection matrices ZL and ZR, the inverse Z�1

R of ZR

is known as well, the projective approximate inverse P of an explicit projection
method can be calculated explicitly by equation (4.6). Thus, projection methods
with "simple" right-hand side projection matrices, e.g. with diagonal ZR, are of
particular interest for practical implementations.
For practical preconditioning with approximate inverses determined by projection
methods, the projective approximate inverse P should be non-singular. A necess-
esary condition for the non-singularity of the obtained projective approximate in-
verse is, that the considered projection method is not only explicit, but practical
according to de�nition 4.3. However, the projective approximate inverse given by
a practical projection method can still be singular. For particular projection meth-
ods theoretical investigations on the non-singularity of the corresponding projective
approximate inverses are possible. For the projection methods considered in sec-
tions 6.3 and 6.7, statements on the non-singularity of the corresponding projective
approximate inverses are given in [46].

The Projective Approximate Inverse Algorithm
Algorithm 6 gives a pseudo-code formulation for obtaining the projective approxi-
mate inverse P by an explicit projection method. The input data of this algorithm
are the original matrix A, the projection matrices ZL, ZR and the projection pattern
(J1; : : : ; Jn). On output, the projective approximate inverse P corresponding to the
chosen projection method is obtained.

1. For k = 1; : : : ; n

(a) Determine the matrix �
ZH
L A
�
(Jk; Jk)

and the vector �
ZH
L ZRuk

�
(Jk)

(b) Solve the linear system�
ZH
L A
�
(Jk; Jk) (vk) (Jk) =

�
ZH
L ZRuk

�
(Jk)

2. Obtain the projective approximate inverse P from

P := (v1; : : : ; vn)Z
�1
R

Algorithm 6: Projective Approximate Inverse

4.1 The General Concept 51

In step (1a) of algorithm 6, the (Jk; Jk)-reduced matrix
�
ZH
L A
�
(Jk; Jk) and the Jk-

reduced vector
�
ZH
L ZRuk

�
(Jk) are determined.s In step (1b), n linear systems of

the size (#Jk �#Jk) are solved. In step (2), the projective approximate inverse P
is obtained by a formal matrix-matrix product. For practical relevance, the matrix
ZR must be such that its inverse Z�1

R is either known or easily computable.
For the practical application of the Projective Approximate Inverse algorithm
(algorithm 6), the matrices ZL and ZR should have a particular form such that
neither step (1a) nor step (2) contribute much to the numerical complexity. In
this case, the computational cost is dominated by the equation solves in step (1b).
Since these linear systems can be solved independently from each other, and hence
in parallel, algorithm 6 is well-suited for vector and parallel computers.
The linear systems in step (1b) of algorithm 6 are non-Hermitian and not positive
de�nite in general. The density of those linear systems depends on the particular
choice of the matrix ZL, on the sparsity of A and on the length of the column-
patterns Jk for k = 1; : : : ; n.

The Case of Diagonal ZR

The following corollary gives the result of lemma 4.4 for the special case that ZR is
a diagonal matrix. An analogous statement for real matrices for the case ZR := I
is given by Zimmerman in [83].

Corollary 4.5 (Explicit Representation of the Projective Approximate Inverse for
diagonal ZR, [83], p. 23)
Let the matrix P be the projective approximate inverse on the projection pattern
(J1; : : : ; Jn) of the non-singular matrix A 2 IK

n�n determined by a projection method
with the projection matrices ZL; ZR 2 IKn�n, where ZL is arbitrary and ZR is a
diagonal matrix.

i) If the projection method is Jk-explicit, then the k-th column pk of the projective
approximate inverse P has the unique explicit representation

(pk)j =

(���
ZH
L A
�
(Jk; Jk)

��1 �
ZH
L uk

�
(Jk)

�
i

for j = (Jk)i;

0 else;
(4.7)

i.e. the k-th column pk of the projective approximate inverse P has the pat-
tern Jk, and the Jk-reduced k-th colum (pk) (Jk) of P is the solution of the
(#Jk �#Jk)-linear system�

ZH
L A
�
(Jk; Jk) (pk) (Jk) =

�
ZH
L uk

�
(Jk) : (4.8)

ii) If the projection method is explicit, then the projective approximate inverse
P is uniquely de�ned. The k-th column of P has the representation (4.7)
k = 1; : : : ; n.

52 Projection Methods

iii) If the projection method is practical, then none of the columns pk of the pro-
jective approximate inverse P is vanishing.

iv) If the projection method is explicit, but not practical, then at least one column
pk of the projective approximate inverse P is vanishing, and thus P is singular.

Proof.

We prove assertion i):
Let the diagonal entries of the right-hand side projection matrix ZR be denoted
by dk for k = 1; : : : ; n. We consider equation (4.3) for diagonal ZR:

(PZRuk) (Jk)=
��
ZH
L A
�
(Jk; Jk)

��1 �
ZH
L ZRuk

�
(Jk)

() dk (pk) (Jk) = dk
��
ZH
L A
�
(Jk; Jk)

��1 �
ZH
L uk

�
(Jk)

=) (pk)j =

(���
ZH
L A
�
(Jk; Jk)

��1 �
ZH
L uk

�
(Jk)

�
i

for j = (Jk)i;

0 else:

Assertion ii) follows directly from assertion i), since an explicit projection
method is Jk-explicit for all k = 1; : : : ; n.
Assertions iii) and iv) follow directly from lemma 4.4.

}

As a result of the above corollary, in the case that ZR is a diagonal matrix, the
columns pk of the projective approximate inverse P can be calculated independently
from each other by solving the n independent small linear systems

(ZH
L A)(Jk; Jk)(pk)(Jk) = (ZH

L uk)(Jk);

for k = 1; : : : ; n, provided that the considered projection method is explicit accord-
ing to de�nition 4.3. Note that in this situation the columns pk of the projective
approximate inverse P have the patterns Jk for k = 1; : : : ; n. Thus, in this case the
approximate inverse P can be computed columnwise completely in parallel.
For practical preconditioning purposes, only projection methods which are practical
according to de�nition 4.3 should be considered, since otherwise at least one col-
umn pk of the obtained projective approximate inverse P is vanishing, and thus P
is singular.
In algorithm 7, we give a pseudo-code form of the Projective Approximate In-

verse algorithm for diagonal ZR:
In practice, the matrix ZL must have a particular form, so that the computational
cost for determining the (Jk � Jk) matrices

�
ZH
L A
�
(Jk; Jk) in step (1a) of algorithm

4.2 Approximation Properties 53

1. For k = 1; : : : ; n

(a) Determine the matrix �
ZH
L A
�
(Jk; Jk)

and the vector �
ZH
L uk

�
(Jk)

(b) Solve the linear system�
ZH
L A
�
(Jk; Jk) (pk) (Jk) =

�
ZH
L uk

�
(Jk)

2. Obtain the projective approximate inverse by

P = (p1; : : : ; pn)

Algorithm 7: Projective Approximate Inverse with diagonal ZR

7 is neglegtable compared to the computational cost for solving the linear systems
in step (1b).
In each step of the k-loop in step (1) of algorithm 7, the column pk of the projective
approximate inverse P is determined by solving the linear system

(ZH
L A)(Jk; Jk)(pk)(Jk) = (ZH

L uk)(Jk):

Since the k-loop in step (1) of algorithm 7 can be implemented completely in parallel,
the above algorithm is very appealing for the implementation on parallel computers.

4.2 Approximation Properties

For practical preconditioning purposes the approximate inverse utilized as the pre-
conditioner of a linear system Ax = b should be as "close" as possible to the true
inverse A�1 of the coe�cient matrix A. In this section, we investigate in which re-
spect the projective approximate inverse P of a projection method approximates
the true inverse A�1 of a non-singular matrix A. More particularly, we derive new
minimization properties for projective approximate inverses of Jk-explicit projection
methods, which give statements on the "distance" between the projective approxi-
mate inverse P and the true inverse A�1.

First, we de�ne some quantities which we will utilize as a measure for the distance
between the projective approximate inverse and the exact inverse:

54 Projection Methods

De�nition 4.6 (Jk-Residual and Jk-Error)
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL; ZR 2
IKn�n on the projection pattern (J1; : : : ; Jn). Let this projection method be Jk-explicit
according to de�nition 4.3 for some k 2 IN with 1 � k � n. Then we call the
quantity

rJk := (AP � I)ZRuk (4.9)

Jk-residual and

eJk := A�1rJk = (P � A�1)ZRuk (4.10)

Jk-error for k = 1; : : : ; n.

The norms of the Jk-residuals and Jk-errors are a column-wise measure for the
distance between the true and the projective approximate inverse weighted by the
right-hand side projection matrix ZR. If the Jk-residuals (or equivalently the Jk-
errors) vanish for all k = 1; : : : ; n, then the projective approximate inverse P equals
the true inverse of A, and thus the approximation is optimal.

In practical applications, the Jk-errors are not known unless the product matrix
A�1ZR is known as well. However, the Jk-residuals are known in practical applica-
tions. In chapter 5, we derive strategies for the adaptive generation of projection
patterns which are based on minimizing the Jk-residuals de�ned in (4.9).

In preparation of the forthcoming approximation theorem, we have to give two
technical lemmata �rst:

First of all, we cite a technical lemma from [80]:

Lemma 4.7 ([80], p. 32)
Let the matrices M and R be elements of IRn�n, with M symmetric positive de�nite
and R skew symmetric. Let �(R) denote the spectral radius of R and �m(M) denote
the minimal eigenvalue of M , then the following inequality holds:

I +M�1R
2
M
� 1 +

�2(R)

�2m(M)
: (4.11)

4.2 Approximation Properties 55

The following lemma provides us with some insight on the properties of Jk-residuals:

Lemma 4.8
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL; ZR 2
IKn�n on the projection pattern (J1; : : : ; Jn). Let this projection method be Jk-explicit
for some k 2 IN with 1 � k � n. Then for the Jk-residuals of this projection method
the equalities

rHJkZLw = 0 (4.12)

and

rHJkZLA
�1rJk = rHJkZLA

�1 (Aw � ZRuk) (4.13)

hold for all vectors w 2 IKn
Jk
, the Jk-induced subspace of IKn according to de�nition

4.1.

Proof.

We verify assertion (4.12):
The #Jk unit vectors ui 2 IKn with i 2 Jk form a basis of the Jk-induced
subspace IKn

Jk
. For i 2 Jk we have

rHJkZLui
(4.9)
=
�
uHi Z

H
L (AP � I)ZRuk

�H (4.1)
= 0: (4.14)

Thus we have, with �i 2 IK for i 2 Jk for arbitrary w :=
P
i2Jk

�iui 2 IK
n
Jk
:

rHJkZLw =
X
i2Jk

�ir
H
Jk
ZLui

(4.14)
= 0;

and the proof of assertion (4.12) is complete.

We prove assertion (4.13):

We apply lemma 4.4 to rewrite rJk :

rJk
(4:9)
= (AP � I)ZRuk
(4:5)
= AQkZ

H
L ZRuk � ZRuk; (4.15)

with the matrices Qk de�ned in (4.4).

56 Projection Methods

We denote for i = 1; : : : ;#Jk by qki the (Jk)i-th column of the matrix Qk.
Note that, since the considered projection method is Jk-explicit, assertion i)
of lemma 4.4 states that the vectors

�
qk1 ; : : : ; q

k
#Jk

�
form a basis of the Jk-

induced subspace IKn
Jk
, whereas all other columns of Qk are vanishing. Thus,

we can rewrite equation (4.15):

rJk =
X
i2Jk

(ZH
L ZRuk)iAq

k
i � ZRuk; (4.16)

where
�
ZH
L ZRuk

�
i
denotes the i-th component of the vector ZH

L ZRuk, and we
obtain

rHJkZLA
�1rJk = rHJkZLA

�1

 X
i2Jk

(ZH
L ZRuk)iAq

k
i � ZRuk

!

= rHJkZL

0
B@X

i2Jk

(ZH
L ZRuk)iq

k
i| {z }

2IKn
Jk

�A�1ZRuk

1
CA

(4:12)
= rHJkZL

 X
i2Jk

�iq
k
i � A�1ZRuk

!
;

where �i are arbitrary elements of IK. Since the vectors qki with i 2 Jk form a
basis of IKn

Jk
, assertion (4.13) is proved.

}

The following theorem gives a measure for the size of the Jk-residuals and Jk-errors
for an approximate inverse P determined by a projection method.

Theorem 4.9 (Approximation Theorem for Projection Methods)
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL; ZR 2
IKn�n on the projection pattern (J1; : : : ; Jn).

i) Let IKn = IRn and let the projection method be Jk-explicit for some k 2 IN
with 1 � k � n. Let the matrix ZLA

�1 2 IRn�n be positive real. Let ZLA
�1 =

M + R, where M is the symmetric part and R is the skew symmetric part
of ZLA

�1. Let �(R) denote the spectral radius of R, and let �m(M) denote
the minimal eigenvalue of M . Let P be given by equation (4.1). Then the
following estimations hold:

(AP � I)ZRuk

ZLA�1

�

s
1 +

�2(R)

�2m(M)
� min
w2IRnJk

Aw � ZRuk

ZLA�1

; (4.17)

4.2 Approximation Properties 57

(P � A�1)ZRuk

ATZL

�

s
1 +

�2(R)

�2m(M)
� min
w2IRn

Jk

w � A�1ZRuk

ATZL

:

(4.18)

ii) Let IKn 2 fIRn; ICng and let the matrix ZLA
�1 2 IKn�n be Hermitian positive

de�nite. Then the equalities(AP � I)ZRuk

ZLA�1

= min
w2IKn

Jk

Aw � ZRuk

ZLA�1

; (4.19)

(P � A�1)ZRuk

AHZL

= min
w2IKn

Jk

w � A�1ZRuk

AHZL

(4.20)

hold for all k = 1; : : : n.

Proof.

First, we verify inequality (4.17):
By lemma 4.8, we can writerJk2ZLA�1 = rTJkZLA

�1 (Aw � ZRuk) ; (4.21)

where the vector w 2 IRn
Jk

is arbitrary. We choose the vector w such that the
vector vk 2 IR

n de�ned by vk = Aw � ZRuk satis�esvkZLA�1 = min
w2IRn

Jk

Aw � ZRuk

ZLA�1

: (4.22)

With ZLA
�1 =M +R =M(I +M�1R) and lemma 4.7, we haverJk2ZLA�1 = rTJkM(I +M�1R)vk

�
rJkM (I +M�1R)vk

M

by the Cauchy-Schwarz inequality

�
rJkM I +M�1R

M

vkM
(4:11)

�
rJkM

s
1 +

�2(R)

�2m(M)

vkM :

Division by
rJkZLA�1 completes the proof for inequality (4.17).

58 Projection Methods

The corresponding result for inequality (4.18) follows trivially with rJk = AeJk
and rJk2ZLA�1 = AeJk2ZLA�1 = eTJkA

TZLA
�1AeJk =

eJk2ATZL : (4.23)

We prove equality (4.19):
Note that since the matrix ZLA

�1 is Hermitian positive de�nite, the matrix
ZH
L A is Hermitian positive as well. Hence, all corresponding (Jk; Jk)-reduced

matrices
�
ZH
L A
�
(Jk; Jk) are non-singular, and consequently the considered

projection method is explicit.
In the following, we assume k 2 IN with 1 � k � n arbitrary �xed. With
lemma 4.8, we haverJk2ZLA�1 = rHJkZLA

�1 (Aw � ZRuk)

with the arbitrary vector w 2 IKn
Jk
. We choose w such that the vector vk 2 IK

n

de�ned by vk = Aw � ZRuk satis�esvkZLA�1 = min
w2IKn

Jk

Aw � ZRuk

ZLA�1

: (4.24)

Analogous to the real case, we haverJk2ZLA�1 = rHJkZLA
�1vk

�
rJkZLA�1 vkZLA�1 ;

by the Cauchy-Schwarz inequality. By division with
rJkZLA�1 and by noting

that the Jk-residual rJk has by (4.9) the form APZRuk�ZRuk where PZRuk 2
IKn

Jk
, with (4.24) the proof for equality (4.19) is complete.

Assertion (4.20) follows analogously to (4.23).

}

The theorem above is an adaption of theorem 3.7 derived by Weiss ([80], pp. 32 {
33) in the context of orthogonalization methods.
Theorem 4.9 links the orthogonality conditions of equations (4.1) to a minimization
property for the Jk-residuals and Jk-errors. In this sense, the above theorem estab-
lishes a statement on the quality of the approximation of the projective approximate
inverse P determined by a Jk-explicit projection method to the true inverse A�1.
More precisely: for Hermitian positive de�nite ZLA

�1, the vectors PZRuk 2 IKn
Jk

minimize the ZH
L A

�1-norm of the quantities Aw � uk, where w 2 IKn
Jk
, among the

(#Jk)-dimensional Jk-induced subspaces IKn
Jk

for k = 1; : : : ; n.

4.2 Approximation Properties 59

The Case of Diagonal ZR

For Jk-explicit projection methods the case that ZR is a diagonal matrix is of special
interest, since in this case the columns pk of the projective approximate inverse P
can be computed completely in parallel. In this case, the Jk-residuals from de�nition
4.6 have the form rJk = dk (Apk � uk), where dk denotes the k-th diagonal element
of ZR, and the columns pk of the projective approximate inverse have the pattern
Jk for k = 1; : : : ; n.
We give the approximation properties of theorem 4.9 for the special case of diagonal
ZR:

Corollary 4.10 (Approximation Theorem for Projection Methods with diagonal
ZR)
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL 2
IKn�n arbitrary and ZR diagonal, on the projection pattern (J1; : : : ; Jn).

i) Let IKn = IRn and let the projection method be Jk-explicit for some k with
1 � k � n. Let the matrix ZLA

�1 2 IRn�n be positive real and let ZLA
�1 =

M+R, whereM is the symmetric and R is the skew-symmetric part of ZLA
�1.

Let � (R) denote the spectral radius of R and let �m (M) denote the minimal
eigenvalue of M . Then the estimations

Apk � uk

ZLA�1

�

s
1 +

�2(R)

�2m(M)
min
w2IRnJk

Aw � uk

ZLA�1

; (4.25)

pk � A�1uk

ATZL

�

s
1 +

�2(R)

�2m(M)
min
w2IRnJk

w � A�1uk

ATZL

(4.26)

hold, where pk denotes the k-th column of the projective approximate inverse
P .

ii) Let IKn 2 fIRn; ICng. If ZLA
�1 2 IKn�n is Hermitian positive de�nite, the

equalities Apk � uk

ZLA�1

= min
w2IKn

Jk

Aw � uk

ZLA�1

; (4.27)pk � A�1uk

AHZL

= min
w2IKn

Jk

w � A�1uk

AHZL

(4.28)

hold for all k = 1; : : : ; n, where pk denotes the k-th column of the projective
approximate inverse P .

60 Projection Methods

Proof.

From theorem 4.9 with diagonal ZR we obtain

(AP � I)ZRuk

ZLA�1

�

s
1 +

�2(R)

�2m(M)
min
v2IRnJk

Av � ZRuk

ZLA�1

for positive real ZLA
�1, and

(AP � I)ZRuk

ZLA�1

= min
v2IKn

Jk

Av � ZRuk

ZLA�1

;

for Hermitian positive de�nite ZLA
�1.

By noting that(AP � I)ZRuk

ZLA�1

=
dk (Apk � uk)

ZLA�1

= jdkj
Apk � uk

ZLA�1

and

min
v2IKn

Jk

Av � ZRuk

ZLA�1

= min
w2IKn

Jk

dk (Aw � uk)

ZLA�1

= jdkj min
w2IKn

Jk

Aw � uk

ZLA�1

where dk denotes the k-th diagonal entry in ZR, the proof for assertions (4.25)
and (4.27) is complete.
Assertions (4.26) and (4.28) follow trivially by noting thatAx2

ZLA�1
=
x2

AHZL
;

for x 2 IKn.

}

The above corollary establishes a statement on the quality of the approximation of
the k-th column pk of the projective approximate inverse P to the k-th column of
the true inverse A�1. For Hermitian positive de�nite ZLA

�1, the k-th column pk of
P is the minimizer of the ZH

L A
�1-norm of the quantities Aw�uk among all vectors

w 2 IKn
Jk
, i. e. among all vectors w in IKn that have the pattern Jk for k = 1; : : : ; n.

4.2 Approximation Properties 61

Two Examples for Projection Methods
We demonstrate the potential of the theoretical framework of projection methods
by considering the two particular projection methods explored in [83].

Let the matrix P 2 IKn�n be the projective approximate inverse of the matrix A
from (3.1) determined by a projection method with the projection matrices ZL := A,
or ZL := I, and ZR := I on the projection pattern (J1; : : : ; Jn). Then the following
approximation estimates are obtained:

ZL = A; ZR = I: As shown in [83], this projection method coincides with the Frobe-
nius-norm approach for calculating approximate inverses introduced by Ben-
son in [2] (see section 6.2 for a more detailed discourse). The Frobenius-
norm approach for calculating approximate inverses is based on minimizing
the Frobenius-norm expression

AP � I
2
F
=

nX
k=1

Apk � uk
2
2
;

where pk denotes the k-th column of the approximate inverse P , the approxi-
mate inverse P has the prescribed pattern (J1; : : : ; Jn), and uk denotes the
k-th unit-vector in IKn. The columns pk of P are the solutions of the n inde-
pendent (Jk � Jk) least-squares problems

min
w2IKn

Jk

Aw � uk
2
2

for k = 1; : : : ; n.
Note that this projection method is always explicit according to de�nition 4.3,
since the product matrix ZH

L A = AHA is Hermitian positive de�nite.
The identities Apk � uk

2
= min

w2IKn
Jk

Aw � uk

2
;pk � A�1uk

AHA

= min
w2IKn

Jk

w � A�1uk

AHA

for k = 1; : : : ; n, obtained from corollary 4.10 for this approach, coincide with
the construction principle for this preconditioning technique.
This projection method is practical according to de�nition 4.3 whenever the
Jk-reduced vectors

�
AH
�
(Jk) are non-vanishing for all k = 1; : : : ; n.

ZL = I; ZR = I: This projection method is considered in [46] for �xed projection
patterns. If the matrix A�1 is positive real and if this projection method is

62 Projection Methods

Jk-explicit according to de�nition 4.3, the estimates

Apk � uk

A�1

�

s
1 +

�2(R)

�2m(M)
min
w2IRnJk

Aw � uk

A�1

;

pk � A�1uk

AT
�

s
1 +

�2(R)

�2m(M)
min
w2IRnJk

w � A�1uk

AT

hold, where pk denotes the k-th column of the projective approximate inverse
P , M denotes the symmetric part and R denotes the skew-symmetric part of
A�1.
If the matrixA is Hermitian positive de�nite, this projection method is explicit
according to de�nition 4.3, and the identitiesApk � uk

A�1

= min
w2IKn

Jk

Aw � uk

A�1

;pk � A�1uk

AH

= min
w2IKn

Jk

w � A�1uk

AH

hold for k = 1; : : : ; n. Thus, for this projection method the Jk-residuals Apk�
uk are minimized in the energy norm

:
A�1

, and the Jk-errors are minimized

in the vector norm
:

AH
.

Note that if the matrixA is Hermitian positive de�nite, this projection method
is practical according to de�nition 4.3 whenever the relation k 2 Jk holds for
all k = 1; : : : ; n. If the matrix A is positive real, the non-singularity of the
(Jk; Jk)-reduced matrices

(A) (Jk; Jk) ;

and hence the Jk-explicitness of this projection method depends on the par-
ticular choice of the pattern (J1; : : : ; Jn).
Importantly, based on the new minimization statements given above, for this
projection method new adaptive pattern derivation strategies can be devel-
oped. This issue is discussed in chapter 5 for general projection methods and
in section 6.3 for this particular projection method.

In this section, we have scrutinized the general concept of calculating approximate
inverses by projection methods on �xed projection patterns and we have introduced
critetria and algorithms for the explicit calculation of projective approximate in-
verses. Furthermore, we have developed new statements on the approximation of
projective approximate inverses to the corresponding exact inverses.
In practical applications, CPU-time and memory restrictions limit the number of
non-zeros in the approximate inverse. Thus, the shape of the projection pattern is

4.2 Approximation Properties 63

important for the e�ciency of a projective approximate inverse applied as a precon-
ditioner for the iterative solution of a linear system. In the following chapter, we
develop strategies for the adaptive generation of such projection patterns. These
strategies are essentially based on the new approximation statements given in the-
orem 4.9.

64 Projection Methods

Adaptive Pattern Derivation for Projection
Methods 65

5 Adaptive Pattern Derivation for Projection

Methods

In this chapter, we develop new strategies for the adaptive pattern derivation for
general projection methods.
For the practical application of a projective approximate inverse as preconditioner
of a linear system, sparsity is an important task. On the one hand, memory and
CPU-time limitations restrict the amount of �ll-in in the projective approximate
inverse. On the other hand, a denser projective approximate inverse may accelerate
the convergence of the iterative solve more e�ectively. Since in general no informa-
tion of a "good" matrix-pattern for the projective approximate inverse is available,
it must be determined adaptively.
Adaptive pattern derivation strategies for the Frobenius norm minimizing precon-
ditioning technique (see section 6.2) has been introduced by Cosgrove, Diaz and
Griewank in [17]. This preconditioning technique has been classi�ed in terms of
projection methods by Zimmermann in [83].
By extending the idea of Cosgrove, Diaz and Griewank to the general case, i.e. to
general projection methods, we develop a new framework for the adaptive pattern
derivation for projection methods. We state the new pattern adaption strategies
for projection methods in form of pseudo-code algorithms. Furthermore, we discuss
control strategies and the computational complexity of these new algorithms.

5.1 The Basic Concept of the Pattern Derivation

We consider the linear system Ax = b, with A 2 IKn�n non-singular and x; b 2 IKn.
Suppose that the projective approximate inverse P 0 of the matrix A is computed
on some projection pattern (J0

1 ; : : : ; J
0
n) by an explicit projection method. The

general design of our pattern derivation methods consists in generating a sequence
of augmented column-patterns

J0
k � J1

k � � � � � J lk; (5.1)

for k = 1; : : : ; n, and the corresponding projective approximate inverses P 1; : : : ; P l

of the matrix A, until some stopping criterion is satis�ed. This strategy rests upon
the following observation based on theorem 4.9:
The ZLA

�1-norm of the J ik-residuals rJik decreases monotonously for growing column-

patterns J ik. If all column-patterns are full, i.e. J lk = (1; : : : ; n) for k = 1; : : : ; n, then
P l equals the true inverse A�1, and all corresponding J lk-residuals vanish. In this
sense, the approximate inverse P i with i � 1 computed with an explicit projection
method on the augmented projection pattern (J i1; : : : ; J

i
n) is a better approximation

to the true inverse { and hence likely to be a more e�ective preconditioner { than
the preceeding approximate inverses P 0; : : : ; P i�1.

66
Adaptive Pattern Derivation for Projection

Methods

With the above considerations, projection methods can be regarded as iterative
methods for approximating the inverse A�1 of the matrix A: each iteration step
consists of augmenting the column-patterns, and calculating the new iterate, which
is the projective approximate inverse P l corresponding to the new projection pat-
tern. In each iteration step l the corresponding J lk-residuals r

l
Jk

are minimized as
stated by theorem 4.9. This iteration process is �nite, i.e. it terminates after at most
n steps: if all column-patterns are full, the corresponding projective approximate
inverse P equals the true inverse A�1.

Note that the projection patterns
�
J l0; : : : ; J

l
n

�
, with 0 � l � n, from relation (5.1)

must be choosen in such a way that the corresponding projection methods are
explicit. Otherwise, the corresponding projective approximate inverse cannot be
calculated explicitly with lemma 4.4.

For expounding the general design of our pattern derivation strategy in greater
detail, we consider the situation that the augmented pattern J ik is obtained by adding
one new index j to the known pattern J i�1k , i.e. J ik := J i�1k [(j). Theoretically, for
enlarging the column-pattern J i�1k any index j with 1 � j � n and j 62 J i�1k can be
chosen, provided that the projection method is J ik-explicit. Since the approximate
inverse must be sparse for practical implementations, the length of the column-
patterns is restricted. Thus, the index j added to the column-pattern J i�1k should
be chosen such that the ZLA

�1-norm of the new J ik-residual rJik decreases as much
as possible.
Theoretically, for this purpose the J i�1k [(j)-residuals for all candidate indices j 62
J i�1k could be computed directly. The augmented column-pattern could then be
chosen according to the smallest ZLA

�1-norm of the new residual rJi�1
k

[(j). But this

strategy involves a prohibitively high computational cost. A more e�cient strategy
is to determine the decrease of the J i�1k -residual norm caused by adding an index
j 62 J i�1k .

The following de�nition introduces a quantity that we will utilize for the derivation
of an adaptive pattern enlarging criterion.

De�nition 5.1 (Candidate Set, Decrease Rate)
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL; ZR 2
IKn�n on the projection pattern (J1; : : : ; Jn). Let this projection method be Jk-explicit
for some 1 � k � n according to de�nition 4.3. For j 2 IN with 1 � j � n we
de�ne the candidate set CJk of the column-pattern Jk by

CJk :=
�
j j j 62 Jk;

�
ZH
L A
�
(Jk [(j) ; Jk [(j)) is non-singular

	
; (5.2)

5.1 The Basic Concept of the Pattern Derivation 67

i.e. the candidate set CJk contains all indices j that may be added to the current
column pattern Jk. For all j 2 CJk we de�ne the non-negative real numbers �j by

�j :=
rJk2ZLA�1 � rJk[(j)2ZLA�1 : (5.3)

The �j are called decrease rates of the Jk-residual rJk for the index j.

The decrease rates �j from the above de�nition are a measure for the decrease of
the Jk-residual norm caused by adding one candidate index j to the current column-
pattern Jk. Thus, with the decrease rates �j from the above de�nition, a criterion
for enlarging a given column pattern with regards to the optimal decrease of the
Jk-residuals is at hand:
After computing the decrease rates �j for all candidate indices j 2 CJi�1k

, the en-

larged column pattern J ik is de�ned as J ik := J i�1k [(j0), where the index j0 corre-
sponds to the largest decrease rate �j0, i.e. the new index j0 is chosen such that

�j0 = max
j 62Ji�1

k

�j

holds.
Instead of computing the exact decrease-rates �j, estimates �j for the �j can be used
for the pattern-derivation. This may lead to less decrease of the residual norms, but
may be computationally cheaper. We introduce a strategy for computing estimates
�j of the decrease rates �j in section 5.3.

We postpone all considerations regarding the actual computation of the decrease-
rates �j, and the corresponding estimates �j, to sections 5.2 and 5.3, and focus on
the general design of the pattern derivation algorithm:
Once the enlarged column patterns J ik, with k = 1; : : : ; n are determined, a new
approximate inverse P i of the matrix A can be computed on the enlarged projection
pattern. After that, the corresponding J ik-residuals rJik can be computed, and the
column-patterns can be enlarged once more.

Stopping Criteria for the Adaptive Pattern Derivation
Since the length of the column-patterns J ik must be limited in practical applications,
a stopping criterion for enlarging the column-patterns is needed. Various stopping
criteria are possible:

quantitative: The most obvious stopping criterion consists in restricting the max-
imum length of the column-patterns. With this strategy both, the CPU-time
and the memory required for the pattern derivation process, can be estimated
in advance. On the other hand, the adaptivity of the pattern derivation pro-
cess is diminished. In practical applications, the true inverse can have columns

68
Adaptive Pattern Derivation for Projection

Methods

of widely di�ering density. Thus, some column-patterns J ik might be larger
than necessary, while others might be too small. In the �rst case, CPU-time
is wasted, and in the second case, the convergence of the preconditioned linear
system might su�er.

qualitative: Amore adaptive stopping criterion is obtained by controlling the qual-
ity of the approximate inverse with regards to its approximation to the true
inverse by monitoring the ZLA

�1-norms of the J ik-residuals. The derivation
process of the column-patterns J ik is stopped, when the corresponding J ik-
residuals become smaller than a prescribed threshold. The advantage of this
strategy is, that the work devoted to the particular column-patterns J ik de-
pends on the structure of the true inverse. A drawback of this strategy is,
that the CPU-time and memory required for the pattern derivation process
cannot be estimated in advance. This problem may be alleviated by limiting
the maximum number of pattern derivation steps in advance.

A further problem of the qualitative stopping criterion is that it depends on
the particular choice of the projection matrices ZL and ZR, whether or not the
ZLA

�1-norm of the J ik-residual rJik can be computed at all. For example, with

ZL = ZR = I, the ZLA
�1-norm of the J ik-residual cannot be computed unless

the matrix A�1 is known. Thus, the quantity
rJi

k

ZLA�1

possibly cannot be

applied directly as a stopping criterion. This problem can be circumvented
by simply using another norm, for instance the Euclidian norm, for measuring
the J ik-residuals. But then, the norms of the J ik-residuals do not necessar-
ily decrease monotonously as the column-patterns J ik are enlarged, making
this stopping criterion somewhat unreliable. Thus, instead of monitoring the
original J ik-residuals in any norm, we suggest to monitor the related Residual-
Minimizing smoothed J ik-residuals sJik instead (see section 3.4). The smoothed

J ik-residuals decrease monotonously in the Euclidian norm for growing column
patterns J ik.

combined: A third stopping criterion is obtained by combining the quantitative
and the qualitative stopping criterion: the pattern derivation is stopped when
either the maximum �ll-in is reached or the norm of the J ik-residual becomes
smaller than a prescribed threshold value. This strategy combines the advan-
tages of both the quantitative and the qualitative control.

The Pattern Adaptive Projective Approximate Inverse Algorithm
In order to give a pseudo-code of the pattern derivation algorithm in a general form,
we de�ne some control parameters �rst:

i) mf : The maximum number of indices in the column-pattern J ik. The larger
this number is, the more accurate the approximate inverse will be. In order

5.1 The Basic Concept of the Pattern Derivation 69

to restrict the CPU-time and memory for the construction of the approximate
inverse, this number should be small in some sense.

ii) �k : Threshold for the norm of the J ik-residual rJik (or the Residual-Minimizing

smoothed J ik-residual sJik). IfrJikZLA�1 < �k (or
sJik2 < �k);

the pattern adaption process for this column is stopped. The smaller this
threshold is, the higher the computational cost will be, because more �ll-in
for the reduction of the J ik-residuals is required.

iii) ms : The maximum number of updating steps for each column-pattern. The
more updating steps are performed, the higher both the accuracy of the pro-
jective approximate inverse and the computational cost will be.

iv) mfps : The maximum number of indices added in one updating step to the
column-pattern. If more than one new index is added to the pattern in each
step, the computational cost can be reduced, but the obtained approximate
inverse might become more inaccurate { in the sense of theorem 4.9 {, too.
Note that if more than one index is added to the current pattern, the non-
singularity of the corresponding reduced matrix on the augmented pattern
from de�nition 4.3 is not guaranteed by theory, and thus the corresponding
projective approximate inverse P may be not well-de�ned. However, our nu-
merical experiments indicate, that this scruples are not necessary in practical
applications. Although we allowed more than one new index per step in many
cases, we never encountered a singular reduced matrix.

The further input data of the Pattern Adaptive Projective Approximate Inverse

algorithm are the non-singular matrix A for which the projective approximate in-
verse P is sought, the projection matrices ZL and ZR from de�nition 4.2 and an
initial projection pattern (J0

1 ; : : : ; J
0
n). Note that the initial pattern must be cho-

sen in such a way that the considered projection method is explicit according to
de�nition 4.3. For practical applications, it is imperative that the initial pattern is
chosen in such a way that the projection method is practical according to de�nition
4.3, because otherwise the obtained approximate inverse P is singular.

The output of the Pattern Adaptive Projective Approximate Inverse algorithm
is a projective approximate inverse computed by a projection method on an adap-
tively determined projection pattern. Note that if the considered projection method
is practical for the initial pattern, it is practical for the adaptively determined pat-
tern as well.

70
Adaptive Pattern Derivation for Projection

Methods

1. Compute the projective approximate inverse P 0 with the initial projection
pattern (J0

1 ; : : : ; J
0
n) using algorithm 6

2. rJ0
k
:= (AP 0 � I)ZRuk for k = 1; : : : ; n

3. For l = 1; : : : ; ms

(a) For k = 1; : : : ; n

i. If

�rJl�1
k

ZLA�1

< �k

�
Cycle k-loop

ii. mt := min
�
mfps;mf �

�
#J l�1k

��
iii. If (mt == 0) Cycle k-loop

iv. Compute the decrease rates �j for all elements j of the candidate set
CJl�1

k
(see de�nition (5.1))

v. Determine themt indices j1; : : : ; jmt according to the largest decrease
rates �j

vi. J lk := J l�1k [(j1; : : : ; jmt)

(b) If no column-pattern was enlarged in step (3a) : STOP

(c) Compute the approximate inverse P l with the projection pattern�
J l1; : : : ; J

l
n

�
using algorithm 6

(d) If (l 6= ms): Compute the new J lk-residuals rJlk for k = 1; : : : ; n

Algorithm 8: Pattern Adaptive Projective Approximate Inverse

In step (1) of algorithm 8, the initial projective approximate inverse P 0 is determined
on the initial projection pattern. In step (2), the J0

k -residuals rJ0k are calculated. The

actual pattern adaption process begins with step (3). In step (3(a)i), the J lk-residual
norms are computed for the qualitative control of the size of the column-patterns
J lk (alternatively, the Euclidian norms of the corresponding Residual-Minimizing
smoothed J lk-residuals sJlk can be utilized, see the discussion on pages 67{68). In

each step of the l-loop, the current column-patterns are enlarged. Steps (3(a)ii)
and (3(a)iii) perform the quantitative control for the size of the column-patterns.
In steps (3(a)iv) and (3(a)v), the new indices for enlarging the column-patterns are
computed. The actual enlarging of the column-patterns is done in step (3(a)vi). If
not all column-patterns satisfy one of the stopping criteria (checked in step (3b)), the
current projective approximate inverse with the new projection pattern

�
J l1; : : : ; J

l
n

�
is computed in step (3c). If the current step of the l-loop is not the last one
(checked in step (3d)), the new J lk-residuals are computed, and the column-patterns
are enlarged once more.

5.1 The Basic Concept of the Pattern Derivation 71

In the formulation of the Pattern Adaptive Projective Approximate Inverse

algorithm (algorithm 8), the combined stopping criterion (see dicussion on pages
67{68) for the pattern derivation is used. If only the quantitative stopping criterion
for the pattern derivation is desired, step (3(a)i) can be skipped. Alternatively, if
only the qualitative stopping criterion is desired, step (3(a)ii) may be replaced by
mt := mfps.
The length of the l-loop in step (3) of algorithm 8 limits the number of pattern
enlarging steps, and hence the CPU-time of this algorithm.

Importantly, algorithm 8 o�ers a large amount of algorithmic parallelism and is thus
appealing for parallel computers: the calculation of the projective approximate in-
verses in steps (1) and (3c) essentially consists in the solution of n independent
small linear systems (see algorithm 6). All the Jk-residuals in steps (2) and (3d)
can be calculated simoultanously for k = 1; : : : ; n, and thus in parallel. The entire
pattern derivation in step (3a) can be done in parallel for k = 1; : : : ; n.
Further, algorithm 8 o�ers a considerable potentail for vectorization: the matrix-
vector multiplications for calculating the J lk-residuals in steps (2) and (3d), as well as
the dot-products in step (3(a)i) for calculating the ZLA

�1-norms of the J lk-residuals,
are e�ciently vectorizable. Furthermore, the calculation of the projective approxi-
mate inverses in steps (1) and (3c) may be { depending on the utilized linear solver
{ vectorizable.

Computational Complexity of the Pattern Adaptive Projective Approxi-

mate Inverse Algorithm
The computational complexity of the Pattern Adaptive Projective Approximate

Inverse algorithm (algorithm 8) depends on its parameters as well as on the ma-
trices A, ZL, ZR and on the initial projection pattern (J0

1 ; : : : ; J
0
n). The steps that

contribute to the computational cost are:

steps (1), (3c): In these steps, the projective approximate inverse P l is calculated
by invoking algorithm 6 at most ms + 1 times with the projection patterns�
J l1; : : : ; J

l
n

�
for l = 0; : : : ; ms.

steps (2), (3d): Here, the new J lk-residuals are computed. Theoretically, 2nmatrix-
vector products, namely P l (ZRuk), A

�
P lZRuk

�
and n sums of two vectors of

length n, i.e. AP lZRuk � ZRuk, for k = 1; : : : ; n, are necessary. For practical
applications, the matrix ZR should be such that these operations are cheap.
If the Residual-Minimizing smoothed residuals sJl

k
are utilized for the qualita-

tive stopping criterion (see pages 67{68), algorithm 1 is invoked for calculating
the Residual-Minimizing smoothed residuals. This requires forming the sum
of two (possibly sparse) vectors, two (possibly sparse) dot-products, and one
triadic operation (see pages 27{29 for details).

72
Adaptive Pattern Derivation for Projection

Methods

step (3(a)i): In this step, either the ZLA
�1-norms of J lk-residuals rJk or the Euclid-

ian norms of the corresponding Residual-Minimizing smoothed J lk-residuals
sJk are computed.

step (3(a)iv) We consider the computation of the decrease rates �j in sections 5.2
and 5.3.

Steps (1) and (2) are executed only once, whereas the steps (3(a)i), (3(a)iv), (3c),
and (3d) are executed at most ms times for each k with 1 � k � n.

Optimizations for the Practical Implementation
For the practical implementation of the Pattern Adaptive Projective Approxi-

mate Inverse algorithm (algorithm 8), several optimizations, depending on the
projection matrices ZL and ZR, are possible:

Depending on the matrix ZR, the J
l
k-residuals might be handled e�ciently as sparse

vectors, leading to CPU-time savings when computing the residual norms or the
Residual-Minimizing smoothed residuals and its norms in step (3(a)i).

The computational cost of step (3(a)iv) may be reduced by calculating the decrease
rates �j from de�nition 5.1 not for all elements j of the candidate sets CJl

k
, but for

some speci�ed subset. Numerous ways of de�ning such subsets are possible.

For instance, depending on the matrices A, ZL and ZR, it may be possible to �nd
simple criteria for which indices j 2 CJlk

the decrease rates �j are positive. It su�ces

to compute only those �j in step (3(a)iv). Such a criterion is given in lemma 5.6.

CPU-time can possibly be saved by estimating the decrease rates �j instead of
computing them exactly.

The choice of the initial projection pattern (J0
1 ; : : : ; J

0
n) has a strong inuence on

the computational complexity of the algorithm 8. The number of pattern derivation
steps, i.e. the length of the l-loop in step (3) of the Pattern Adaptive Projective

Approximate Inverse algorithm (algorithm 8) may be reduced by supplying an
appropriate initial projection pattern.

Since in practice no information on an appropriate projection pattern for the projec-
tive approximate inverse is available, it must be determined adaptively from scratch.
In this case, the initial projection pattern has some simple shape. The most ob-
vious initial projection pattern is the diagonal pattern, which furnishes a practical
projection method according to de�nition 4.3 whenever the main diagonals of the
matrices ZH

L A and ZH
L ZR are zero-free.

5.1 The Basic Concept of the Pattern Derivation 73

If a sequence of linear systems with a slowly varying coe�cient matrix { like a mildly
non-linear problem solved with a variant of Newton's method { has to be solved, a
once derived projection pattern can be reused as initial pattern for the next linear
system. Thereby, the length of the l-loop in step (3a) of the above algorithm can
be reduced, leading to substantial savings of CPU-time.
Another application with a non-trivial initial projection pattern is at hand, if the
convergence of the preconditioned iterative solution process is not satisfactory. In
this case, the iteration can be interrupted and the known projection pattern of the
approximate inverse can be enlarged further by applying the Pattern Adaptive

Projective Approximate Inverse algorithm (algorithm 8) with the initial projec-
tion pattern being the already known projection pattern.

The Case of diagonal ZR

We saw in section 4.1 that if the projection matrix ZR is diagonal, the Jk are the
column-patterns of the projective approximate inverse P for k = 1; : : : ; n, and that
the columns of P can be computed completely in parallel by algorithm 7.
In algorithm 9, we give the pseudo-code of the Pattern Adaptive Projective

Approximate Inverse algorithm (algorithm 8) for the case that ZR is diagonal
matrix. The input data and the parameters needed for this algorithm are the same
as for algorithm 8. We denote the diagonal elements of the projection matrix ZR

by dk for k = 1; : : : ; n. The supplied initial pattern (J0
1 ; : : : ; J

0
n) must be chosen

such that the corresponding projection method is explicit according to de�nition
4.3. For practical purposes, the projection method on the initial projection pattern
should be practical in the sense of de�nition 4.3, because this guarantees, that
the �nal projection method is practical as well. In this situation, the projective
approximate inverse P obtained on output of this algorithm has no vanishing column
(see corollary 4.5).
In step (1a) of the Pattern Adaptive Projective Approximate Inverse algorithm
with diagonal ZR (algorithm 9), the columns p0k of the initial projective approximate
inverse P 0 are determined. The corresponding J0

k -residuals are calculated in step
(1b). The actual pattern derivation is done within the l-loop in step (1c). First
of all, the qualitative stopping criterion is checked in step (1(c)i). Alternatively to
considering the J lk-residuals rJlk , the corresponding Residual-Minimizing smoothed

residuals sJl
k
can be monitored (see pages 67{68). In step (1(c)ii) the quantitative

stopping criterion is checked. If either of the stopping criteria is satis�ed, the pattern
derivation for this column pk of the projective approximate inverse P is stopped.
In step (1(c)iv) the decrease rates �j for all elements j of the candidate set CJl

k

are calculated (those quantites are introduced in de�nition (5.1)), and according
to the largest decrease rates, the augmented column-pattern is determined in step
(1(c)vi). In step (1(c)vii) the k-th column plk of the projective approximate inverse
is caculated on the augmented column-pattern. The corresponding new J lk-residual

74
Adaptive Pattern Derivation for Projection

Methods

1. For k = 1; : : : ; n

(a) Compute the column p0k of the projective approximate inverse P 0 with
the initial column-pattern J0

k using algorithm 7

(b) rJ0
k
:= dk (Ap

0
k � uk)

(c) For l = 1; : : : ; ms

i. If

�rJl�1
k

ZLA�1

< �k

�
Cycle k-loop

ii. mt := min
�
mfps;mf �

�
#J l�1k

��
iii. If (mt == 0) Cycle k-loop

iv. Compute the decrease rates �j for j all elements of the candidate set
CJl�1k

(see de�nition (5.1))

v. Determine themt indices j1; : : : ; jmt according to the largest decrease
rates �j

vi. J lk := J l�1k [(j1; : : : ; jmt)

vii. Compute the k-th column plk of P l on the column-pattern J lk with
algorithm 7

viii. If (l 6= ms): Compute the new J lk-residual rJlk

Algorithm 9: Pattern Adaptive Projective Approximate Inverse with diag-
onal ZR

is determined in step (1(c)viii).

Note that the structure of the algorithm 9 is di�erent from the structure of algorithm
8. While in algorithm 8 the k-loop (this is step (3a) in algorithm 8 and step (1)
in algorithm 9) is contained in the l-loop (this is step (3) in algorithm 8 and step
(1c) in algorithm 9), in algorithm 9 the l-loop is contained in the k-loop. Thus,
in algorithm 9 the sparsity patterns of the columns of the projective approximate
inverse P are determined independently from each other. Conversely, in algorithm 8
the pattern adaption steps must be done syncronously, i.e. the qualitative stopping
criterion of the pattern derivation is checked after each pattern adaption step is
completed for all columns.

In the above formulation of the Pattern Adaptive Projective Approximate In-

verse algorithm for diagonal ZR (algorithm 9), the combined stopping criterion is
utilized (see pages 67{68 for a discussion on that matter). If only the quantitative
stopping criterion is requested, step (1(c)i) can be skipped. If only the qualitative
stopping criterion is desired, step (1(c)ii) may be replaced with mt := mfps.

5.1 The Basic Concept of the Pattern Derivation 75

Importantly, the Pattern Adaptive Projective Approximate Inverse alogrithm
with diagonal ZR (algorithm 9) is inherently parallel: all steps of the k-loop in
step 1 of the above algorithm, i.e. the derivation of the column patterns J lk and
the computation of the corresponding columns of plk of the projective approximate
inverse P l, where 0 � l � ms, can be done independently from each other, and
hence in parallel. Thus, the Pattern Adaptive Projective Approximate Inverse

algorithm with diagonal ZR (algorithm 9) is well-suited for parallel computers.
Furthermore, the algorithm 9 o�ers some potential for vectorization: The matrix-
vector products for calculating the J lk-residuals in steps (1b) and (1(c)viii), and the
dot-products for calculating the ZLA

�1-norms of the J lk-residuals in step (1(c)i),
are e�ciently vectorizable. The potential for vectorization of algorithm 7, which is
invoked in steps (1a) and (1(c)vii), depends on the utilized linear solver.

Computational Complexity of the Pattern Adaptive Projective Approxi-

mate Inverse Algorithm with diagonal ZR

The computational complexity of the Pattern Adaptive Projective Approximate

Inverse algorithm with diagonal ZR (algorithm 9) depends on its parameters as
well as on the matrices A, ZL, and on the initial projection pattern (J0

1 ; : : : ; J
0
n).

The steps that contribute to the computational cost are:

steps (1a), (1(c)vii): In these steps, algorithm 7 is invoked at most ms + 1 times
for calculating the columns P luk of the projective approximate inverses P l

with the column patterns J lk for l = 1; : : : ; ms and k = 1; : : : ; n.

steps (1b), (1(c)viii): Here, the new J lk-residuals are computed. Theoretically, n
sparse scaled matrix-vector products, namely dk

�
AP luk

�
, are necessary.

If the Residual-Minimizing smoothed residuals sJl
k
are utilized for the quantita-

tive stopping criterion of the pattern derivation (see pages 67{68), algorithm 1
is invoked. This involves calculating the sum of two vectors, two dot-products,
and one triadic operation (these operations are possibly sparse).

step (1(c)i): In this step, either the ZLA
�1-norms of J lk-residuals rJk or the Euclid-

ian norms of the corresponding Residual-Minimizing smoothed J lk-residuals
sJk are computed.

step (1(c)iv) We consider the computation of the decrease rates �j in sections 5.3
and 5.2.

For each k with 1 � k � n the steps (1a) and (1b) are executed only once, whereas
the steps (1(c)i), (1(c)iv), (1(c)vii) and (1(c)viii) are executed at most ms times.
For possible optimizations regarding the practical implementation of algorithm 9,
the corresponding remarks given to algorithm 8 on pages 72{73 apply.

76
Adaptive Pattern Derivation for Projection

Methods

In the above, we have derived two inherently parallel and vectorizable algorithms for
determining projective approximate inverses of non-singular matrices; algorithm 8
for general projection methods and algorithm 9 for projection methods with diagonal
ZR. Based on the provided parameters, both algorithms calculate the projective ap-
proximate inverse on adaptively determined projection patterns. This involves the
decrease rates �j from de�nition 5.1.
In the following section, we will consider the actual contour and the practical com-
putation of these decrease rates �j. Further, in section 5.3 consider strategies for
estimating the decrease rates �j.

5.2 Multivariate Minimizing Pattern Adaption

In this section, we derive an explicit representation of the decrease rates �j from de�-
nition 5.1. Further, we consider the properties of the Pattern Adaptive Projective
Approximate Inverse algorithms (algorithms 8 and 9) with regards to the decrease
rates �j.

Brief Digest on Least-Squares Problems
We begin this section with a brief summary of some well-known facts regarding the
solution of least-squares problems. For detailed surveys on least-squares problems
we refer e.g. to [74] and [75].
Let the matrix B 2 IKm�n, where m � n, and let B have full column rank n. Let
further the vector b be an element of IKm. Then the least squares problem

min
x2IKn

Bx� b
2
2

(5.4)

has at least one solution x0 2 IK
n. Every solution x 2 IKn of (5.4) is a solution of

the normal equations

BHBx = BHb; (5.5)

and vice versa. With the solution x0 2 IKn of (5.4) the vector b� Bx0 2 IKm can
be formally expressed as

b� Bx0 = Tb; (5.6)

where T is an arbitrary projector on the null-space of BH .

We give a technical lemma, see e.g. [32], which we extend to the complex case.

Lemma 5.2 ([74], pp. 207{216)
Let the matrix B 2 IKm�n, where m � n, and let B have full column rank n. Let

5.2 Multivariate Minimizing Pattern Adaption 77

further I denote the identity matrix in IKm�m. Then the operator TB : IKm ! IKm

de�ned by

TB := I �B
�
BHB

��1
BH (5.7)

is a Hermitian projector on the null-space of BH .

Proof.

We give the proof for the case IK = IC, which proceeds analogously to the
proof for the case IK = IR given in [32]:
Obviously, TB is Hermitian. Because of

T 2
B = (I �B(BHB)�1BH)(I � B(BHB)�1BH)

= I � 2(I � B(BHB)�1BH) +B(BHB)�1BHB(BHB)�1| {z }
=I

BH

= TB

TB is a projector. And because of

BHTB = BH � BHB
�
BHB

��1| {z }
=I

BH = 0

TB projects on the null-space of BH . }

The following lemma was originally given by Cosgrove, Diaz and Griewank in [17]
for real matrices. A detailed discussion of this statement is given by Gould and
Scott in [32] on pages 608{610. We extend it to the complex case.

Lemma 5.3 (Augmented Least Squares, [17], p. 101)
Let the matrix A 2 IKn�n be non-singular, and let the vector d 2 IKn be arbi-
trary non-vanishing. Let J = (j1; : : : ; jk), with #J = k < n, be the pattern of
the vector x0 2 IKn, where the vector x0 is the solution of the least squares prob-

lem minw2IKn
J

A (:; J)w � d
2
2
, and let the vector r0 2 IKn be de�ned by r0 :=

A (:; J) x0 � d. Let further TA(:;J) denote the Hermitian projector on the null-space

of (A (:; J))H from equation (5.7). Then for each 1 � j � n with j 62 J the equation

min
w2IKn

J[(j)

A (:; J [(j))w � d
2
2
=
r022 � j uHj A

Hr0 j
2TA(:;J)Auj22 ; (5.8)

holds.

78
Adaptive Pattern Derivation for Projection

Methods

Proof.

The proof for the case IK = IR is given in [17]. The following proof for the
complex case proceeds analogously:
For notational convenience we set A0 := A (:; J), A1 := A (:; J [(j)) and
aj := Auj.
First of all, we show that the fraction on the right-hand side of equation (5.8)
is well-de�ned:
It su�ces to show, that the denominator

TA0aj
2
2
is positive. Since the matrix

A is non-singular, we know that the j-th column aj of A is not an element of
the range of the matrix A0, and thus we have

TA0aj = aj � A0

��
AH

0 A0

��1
AH

0 aj
�
6= 0:

Hence we have TA0aj
2
2
> 0:

We prove that the operator

TA1 := TA0 �
TA0aja

H
j TA0TA0aj
2
2

(5.9)

is Hermitian projector on the null-space of AH
1 :

i) TA1 is a projector:

T 2
A1

= T 2
A0
� 2TA0

TA0aja
H
j TBTA0aj
2
2

+
TA0aja

H
j TA0TA0aja

H
j TA0TA0aj

4
2

= TA0 � 2
TA0aja

H
j TA0TA0aj
2
2

+
TA0aja

H
j TA0TA0aj
2
2

since aHj T
2
A0
aj =

TA0aj
2
2

= TA1 :

ii) TA1 projects on the null-space of AH
1 :

We have

AH
0 TA1 = AH

0

TA0 �

TA0aja
H
j TA0TA0aj
2
2

!

= 0�
AH

0 TA0aja
H
j TA0TA0aj
2
2

= 0;

5.2 Multivariate Minimizing Pattern Adaption 79

since TA0 is a projector on the null-space of AH
0 , and

aHj TA1 = aHj

TA0 �

TA0aja
H
j TA0TA0aj
2
2

!

= aHj TA0 �
TA0aj

2
2

aHj TA0TA0aj
2
2

= 0;

and thus

AH
1 TA1 =

�
AH

0

aHj

�
TA1 = 0:

We verify equation (5.8):

min
w2ICn

J[(j)

A1w � d
2
2
=
TA1d

2
2

by equation (5.6)

= dHT 2
A1
d

= dTA1d

since TA1 is a projector

= dHTA0d�
dHTA0aja

H
j TA0dTA0aj
2
2

by (5.9)

=
TA0d

2
2
�
j aHj TA0d j

2TA0aj
2
2

=
r022 � j aHj r0 j

2TA0aj
2
2

;

by equation (5.6), and the proof is complete. }

The above lemma gives a statement on the change of the norm of a least-squares
solution, if one column is added to the matrix.
With the following lemma, we establish a relation between least-squares problems
and the ZLA

�1-norm minimization problems which occur in the de�nition of the
decrease rates �j (see de�nition 5.1).

Lemma 5.4
Let ZLA

�1 2 IKn�n be Hermitian positive de�nite and let LHL be the Cholesky-
factorization of ZLA

�1. Then, for x 2 IKn arbitrary, the following identity holds:x
ZLA�1

=
Lx

2
: (5.10)

80
Adaptive Pattern Derivation for Projection

Methods

Proof.

The assertion follows directly fromx2
ZH
L
A�1

= xHZH
L A

�1x = xHLHLx =
Lx2

2
:

}

Now all tools for giving the explicit representation of the decrease rates �j from
de�nition 5.1 are at hand. By combining lemmata 5.3 and 5.4 we obtain the following
new theorem, which states an explicit representation of the decrease rates �j from
de�nition 5.1:

Theorem 5.5 (Multivariate Minimizing Pattern Adaption)
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL; ZR 2
IKn�n on the projection pattern (J1; : : : ; Jn). Let the matrix ZLA

�1 2 IKn�n be
Hermitian positive de�nite. Then the candidate sets CJk from de�nition 5.1 have
the form

CJk = fj j j 62 Jkg (5.11)

for k = 1; : : : ; n, and the decrease rates �j from de�nition 5.1 can be written as

�j =
j uHj Z

H
L rJk j

2uj2ZH
L
A
� gHj yj

; (5.12)

where the vector gj 2 IK
#Jk is de�ned by

gj :=
�
ZH
L A
�
(Jk; j); (5.13)

and the vector yj 2 IK
#Jk is the solution of the (#Jk �#Jk)-linear system�

ZH
L A
�
(Jk; Jk)yj = gj: (5.14)

Proof.

We give the proof for an arbitrary integer k with 1 � k � n. For notational
convenience, we set A0 = A(:; Jk), A1 = A(:; Jk [(j)) and aj = Auj.
First of all, we consider the candidate set CJk from equation (5.11):

5.2 Multivariate Minimizing Pattern Adaption 81

Since the matrix ZLA
�1 is Hermitian positive de�nite, the matrix ZH

L A is Her-
mitian positive de�nite as well. Thus, all (J; J)-reduced matrices

�
ZH
L A
�
(J; J)

are non-singular for any column pattern J . Hence, the candidate set CJk con-
tains all indices j which are not elements of Jk.
We verify assertion (5.12):
We have rJk[(j)2ZLA�1 = min

w2IKn
Jk[(j)

Aw � ZRuk
2
ZLA�1

by theorem 4:9

= min
w2IKn

Jk[(j)

LAw � LZRuk
2
2

(5.15)

by lemma 5:4;

where LHL is the Cholesky-decomposition of ZLA
�1.

We apply lemma 5.3 with LA instead of A, ZRuk instead of d to the least-
squares problem in equation (5.15), and we obtain

min
w2IKn

Jk[(j)

LAw � LZRuk
2
2
= min

w2IKn
Jk

LAw � LZRuk
2
2
�
j uHj A

HLHLrJk j
2TLA0Laj

2
2

;

where the Hermitian projector TLA0 on the null-space of (LA0)
H from lemma

5.2 has the form:

TLA0 = I � LA0

h
(LA0)

H LA0

i�1
(LA0)

H : (5.16)

Thus, with (5.15) and by noting that

min
w2IKn

Jk

LAw � LZRuk
2
2
= min

w2IKn
Jk

LAw � LZRuk
2
2

= min
w2IKn

Jk

Aw � ZRuk
2
ZLA�1

=
rJk2ZLA�1 ;

with theorem 4.9, it su�ces to show that the fraction

j uHj A
HLHLrJk j

2TLA0Laj
2
2

(5.17)

equals the fraction in equation (5.12).
Since the matrix ZLA

�1 is Hermitian, we have

AHLHL = AHZLA
�1 = AH

�
ZLA

�1
�H

= AHA�HZH
L = ZH

L ;

82
Adaptive Pattern Derivation for Projection

Methods

and thus we have
uHj A

HLHLrJk = uHj Z
H
L rJk;

proving the equality of the nominators of the fractions (5.12) and (5.17).
It remains to show that the denominators of the fractions (5.12) and (5.17)
are equal. We consider the denominator of the fraction in equation (5.17):
The matrix in the brackets equation of (5.16) has the form:

(LA0)
H LA0 = AH

0 L
HLA0

= AH
0 ZLA

�1A0

=
�
uj1; : : : ; uj#Jk

�H
AHZL

�
uj1; : : : ; uj#Jk

�
since A0 := A(:; Jk) = A �

�
uj1; : : : ; uj#Jk

�
=
�
uj1; : : : ; uj#Jk

�H
ZH
L A

�
uj1; : : : ; uj#Jk

�
since AHZL is Hermitian positive de�nite

=
�
ZH
L A
�
(Jk; Jk):

For notational convenience, we de�ne the (#Jk �#Jk)-matrix BJk by

BJk :=
�
ZH
L A
�
(Jk; Jk): (5.18)

Observe that

AH
0 L

HLaj =
�
uj1; : : : ; uj#Jk

�H
AHZLA

�1Auj

since ZLA
�1 is Hermitian

=
�
uj1; : : : ; uj#Jk

�H
AHA�HZH

L Auj

=
�
ZH
L A
�
(Jk; j)

= gj;

(5.19)

where gj is the vector from equation (5.13), and further

aHj L
HLaj = uHj A

HZLA
�1Auj

since ZLA
�1 is Hermitian

= uHj A
HA�HZH

L Auj

= uHj Z
H
L Auj

=
ui2ZHL A

:

(5.20)

5.2 Multivariate Minimizing Pattern Adaption 83

By putting it all together we haveTLA0Laj
2
2
= aHj L

HTH
LA0

TLA0Laj

= aHj L
HTLA0Laj

since TLA0 is a Hermitian projector

= aHj L
HLaj � aHj L

HLA0B
�1
Jk
AH

0 L
HLaj

by (5.16) and (5.18)

=
ui2ZHL A

� gHj B
�1
Jk
gj

by (5.19) and (5.20)

=
ui2ZHL A

� gHj yj;

with (5.14), and the proof is complete.

}

With the explicit representation of the decrease rates �j from (5.12), the impact of
the Jk-residual norms caused by augmenting the column patterns is known:

rJk[(j)2ZLA�1 = rJk2ZLA�1 � j uHj Z
H
L rJk j

2uj2ZHL A
� gHj yj

; (5.21)

where the vectors g and y are from (5.13) and (5.14). With the identity
rJk2ZLA�1 =eJk2AHZL the analogous statement

eJk[(j)2ZHL A
=
eJk2ZHL A

�
j uHj Z

H
L rJk j

2uj2ZHL A
� gHj yj

(5.22)

is obtained for the corresponding Jk-errors.

Since the decrease rates �j are positive only if the nominator uHj Z
H
L rJk in (5.12)

is non-vanishing, for the implementation of the Pattern Adaptive Projective

Approximate Inverse algorithms (algorithms 8 and 9) it is su�cient to compute
the decrease rates �j only for j 2 LJk with

LJk :=
n
j j
�
ZH
L rJk

�
j
6= 0; j 62 Jk

o
(5.23)

for k = 1; : : : ; n.
The following lemma states that the sets LJk de�ned in (5.23) are non-empty unless
the corresponding Jk-residual is vanishing:

84
Adaptive Pattern Derivation for Projection

Methods

Lemma 5.6
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL; ZR 2
IKn�n on the projection pattern (J1; : : : ; Jn) and let the product matrix ZH

L A be
Hermitian positive de�nite. Let further 1 � k � n be arbitrary such that the Jk-
residual rJk is non-vanishing. Then the set LJk de�ned in (5.23) is a non-empty
subset of the candidate set CJk from de�nition 5.1, i.e. there exists at least one
index j 2 LJk � CJk with �

ZH
L rJk

�
j
6= 0: (5.24)

Proof.

We prove assertions for one �xed number k with 1 � k � n:
The inclusion LJk � CJk is trivial, since for Hermitian positive de�nite ZH

L A,
the candidate set CJk equals f1; : : : ; ng n Jk.
We verify assertion (5.24):
By lemma 4.8, we know that

j 2 Jk =)
�
ZH
L rJk

�
j
= 0:

We verify the assertion by contradiction:
If the set LJk was empty, we would have ZH

L rJk = (0; : : : ; 0)H , which would im-
ply that the matrix ZL was singular, since the Jk-residual rJk is non-vanishing.

}

Altogether, for projection methods with Hermitian positive de�nite ZH
L A we have

the following results:

i) By lemma 4.4, the corresponding projective approximate inverse P is { inde-
pendently of the chosen projection pattern { well de�ned, and P has always
an unique explicit representation.

ii) The quality of the approximation of the projective approximate inverse P to
the true inverse A�1 is stated by theorem 4.9.

iii) Unless the Jk-residuals are vanishing, the pattern derivation process will de-
termine indices which can be added to the current column-pattern Jk in such
a way that the corresponding ZLA

�1-norm of the residual deceases.

5.2 Multivariate Minimizing Pattern Adaption 85

These favourable properties need not hold true for projection methods with non-
Hermitian or inde�nite ZH

L A. For such projection methods, it depends on the
particular properties of the matrix A, as well as on the choice of the projection
matrices ZL and ZR, in how far any of the properties from the above list apply.
Nevertheless, our numerical experiments indicate that, although in many cases not
covered by theory, particular projection methods are competative to some of the
state-of-the-art preconditioning techniques (see chapter 7 for an ample discussion).

The Multivariate Pattern Adaptive Projective Approximate Inverse Al-
gorithm
We give a pseudo-code form of the Pattern Adaptive Projective Approximate

Inverse algorithm (algorithm 8) for projection methods, which includes the explicit
representation of the decrease rates from theorem 5.5. This algorithm di�ers from
the Pattern Adaptive Projective Approximate Inverse algorithm only in step
(3(a)iv), which is concerned with the determination of the decrease rates �j from
de�nition 5.3. The input data and the parameters for the resulting Multivariate

Pattern Adaptive Projective Approximate Inverse algorithm (algorithm 10) are
identical with those for algorithm 8 (see the discussion on pages 67{73). Note that
the decrease rates �j from (5.12) are well-de�ned only if the product matrix ZH

L A
is Hermitian positive de�nite. On output, the Multivariate Pattern Adaptive

Projective Approximate Inverse algorithm (algorithm 10) returns a projective
approximate inverse P on an adaptively derived projection pattern.

The Multivariate Pattern Adaptive Projective Approximate Inverse algo-
rithm (algorithm 10) is identical with algorithm 8 except of the computation of the
decrease rates in step (3(a)iv). For a discussion on the mode of operation and on
control strategies for algorithm 10 see the discussion on pages 67{73.

The Computational Cost of the Decrease Rates
In step (3(a)iv) of the Multivariate Pattern Adaptive Projective Approximate

Inverse algorithm (algorithm 10), only positive decrease rates �j are computed
by determining the sets LJl�1

k
from (5.23) in advance. This involves the sparse

dot-products uHj Z
H
L rJl�1k

for j 62 J l�1k . For determining the vectors gj, the sparse

matrix-vector product
�
ZH
L A
�
(Jk; j) is formed. The matrix ZL should have a special

form, such that this operation is computationally cheap. The matrix�
ZH
L A
�
(Jk; Jk)

is already known from steps (1) or (3c). Since the linear systems�
ZH
L A
�
(Jk; Jk) yj = gj (5.25)

86
Adaptive Pattern Derivation for Projection

Methods

1. Compute the projective approximate inverse P 0 with the initial projection
pattern (J0

1 ; : : : ; J
0
n) using algorithm 6

2. rJ0
k
:= (AP 0 � I)ZRuk for k = 1; : : : ; n

3. For l = 1; : : : ; ms

(a) For k = 1; : : : ; n

i. If

�rJl�1
k

ZLA�1

< �k

�
Cycle k-loop

ii. mt := min
�
mfps;mf �

�
#J l�1k

��
iii. If (mt == 0) Cycle k-loop

iv. Determine the set LJl�1
k

as de�ned in (5.23), and determine for all

j 2 LJl�1
k

the vector gj :=
�
ZH
L A
�
(Jk; j), the solution yj of the

(#Jk �#Jk)-linear system�
ZH
L A
�
(Jk; Jk) yj = gj

and compute the decrease rates

�j :=
j
�
ZH
L rJk

�
j
j2uj2AHZL � gHj yj

v. Determine themt indices j1; : : : ; jmt according to the largest decrease
rates �j

vi. J lk := J l�1k [(j1; : : : ; jmt)

(b) If no column-pattern was enlarged in step (3a) : STOP

(c) Compute the approximate inverse P l with the projection pattern�
J l1; : : : ; J

l
n

�
using algorithm 6

(d) If (l 6= ms): Compute the new J lk-residuals rJlk for k = 1; : : : ; n

Algorithm 10: Multivariate Pattern Adaptive Projective Approximate In-

verse

are solved for many right-hand sides, special solvers for these linear systems should
be applied. For instance, if the QR-decomposition of the matrix

�
ZH
L A
�
(Jk; Jk)

5.2 Multivariate Minimizing Pattern Adaption 87

is known from steps (1) or (3c), the linear systems (5.25) can e�ciently be solved
as

yj = R�1QHgj

by backward substitution. Alternatively, iterative methods for multiple right-hand-
sides can be applied.

As discussed for algorithm 8 (see page 71), the Multivariate Pattern Adaptive

Projective Approximate Inverse algorithm (algorithm 10) is inherently parallel
and vectorizable, and thus appealing for the implementation on vector and parallel
computers.
Additionally, since the decrease rates �j in step (3(a)iv) of the above algorithm
can be calculated independently from each other, this step yields a considerable
potential for vectorization and parallelization.

Optimizations for the Practical Implementation
The remarks given on pages 72{73 regarding possible optimizations of algorithm 8
apply.

If only one new index j is added to the augmented pattern in each step, i.e. mt = 1,
the Euclidian norms of the J lk-residual rJlk may be updated by

jjrJl
k
jj22 := jjrJl�1

k
jj22 � �j

rather than directly computed.

If more than one pattern derivation step is made for each column of the projective
approximate inverse, i.e. if the parameter ms is larger than one, the quantitiesuj2AHZL in the denominator of the decrease rates in step (3(a)iv) may be stored
in a supplemental vector after being initially determined.

The computational cost of the pattern derivation process may be reduced by com-
puting the decrease rates �j only for some subset ~LJk of the set LJk from (5.23).
In theory, any heuristic strategy for de�ning such a subset ~LJk is possible. For
instance, by prescribing some positive threshold � 2 IR, the set ~LJk can be de�ned
by monitoring the size of the nominators of the decrease rates from (5.12):

~LJk :=
�
i 2 LJk j

���ZH
L rJk

�
i

�� > �
	
: (5.26)

We note that the quality of the projective approximate inverse determined by such
a truncated pattern derivation process might su�er.

88
Adaptive Pattern Derivation for Projection

Methods

The Case of Diagonal ZR

For projection methods with a diagonal right-hand side projection matrix ZR, the
projective approximate inverse P can be calculated with algorithm 9, where the
actual calculation of the decrease rates �j in step (1(c)iv) of algorithm 9 is done
exactly in the same way as in step (3(a)iv) of algorithm 10. With the resulting
algorithm, all columns pk of the projective approximate inverse P , as well as the
corresponding sparsity patterns, can be determined independently from each other
for k = 1; : : : ; n.

In this section, we have derived a new explicit representation of the decrease rates �j
from de�nition 5.1 for general projection methods. We have considered algorithms 8
and 9 including the explicit calculation of these decrease rates and we have discussed
the computational cost caused by the decrease rates.
In the following section, we consider estimates for the decrease rates �j, which
possibly are cheaper to compute.

5.3 Univariate Minimizing Pattern Adaption

In this section, we introduce a strategy for estimating the decrease rates �j from
de�nition 5.3. The basic idea for estimating the decrease rates presented in this sec-
tion has been introduced by Cosgrove, Diaz and Griewank in [17] for the Frobenius
norm minimizing preconditioning technique, which has been classi�ed as a partic-
ular projection method by Zimmermann in [83] (see section 6.2). We extend the
approach of Cosgrove, Diaz and Griewank to general projection methods.

The Basic Concept for Estimating the Decrease Rates
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by an explicit projection method according to de�nition 4.3
with the projection matrices ZL; ZR 2 IK

n�n on the projection pattern (J1; : : : ; Jn).
Let further pk denote the k-th column of P for k = 1; : : : n.
For Hermitian positive de�nite ZLA

�1, the decrease rates �j from de�nition 5.1 are
linked by (4.19) to a multidimensional minimization problem:

�j =
rJk2ZLA�1 � min

w2IKn
Jk[(j)

Aw � ZRuk
2
ZLA�1

=
rJk2ZLA�1 � min

v2IKn
Jk

�2IK

Av + �Auj � ZRuk
2
ZLA�1

(5.27)

The strategy of estimating these decrease rates considered in this section is es-
sentially based on substituting the vector v in the multidimensional minimization
problem (5.27) by the �xed vector pk, the k-th column of the projective approximate

5.3 Univariate Minimizing Pattern Adaption 89

inverse P determined on the current projection pattern. This strategy has been pro-
posed by Cosgrove, Diaz and Griewank in [17] for the Frobenius norm minimizing
preconditioning technique (see section 6.2). The advantage of this approach is that
for calculating the estimated decrease rates only a one-dimensional minimization
problem is considered instead of the multidimensional minimization problem (5.27).
We give the de�nition of the estimated decrease rates:

De�nition 5.7 (Univariate Decrease Rate)
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL; ZR 2
IKn�n on the projection pattern (J1; : : : ; Jn). Let this projection method be Jk-explicit
for some k 2 IN according to de�nition 4.3. Let CJk denote the candidate set

CJk :=
�
j j j 62 Jk;

�
ZH
L A
�
(Jk [(j) ; Jk [(j)) is non-singular

	
(5.28)

of the column-pattern Jk from de�nition 5.1 Then for all j 2 CJk we call the non-
negative real number �j de�ned by

�j :=
rJk2ZLA�1 �min

�2IK

rJk � �Auj
2
ZLA�1

(5.29)

univariate decrease rate of the Jk-residual rJk for the index j.

Obviously, if the length #Jk of the column-pattern Jk is larger than one, then solving
the one-dimensional minimization problem (5.29) is computationally cheaper than
solving the (#Jk + 1)-dimensional minimization problem (5.27). Thus, utilizing the
univariate decrease rates �j from de�nition 5.7 for the pattern derivation instead of
the decrease rates �j from de�nition 5.1 may be advantageous. A comparison of
both strategies for the Frobenius norm minimizing approach is given by Gould and
Scott in [32]. We survey this matter in chapter 7 for several projection methods.
The following lemma gives an explicit representation of the univariate decrease rates
from de�nition 5.7:

Lemma 5.8 (Explicit Calculation of the Univariate Decrease Rates)
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL; ZR 2
IKn�n on the projection pattern (J1; : : : ; Jn).

i) Let IK = IR and let the projection method be Jk-explicit for some 1 � k � n
according to de�nition 4.3. Let the matrix ZLA

�1 2 IRn�n be positive real and
let M denote the symmetric part of ZLA

�1, then the univariate decrease rates
�j from de�nition 5.7 have the form

�j =

�
uTj A

TMrJk
�2uj2ZTLA ; (5.30)

for all elements j of the candidate set CJk from (5.28).

90
Adaptive Pattern Derivation for Projection

Methods

ii) Let IK 2 fIR; ICg and let the matrix ZLA
�1 2 IKn�n be Hermitian positive

de�nite, then the univariate decrease rates �j from de�nition 5.7 are

�j =
j uHj Z

H
L rJk j

2uj2ZHL A

; (5.31)

for 1 � j � n with j 62 Jk and for k = 1; : : : ; n.

Proof.

First, we prove assertion i):
The function f : IR! IR de�ned by

f (�) := �2
Auj2M + 2�uTj A

TMrJk +
rJk2M

satis�es f(�) =
rJk + �Auj

2
M
. The �rst derivative of f is

f 0(�) = 2�
Auj2M + 2uTj A

TMrJk ;

and we have

f 0(�0) = 0

() �0 = �
uTj A

TMrJkAuj2M :

Since the second derivative f 00(�) = 2
Auj2M is positive (since Auj 6= (0; : : :

; 0)T), we know that the function f has an absolute minimum at the point �0.
We evaluate f(�0):

f(�0) =

�
uTj A

TMrJk
�2Auj2M � 2

�
uTj A

TMrJk
�2Auj2M +

rJk2M
=
rJk2M �

�
uTj A

TMT rJk
�2Auj2M ;

and with
Auj2M =

uj2ZTLA the proof of assertion i) is complete.

We verify assertion ii) for 1 � k � n arbitrary �xed:

5.3 Univariate Minimizing Pattern Adaption 91

We consider the function f : IK ! IR de�ned by

f(�) :=
rJk + �Auj

2
ZLA�1

= rHJkZLA
�1rJk + �rHJkZLA

�1Auj

+��uHj A
HZLA

�1rJk + � ��uHj A
HZLA

�1Auj

=
rJk2ZLA�1 + �rHJkZLuj + ��uHj Z

H
L rJk + j�j

2
Auj2ZLA�1

since ZLA
�1 is Hermitian positive defnite

= j � j2
Auj2ZLA�1 + 2Re

�
�uHj Z

H
L rJk

�
+
rJk2ZLA�1

=
�
�21 + �22

� Auj2ZLA�1 + 2(�11 � �22) +
rJk2ZLA�1 ;

where � = �1 + i�2 and u
H
j Z

H
L rJk = 1 + i2.

For minimizing the function f , we must �nd out where its �rst derivatives
vanish: �

@f
@�1
; @f
@�2

�
=
�
2�1
Auj2ZLA�1 + 21; 2�2

Auj2ZLA�1 � 22
�

= (0; 0)

() �1 = �
1Auj2ZLA�1 and �2 =

2Auj2ZLA�1 :
Since the Hessian matrix of the second derivatives of f equals

2
Auj2ZLA�1 0

0 2
Auj2ZLA�1

!
;

and is thus symmetric positive de�nite, we know that the function f has an
absolute minimum at the point

�0 =
Auj�2ZLA�1 (�1 + i � 2) :

By evaluating f at the point �0 we have

f(�0) =
21 + 22Auj2ZLA�1 � 2

21 + 22Auj2ZLA�1 +
rJk2ZLA�1

=
rJk2ZLA�1 � j uHj Z

H
L rJk j

2Auj2ZLA�1 ;
and with

Auj2ZLA�1 = uj2ZHL A
the proof of assertion ii) is complete.

}

92
Adaptive Pattern Derivation for Projection

Methods

For Hermitian positive de�nite ZLA
�1 2 IKn�n, the univariate decrease rates �j from

de�nition 5.7 with the explicit representation given in lemma 5.8 can be utilized for
the pattern derivation process.
For positive real ZLA

�1 2 IRn�n, further considerations for the practical application
are necessary:

The Univariate Decrease Rates in the Positive Real Case
For projection methods where the product matrix ZLA

�1 2 IRn�n is positive real,
the following problem occurs:
By lemma 5.8 the explicit representation of the univariate decrease rates �j from
de�nition 5.7 involves in the nominator the expressions

uTj A
TMrJk ; (5.32)

where 1 � k � n is such that the considered projection method in Jk-explicit and j
is an element of the corresponding candidate set CJk . Depending on the particular
choice of the projection matrices ZL and ZR, the quantity from (5.32) is possibly
unknown:

uTj A
TMrJk =

1

2
uTj A

TZLA
�1rJk +

1

2
uTj A

TA�TZT
L rJk

(4.9)
=

1

2

�
uTj A

TZLA
�1 (APZRuk � ZRuk)

�
+
1

2
uTj Z

T
L rJk

=
1

2

�
uTj A

TZLPZRuk| {z }
known

� uTj A
TZLA

�1ZRuk| {z }
possibly unknown

�
+
1

2
uTj Z

T
L rJk| {z }

known

: (5.33)

Thus, if the quantities uTj A
TZLA

�1ZRuk are unknown, the univariate decrease rates
from de�nition 5.7 in the form stated by lemma 5.8 are unknown as well. In this
case, we consider the following two estimations for the univariate decrease rates:

~�1j :=

�
uTj A

TZT
LPZRuk + uTj Z

T
L rJk

�2uj2ZTLA ; (5.34)

and

~�2j :=

�
uTj Z

T
L rJk

�2uj2ZTLA ; (5.35)

where 1 � j; k � n, the considered projection method is Jk-explicit, and j 2 CJk.
The estimates ~�1j in (5.34) are obtained by ignoring the unknown addend in (5.33),

and the estimates ~�2j are obtained by substituting the matrix A�1 in the unknown

5.3 Univariate Minimizing Pattern Adaption 93

term of (5.33) by P . In chapter 7, we survey the numerical properties of projection
methods for which the pattern adaption process is based on the estimations ~�1j from

(5.34) and ~�2j from (5.35), and we compare those to the results obtained by utilizing
the decrease rates �j in the form stated by theorem 5.5.

The Relation between the Decrease Rates �j and the Univariate Decrease
Rates �j
With the explicit representation of the univariate decrease rates �j given by lemma
5.8, we see that the �j are closely related to the decrease rates �j from de�nition 5.1:
if the product matrix ZH

L A is Hermitian positive de�nite, the univariate decrease
rates are

�j =
j uHj Z

H
L rJk j

2uj2ZH
L
A

;

and the decrease rates �j are by theorem 5.5

�j =
j uHj Z

H
L rJk j

2uj2ZHL A
� gHj yj

;

where the vector gj 2 IK
#Jk is de�ned by

gj :=
�
ZH
L A
�
(Jk; j);

and the vector yj 2 IK
#Jk is the solution of the (#Jk �#Jk)-linear system�

ZH
L A
�
(Jk; Jk)yj = gj:

The di�erence between the �j and the �j is the presence of the dot-product gHj yj,
and the involved (#Jk � #Jk)-linear system in the denominator of the �j. Thus,
calculating the univariate decrease rates �j is computationally cheaper than the
calculation of the decrease rates �j.
However, which of those two approaches leads to a better overall performance of
the preconditioned iteration solve is not known in advance. This issue is discussed
in detail in chapter 7.

The following lemma shows a basic relation between the univariate decrease rates
�j from de�nition 5.7 and the corresponding decrease rates �j from de�nition 5.1.
The statement of this lemma is the generalization of the corresponding statement
given in [17] for a particular projection method.

94
Adaptive Pattern Derivation for Projection

Methods

Lemma 5.9 (Relation Between the Decrease Rates)
Let the matrix P be the projective approximate inverse of the non-singular matrix
A 2 IKn�n determined by a projection method with the projection matrices ZL; ZR 2
IKn�n on the projection pattern (J1; : : : ; Jn). Let further the matrix ZLA

�1 2 IKn�n

be Hermitian positive de�nite. Then for 1 � j; k � n with j 62 Jk the inequalities

0 � �j � �j (5.36)

and

�j = 0() �j = 0 (5.37)

hold, where the �j are the decrease rates from de�nition 5.1 and �j denotes the
estimated decrease rates from de�nition 5.7.

Proof.

We prove assertion (5.36):

�j
(5.3)
=
rJk2ZLA�1 � rJk[(j)2ZLA�1

(4.19)
=
rJk2ZLA�1 � min

v2IKn
Jk

�2IK

Av + �Aui � ZRuk
2
ZLA�1

�
rJk2ZLA�1 �min

�2IK

rJk + �Aui
2
ZLA�1

(5.29)
= �j

� 0:

Assertion (5.37) follows by noting that both �j and �j are fractions with the
same nominator uHj Z

H
L rJk .

}

The above lemma shows that the univariate decrease rates �j are closely related to
the decrease rates �j. However, our numerical tests presented in chapter 7 show,
that in practice it is not at all obvious which variety of decrease rates leads to more
e�cient preconditioners.
If the considered projection method is such that the matrix ZH

L A is Hermitian
positive de�nite, lemma 5.6 applies. Hence in this case, if for some 1 � k � n
the Jk-residual is non-vanishing, there exists at least one index j 2 CJk , for which
the corresponding univariate decrease rate �j is non-vanishing. Thus, in practice it
su�ces to determine the univariate decrease rates �j only for j 2 LJk , with the set
LJk as de�ned in (5.23), i.e.

LJk :=
n
j j
�
ZH
L rJk

�
j
6= 0; j 62 Jk

o
;

for k = 1; : : : ; n.

5.3 Univariate Minimizing Pattern Adaption 95

The Univariate Pattern Adaptive Projective Approximate Inverse Algo-
rithm
We give a pseudo-code formulation of the Pattern Adaptive Projective Ap-

proximate Inverse algorithm (algorithm 8), including the univariate decrease rates
in the form stated by lemma 5.8. The input data and the parameters for this algo-
rithm are identical to those required for algorithm 8 (see pages 67{73). On output,
this algorithm returns a projective approximate inverse P on an adaptively derived
projection pattern.

1. Compute the projective approximate inverse P 0 with the initial projection
pattern (J0

1 ; : : : ; J
0
n) using algorithm 6

2. rJ0
k
:= (AP 0 � I)ZRuk for k = 1; : : : ; n

3. For l = 1; : : : ; ms

(a) For k = 1; : : : ; n

i. If

�rJl�1
k

ZLA�1

< �k

�
Cycle k-loop

ii. mt := min
�
mfps;mf �

�
#J l�1k

��
iii. If (mt == 0) Cycle k-loop

iv. Determine the set LJl�1
k

as de�ned in (5.23), and determine for all

j 2 LJl�1
k

the univariate decrease rates

�j :=
j
�
ZH
L rJk

�
j
j2uj2ZH

L
A

v. Determine the mt indices j1; : : : ; jmt according to the largest esti-
mated decrease rates �j

vi. J lk := J l�1k [(j1; : : : ; jmt)

(b) If no column-pattern was enlarged in step (3a) : STOP

(c) Compute the approximate inverse P l with the projection pattern�
J l1; : : : ; J

l
n

�
using algorithm 6

(d) If (l 6= ms): Compute the new J lk-residuals rJlk for k = 1; : : : ; n

Algorithm 11: Univariate Pattern Adaptive Projective Approximate In-

verse

96
Adaptive Pattern Derivation for Projection

Methods

The above algorithm, as well as the input data and the parameters, are identical
with algorithm 8 except of step (3(a)iv) where the univariate decrease rates are
determined.
If the matrix ZLA

�1 2 IRn�n is non-symmetric or inde�nite, the quantities ~�1;2j
from (5.34) or (5.35) can be used instead of the univariate decrease rates �j from
de�nition 5.7.

The Computational Cost of the Univariate Decrease Rates
The computational cost of the above algorithm, caused by calculating the univariate
decrease rates in step (3(a)iv), depends on the particular choice of the matrix ZL:
For the univariate decrease rates �j and for the estimates ~�2j from (5.35), the follow-
ing operatins are necessary: for determining the sets LJl�1k

, the sparse dot-products

uHj Z
H
L rJl�1

k
, for j 62 J l�1k , are determined. Additionally, the sparse dot-products

uHj Z
H
L Auj for the denominator are determined. The left-hand side projection ma-

trix ZL should be such that those dot-products are computationally cheap.
If the ~�1j from equation (5.34) are applied as estimates for the univariate decrease
rates from de�nition 5.7, for the nominator two (possibly sparse) matrix-vector
multiplications, namely PZRuk and A (PZRuk), and one sparse dot-product, namely
uTj A

T (APRZRuk), are necessary. The quantities u
H
j Z

H
L Auj for the nominator of the

decrease rates are already known from determining the sets LJl�1
k

.

In addition to the potential for vectorization and parallelization of the above algo-
rithm, as discussed for algorithm 8 (see page 71), the calculation of the univariate
decrease rates in step (3(a)iv) of the above algorithm yields further potential for
vectorization and parallelization. The univariate decrease rates can all be deter-
mined independently from each other, and the operations for determining them are
dot-products.

Optimizations for the Practical Implementation
The remarks given on pages 72{73 regarding possible optimizations of algorithm 8,
and the remarks given for algorithm 10 on pages 87{87 apply.

The Case of diagonal ZR

For projection methods with a diagonal right-hand side projection matrix ZR, the
projective approximate inverse P can be determined with algorithm 9, where the
calculation of the univariate decrease rates �j in step (1(c)iv) of algorithm 9 is done
in the same way as in step (3(a)iv) of algorithm 11. With the resulting algorithm,
the columns pk of the projective approximate inverse P , and the corresponding
column patterns, can be determined independently from each other.

In this section, we have developed a new strategy for estimating the decrase rates �j
from de�nition 5.1 for general projection methods. We have discussed the computa-

5.3 Univariate Minimizing Pattern Adaption 97

tional complexity of these estimated decrease rates and we have cosidered algorithms
8 and 9 including the calculation of these estiamted decrease rates.

Altogether, in this chapter, we have developed a set of new algorithms for the
calculation of projective approximate inverses on adaptively determined projection
patterns for general projection methods. These algorithms di�er in the strategy for
the pattern derivation: algorithm 10 involves the decrease rates �j from de�nition
5.1, and algorithm 11 involves the univariate decrease rates �j from de�nition 5.7,
or estimates of these univariate decrease rates. Furthermore, we have considered
the special case of projection methods with a diagonal right-hand side projection
matrix ZR, as well as the resulting algorithms for the adaptive pattern derivation by
utilizing the decrease rates �j from de�nition 5.1 and the univariate decrease rates
�j from de�nition 5.7. Importantly, all these new algorithms are inherently parallel
and highly vectorizable.
In the following chapter, we consider some state-of-the-art preconditioning tech-
niques in greater detail. Some of those preconditioning techniques are classi�ed in
terms of projection methods. For these methods, the theoretical results from chap-
ter 4 and the adaptive pattern derivation strategies deduced in this chapter apply.
Further, we propose new preconditioning techniques, which are projection methods.
Those methods are obtained by making particular choices for the projection matri-
ces ZL and ZR.
The numerical properties of some of the state-of-the-art preconditioning methods
and of the new projection method-based techniques are compared in chapter 7.

98
Adaptive Pattern Derivation for Projection

Methods

Practical Preconditioning Algorithms 99

6 Practical Preconditioning Algorithms

The design of e�cient solvers for large sparse linear systems on parallel computers
is an important task for today's scienti�c computing research. Krylov subspace
methods for solving linear systems (see section 3.5) can e�ciently be implemented
on parallel computers, but since those methods may fail to converge, some precon-
ditioning, prior to the application of an iterative solver for the linear system, is
necessary.
During the last years, a lot of research has been devoted to preconditioning iterative
methods for large sparse linear systems, and many methods have been proposed.
While many of these preconditioning methods are e�cient for certain types of linear
systems and, also, for certain types of computer architectures, no robust, e�ciently
parallelizable preconditioning method is known up to now.
On the one hand, there are methods based on incomplete factorizations (like ILU, see
section 6.4). These methods have been developed and improved for many years, and
they are known for being e�cient with regards to their acceleration of the iterative
solve. But those methods are inherently sequential, both in the set-up phase for the
construction of the preconditioner and during the iterative solve. Thus, in general
those methods are not well-suited for parallel computers.
On the other hand, there are various explicit preconditioning methods with di�erent
degrees of parallelism in the set-up phase (like the recently proposed SPAI method
(see section 6.2 and e.g. [39]) and the AINVmethod (see section 6.6 and e.g. [9])), and
full parallelism during the iterative solution process. But, in general, these methods
seem to be less robust and less e�cient as for the acceleration of the iterative solve,
as compared to implicit methods. An ample comparison of various preconditioning
techniques is given e.g. in [11].

In this chapter, we briey sketch some of the known preconditioning methods.
Furthermore, we �t three preconditioning techniques, proposed by Kolotilina and
Yeremin in [46] for �xed sparsity patterns, into the theoretical framework of projec-
tion methods. Thereby we not only obtain the new approximation statements given
in section 4.2 for these methods, but too we obtain new preconditioning algorithms,
namely the Plain projection algorithm (see section 6.3), the LTL-projection al-
gorithm (see section 6.7.1) and the LU-projection algorithm (see section 6.7.2),
by combining the approaches from [46] with the adaptive pattern derivation strate-
gies developed in chapter 5. The Plain projection algorithm, which can be ap-
plied to general linear systems, furnishes an approximate inverse of the coe�cient
matrix of the considered linear system. The LTL-projection algorithm and the
LU-projection algorithm approximate the inverses of triangular factorizations of
the coe�cient matrices.
Importantly, these newly proposed preconditioning algorithms o�er a large amount
of parallelism, and potential for vectorization, and are thus well-suited for the im-
plementation on supercomputers.

100 Practical Preconditioning Algorithms

6.1 Normalization in Terms of Projection Methods

A common preconditioning technique is to apply some scaling to the linear system
Ax = b from the left-hand side with a diagonal matrix P 2 IKn�n in order to
balance the equations of a linear system. This preconditioning approach is called
normalization. Numerous choices for the diagonal entries of the scaling matrix P
are possible. See [80], pp. 155-157, for a discussion of normalization.

Let the diagonal elements of the left-hand side scaling matrix P be denoted by pk
for k = 1; : : : ; n. Common choices for the pk are:

pk :=
1

akk
; (6.1)

pk :=
�akkAHuk

2
2

; (6.2)

pk :=
1AHuk
2
2

; (6.3)

pk :=
sign (akk)Pn

l=1 jaklj
; (6.4)

where �akk 2 IK denotes the complex conjugated number akk. The normalization
approaches corresponding to (6.1), (6.2) and (6.4) are applicable only if the matrix A
has a zero-free diagonal. Additionally, the normalization strategy (6.4) is applicable
for real matrices only.

Two of these normalization approaches can be formulated in terms of projection
methods:

Lemma 6.1 (Diagonal Scaling in Terms of Projection Methods)
Let the matrix A 2 IKn�n have a zero-free diagonal, i.e. aii 6= 0 for i = 1; : : : ; n.
We consider projection methods with the projection matrices ZL := I, ZR as de-
�ned below, and with the diagonal projection pattern (J1; : : : ; Jn), i.e. the pattern is
de�ned by Jk := (k) for k = 1; : : : ; n.

i) With the projection matrix ZR := I, this projection method is practical accord-
ing to de�nition 4.3 and the obtained projective approximate inverse P equals
the normalization matrix de�ned by (6.1).

ii) With the projection matrix ZR := AH , this projection method is practical
according to de�nition 4.3 and the obtained projective approximate inverse P
equals the normalization matrix de�ned by (6.2).

6.1 Normalization in Terms of Projection Methods 101

Proof.

First, we show that both of the projection methods are practical according to
de�nition 4.3:
for the projection method from assertion i) we have�

ZH
L ZRuk

�
(Jk) = (uk) (k) = 1;

and for the projection method from assertion ii) we have�
ZH
L ZRuk

�
(Jk) =

�
AHuk

�
(k) = akk 6= 0;

and thus both projection methods are practical.
Now we consider the shape of the projection matrices:
Since the normalization matrices are applied as left-hand side preconditioners,
we consider the projection method

uHk Z
H
L [PA� I]ZRuk = 0

() uHk Z
H
R

�
AHPH � I

�
ZLuk = 0; (6.5)

for k = 1; : : : ; n.
Let the number 1 � k � n be arbitrary �xed. By corollary 4.5 applied to
the projection method de�ned by (6.5) with the column-pattern Jk = (k), we
have

uHk P
Huk =

uHk Z
H
R uk

uHk Z
H
R A

Huk
(6.6)

() pk = uHk Puk =
uHk ZRuk
uHk AZRuk

: (6.7)

Thus, with ZR := I we have

pk = uHk Puk =
1

akk
;

and with ZR := AH we have

pk = uHk Puk =
�akkAHuk

2
2

:

}

Since the normalization techniques de�ned by (6.1) and (6.2) are projection meth-
ods, corollary 4.10 applies and we obtain the following approximation properties:

102 Practical Preconditioning Algorithms

Corollary 6.2 (Approximation Properties for Diagonal Scaling)

i) Let IK = IR and let the approximate inverse P of the non-singular matrix
A 2 IKn�n be determined by the projection method de�ned in assertion i) of
lemma 6.1. Let the k-th row of P be denoted by pk for k = 1; : : : ; n. Then the
following approximation properties hold:

(a) If the matrix A�T 2 IRn�n is positive real, then the inequalitiesATpTk � uk

A�1

� �min
�2IR

�ATuk � uk

A�1

(6.8)

and pTk � A�Tuk

A
� �min

�2IR

�uk � A�Tuk

A

(6.9)

hold for k = 1; : : : ; n, with 2 R de�ned by

 :=

s
1 +

�2 (R)

�2m (M)
;

where M denotes the symmetric part and R denotes the skew-symmetric
part of A�T , � (R) denotes the spectral radius of R and �m (M) denotes
the minimal eigenvalue of M .

(b) If the matrix A�H 2 IKn�n is Hermitian positive de�nite, then the equal-
ities AHpHk � uk

A�1

= min
�2IK

�AHuk � uk

A�1

(6.10)

and pHk � A�Huk

A
= min

�2IK

�uk � A�Huk

A

(6.11)

hold for k = 1; : : : ; n.

ii) Let IK 2 fIR; ICg and let the approximate inverse P of the non-singular matrix
A 2 IKn�n be determined by the projection method de�ned in assertion ii) of
lemma 6.1. Let the k-th row of P be denoted by pk for k = 1; : : : ; n. Then the
equalities AHpHk � uk

2
= min

�2IK

�AHuk � uk

2

(6.12)

and pHk � A�Huk

AAH

= min
�2IK

�uk � A�Huk

AAH

; (6.13)

hold for k = 1; : : : ; n.

6.2 Frobenius Norm Minimizing in Terms of Projection
Methods 103

Proof.

The assertions follow directly from corollary 4.10 applied to the corresponding
projection methods.

}

The above corollary shows that the normalizations de�ned by (6.1) and (6.2) yield
particular one-dimensional minimizations for the rows uHk PA of the preconditioned
matrix PA.
Although normalization is a simple and computationally cheap preconditioning tech-
nique, it may be a helpful tool for considering linear systems (see [80], pp. 155-157).
However, for e�ciently preconditioning "di�cult" linear systems more powerful pre-
conditioning techniques are necessary.

6.2 Frobenius Norm Minimizing in Terms of Projection

Methods

In this section, we consider the well known Frobenius norm minimizing precondi-
tioning approach introduced by Benson in [2]. This preconditioning approach o�ers
a variety (depending on parameters and implementation details) of strategies for
computing one-sided approximate inverses.
In [83], pp. 23-25, Zimmermann classi�ed the Frobenius norm based preconditioning
approach in terms of projection methods. Thus, the approximation estimates, and
the strategies for the adaptive pattern derivation for projection methods (given in
chapters 4 and 5) apply. These results for the Frobenius norm based approach have
been published before for real matrices by Cosgrove, Diaz and Griewank in [17], by
Huckle and Grote in [39], and by Gould and Scott in [32]. Some properties and
numerical results of a parallel implementation of the SPAI algorithm given in [39]
are presented by Deshpande, Grote, Messmer and Sawyer in [20]. A survey on a
priori matrix patterns for this approach is given by Huckle in [38].

The Frobenius Norm Ansatz
Let the matrix A 2 IKn�n be non-singular. The right-hand side approximate inverse
P based on the Frobenius norm minimizing approach is determined by minimizing
the Frobenius norm expression

AP � I
2
F
=

nX
k=1

(AP � I)uk
2
2
; (6.14)

where the approximate inverse P 2 IKn�n has some prescribed matrix-pattern SP ,
and uk 2 IK

n denotes the k-th unit vector.

104 Practical Preconditioning Algorithms

Let the columns of the pattern SP be denoted by Jk for k = 1; : : : ; n. Then min-
imizing the Frobenius norm expression from (6.14) is equivalent to solving the n
small least-squares problems

min
w2IKn

Jk

Aw � uk
2
2

(6.15)

for k = 1; : : : ; n, where the k-th column pk 2 IK
n
Jk

of the approximate inverse P , is
the solution of the (#Jk �#Jk) least-squares problems (6.15) for k = 1; : : : ; n.
Since the n small least-squares problems (6.15) are independent from each other,
they can be solved in parallel.

Classi�cation in Terms of Projection Methods
The Frobenius norm minimizing approach for real matrices is classi�ed in terms
of projection methods by Zimmermann in [83] (pp. 23-25). We catch on to this
argumentation, extended to the complex case:
Let the matrix A 2 IKn�n be non-singular. We consider projection methods with
the projection matrices ZL = A and ZR = I and with some projection pattern
(J1; : : : ; Jn), i.e.

uHi A
H [AP � I]uk = 0 (6.16)

for i 2 Jk and k = 1; : : : ; n. Because the product matrix AHA is Hermitian positive
de�nite, those projection methods are explicit according to de�nition 4.3, and thus
the corresponding projective approximate inverses P are well-de�ned and have the
unique explicit representation stated in corollary 4.5. If the vectors

�
AHuk

�
(Jk) are

non-vanishing for all k = 1; : : : ; n, those projection methods are practical according
to de�nition 4.3. The candidate sets CJk from de�nition 5.1 for this projection
method are

CJk = f1; : : : ; ng n Jk:

The approximation statement given by corollary 4.10 for those projection methods
coincides with the minimization approach (6.15), and hence with the construction
principle of this preconditioning technique.
Thus, all results and algorithms as for the adaptive pattern derivation for projective
approximate inverses given in chapter 5 apply for the Frobenius norm minimizing
approach. These pattern adaption strategies have been investigated before for this
particular projection method in [17], [32] and [39]. In particular, for the adaptive
pattern derivation, lemma 5.8 coincides with the results given by Huckle in [39] for
IK = IR, and theorem 5.5 coincides with the approach proposed by Cosgrove, Diaz
and Griewank in [17] for IK = IR.
The Jk-residuals from de�nition 4.6 for the Frobenius norm based approach have
the form

rJk = Apk � uk;

where the Jk for k = 1; : : : ; n denote some column-patterns and pk denotes the k-th
column of the projective approximate inverse obtained from the projection method

6.2 Frobenius Norm Minimizing in Terms of Projection
Methods 105

(6.16). Since the residuals are minimized in the Euclidian norm, no Residual-
Minimizing smoothing is needed for the qualitative stopping criterion of the pattern
derivation process.
We give the pseudo-code of the Frobenius norm based projection method as pre-
sented in [39], which is identical to algorithm 9 with ZL := A. In [39], this algorithm
is called SPAI, in abbreviation of SParse Approximate Inverse. The input data and
the parameters needed for this algorithm are the same as for algorithm 8 (see pages
67{69).

1. For k = 1; : : : ; n

(a) Compute the column p0k of the projective approximate inverse P 0 with
the initial column-pattern J0

k by solving the least-squares problem

min
p0
k
2IKn

J0
k

Ap0k � uk
2
2

(b) rJ0
k
:= Ap0k � uk

(c) For l = 1; : : : ; ms

i. If
�rJ l�1

k

2
< �k

�
Cycle k-loop

ii. mt := min
�
mfps;mf �

�
#J l�1k

��
iii. If (mt == 0) Cycle k-loop

iv. Determine the set LJl�1
k

:=

�
j j
�
AHrJl�1

k

�
j
6= 0; j 62 J l�1k

�
from

(5.23)

v. Compute the univariate decrease rates �j from de�nition 5.7 for j 2
LJl�1

k

vi. Determine the mt indices j1; : : : ; jmt according to the largest univari-
ate decrease rates �j

vii. J lk := J l�1k [(j1; : : : ; jmt)

viii. Compute the k-th column plk of P l on the column-pattern J lk by
solving the least-squares problem

min
pl
k
2IKn

Jl
k

Aplk � uk
2
2

ix. If (l 6= ms): Compute the new J lk-residual rJlk

Algorithm 12: SPAI

106 Practical Preconditioning Algorithms

For a discussion of the algortihmic ow and of the computational complexity of the
SPAI algorithm, the general remarks for algorithm 9 apply with ZL := A (see pages
73{75).
In particular, the steps that contribute to the computational complexity of the SPAI
algorithm are:

steps (1a), (1(c)viii) In these steps, the least-squares problems

min
pik2IK

n

Ji
k

Apik � uk
2
2

with 0 � i � ms have to be solved at most ms + 1 times for each column
of the approximate inverse, i.e. for k = 1; : : : ; n. An optimized approach for
solving these least squares problems is given in [39].

steps (1b), (1(c)ix) Here, the new J lk-residuals are computed requiring at most the
ms+ 1 sparse matrix-vector products Aplk for k = 1; : : : ; n.

step (1(c)i) In these steps, the Euclidian norms of J lk-residuals rJlk are computed
at most ms times for k = 1; : : : ; n.

step (1(c)iv) For determining the sets LJl�1
k

, the sparse dot-products uHj A
HrJl�1

k

are calculated for j 62 J l�1k . This step of the algorithm may be a problem both
in a sequential and in a parallel environment.
On a sequential computer, this step is decicive for the number of oating-point
operations, and thus for the overall construction time of the approximate in-
verse. Some heuristic strategies for restricting the number of indices j are
given in [39].
On parallel computers, the amount of communication for transferring the col-
umns Auj of the matrix A between the processors may be prohibitively high,
especially if the dot-products uHj A

HrJk are formed for all indices j 62 J l�1k .
This problem may be alleviated by restricting the number of dot-products
that actually are formed. Such an approach for a parallel implementation
is considered in [20]. Theoretically, the communication overhead caused by
forming the dot-product uHj A

HrJk can also be circumvented by forming the
sparse matrix-vector product AHrJk �rst (this operation can e�ciently be done
in parallel), and then extracting the j-th component of the resulting vector.
But such a approach is impractical, since this involves a prohibitively large
number of oating-point operations.

step (1(c)v) For the pattern derivation of the SPAI algorithm, both the decrease
rates �j from de�nition 5.1 and the univariate decrease rates �j from de�nition

6.3 The Plain projection method 107

5.7 can be utilized:
By lemma 5.8, the univariate decrease rates �j have the form

�j =
j uHj A

HrJk j
2Auj22 : (6.17)

Thus, the quantity
Auj22 must be computed for each univariate decrease

rate �j . The quantities u
H
j A

HrJk are already known from step (1(c)iv).
By theorem 5.5, the decrease rates �j from de�nition 5.3 for the multivariate
approach have the form

�j =
j uHj A

HrJk j
2Auj22 � gHj yj
; (6.18)

with the vector gj 2 IK
#Jk de�ned by

gj :=
�
AHA

�
(Jk; j);

and with the vector yj 2 IK#Jk being the solution of the (#Jk �#Jk)-linear
system �

AHA
�
(Jk; Jk)yj = gj:

Thus, the vector yj additionally must be determined and the dot-product gHj yj
must be evaluated, at least in theory, for the decrease rates �j. An optimized
approach for calculating the decrease rates �j is proposed in [32].

We present numerical results of the SPAI algorithm in chapter 7.

6.3 The Plain projection method

In this section, we consider a preconditioning approach introduced by Kolotilina
and Yeremin in [46] for a �xed matrix-pattern of the preconditioner. This approach
was classi�ed by Zimmermann in [83] in terms of projection methods:

uHi [AP � I]uk = 0 (6.19)

for some �xed projection pattern (J1; : : : ; Jn) with i 2 Jk and k = 1; : : : ; n, i.e. the
algorithm introduced in this section is obtained by making the choice ZL := ZR := I
for the projection matrices ZL and ZR from de�nition 4.2.
We catch on to the projection method formulation (6.19) of this approach and
we combine this projection method with the adaptive pattern derivation strategies

108 Practical Preconditioning Algorithms

developed in chapter 5. We designate the resulting preconditioning technique (6.19)
by "Plain projection" method.

Theoretically, the Plain projection method can be utilized for calculating ap-
proximate inverses of both Hermitian and non-Hermitian matrices. But, if the
considered matrix is Hermitian, the preconditioned linear system will not necessar-
ily be Hermitian. Thus, for Hermitian matrices, other preconditioning techniques,
e.g. the LTL-projection method (deduced in section 6.7.1), should be applied.
For completeness, in the following we consider both Hermitian, and non-Hermitian
matrices.

Theoretical Properties
By applying corollary 4.5 to the Plain projection method (as stated in (6.19)),
we obtain formulae for the explicit calculation of the columns pk of the projective
approximate inverse P :

Corollary 6.3 (Explicit Representation for the Plain projection method)
Let the matrix A 2 IKn�n be non-singular. We consider the Plain projection

method from (6.19) with a projection pattern (J1; : : : ; Jn). If the Plain projection

method is Jk-explicit according to de�nition 4.3 for some k, then the k-th column
pk of the projective approximate inverse P has the unique explicit representation

(pk)j =

(�
[A (Jk; Jk)]

�1 (uk) (Jk)
�
i

for j = (Jk)i;

0 else:
(6.20)

If the relation k 2 Jk holds for k = 1; : : : ; n and the Plain projection method is
explicit, then the Plain projection method is practical according to de�nition 4.3.

Proof.

The assertion follows directly from corollary 4.5 applied to the Plain pro-

jection method (6.19).

}

Thus, the Jk-reduced k-th column (pk) (Jk) of the projective approximate inverse
P determined with the Plain projection method equals the l-th column of the
matrix

[A (Jk; Jk)]
�1 ;

where l is such that (Jk)l = k.

The following corollary states the approximation properties of the projective ap-
proximate inverse determined with the Plain projection method to the exact
inverse of A.

6.3 The Plain projection method 109

Corollary 6.4 (Approximation Properties for the Plain projection method)
We consider the Plain projection method from (6.19) with a projection pattern
(J1; : : : ; Jn) for a non-singular matrix A 2 IKn�n. Let pk denote the k-th column of
the projective approximate inverse P for k = 1; : : : ; n.

i) Let the Plain projection method be Jk-explicit according to de�nition 4.3
for some k 2 IN with 1 � k � n. Let the matrix A�1 2 IRn�n be positive
real and let A�1 = M + R, where M denotes the symmetric and R is the
skew-symmetric part of A�1. Let � (R) denote the spectral radius of R and let
�m (M) denote the minimal eigenvalue of M . Then the estimations

Apk � uk

A�1

�

s
1 +

�2(R)

�2m(M)
min
w2IRnJk

Aw � uk

A�1

(6.21)

and

pk � A�1uk

AT
�

s
1 +

�2(R)

�2m(M)
min
w2IRnJk

w � A�1uk

AT

(6.22)

hold.

ii) If A�1 2 IKn�n is Hermitian positive de�nite, the equalitiesApk � uk

A�1

= min
w2IKn

Jk

Aw � uk

A�1

(6.23)

and

pk � A�1uk

AH

= min
w2IKn

Jk

w � A�1uk

AH

(6.24)

hold for k = 1; : : : ; n.

Proof.

The assertions follow directly from corollary 4.10 applied to the Plain pro-

jection method from (6.19).

}

110 Practical Preconditioning Algorithms

Adaptive Pattern Derivation
The Jk-residuals and the Jk-errors from de�nition 4.6 for the Plain projection

method from (6.19) have the form

rJk = Apk � uk

and

eJk = pk � A�1uk

for k = 1; : : : ; n, where pk denotes the k-th column of the projective approximate
inverse P .

By corollary 6.4, the Jk-residuals rJk of the Plain projection method are min-
imized in the norm jj:jjA�1. Since in practical applications the matrix A�1 is un-
known, the value of jjrJkjjA�1 cannot be calculated. In this situation, for the qualita-
tive stopping criterion of the pattern derivation (see pages 67{68), some other norm
of the Jk-residual, e.g. the Euclidian norm, may be used. Alternatively, since the
Euclidian norm of the Jk-residual does not decrease monotonously for an augmented
pattern Jk, the Euclidian norm of the related Residual-Minimizing smoothed residu-
als sJk (see pages 67{68 and section 3.4) can be utilized for the qualitative control of
the pattern derivation. The Euclidian norm of the smoothed Jk-residual decreases
monotonously in the Euclidian norm for growing pattern Jk.

The following corollary shows the shape of the univariate decrease rates �j from
de�nition 5.7 and of the decrease rates �j from de�nition 5.1 for the Plain pro-

jection method from (6.19):

Corollary 6.5 (Decrease Rates for the Plain projection method)
We consider the Plain projection method from (6.19) with a projection pattern
(J1; : : : ; Jn) for a non-singular matrix A 2 IKn�n. Let pk denote the k-th column of
the projective approximate inverse P for k = 1; : : : ; n.

i) Let the Plain projection method be Jk-explicit according to de�nition 4.3
for some k 2 IN with 1 � k � n. Let the matrix A�1 2 IRn�n be positive
real and let M denote the symmetric part of A�1, then the univariate decrease
rates �j from de�nition 5.7 have the form

�j =

�
uTj A

TMrJk
�2uj2A (6.25)

for all elements j of the candidate set CJk from de�nition 5.1.

6.3 The Plain projection method 111

ii) Let the matrix A�1 2 IKn�n be Hermitian positive de�nite, then the univariate
decrease rates �j from de�nition 5.7 have the form

�j =
j uHj rJk j

2uj2A (6.26)

for 1 � j � n with j 62 Jk and for k = 1; : : : ; n.

iii) Let the matrix A�1 2 IKn�n be Hermitian positive de�nite. Then the decrease
rates �j from de�nition 5.1 can be written as

�j =
j uHj rJk j

2uj2A � gHj yj
; (6.27)

where the vector gj 2 IK
#Jk is de�ned by

gj := A(Jk; j); (6.28)

and the vector y2IK
#Jk is the solution of the (#Jk �#Jk)-linear system

A(Jk; Jk)yj = gj: (6.29)

Proof.

The assertions follow directly from lemma 5.8 and theorem 5.5 applied to the
Plain projection method from (6.19).

}

The Univariate Decrease Rates in the Positive Real Case
For Hermitian positive de�nite A�1 2 IKn�n, the univariate decrease rates �j as
represented in (6.26) or the decrease rates �j as stated in (6.27) can be utilized for
the pattern derivation process of the Plain projection method.
If the matrix A is positive real, the nominator of the univariate decrease rates �j
as represented in (6.25) is unknown in practical applications (see the discussion on
pages 92{93). In this situation, we have for the quantity in the brackets of the
nominator of (6.25):

uTj A
TMrJk

(5.33)
=

1

2

�
uTj A

TPuk| {z }
known

� uTj A
TA�1uk

�| {z }
unknown

+
1

2

�
uTj rJk

�| {z }
known

:

112 Practical Preconditioning Algorithms

In this situation, the estimates ~�1j and ~�2j for the univariate decrease rates �j as
proposed in (5.34) and (5.35), which are

~�1j : =

�
uTj A

TPuk + uTj rJk
�2uj2A (6.30)

and

~�2j : =

�
uTj rJk

�2uj2A (6.31)

for the Plain projection method, can be applied for the pattern derivation pro-
cess.

The Plain projection Algorithm
In algorithm 13, we give a pseudo-code formulation of the Plain projection al-
gorithm. The input data and the parameters needed for the Plain projection

algorithm are the same as for algorithm 8 (see pages 67{69). Note that the initial
projection pattern (J0

1 ; : : : ; J
0
n) should be such that k 2 Jk for all k = 1; : : : ; n, since

only in this situation the Plain projection method can be practical according to
de�nition 4.3. On output of the Plain projection algorithm, we obtain a pro-
jective approximate inverse determined with the Plain projection method on an
adaptively determined projection pattern.
For an explanation of the single steps and the algorithmic ow of the Plain pro-

jection algorithm, we refer you the comments given to algorithm 9 on pages 73{75.

In step (1(c)v) of the Plain projection algorithm (as stated in algorithm 13), the
univariate decrease �j rates from (6.26) are applied for the pattern derivation. Al-
ternatively, the estimates ~�1i from (6.30) or ~�2i from (6.31) of the univariate decrease
rates, or the decrease rates �i from (6.27) may be applied.

The steps that contribute to the computational complexity of the Plain projec-

tion algorithm are:

steps 1a,1(c)viii In these steps, the k-th column plk of the projective approximate
inverse P l on the pattern J lk is computed by solving a linear system with the�
#J lk �#J lk

�
-coe�cient matrix A

�
J lk; J

l
k

�
for k = 1; : : : ; n.

steps 1b, 1(c)ix For the computation of the J lk-residuals, the sparse matrix-vector
product Aplk is formed for k = 1; : : : ; n. For the calculation of the Residual-
Minimizing smoothed sequence sJl

k
in step 1(c)ix, two dot-products, one vector-

sum and one triadic operation are necessary (see algorithm 1) for k = 1; : : : ; n.
Depending on the number of non-zeros in the corresponding J lk-residual, these
operations are possibly sparse.

6.3 The Plain projection method 113

1. For k = 1; : : : ; n

(a) Compute the k-th column p0k of the projective approximate inverse P 0

on the column-pattern J0
k by solving the linear system A (J0

k ; J
0
k) p

0
k =

uk (J
0
k)

(b) Compute the J0
k -residual rJ0k := Ap0k � uk; sJ0

k
:= rJ0

k

(c) For l = 1; : : : ; ms

i. If
�sJl�1k

2
< �k

�
Cycle k-loop

ii. mt := min
�
mfps;mf �

�
#J l�1k

��
iii. If (mt == 0) Cycle k-loop

iv. Determine the set LJl�1
k

de�ned by

LJ l�1
k

:=

�
j 62 J l�1k j

�
rJl�1

k

�
j
6= 0

�

v. Determine the univariate decrease rates �j from (6.26) for all j 2
LJl�1k

vi. Determine themt indices ij; : : : ; jmt according to the largest decrease
rates �j

vii. J lk := J l�1k [(j1; : : : ; jmt)

viii. Compute the k-th column plk of the plain projective approximate
inverse P l on the column-pattern J lk by solving the linear system
A
�
J lk; J

l
k

�
plk = uk

�
J lk
�

ix. If (l 6= ms) : Compute the new rJl
k
-residual rJ l

k
:= Aplk�uk, and the

corresponding Residual-Minimizing smoothed rJlk-residual sJlk

Algorithm 13: Plain projection

step 1(c)i The calculation of the Euclidian norm of the Residual-Minimizing smoo-
thed residuals sJl

k
involves one (possibly sparse) dot-product.

step 1(c)iv Determining the sets LJl
k
for the univariate decrease rates �j, for the

estimated univariate decrease rates ~�2j from (6.31), and for the decrease rates
�j from (6.27) is cost-free.
For the estimated univariate decrease rates ~�1j from (6.30), the sparse dot-

product uTj A
Tplk must be evaluated. Note that utilizing the estimates ~�1j may

cause problems on parallel computers with distributed memory: evaluating

114 Practical Preconditioning Algorithms

the dot-product
uTj A

T plk

for each j 62 J lk may require a prohibitively high amount of interprocessor
communication. This problem may be alleviated by considering only a subset
(given by some heuristic) of indices j 62 J lk instead of all of them. Theoreti-
cally, the communication overhead can also be circumvented by forming the
sparse matrix-vector product ATplk �rst (this operation can e�ciently be done
in parallel), and then extracting the desired components of the resulting vec-
tor. But such a strategy is impractical, since it involves a prohibitively large
number of oating-point operations.

step 1(c)v In this step, the univariate decrease rates �j or their estimates, ~�1j ,
~�2j ,

or the decrease rates �j are calculated for each j 2 LJl
k
. Since the nominators

of the decrease rates are known from determining the sets LJl
k
in step (1(c)iv),

forming the univariate decrease rates �j or their estimates ~�1j and
~�2j requires

only one oating-point operation, the division by uTj Auj, for each j 2 LJlk .

If the decrease rates �j from (6.27) are used, a linear system with the coe�cient
matrix A

�
J lk; J

l
k

�
must be solved, and a sparse dot-product must be formed

for each j 2 LJlk for the nominator. Since one of the vectors in this sparse

dot-product is A
�
J lk; j

�
for each j 2 LJl

k
, this may require prohibitively much

interprocessor communicating on parallel computers with distributed memory.

Considerations for the Practical Implementation of the Plain projection

Algorithm
For the practical implementation of the Plain projection algorithm, the general
remarks to algorithms 8 on pages 70{73 apply with ZL := ZR := I. For the
calculation of the decrease rates, the remarks to algorithms 10 (see pages 85{87)
and 11 (see pages 96{96) apply with ZL := ZR := I.

If the matrix A is Hermitian positive de�nite, the Plain projection method is
always explicit according to de�nition 4.3, and lemma 5.6 guarantees that none of
the sets LJl

k
for l = 1; : : : ; ms and k = 1; : : : ; n is empty unless the corresponding

J lk-residual vanishes.

If the matrix A is non-symmetric or inde�nite, the situation is more complicated:
In general, it is not at all obvious whether or not the Plain projection method is
explicit according to de�nition 4.3 for a given projection pattern (J1; : : : Jn). If the
initial pattern is diagonal and the diagonal of A is zero-free, the Plain projection

method is practical according to de�nition 4.3. Thus the diagonal pattern should be
used as the initial pattern for the Plain projection algorithm. But in the course

6.4 Incomplete LU-decomposition 115

of the pattern derivation for the Plain projection algorithm, the candidate sets
CJk from de�nition 5.1 maybe unknown. Our implementation of the Plain pro-

jection algorithm deals with this problem by determining the decrease rates not
only for the candidate sets CJk but for all j 62 Jk. Theoretically, our implementation
can run into a singular subsystem and thus breakdown.
A further problem is that, if the corresponding Jk-residual is non-vanishing, the
existence of a candidate index j yielding a positive decreasse rate is not guaranteed
by theory. Thus, theoretically the pattern derivation process possibly can stagnate
for some time.
Despite of this theoretical scruples, during our extensive numerical tests none of
the above problems ever occured. Conversely, as the numerical results presented in
chapter 7 indicate, the Plain projection algorithm behaved in a benign way.

6.4 Incomplete LU-decomposition

This family of implicit preconditioning methods for non-symmetric linear systems
is based on an incomplete LU -decomposition (ILU) of the matrix A. ILU methods
have been investigated for decades, and many variants have been proposed. Detailed
surveys on the theoretical and practical aspects of ILU methods are given e.g. in
[40], [49] and [82]. The performance of LU -decompositions on vector computers is
discussed in [28].
Let S denote a pattern of a matrix, and let the entries of the matrix L and U
be denoted by lij and uij. Then the incomplete LU -decomposition of A with the
pattern S has the form

A = LU + E (6.32)

with a lower triangular matrix L and an upper triangular matrix U . The entries eij
of the matrix E are given by

eij =

(
0 for (i; j) 2 S

aij �
Pmin(i;j)

l=1 lilulj for (i; j) =2 S :
(6.33)

The pattern S can either be prescribed in advance or be derived adaptively along
the computation of L and U . If the matrix A has a special structure (like matrices
generated by discretization with the �nite element or �nite di�erence method), the
pattern S could be set equal to the pattern of A. For unstructured matrices the
adaptive derivation of the pattern S is better suited. For preconditioning purposes,
the error-matrix E is neglected and the product LU is viewed as an approximation
to A. Preconditioning can then be performed with

PL = U�1L�1; PR = I

116 Practical Preconditioning Algorithms

from the left-hand side, with

PL = I; PR = U�1L�1

from the right-hand side, or with

PL = L�1; PR = U�1

from both sides. The inverses L�1 and U�1 are not computed explicitly, since that
would be computationally expensive; whenever the evaluation of a matrix-vector
product L�1v or U�1v is needed, a triangular system is solved instead. Thus, two
triangular systems have to be solved per iteration step.
Computing the matrices L and U and evaluating the triangular systems is recursive,
and thus a severe bottleneck for implementation of this approach on vector and
parallel computers.
On the other hand, some of today's most e�cient and most robust preconditioning
methods for non-symmetric linear systems, at least with regards to the acceleration
of the iterative solver, belong to this family of preconditioning methods.
Many di�erent implementations of this preconditioning approach are possible; among
these are ILUT ([60]), MILU ([34]), RILU ([1]). Extensive overviews on ILU-precon-
ditioning are given in [49], [62]. In [7], it is shown that certain reorderings of the
considered linear systems may enhance the e�ciency of ILU-preconditioners.
For our numerical tests presented in chapter 7, we use the ILU(0)-method as a
representant for this branch of implicit preconditioning methods. This variant is
characterized by allowing �ll-in in the triangular factors L and U from (6.32) only
in the locations corresponding to non-zeros in the original matrix A. Although this
is a somewhat simple approach, the resulting preconditioners are quite e�cient (see
chapter 7 for details).

6.5 Incomplete Cholesky-decomposition

Preconditioning methods based on an incomplete Cholesky-decomposition (IC) of
the coe�cient matrix A form a family of implicit methods for preconditioning sym-
metric positive de�nite linear systems. This preconditioning approach was intro-
duced by Buleev and published in [48]. The IC approach was the basis for the
development of the ILU approach. Surveys on the algorithmic properties of IC
methods are given e.g. in [52], [76] and [77]. In [27], the performance of IC methods
on vector computers is discussed.
IC methods are based on the incomplete Cholesky-decomposition

A = LTL+ E

6.6 Incomplete A-Biconjugation 117

with L upper triangular. The entries eij of the error-matrix E are given by

eij =

(
0 for (i; j) 2 S;

aij �
Pmin(i;j)

l=1 llillj for (i; j) =2 S;

where S is a pattern and lij; aij denote the entries of the matrices L and A. For
the IC-approach, two-sided preconditioning with

PL = L�1 and PR = L�T (6.34)

is used, because then the preconditioned system is symmetric.
An ample survey on the numerical properties of some variants of IC-methods is
found in [11].
Similar to the ILU-approach, two triangular systems for the evaluation of L�Tv and
L�1v have to be solved in each iteration step. Thus, the IC-approach su�ers from
similar sequential bottlenecks as the ILU-approach.

For our numerical tests with symmetric coe�cient matrices, we chose the IC(0)-
method as a representant for the family of IC-methods. This approach is de�ned
by calculating the triangular matrix L from (6.5) which may have non-zeros only
in the locations corresponding to non-zeros in the original matrix A. See chapter 7
for some numerical results of the IC(0)-method.

6.6 Incomplete A-Biconjugation

In this section, we describe a preconditioning technique introduced by Benzi, Meyer
and T _uma in [6] for symmetric positive de�nite linear systems, and by Benzi and
T _uma in [9] for non-symmetric linear systems. With this preconditioning technique
the inverses of non-singular matrices are approximated with a product of two tri-
angular matrices. Extensive surveys on this preconditioning technique are found in
[4], [11] and [10]. Recent results of a parallel implementation of this preconditioning
method are presented in [5].

First, we have to give a de�nition:

De�nition 6.6 (A-biconjugate vectors)
Let A be a non-singular (n � n)-matrix. Then two sets of vectors fz1; : : : ; zkg and
fw1; : : : ; wkg, where zi; wi 2 IK

n for i = 1; : : : ; n, are called A-biconjugate, if

wT
i Azj = 0() i 6= j (6.35)

for i; j = 1; : : : ; n.

118 Practical Preconditioning Algorithms

The following considerations show the relation between the inverse of a matrix A and
two sets of A-biconjugate vectors: Let zset = fz1; : : : ; zng and wset = fw1; : : : ; wng
be two sets of A-biconjugate vectors. Let W = [w1; : : : ; wn] and Z = [z1; : : : ; zn] be
the matrices whose columns are the elements of the sets wset and zset. Then the
following equation holds:

W TAZ = D =

0
BBB@
wT
1 Az1 0 : : : 0
0 wT

2 Az2 : : : 0
...

...
. . .

...
0 0 : : : wT

nAzn

1
CCCA (6.36)

with wT
i Azi 6= 0 for i = 1; : : : ; n. Thus, the matrices W and Z are non-singular.

Equation (6.36) is equivalent to

A�1 = ZD�1W T : (6.37)

The matrices W and Z can be computed explicitly by applying a biconjugation
process to the columns of two non-singular matrices W0, Z0 2 IRn;n. In [9] it is
suggested to set W0 = Z0 = I, because then the matrices W and Z will be upper
triangular with ones on their diagonal. If the matrix A is symmetric, only one of
the triangular matrices needs to be computed, since the triangular matrices Z and
W are identical in this case, i.e. Z =W .
In algorithm 14, we give the preconditioning algorithm resulting from this biconju-
gation approach as proposed in [9]. This algorithm is called AINV. In the formulation
of the AINV algorithm (as stated in algorithm 14), aTi denotes the i-th row of A and
cTi denotes the i-th row of AT . Further, di; for i = 1; : : : n, denotes the diagonal
entries of the matrix D, and zi and wi denote the columns of the matrices Z and
W for i = 1; : : : ; n.

The AINV algorithm can be viewed geometrically as a generalized Gram-Schmidt
orthogonalization process with oblique projections and with the inner product xTAy
for x; y 2 IRn.

Let A = LMU be a factorization of A, where the matrix L is lower triangular with
ones on its diagonal, the matrixM is diagonal (the entries ofM are the pivots of the
corresponding LU -decomposition), and the matrix U is upper triangular with ones
on its diagonal. In exact arithmetic and without numerical dropping, the following
equations for the matrices W; Z and D computed with the AINV algorithm hold:

W = L�T ; Z = U�1; D =M: (6.38)

Since the matrices L and U tend to be dense triangular matrices in general, in steps
(2(c)iii) and (2(c)iv) of the AINV algorithm (algorithm 14) numerical dropping is

applied to z
(i)
j and w

(i)
j to force the sparsity of W and Z.

6.6 Incomplete A-Biconjugation 119

1. Set w
(0)
i := z

(0)
i := ui for i = 1; : : : n

2. For i = 1; : : : ; n

(a) For j = i; : : : ; n

i. d(i�1)j := aTi z
(i�1)
j

ii. q
(i�1)
j := cTi w

(i�1)
j

(b) If(i == n) Goto 3

(c) For j = i + 1; : : : ; n

i. z
(i)
j := z

(i�1)
j �

�
d
(i�1)
j

d
(i�1)
i

�
z
(i�1)
i

ii. w
(i)
j := w

(i�1)
j �

�
q
(i�1)
j

q
(i�1)
i

�
w

(i�1)
i

iii. Apply numerical dropping to z
(i)
j

iv. Apply numerical dropping to w(i)
j

3. zi := z
(i�1)
i ; wi := w

(i�1)
i ; di := d

(i�1)
i for i = 1; : : : ; n

Algorithm 14: AINV

For the numerical dropping, two positive thresholds �1, �2 2 IR have to be prescribed.
In each step of the i-loop (step (2) in the AINV algorithm) all entries in the vectors

z
(i)
j and w

(i)
j with an absolute value less than �1 or �2, respectively, are set to zero,

i. e. ����z(i)j �
l

��� < �1 =)
�
z
(i)
j

�
l
:= 0����w(i)

j

�
l

��� < �2 =)
�
w

(i)
j

�
l
:= 0

for l = 1; : : : ; n. The numerical dropping in the AINV algorithm brings about a
unforeseeable loss of biorthogonality: apart from changing the particular vectors to
which the numerical dropping is applied, all following updates in steps (2(c)iii) and
(2(c)iv) involve falsi�ed coe�cients calculated in steps (2(a)i) and (2(a)ii).

In [9], it is shown in that in exact arithmetic the AINV algorithm will not break
down, if and only if all leading principal minors of the matrix A are non-vanishing.
But, due to roundo� errors in practice, a "division by zero" breakdown can occur,
even if all leading principal minors of the matrix A are di�erent from zero. In [11],
Benzi and T _uma suggest to simply shift "small" elements di of the diagonal matrix
D to 10�1. This modi�cation prevents the AINV algorithm from breakdowns, but

120 Practical Preconditioning Algorithms

numerical experiences with this approach indicate, that the e�ciency of the obtained
preconditioner decreases if more than a few of such shifts are made. Recent results
of Benzi, Cullum and T _uma given in [3] and of Kharchenko, Kolotilina, Nikishin
and Yeremin given in [45] consider a di�erent strategy for preventing breakdowns
of the AINV algorithm caused by "small" pivots. The strategy considered in both
publications rests on a more elaborate way of determining the quantities d

(i�1)
j in

step (2(a)i) of the AINV algorithm. The numerical results presented in [3] and [45]
indicate, that this modi�cation of the AINV algorithm is superior to the original
approach.

The computational complexity of the AINV algorithm depends on the chosen drop-
ping thresholds �1 and �2. The larger the thresholds �1 and �2, and hence (at least in

tendency) the sparser the vectors z
(i)
j and w

(i)
j are, the cheaper are the dot-products

in steps (2(a)i) and (2(a)ii). In chapter 7, we give numerical results for the AINV

algorithm.

The preconditioned system can be formed with

PL = ZD�1W T ; PR = I

for left-hand side preconditioning, with

PL = I; PR = ZD�1W T

for right-hand side preconditioning, and with

PL =W T ; PR = ZD�1

for two-sided preconditioning.
The matrices W and Z can be computed independently, and thus in parallel. If A
is symmetric, only the matrix Z needs to be computed, since in this case W must
be equal to Z.
Since the columns of W and Z must be computed sequentially one after the other,
an e�cient implementation of the AINV algorithm on parallel architectures, espe-
cially with distributed memory, is at least non-trivial. Nevertheless, the results of a
parallel implementation of the AINV algorithm combined with a graph partitioning
precomputation, published in [5], indicate, that the AINV method can e�ciently be
implemented in parallel environments.

6.7 Approximate Inverses of Triangular Factors

In [46], Kolotilina and Yeremin propose methods for approximating the inverses of
the triangular factors of Cholesky- and LU -factorizations on �xed matrix-patterns

6.7 Approximate Inverses of Triangular Factors 121

for matrices in IRn�n. For a symmetric positive de�nite matrix A with the Cholesky-
factorization A = LTL, the inverse L�1 of the upper triangular matrix L is approx-
imated. For non-symmetric A, the inverses L�1 and U�1 of the LU -decomposition
A = LU are approximated. Importantly, no information on the original triangu-
lar factors L and U is necessary for determining these approximate inverses of the
triangular factors. The resulting algorithms are referred to as "FSAI" in the rele-
vant literature, in abbreviation of "Factorized Sparse Approximate Inverse". Some
numerical results of FSAI implementations for �xed matrix-patterns of the approxi-
mate inverses are reported by Benzi and T _uma in [11] and by Benzi, Kouhia and
T _uma in [4].
In this section, we briey sketch the approaches as proposed by Kolotilina and
Yeremin in [46]. Further, we �t these approaches into the framework of projection
methods. Thereby, we not only obtain the approximation properties from chapter 4
for these methods, but too, by combining these methods with the adaptive pattern
derivation strategies from chapter 5, we obtain two new preconditioning algorithms,
namely the LTL-projection algorithm and the LU-projection algorithm. These
new algorithms determine approximate inverses on adaptively generated matrix-
patterns of the triangular factorization of the coe�cient matrix. Importantly, the
resulting algorithms, LTL-projection and LU-projection are highly parallel, and
have potential for vectorization, and are thus well suited for the implementation on
supercomputers. The numerical results of these methods (as reported in chapter
7) indicate that the adaptive pattern derivation substantially enhances both the
robustness and the e�ciency of these preconditioning methods, as compared with
the results obtained by these methods for �xed a priori matrix-patterns.

6.7.1 The Hermitian Positive De�nite Case

We begin this section with a brief summary of the results presented by Kolotilina
and Yeremin in [46].

The Basic Idea
Let the matrix A 2 IRn�n be symmetric positive de�nite and let A = LTL be
the Cholesky-decomposition of A. Then an approximate inverse P of the upper
triangular matrix L is sought. The basic idea for �nding an approximate inverse P
of the Cholesky-factor L rests on the equation

A = LTL() A L�1|{z}
�P

= LT : (6.39)

For the construction of an approximate inverse P of the upper triangular factor L,
an upper triangular matrix-pattern SP (according to de�nition 4.1 on page 43) for
P must be chosen in advance.

122 Practical Preconditioning Algorithms

Let the columns of this matrix-pattern SP be denoted by Jk for k = 1; : : : ; n. Then,
the entries of the approximate inverse P of the triangular factor L are set by

(AP)ik = LTik (6.40)

for i 2 Jk and k = 1; : : : ; n. Since the matrix LT is lower triangular and an upper
triangular projective approximate inverse P of L is sought, equation (6.40) simpli�es
to

(AP)ik =

(
lkk for i = k;

0 else,
(6.41)

for i 2 Jk and k = 1; : : : ; n, where lkk denotes the k-th diagonal entry of the
Cholesky-factor L.
Thus, except of the scaling factors lkk for k = 1; : : : ; n, the inverse of the Cholesky-
factor L can be approximated on the pattern SP without using any information of
the actual entries in L.
Since the diagonal elements lkk, for k = 1; : : : ; n, of the Cholesky-factor L are
unknown in practice, the equation

�
A ~P
�
ik
=

(
1 for i = k;

0 else,
(6.42)

where i 2 Jk and k = 1; : : : ; n, is utilized for calculating the approximate inverse
~P of the Cholesky-factor L, and then diagonal scaling is applied to the obtained
approximate inverse ~P with the diagonal scaling matrix D determined in such a
way that

(D ~P TA ~PD)ii = 1;

for i = 1; : : : ; n.
Once such an approximate inverse ~PD is computed, preconditioning can be per-
formed by

A 7�! D ~P TA ~PD:

Note that in this situation preconditioning from both sides should be applied, since
then the coe�cient matrix of the preconditioned linear system preserves the sym-
metry and the de�niteness of the original coe�cient matrix A.
Some statements on the approximation of sparse approximate inverses determined
with the above approach to the true inverse are found in [46]. Further, we present
a statement on this matter in corollary 6.8.

6.7 Approximate Inverses of Triangular Factors 123

A severe drawback for the resulting FSAI algorithm proposed in [46] is the necessity
of prescribing a matrix-pattern for the approximate inverse in advance, since in
practice it is not known a priori what this matrix-pattern should be like.
In [24], the numerical properties of the FSAI preconditioner are surveyed. Further,
in [24] the e�ect of reorderings of the coe�cient matrix and some strategies for
selecting appropriate sparsity patterns for the FSAI approach are discussed. In [25],
results of a parallel implementation of the FSAI algorithm are presented.
In the following, we �t the FSAI preconditioning technique into the framework of
projection methods. This provides both the theoretical approximation statements
from chapter 4 and the adaptive pattern derivation techniques from chapter 5 for
this preconditioning approach.

The LTL-projection Method
The formulation of the FSAI preconditioning technique proposed in [46] in terms of
projection methods is straightforward:
Let the matrix A 2 IKn�n be Hermitian positive de�nite, and let A = LHL be the
Cholesky-factorization of A.
We consider equation (6.40) with the notation ~P instead of P , for both real and
complex matrices: �

A ~P
�
ik

= LHik

() uHi

h
A ~P � LH

i
uk = 0

() uHi L
H
h
L ~P � I

i
uk = 0

() uHi L
HD

h
L̂ ~P �D�1

i
uk = 0

() uHi L
HD

h
L̂P � I

i
D�1uk= 0 (6.43)

for i 2 Jk, k = 1; : : : ; n, where the diagonal scaling matrix D is chosen in such a
way that the matrix LHD is unit upper triangular, and the matrix P is de�ned by
P := ~PD. Introducing the scaling matrix D in the above equations corresponds to
switching over from (6.41) to the simpli�ed approach (6.42) in the method proposed
by Kolotilina and Yeremin. With the scaling matrix D in (6.43), the left-hand side
projection matrix ZL = DHL is unit upper triangular, and with that we obtain
the explicit representation of the triangular projective approximate inverse P in the
form given in corollary 6.7.
By (6.43), the method for approximating the inverse of a triangular factor L from
[46] is a projection method for approximating the scaled upper triangular Cholesky-
factor L̂, where the projection matrices are ZL := DHL and ZR := D�1 and the
projection pattern SP = (J1; : : : ; Jn) is upper triangular. In the following, we refer

124 Practical Preconditioning Algorithms

to the projection method (6.43) by LTL-projection method.

By applying corollary 4.5 to the projection method (6.43), we obtain the explicit
representation for the columns of the upper triangular projective approximate in-
verse P :

Corollary 6.7 (Explicit Representation of the Triangular Projective Approximate
Inverse)
Let the matrix A 2 IKn�n be Hermitian positive de�nite and let A = LHL be the
Cholesky-factorization of A. Let the projective approximate inverse P of the upper
triangular matrix L be determined by the projection method (6.43) on the upper
triangular projection pattern (J1; : : : ; Jn). Then this projection method is explicit
according to de�nition 4.3. If the relations k 2 Jk are satis�ed for all k = 1; : : : ; n,
the projection method is practical according to de�nition 4.3. The columns pk of the
projective approximate inverse P have the unique explicit representation

(pk)j =

(�
[A (Jk; Jk)]

�1 (uk) (Jk)
�
i

for j = (Jk)i,

0 else,
(6.44)

for k = 1; : : : ; n.

Proof.

The assertions follow directly from corollary 4.5 applied with L̂ instead of A,
with ZL := DH and with ZR := D�1 by noting that

LHDL̂ = LHL = A

holds for the considered projection method and that the matrix A is Hermitian
positive de�nite.

}

From corollary 4.10, we obtain the following new statements on the quality of the
approximation for the triangular projective approximate inverse P given by the
projection method (6.43) to the true inverse L�1 of the Cholesky-factor L:

Corollary 6.8 (Approximation Properties for the LTL-projection Method)
Let the matrix A 2 IKn�n be Hermitian positive de�nite with the Cholesky-decom-
position A = LHL. We consider the LTL-projection method from (6.43), i.e.
with ZL := DHL, ZR := D�1 and with some upper triangular projection pattern
(J1; : : : ; Jn). Let the columns of the upper triangular projective approximate inverse
P be denoted by pk for k = 1; : : : ; n. Then, the identitiesL̂pk � uk

DHD

= min
w2IKn

Jk

L̂w � uk

DHD

(6.45)

6.7 Approximate Inverses of Triangular Factors 125

and

pk � L̂�1uk

A
= min

w2IKn
Jk

w � L̂�1uk

A

(6.46)

hold for k = 1; : : : ; n.

Proof.

The assertions follow directly from corollary 4.10 applied to the LTL-projec-
tion method, i.e. with DHL instead of ZL and with L̂ instead of A by noting
that for the matrices D, L and L̂ from (6.43) the equivalence

DL̂ = L() L̂�1 = L�1D;

and hence the equalities

DHLL̂�1 = DHD

and

L̂HDHL = A

hold.

}

Equations (6.45) and (6.46) of the above corollary state that the upper triangular
projective approximate inverse P obtained with the LTL-projection method from
corollary 6.43 columnwise minimizes theDHD-norm of the quantities L̂w�uk among
all vectors w with the pattern Jk, and the A-energy norm of the quantities pk�L̂

�1uk,
respectively.

As suggested in [46], the �nal preconditioning matrix for the Hermitian linear system
Ax = b is obtained by applying some column scaling to the projective approximate
inverse P determined with the LTL-projection method from (6.43). Numerous
scaling variants are possible. We con�ne ourselves to present one scaling variant
only:

Lemma 6.9 (The LTL-projection Method Preconditioner), ([46], pp. 47-48)
Let the matrix A 2 IKn�n be Hermitian positive de�nite and let LHL = A be the
Cholesky-decomposition of A. Further, let the matrix P be the triangular projec-
tive approximate inverse obtained with the LTL-projection method from (6.43) on
some triangular projection pattern (J1; : : : ; Jn), let the relation k 2 Jk hold for

126 Practical Preconditioning Algorithms

k = 1; : : : ; n, and let the diagonal of P be zero-free. Then, with the diagonal scaling
matrix C be de�ned by

C :=

0
BB@

1

(uH1 Pu1)
2

. . .
1

(uHn Pun)
2

1
CCA ;

for the triangular approximate inverse de�ned by

PL := PC; (6.47)

the identities ���PH
L APL

�
kk

�� = 1

hold for k = 1; : : : ; n, i.e. the diagonal elements of the preconditioned matrix PH
L APL

have a absolute value of one.

Proof.

The proof for the real case in given in [46]. The following proof for the case
IK 2 fIR; ICg proceeds analogously:
For 1 � k � n arbitrary �xed we have:

�
PH
L APL

�
kk

=
��uHk Puk���1 uHk PHAPuk

=
��uHk Puk���1 (pk (Jk))H A (Jk; Jk) pk (Jk)

since the k-th column pk of P has the pattern Jk

=
��uHk Puk���1 uHk Puk;

by corollary 6.7.

}

In the forthcoming formulation of the LTL-projection algorithm for approximating
the inverse L�1 of an upper triangular Cholesky-factor L, we determine the approxi-
mate inverse PL as de�ned in (6.47). The preconditioned linear system has then the
form

PH
L APLy = PH

L b; PLy = x:

We carry over the general considerations regarding the adaptive pattern derivation
from chapter 5 for the LTL-projection method stated in (6.43).

6.7 Approximate Inverses of Triangular Factors 127

Adaptive Pattern Derivation for the LTL-projection Algorithm
For the FSAI preconditioner, as proposed by Kolotilina and Yeremin in [46], it is
suggested to prescribe a �xed sparsity-pattern for the approximate inverse P � L�1

in advance. For some problems, e.g. for problems with a known structure, guessing
an appropriate pattern may be possible.
In [4] and [11], some numerical results, obtained by selecting the pattern for the
approximate inverse equal to that of the original coe�cient matrix A, are given.
These results indicate that this choice for the pattern of the approximate inverse
PL, at last in general, is not advisable. The numerical results given in chapter 7
indicate that deriving the pattern of the approximate inverse PL adaptively produces
substantially more robust and more e�cient preconditioners.
Since the approach of Kolotilina and Yeremin given in [46] is, by (6.43), a projec-
tion method, the pattern of the triangular approximate inverse can be determined
adaptively with the univariate and the multivariate pattern derivation algorithms
introduced in chapter 5.

The Jk-residuals and the Jk-errors from de�nition 4.6 for the LTL-projection

method from (6.43) are

rJk =
1

�k

�
L̂pk � uk

�
and

eJk =
1

�k

�
pk � L̂�1uk

�
where �k denotes the k-th diagonal entry of the matrix D from (6.43).
Since the scaled Cholesky-factor L̂ as well as its inverse L̂�1 and the matrix D
are unknown in general applications, neither the Jk-residuals nor the Jk-errors are
known explicitly. Thus, the jj:jjDHD-norm of the Jk-residuals cannot be used for the
qualitative control of the pattern derivation. Nevertheless, the pattern derivation
strategies from chapter 5 can be applied with the quantitative stopping criterion
(see pages 67{68 for the stopping-criteria of the pattern derivation), since multiples
of the decrease rates are known.

The following corollary gives the representation of the decrease rates �j from de�ni-
tion (5.1) and of the univariate decrease rates �j from de�nition 5.7 for the LTL-pro-
jection method de�ned by (6.43).

Corollary 6.10 (Decrease Rates for the LTL-projection Method)
Let the matrix A 2 IKn�n be Hermitian positive de�nite, and let A = LHL be the
Cholesky-factorization of A. Let the upper triangular projective approximate inverse
P of the scaled Cholseky factor L̂ be determined with the LTL-projection method
from (6.43) on some upper triangular projection pattern.

128 Practical Preconditioning Algorithms

i) The univariate decrease rates from de�nition 5.7 have the form

�j = j�kj
�2

��uHj Apk��2
jjujjj2A

; (6.48)

for 1 � j < k, j 62 Jk and k = 1; : : : ; n, where pk denotes the k-th column of
P .

ii) The decrease rates from de�nition 5.1 are

�j = j�kj
�2

��uHj Apk��2
jjujjj2A � gHj yj

; (6.49)

for 1 � j < k, j 62 Jk and k = 1; : : : ; n, where pk denotes the k-th column of
P , the vectors gj 2 IK

n
Jk

are de�ned by

gj := A (Jk; j) ;

and the vectors yj 2 IK
n
Jk

are the solutions of the (#Jk �#Jk) linear systems

A (Jk; Jk) yj = gj:

Proof.

We verify assertion i):
By applying lemma 5.8 with L̂ instead of A, with ZL := DHL and with
ZR := D�1 we obtain

�j =

��uHj LHDrJk��2
jjujjj2LHDL̂

for 1 � j < k, j 62 Jk and k = 1; : : : ; n, where pk denotes the k-th column of
P .
We consider the nominator:

uHj L
HDrJk =

1

�k
uHj L

HD
�
L̂pk � uk

�
=
1

�k
uHj Apk � uHj L

Huk;

and since uHj L
Huk = 0 for 1 � j < k, we obtain the nominator in the form

stated in (6.48). The denominator is obtained by noting that LHDL̂ = LHL =
A.
Assertion ii) is obtained analogously by applying theorem 5.5 with L̂ instead
of A, ZL := LHD and with ZR := D�1.

}

6.7 Approximate Inverses of Triangular Factors 129

The decrease rates as shown in the above corollary are unknown, since the diagonal
elements �k of the matrix D from (6.43) are unknown in general applications.
However, for the pattern derivation process it is su�cient to know the multiples
j�kj

2 �j and j�kj
2 �j for k = 1; : : : ; n of the decrease rates. For notational convenience

we de�ne with �j from (6.48)

~�j := j�kj
2 �j (6.50)

and with �j from (6.49)

~�j := j�kj
2 �j: (6.51)

The LTL-projection Algorithm
We summarize the above considerations by giving a pseudo-code formulation of the
LTL-projection algorithm (algorithm 15) for calculating the approximate inverse
on an upper triangular Cholesky-factor.
The input data and parameters for the LTL-projection algorithm (algorithm 15)
are the same as for algorithm 8 (see pages 67{69), except of the parameter �k, which
is not needed since only the quantitative stopping criterion can be applied.
Note that the initial matrix-pattern (J0

1 ; : : : ; J
0
n) { apart from being upper triangu-

lar { must, as stated by corollary 6.7, satisfy k 2 J0
k for k = 1; : : : ; n such that the

LTL-projection method is practical according to de�nition 4.3.
On output the LTL-projection algorithm (algorithm 15) furnishes the upper tri-
angular approximate inverse PL of the Cholesky-factor L, where A = LHL is the
Cholesky-factorization of the Hermitian positive de�nite matrix A.

In each step of the k-loop in step (1) of the LTL-projection algorithm (algorithm
15), one column of the projective approximate inverse PL as de�ned in (6.47) on
the adaptively derived pattern is determined. In step (1a) of the LTL-projec-

tion algorithm, the k-th column of the projective approximate inverse P given by
the LTL-projection method on the initial column-pattern is calculated. In the
l-loop in step (1b) the pattern adaption is made. This begins with controlling
the quantitative stopping criterion in steps (1(b)i) and (1(b)ii). If the stopping
criterion is not satis�ed, the set LJk , which contains the positive candidate indices,
is determined in step (1(b)iii). In step (1(b)iv), the scaled decrease rates ~�j from
(6.50) are calculated for all indices j 2 LJk . The largest among these decrease
rates are determined in step (1(b)v) and the corresponding indices are added to the
current column-pattern in step (1(b)vi). In step (1(b)vii), the k-th column plk of the
projective approximate inverse P l on the augmented column-pattern is calculated.
When the pattern derivation for the current column is terminated, the k-th column
PLuk of the projective approximate inverse PL de�ned in (6.47) is obtained by scaling
the corresponding �nal column plk of P

L.

130 Practical Preconditioning Algorithms

1. For k = 1; : : : ; n

(a) Compute the k-th column p0k of the projective approximate inverse P 0 of
the LTL-projection method (6.43) on the initial column-pattern J0

k by
applying corollary 6.7

(b) For l = 1; : : : ; ms

i. mt := min
�
mfps;mf �

�
#J l�1k

��
ii. If (mt == 0) Exit l-loop

iii. Determine the set LJl�1
k

de�ned by

LJl�1k
:=
n
j 62 J l�1k j 1 � j < k ;

�
Apl�1k

�
j
6= 0
o

iv. Determine the decrease rates ~�j from (6.50) for all j 2 LJl�1
k

v. Determine themt indices j1; : : : ; jmt according to the largest decrease
rates ~�j

vi. J lk := J l�1k [(j1; : : : ; jmt)

vii. Compute the k-th column plk of the projective approximate inverse
P l of the LTL-projection method (6.43) on the column-pattern J lk
by applying corollary 6.7

(c) Obtain the k-th column PLuk of the triangular approximate inverse PL
by

PLuk :=
�
uHk p

l
k

��1=2
plk

Algorithm 15: LTL-projection

Importantly, since the k-loop in step (1) of the LTL-projection algorithm can be
done in parallel, the LTL-projection algorithm is well-suited for parallel computers.

Computational Complexity of the LTL-projection Algorithm
The steps that contribute to the computational complexity are:

steps (1a), (1(b)vii) Here, the columns plk of the projective approximate inverse P
are calculated on the corresponding column-patterns by invoking algorithm 7.
By lemma 6.7, this involves the solution of linear systems with the coe�cient
matrix A (Jk; Jk) for 1 � l � ms and for k = 1; : : : ; n. Step (1a) is done only
once, whereas step (1(b)vii) is done at most ms times.

6.7 Approximate Inverses of Triangular Factors 131

step (1(b)iii) For determining the set LJl�1
k

, the
�
k �#J lk � 1

�
sparse dot-products

uHi A~p
l�1
k are computed.

step (1(b)iv) In this step, the scaled decrease rates ~�j are calculated according to
(6.50). This step costs only one oating-point operation.
Alternatively, the scaled decrease rates ~�j can be utilzed. In this case, for
each index j 2 LJk a supplemental linear system with the coe�cient matrix
A (Jk; Jk) must be solved and a sparse dot-product must be formed. Since
this dot-product involves the vectors A (Jk; j) for each j 2 LJk , the resulting
communication overhead on shared memory computers may be prohibitively
high.

step (1c) For calculating the column PLuk of the projective approximate inverse
PL, the �nally obtained columns plk of P are scaled.

Although not covered by the theoretical results deduced in this section, we apply the
LTL-projection algorithm in our numerical tests (see chapter 7) to matrices which
are symmetric, but not necessarily positive de�nite. The results of these tests, given
in chapter 7, indicate that the LTL-projection algorithm is not only superior to
the original FSAI approach from [46], but also competative to the state-of-the-art
preconditioning methods for symmetric linear systems.

6.7.2 The Non-Hermitian Case

In this section, we consider the FSAI preconditioning technique proposed by Koloti-
lina and Yeremin in [46] for non-symmetric linear systems. This method is the
generalization of the method discussed in section 6.7.1 to the non-symmetric case.
For a non-symmetric matrix A 2 IRn�n, which has the LU -decomposition A = LU ,
the inverses L�1 and U�1 of the triangular factors L and U are approximated on
�xed matrix-patterns.
We classify the FSAI preconditioning technique for non-symmetric matrices in terms
of projection methods, and thereby provide the approximation statements from sec-
tion 4.2 and the pattern adaption strategies from chapter 5 for this approach. In
particular, by combining the FSAI approach from [46] with the adaptive pattern
derivation strategies developed in chapter 5, we obtain a new preconditioning al-
gorithm { the LU-projection algorithm, which adaptively determines triangular
approximate inverses, and their sparsity patterns, of the LU -decomposition A = LU
of the matrix A.

The Basic Idea
In analogy to (6.40), the inverses PL of L and PU of U are approximated by consid-

132 Practical Preconditioning Algorithms

ering the following equations:

A = LU () A U�1|{z}
�PU

= L() L�1|{z}
�PL

A = U: (6.52)

For the construction of PL and PU , a lower triangular matrix-pattern
�
~I1; : : : ; ~In

�
for

PL and an upper triangular matrix-pattern (J1; : : : ; Jn) for PU must be prescribed
in advance. The entries of the approximate inverses PL and PU are computed by

(PLA)ik =

(
ukk i = k;

0 else;
(6.53)

and by

(APU)lm =

(
1 l = m;

0 else;
(6.54)

for i 2 ~Ik, l 2 Jm, and k;m = 1; : : : ; n, where ukk denotes the k-th diagonal entry
of the matrix U . Note that { in analogy to the Hermitian positive de�nite case (see
equation (6.41)) { in the above equations the triangularity of the matrices L and U
is exploited.
The approximate inverse PU can directly be calculated by (6.54) on the prescribed
matrix-pattern.
In general applications, the diagonal entries ukk of the upper triangular matrix U are
unknown. Thus, for computing the approximate inverse PL of the lower triangular
matrix L instead of equation (6.53), the simpli�ed approach

�
~PLA

�
ik
=

(
1 for i = k;

0 else;
(6.55)

for i 2 ~Ik and k = 1; : : : ; n; is applied, and some diagonal scaling is applied to the
preconditioned linear system PLAPUy = PLb; PUy = x, i.e. the preconditioned
linear system

D1
~PLAPUD2y = D1

~PLb; PUD2y = x (6.56)

is considered for the iterative solution process, where D1; D2 are some diagonal
scaling matrices.

The LU-projection Method
We give the formulation of the above preconditioning technique in terms of projec-
tion methods for both real and complex linear systems:

6.7 Approximate Inverses of Triangular Factors 133

Let the matrix-patterns (I1; : : : ; In) and (J1; : : : ; Jn) be upper triangular. We de-
duce the projection method formulation of the approach proposed by Kolotilina and
Yeremin by considering equations (6.53) and (6.54).
Equation (6.54) is equivalent to

uHl [APU � L] um = uHl L [UPU � I]um = 0; (6.57)

for l 2 Jm and m = 1; : : : ; n, and equation (6.53) is equivalent to

uHi

h
AH ~PH

L � UH
i
uk = 0

() uHi U
H
h
LH ~PH

L � I
i
uk = 0

() uHi U
HD

h
L̂H ~PH

L �D�1
i
uk = 0

() uHi U
HD

h
L̂HPH

L � I
i
D�1uk = 0; (6.58)

for i 2 Ik and k = 1; : : : ; n, where the diagonal scaling matrix D is chosen in such a
way that UHD is unit upper triangular. We de�ne the matrix L̂H by L̂ := D�1LH

and and PH
L by PH

L := ~PH
L D. The scaling matrixD is used in (6.58), because for the

explicit representation of the triangular projective approximate inverse PH
L , as given

by corollary 6.11, it is necessary that the left-hand side projection matrix is unit up-
per triangular. Introducing the scaling matrix D in (6.58) corresponds to switching
over from (6.53) to the simpli�ed approach (6.55) in the approach of Kolotilina and
Yeremin. Therefore, the projective approximate inverse PL determined by the pro-
jection method (6.58) approximates not the matrix L itself, but the scaled matrix
L̂ = LD�H . Thus, as porposed by Kolotilina and Yeremin in (6.56), some scaling
should by applied to the preconditioned linear system (this matter is considered on
page 139).
Note that the projection method (6.58) actually is the transposed notation for a left-
hand side projection method, i.e. the column-patterns Ik actually are the patterns
of the rows of the triangular projective approximate inverse PL.

Altogether, by equations (6.57) and (6.58) the methods for approximating the in-
verses of the triangular factors L and U given in [46] are projection methods ac-
cording to de�nition 4.2 with ZL := LH and ZR := I on the projection pattern
(J1; : : : ; Jn) for PU , and with ZL := DHU and ZR := D�1 on the projection pattern
(I1; : : : ; In) for P

H
L .

We apply corollary 4.5 to the projection methods (6.57) and (6.58) in order to obtain
the explicit representation of the upper triangular projective approximate inverses
PU and PH

L :

134 Practical Preconditioning Algorithms

Corollary 6.11 (Explicit Representation of the Triangular Projective Approxi-
mate Inverses PH

L and PU)
Let the matrix A 2 IKn�n be non-singular, and let A = LU be the LU-decomposition
of A.

i) Let the projective approximate inverse PU of U be determined by the projection
method (6.57), i.e. with the projection matrices ZL := LH and ZR := I on the
upper triangular projection pattern (J1; : : : ; Jn). If this projection method is
Jm-explicit according to de�nition 4.3 for some m 2 IN , then the m-th column
PUum of PU has the form

(PUum)j =

(�
[A (Jm; Jm)]

�1 um (Jm)
�
i

for j = (Jm)i;

0 else:
(6.59)

Further, if this projection method is explicit, it is practical according to de�-
nition 4.3 if the relations m 2 Jm hold for m = 1; : : : ; n.

ii) Let the projective approximate inverse PH
L of LH be determined by the pro-

jection method (6.58), i.e. with the projection matrices ZL := DHU and
ZR := D�1 on the upper triangular projection pattern (I1; : : : ; In). If this
projection method is Ik-explicit according to de�nition 4.3, then the k-column
PH
L uk of PL has the form

�
PH
L uk

�
j
=

(�
[A (Ik; Ik)]

�H uk (Ik)
�
l

for j = (Ik)l;

0 else:
(6.60)

This projection method is practical according to de�nition 4.3, if it is explicit
and if the relations k 2 Ik hold for k = 1; : : : ; n.

Proof.

Assertion i) follows directly from corollary 4.5 applied to the projection method
(6.57), i.e. with U instead of A, ZL := LH and with ZR := I, by noting that
(Lum) (Jm) = um (Jm) since the matrix L is unit lower triangular.
Assertion ii) follows directly from corollary 4.5 applied to the projection
method (6.58), i.e. with L̂H instead of A, ZL := DHU and with ZR := D�1,
by noting that UHDL̂ = UHLH = AH and that

�
UHDuk

�
(Ik) = uk (Ik) since

the matrix UHD is unit lower triangular.

}

6.7 Approximate Inverses of Triangular Factors 135

By applying corollary 4.10 to the projection methods (6.57) and (6.58), we obtain
new approximation properties for the triangular projective approximate inverses
P T
L and PU to the exact inverses L̂�1 and U�1. Note that in the following corollary

only the positive real case from corollary 4.10 is stated. The case that LHU�1 or
DHUL̂�H is Hermitian positive de�nite is irrelevant, since this would imply that
the matrix A is Hermitian positive de�nite as well. In this case, the considerations
regarding the Cholesky-factorization of A presented in section 6.7.1 apply. Thus,
in the remainder of this section we consider the situation IK = IR and A 2 IRn�n

only. Further, we consider the univariate decrease rates �j from de�nition 5.7 for
the adaptive pattern derivation only.

Corollary 6.12 (Approximation Properties for PL and PU)
Let the matrix A 2 IKn�n be non-singular, and let A = LU be the LU-decomposition
of A.

i) Let the projective approximate inverse PU of U be determined by the projection
method (6.57), i.e. with the projection matrices ZL := LT and ZR := I on the
upper triangular projection pattern (J1; : : : ; Jn), and let this projection method
be Jm-explicit according to de�nition 4.3 for some 1 � m � n. Let the matrix
LTU�1 be positive real, let LTU�1 =M +R, where M denotes the symmetric
and R denotes the skew-symmetric part of LTU�1. Let further � (R) denote
the spectral radius of R and let �m (M) denote the minimal eigenvalue of M .
Then the inequalities

UPUum � um

LTU�1

�

s
1 +

�2 (R)

�2m (M)
min

w2IRnJm

Uw � um

LTU�1

(6.61)

and

PUum � U�1um

AT
�

s
1 +

�2 (R)

�2m (M)
min

w2IRnJm

w � U�1um

AT

(6.62)

hold.

ii) Let the projective approximate inverse P T
L of L̂T be determined by the pro-

jection method (6.58), i.e. with the projection matrices ZL := DTU and
ZR := D�1 on the upper triangular projection pattern (I1; : : : ; In), and let this
projection method be Ik-explicit according to de�nition 4.3 for some 1 � k � n.
Let DTUL̂�T be positive real, let DTUL̂�T = M + R, where M denotes the
symmetric and R denotes the skew-symmetric part of DTUL̂�T . Let further

136 Practical Preconditioning Algorithms

� (R) denote the spectral radius of R and let �m (M) denote the minimal eigen-
value of M . Then the inequalities

L̂TP T
l uk � uk

DTUL̂�T

�

s
1 +

�2 (R)

�2m (M)
min
w2IRnIk

L̂Tw � uk

DTUL̂�T

(6.63)

and

P T
L uk � L̂�Tuk

A
�

s
1 +

�2 (R)

�2m (M)
min
w2IRnIk

w � L̂�Tuk

A

(6.64)

hold.

Proof.

The assertions follow directly from applying corollary 4.10 to the projection
methods (6.57) and (6.58).

}

Adaptive Pattern Derivation for the Approximate Inverses P T
L and PU

By the following considerations we carry over the pattern adaption strategies, de-
duced in chapter 5, to the projection methods (6.57) and (6.58).

The Jm-residuals r
U
Jm and the Jm-errors e

U
Jm from de�nition 4.6 for the projection

method (6.57) have the form

rUJm = UPUum � um (6.65)

and

eUJm = PUum � U�1um

for m = 1; : : : ; n, and the Ik-residuals r
L
Ik

and the Ik-errors e
L
Ik

for the projection
method (6.58) are

rLIk =
1

�k

�
L̂TP T

L uk � uk

�
(6.66)

and

eLIk =
1

�k

�
P T
L uk � L̂�Tuk

�

6.7 Approximate Inverses of Triangular Factors 137

for k = 1; : : : ; n, where �k denotes the k-th diagonal entry of the matrix D from
(6.58).
Since the matrices L̂ and U are unknown in practice, the rUJk-residuals and the
rLIk-residuals as well as their jj:jjLTU�1-norms and jj:jj

DTUL̂�T
-norms respectively,

are unknown in general. Therefore, the adaptive pattern derivation process for
the projection methods (6.57) and (6.58) cannot be controlled by the qualitative
stopping criterion (see the discussion on pages 67{68 on that matter). Nevertheless,
the pattern derivation strategies, as put forth in chapter 5, can be applied with the
qualitative stopping criterion.

The following corollary gives explicit representations for the univariate decrease
rates from de�nition 5.7 for the projection methods (6.57) and (6.58):

Corollary 6.13 (Univariate Decrease Rates for P T
L and PU)

Let the non-singular matrix A 2 IRn�n have the LU-decomposition A = LU .

i) We consider the projection method (6.57). Let this projection method be Jm-
explicit according to de�nition 4.3 for some 1 � m � n. Further, let the
matrix LTU�1 be positive real and let M denote the symmetric part of LTU�1.
Then the univariate decrease rates from de�nition 5.7 for the projection method
(6.57) have the form

�j =

�
uTj U

TMrUJm
�2uj2A (6.67)

for all elements j of the candidate set CJm from de�nition 5.7, where rUJm
denotes the Jm-residuals from (6.65).

ii) We consider the projection method (6.58). Let this projection method be Ik-
explicit according to de�nition 4.3 for some 1 � k � n. Let the matrix
DTUL̂�T be positive real and let M denote the symmetric part of DTUL̂�T .
Then the univariate decrease rates from de�nition 5.7 for the projection method
(6.58) have the form

�j =

�
uTj L̂MrLIk

�2
uj2A (6.68)

for all elements j of the candidate set CIk from de�nition 5.7, where rLIk denotes
the Ik-residuals from (6.66).

138 Practical Preconditioning Algorithms

Proof.

Assertion i) follows directly by applying corollary 5.8 to the projection method
(6.57), i.e. with U instead of A, with ZL := LT and with ZR := I.
Assertion ii) follows directly from applying corollary 5.8 to the projection
method (6.58), i.e. with L̂T instead of A, with ZL := DTU , with ZR := D�1

and by noting that uj2AT =
uj2A :

}

Approximate Univariate Decrease Rates
The following considerations show that the nominators of the univariate decrease
rates as shown in the above corollary are unknown in general applications:
First, we consider the nominator of equation (6.67), i.e. the representation of the
univariate decrease rates for the projection method (6.57). For this projection
method the matrix M de�ned in assertion i) of corollary 6.13 is

M =
1

2

�
LTU�1 + U�TL

�
:

Hence, the quantity in the brackets of the nominator of the univariate decrease rates
in (6.67) is

uTj U
TMrUJm =

1

2
uTj U

T
�
LTU�1 + U�TL

�
(UPUum � um)

=
1

2

�
uTj
�
ATPU + APU

�
um| {z }

known

� uTj A
TU�1um| {z }

unknown

� uTj Lum| {z }
=0 for j<m

�
:

Since the exact univariate decrease rates are unknown, they must be estimated in
practical applications. In analogy to the discussion on pages 92{93, we propose the
following two estimates for the univariate decrease rates for the projection method
(6.57):

~�1j :=

�
uTj
�
ATPU + APU

�
um
�2uj2A (6.69)

and

~�2j :=

�
uTj APUum

�2uj2A ; (6.70)

6.7 Approximate Inverses of Triangular Factors 139

for 1 � j < m with j 2 CJm and for m such that the projection method (6.57)
is Jm-explicit according to de�nition 4.3. The estimates ~�1j are obtained by simply

neglecting the unknown addend, the estimates ~�2j are obtained by substituting the
matrix U�1 by PU in the unknown term.

We consider the nominator of equation (6.68), i.e. the representation of the univari-
ate decrease rates for the projection method (6.58):
The matrix M de�ned in point ii) of corollary 6.13 has the form

M =
1

2

�
DTUL̂�T + L̂�1UTD

�
:

Thus, for the quantity in the brackets of the nominator of the univariate decrease
rates in (6.68) we have

uTj LMrLIk =
1

2�k
uTj L̂

�
DTUL̂�T + L̂�1UTD

��
L̂TP T

L uk � uk

�
=

1

2�k

�
uTj
�
AP T

L + ATP T
L

�
uk � uTj AL̂

�Tuk � uTj U
TDuk

�
=

1

2�k

�
uTj
�
AP T

L + ATP T
L

�
uk| {z }

known

� uTj AL̂
�Tuk| {z }

unknown

� uTj U
TDuk| {z }

=0 for j<k

�
:

Hence, the exact univariate decrease rates are unknown in general. In analogy to the
discussion on pages 92{93, we propose the following two estimates for the univariate
decrease rates for the projection method (6.58):

~�3j :=

�
uTj
�
AP T

L + ATP T
L

�
uk
�2uj2A (6.71)

and

~�4j :=

�
uTj A

TP T
L uk

�2uj2A ; (6.72)

for 1 � j < k with j 2 CIk and for k such that the projection method (6.58) is Ik-
explicit. The estimates ~�3j are obtained by simply neglecting the unknown addend,

and the estimates ~�4j are obtained by substituting the matrix L̂�T by P T
L in the

unknown term.

Scaling the Preconditioned Linear System
As suggested in [46], once the triangular approximate inverses PL of L̂ and PU of U
are computed by the projection methods (6.57) and (6.58), some scaling should be

140 Practical Preconditioning Algorithms

applied to the preconditioned linear system, i.e. instead of applying the iterative
solver to the preconditioned system

PLAPUy = PLb; PUy = x;

the iterative solver should by applied to the linear system

D1PLAPUD2y = D1PLb; PUD2y = x;

where D1 and D2 denote some diagonal matrices. Theoretically, any scaling variant
is possible, e.g. by de�ning D2 := I and

D1 :=

0
B@
�
uT1 PUu1

��1
. . . �

uTnPUun
��1
1
CA ; (6.73)

or by choosing D1 and D2 in such a way that

(PLAPU)kk = 1 (6.74)

for k = 1; : : : ; n. We consider the latter scaling variant in greater detail:
Theoretically, 2n sparse dot-products are necessary to calculate the scaling factors
(PLAPU)

�1
kk directly. The computational complexity of this strategy is prohibitively

high in practical applications. The following lemma given in [46] considers a remedy
for this problem for certain cases:

Lemma 6.14 ([46], p. 49)
Let the non-singular matrix A have the LU-decomposition A = LU . Let the projec-
tive approximate inverses P T

L and PU be determined by the projection methods (6.57)
and (6.58) respectively, on the upper triangular projection patterns (J1; : : : ; Jn) and
(I1; : : : ; In). Further, let these projection methods be explicit according to de�nition
4.3. Then the identities

(PLAPU)ii =

(
(PU)ii if Ii � Ji

(PL)ii if Ji � Ii
(6.75)

hold for i = 1; : : : ; n.
Thus, if Ii = Ji for i = 1; : : : ; n, then

(PLAPU)ii = (PL)ii = (PU)ii (6.76)

holds for i = 1; : : : ; n.

6.7 Approximate Inverses of Triangular Factors 141

If the matrix-patterns of both PL and PU are determined adaptively in general
practical applications, the above lemma possibly is not applicable, because none of
the relations between the projection patterns of PL and PU from (6.75) is satis�ed.
As a variant of determining the matrix-patterns of both triangular projective ap-
proximate inverses P T

L and PU adaptively, only for one of these matrices the pattern
is determined adaptively, while the other matrix is calculated without adaptive pat-
tern derivation on the projection pattern of the �rst matrix. This strategy reduces
the overall CPU-time, but the quality of the approximation of the latter matrix
{ in the sense of corollary 6.12 { possibly is diminished. Hence, for this strategy
the convergence of the preconditioned iteration might be insu�ciently accelerated.
An advantage of this approach is, that lemma 6.14 can be applied for scaling the
preconditioned linear system.

The LU-projection Algorithm
In algorithm 16, we give the pseudo-code of the LU-projection algorithm for com-
puting the approximate inverses PL of L̂ and PU of U { where A = LU is the
LU -decomposition of A { according to the projection methods (6.57) and (6.58) on
adaptively derived projection patterns. Further, a scaling matrix D is determined.
The input data and the parameters for the LU-projection algorithm (algorithm
16) are the matrix A and two sets { one for the projection method (6.57) and
one for the projection method (6.58) { of the parameters that control the pattern
derivation process as explained for algorithm 8 (see pages 67{69). Since the Jm-
residuals rUJm and the Ik-residuals r

L
Ik
respectively, as stated in (6.65) and (6.66), are

unknown in practical applications, only the quantitative stopping criterion for the
pattern derivation process can be applied. For the parameters ms; mt, and mfps
we use the subscripts L and U . The parameters for the projection method (6.57)
are those with the U subscripts, and the parameters with the L subscripts are for
the projection method (6.58).
Further, two initial patterns (J0

1 ; : : : ; J
0
n) (for the projection method (6.57)) and

(I01 ; : : : ; I
0
n) (for the projection method (6.58)) must be supplied. Note that for

practical applications both initial patterns must contain the main diagonal, i.e.
m 2 J0

m and k 2 I0k must be satis�ed for m; k = 1; : : : ; n, since then by corollary
6.11 both projection methods, if the are explicit, are already practical according to
de�nition 4.3.
On output, the two triangular projective approximate inverses PU and PL deter-
mined with the projection methods (6.57) and (6.58) on adaptively derived projec-
tion patterns and the scaling matrix D are obtained.

After calculating the projective approximate inverses PL, PU and the scaling ma-
trix D1 by the LU-projection algorithm (algorithm 16), the preconditioned linear
system

D1PLAPUy = D1PLb; PUy = x

142 Practical Preconditioning Algorithms

1. For m = 1; : : : ; n

(a) Compute the column p0m of the triangular projective approximate inverse
P 0
U on the initial column-pattern J0

m by lemma 6.11

(b) For l = 1; : : : ; msU

i. mtU := min
�
mfpsU ; mfU �

�
#J l�1m

��
ii. If (mtU == 0) Exit l-loop

iii. Determine the set LU
Jl�1m

de�ned by

LU
Jl�1m

:=
�
j 62 J l�1m j 1 � j < m; uTj APUum 6= 0

	

iv. Determine the decrease rates ~�2j from (6.70) for all j 2 LU
J l�1m

v. Determine the mtU indices j1; : : : ; jmtU according to the largest de-
crease rates ~�2j

vi. J lm := J l�1m [(j1; : : : ; jmtU)

vii. Compute the m-th column of the triangular projective approximate
inverse P l

U on the column-pattern J lm by lemma 6.11

2. For k = 1; : : : ; n

(a) Compute the k-th column (p0k)
T
of the triangular projective approximate

inverse (P 0
L)

T
on the initial column-pattern I0k by lemma 6.11

(b) For l = 1; : : : ; msL

i. mtL := min
�
mfpsL; mfL �

�
#I l�1k

��
ii. If (mtL == 0) Exit l-loop

iii. Determine the set LL
Il�1k

de�ned by

LL
Il�1
k

:=
�
j 62 I l�1k j 1 � j < k; uTj A

TP T
L uk 6= 0

	

iv. Determine the decrease rates ~�4j from (6.72) for all j 2 LL
Il�1
k

v. Determine the mtL indices j1; : : : ; jmtU according to the largest de-
crease rates ~�4j

vi. I lk := I l�1k [(j1; : : : ; jmtU)

vii. Compute the k-th column (p0k)
T
of the triangular projective approxi-

mate inverse (P 0
L)

T
on the column-pattern I lk by lemma 6.11

3. Determine the scaling matrix D1 according to (6.73)

Algorithm 16: LU-projection

6.7 Approximate Inverses of Triangular Factors 143

is handed over to the iterative solver. Alternatively, the one-sided preconditionings

APUD1PLy = b; PUD1PLy = x

or
PUD1PLAx = PUD1PLb;

can be considered.

Alternatively to the estimates ~�2j in step (1(b)iv) of the LU-projection algorithm

(algorithm 16), the estimates ~�1j from (6.69) may be applied. In this case the sets
LU
Jl�1m

from step (1(b)iii) are de�ned by

LU
Jl�1m

:=
�
j 62 J l�1m j 1 � j < m; uTj

�
ATPU + APU

�
um 6= 0

	
:

Analogously, instead of the estimates ~�4j in step (2(b)iv) of the LU-projection

algorithm (algorithm 16), the estimates ~�3j can be utilized. The corresponding sets
LL
Il�1
k

is step (2(b)iii) have then the form

LL
Il�1
k

:=
�
62 I l�1k j 1 � j < k; uTj

�
AP T

L + ATP T
L

�
uk 6= 0

	
:

Instead of the scaling in (3), any other scaling can be applied.

The LU-projection algorithm consists of three major sections:
In the m-loop in step (1) the projective approximate inverse PU from projection
method (6.57) is determined.
The projective approximate inverse P T

L from projection method (6.58) is determined
in the k-loop in step (2).
In step (3) the scaling matrix D is determined.

Because steps (1) and (2) of the LU-projection algorithm correspond to algorithm
9 with the quantitative stopping criterion for the projection methods (6.57) and
(6.58), the LU-projection algorithm is inherently parallel, and thus well-suited for
today's supercomputers.

Computational Complexity of the LU-projection Algorithm
For an explanation of the algorithmic ow and of the general computational com-
plexity of the LU-projection algorithm (algorithm 16) the remarks given to algo-
rithm 9 on pages 73{75 apply seperately to steps (1) and (2).
We consider the computational cost of the estimates for the decrease rates ~�1j from

(6.69) and ~�2j from (6.70) in greater detail. For the estimates ~�3j from (6.71) and ~�4j
from (6.72) analogous statements hold.

144 Practical Preconditioning Algorithms

step (1(b)iii) If the estimates ~�2j are utilized for the pattern derivation, for deter-
mining the sets LU

J l�1m
the sparse dot-product uTj APUum needs to be formed

for each j 62 J l�1m and for l = 0; : : : ; msU .
If the estimates ~�1j are considered for the pattern derivation, additionally the
sparse dot-product uTj A

TPUum must be calculated for each j 62 J l�1m and for
l = 1; : : : ; msU . The sparsity of these dot-products depends essentially on the
number of non-zeros in the corresponding columns PUum of PU .
This step of the LU-projection algorithm may be a problem in a distributed
computing environment, since forming these dot-products requires arbitrary
access to the columns of the matrix A, and, if the ~�1j are used, access to both
arbitrary columns and rows of the matrix A. The resulting amount of inter-
processor communication may diminish the scalability of the LU-projection
algorithm.

step (1(b)iv) Since the nominators of the estimates ~�1j or
~�2j are already known from

step (1(b)iii), the steps (1(b)iv) are almost cost-free. Only two oating-point
operations are necessary for each j 62 Jk and for l = 0; : : : ; msU .

Altogether, in this section we have �t the two FSAI preconditioning approaches
given in [46] into the theoretical framework of projection methods. Importantly, by
combining these approaches with the adaptive pattern derivation strategies devel-
oped in chapter 5, we obtain two new inherently parallel preconditioning algorithms,
the LTL-projection algorithm and the LU-projection algorithm. These new al-
gorithms are superior to the original FSAI approaches given in [46], and, as the
results of the numerical tests presented in chapter 7 indicate, are competative to
the state-of-the-art preconditioning techniques.

6.8 Summary and further Methods

In this section, for providing an overall view of the considered methods, we give a
brief summary of the preconditioning techniques considered in this chapter. Further,
we briey sketch further preconditioning techniques to complete the picture.

In table 1, we draw up the preconditioning techniques considered in sections 6.1{6.7.
In the column designated by "approximates" in table 1, we register which matrix
is approximated by the corresponding preconditioning technique. The column des-
ignated by "principle" gives brief information on the construction principle of the
considered preconditioning techiques. For the projection methods listed in table
1, the projection matrices ZL and ZR according to de�nition 4.2 and the possible
decrease rates for the pattern derivation are given. Ample considerations on the
methods contained in table 1 are found in the corresponding subsections. Except of

6.8 Summary and further Methods 145

the incomplete decomposition techniques (ILU and IC), all methods stated in table
1 are e�ciently parallelizable.

method approximates principle section

Projection method with ZL := I and ZR := I,
or ZR := AH on a �xed diagonal projection
pattern

Normalization A�1 6.1

Projection method with ZL := A and ZR := I
on a adaptively determined projection pattern,
decrease rates: �j, �j

SPAI A�1 6.2

Projection method with ZL := ZR := I on an
adaptively determined projection pattern,
decrease rates: �j, �j and estimates

Plain
A�1 6.3

projection

Incomplete decomposition A = LU + E,
various strategies for �xed or adaptive patterns

ILU L, U 6.4

Incomplete decomposition A = LTL+ E,
various strategies for �xed or adaptive patterns

IC L 6.5

Incomplete approximation of A = LDU , based
on calculating two sets of A-biconjugate
vectors, adaptive pattern

AINV L�1, U�1, D 6.6

Projection method with ZL := DHL and
ZR := D�1 on adaptive projection pattern,
decr. rates: estimates of �j, �j

LTL-projection L�1 6.7.1

Projection method with ZL := DHL and
ZR := D�1 on a �xed a priori projection
pattern

FSAI L�1 6.7.1
(symmetric)

Projection methods with ZL := LH and
ZR := I for PU and with ZL := DHU and
ZR := D�1 on adaptive projection patterns,
decr. rates: estimates of �j

LU-projection L�1; U�1 6.7.2

Projection methods with ZL := LH and
ZR := I for PU and with ZL := DHU and
ZR := D�1 on �xed a priori projection patterns

FSAI 6.7.2
(non-symmetric)

L�1; U�1

Table 1: The preconditioning techniques considered in sections 6.1{6.7

146 Practical Preconditioning Algorithms

In the following, for the sake of completeness, we briey sketch further precondi-
tioning techniques.

Incomplete QR-decomposition
Analogously to the incomplete LU -decomposition, an incompleteQR-decomposition
can be considered:

A = QR + E; (6.77)

where Q is orthonormal and R is upper triangular. The entries eij of the error-
matrix E are given by

eij =

(
0 for (i; j) 2 S;

aij �
Pn

l=1 qilrlj for (i; j) =2 S;

where aij, qij and rij denote the entries of the matrices A, Q and R, and S denotes
an either prescribed or adaptively determined pattern. By neglecting the matrix E
and by viewing the matrix QR as an approximation to A, preconditioning can by
performed with

PL = R�1R�TAT ; PR = I

for left side preconditioning, with

PL = I; PR = R�1R�TAT

for right-hand side preconditioning, or with

PL = R�TAT ; PR = R�1

for two-sided preconditioning. In each iteration step with the preconditioned system,
two triangular systems have to be solved: one with R and one with RT . Thus, this
preconditioning su�ers from similar sequential bottlenecks as the ILU approach.
As a modi�cation of the above IQR-approach, a decomposition of the form

AR = Q+ E (6.78)

can be computed. This decomposition leads to the following preconditioning matri-
ces:

PL = RRTAT ; PR = I

6.8 Summary and further Methods 147

for right-hand side,

PL = I; PR = RRTAT

for left-hand side, and

PL = RTAT ; PR = R

for two-sided preconditioning.
The advantage of this approach is that during the iterative solution no triangular
systems need to be solved. Instead of this, three matrix-vector products are per-
formed in each iteration step. Thus, once the matrix R is computed, this approach
is e�ciently vectorizable and parallelizable. For investigations on the properties of
IQR methods, we refer e.g. to [8], [36], [56] and [59].

Polynomial Preconditioners
Another family of preconditioning techniques, the "Polynomial Preconditioners"
rests on the approach

P :=

jX
i=1

�iA
i + �0I; (6.79)

where �i 2 IR for i = 1; : : : ; n. Various strategies for choosing j and �i for i =
1; : : : ; j exist, see e.g. [26] and [41]. For instance, j and �i can be chosen in order
to approximate the Neumann series: If � (I � A) < 1, then

A�1 =
1X
i=1

(I � A)i + I:

Another possibility is to choose j and �i in such a way that

AP � I =

jX
i=0

�iA
i+1 � I

is minimized. Polynomial preconditioners can be vectorized and parallelized, since
they basically involve matrix-vector multiplications. However, at least in tendency,
the e�ciency and the robustness of polynomial preconditioners is inferior to the
results obtained by other preconditioning techniques.

Incomplete Gauss-Jordan
With the Gauss-Jordan algorithm, the inverse A�1 of a matrix A is calculated via

148 Practical Preconditioning Algorithms

a sequence of intermediate matrices:

A(0) := A;

P (0) := I;

A(i) := C(i)A(i�1);

P (i) := C(i)P (i�1);

for i = 1; : : : ; n, where the matrices C(i) are chosen in such a way that the i-th
column of the matrix A(i) is a multiple of the i-th unit-vector. The resulting matrix
A(n) is a diagonal matrix, and the relations

A(n) := C(n) � � � � � C(1)A;

P (n) := C(n) � � � � � C(1);

A�1 := A(n)�1P (n);

hold. With the incomplete Gauss-Jordan algorithm, a sequence of matrices P (i) and
A(i) with a certain sparsity pattern is determined:

A(0) := A;

P (0) := I;

C(i) := I +

I �

1

a
(i�1)
ii

A(i�1)

!
uiu

T
i ;

a
(i)
kl :=

(Pn
j=1 c

(i)
kja

(i�1)
jl if (k; j) 2 S

0 if (k; j) 62 S

p
(i)
kl :=

(Pn
j=1 c

(i)
kj p

(i�1)
jl if (k; j) 2 S

0 if (k; j) 62 S
;

for i = 1; : : : ; n, where ui denotes the i-th unit-vector, a
(i)
kl , c

(i)
kl and p

(i)
kl denote

the (k; l)-th entries of the matrices A(i), C(i) and P (i) and S denotes some matrix-
pattern. Note that the above procedure guarantees that the matrixA(n) is a diagonal
matrix. The preconditioning matrix P is then de�ned by

P := A(n)�1P (n): (6.80)

The incomplete Gauss-Jordan algorithm is inherently recursive, and hence not e�-
ciently parallelizable.

6.8 Summary and further Methods 149

Iterative Methods
In principle, any iterative method can be applied to determine the columns pi, for
i = 1; : : : ; n, of an approximate inverse P by carrying out a few iterations on the
linear systems

Api = ui;

where ui denotes the i-th unit vector. Such approaches are considered e.g. in [11],
[16] and [61]. The numerical results given in [11] indicate that such methods are
not robust.

Other Methods
The use of wavelets for solving integral and di�erential equations is considered e.g.
in [30]. In [15], the e�ect of transforming the inverse A�1 into a wavelet basis prior to
determining an approximate inverse is considered. The results given in [15] indicate,
that such a wavelet transformation can enhance the e�ciency and the robustness of
methods for calculating approximate inverses.

The idea of multi-level methods for solving partial di�erential equations by the �nite
di�erence or by the �nite element method is to consider a sequence of di�erent
discretizations. Various strategies constructing such sequences of grids are known
(see e.g. [35] for an ample survey and [13], [63] for recent results). The idea behind
these methods is, that obtaining a solution on a coarse grid is computationally cheap
and may transfer much information onto �ner grids.
Algebraic multigrid methods rest on considering the graph of the considered matrix.
Instead of considering grids coarser and �ner grids, the reduction process of algebraic
multigrid considers relations between the elements contained in the matrix (see e.g.
[31], [55]).

In [50], a family of Eirola-Nevanlinna methods (EN) is introduced. These methods
combine the solver iteration with the calculation of an approximate inverse by rank-
one updates in each iteration step. This approach is extended for linear systems
with multiple right-hand sides in [51].

A preconditioning technique for symmetric positive de�nite matrices which is based
on a new decomposition of the matrix is introduced in [43].

In [47], a preconditioning technique based on determining an approximate inverse
of the skew-symmetric part of a matrix is surveyed.

In general, changing the physical model that leads to linear systems may be useful
form of preconditioning, in the sense that the resulting linear systems can be solved
more e�ciently. For instance, in the context of partial di�erential equations, the
iterative solution of the linear systems arising from discretization may be enhanced

150 Practical Preconditioning Algorithms

by changing the boundary conditions or by using FOSLS (First Order Systems Least
Squares, see [14]).

Numerical Tests 151

7 Numerical Tests

In this chapter, we consider the numerical properties of the projection methods pro-
posed in chapter 6, namely the LTL-projection (see section 6.7.1), the LU-projec-
tion (see section 6.7.2) and the Plain projection (see section 6.3). In particular,
we discuss the numerical properties of the di�erent pattern derivation strategies de-
rived for these projection methods in chapter 5.
Further, we compare the new projection methods to some state-of-the-art precon-
ditioning methods described in chapter 6.

The iterative solvers considered are CG for symmetric problems, and PRES20, BiCG-
stab and ATPRES for unsymmetric problems (these iterative solvers are described in
sections 3.5.1 { 3.5.4).
A description of the matrices included in our test set is given in section 7.2. The
problems considered in our numerical tests are taken from the Harwell{Boeing collec-
tion [22], from the Cylshell collection, from the Hamm collection, from the Sparskit
collection 2 and from the Tim Davis collection 3 (see [19] for details about these
collections). Additionally, we consider some problems arising from the discretiza-
tion of simpli�ed models of the 3{dimensional Navier{Stokes equations and of the
2{dimensional Laplace equations.
Although many of the preconditioning techniques described in chapter 6 are suit-
able for both real and complex linear systems, for reasons of simplicity we con�ne
ourselves to consider linear systems with real coe�cient matrices only.
Because of the multitude of known preconditioning techniques, it is impossible to
compare all of them in this work. Thus, we con�ne ourselves to consider only a few
well known e�cient methods. In particular, for the symmetric coe�cient matrices
in our test set, we compare the following preconditioning techniques:

� IC(0): This method is the incomplete Choleskian decomposition as described
in section 6.5, with the pattern S being equal to the pattern of the upper
triangular part of the original matrix. The resulting preconditioner is an ap-
proximation to the upper triangular factor of Choleskian decomposition of
the original matrix. For this method, both the set-up time for the precon-
ditioner and the preconditioned iterative solve are strongly sequential. Since
the amount of non-zeros in the preconditioner is prescribed in advance, the
required computer memory can be estimated in advance. No parameters are
required for this method, which makes it easy to use, but on the other hand,
it cannot be tuned, if the convergence of the iterative solve is insu�cient.

2These matrices can be downloaded from http://math.nist.gov/MatrixMarket from the particular

collection subdirectory.
3This collection can be accessed at http://www.cise.u.edu/�davis/sparse/.

152 Numerical Tests

� AINV: The preconditioner calculated by this method (this is algorithm 14, see
section 6.6) for symmetric matrices is an approximation to the upper triangu-
lar factor of the inverse of the upper triangular Cholesky-factor of the original
matrix. Thus, the preconditioned iteration can be e�ciently implemented on
parallel computers. For this method, one parameter, the dropping-threshold
for the biconjugate vectors, must be supplied. The amount of computer mem-
ory required is not known in advance. Although the set-up time for the pre-
conditioner is sequential in principle, an e�cient parallel implementation of
this method is described in [5].

� LTL-projection: This method (described in section 6.7.1, algorithm 15) adap-
tively approximates the inverse of the upper triangular Choleskian factor of
the original matrix. Several parameters for controlling this algorithm must
be supplied. The amount of computer memory required by this algorithm
is known in advance. For this method, both the set-up time for the precon-
ditioner and the preconditioned iteration can e�ciently be implemented on
parallel computers.

As a variant, the LTL-projection can be applied with a �xed prescribed
projection pattern. We consider for this variant projection patterns, which
equal the upper triangle of the pattern of the original coe�cient matrix. The
resulting algorithm, in the relevant literature denoted by FSAI, coincides with
the method proposed in [46]. The FSAI algorithm requires no parameters,
and is thus easy to use, but, on the other hand, it cannot be tuned in case of
unsatisfactory convergence of the preconditioned iteration. Both the set-up
time and the iterative solve can e�ciently be done in parallel.

For the non-symmetric matrices in our test set, we compare the following precondi-
tioning techniques:

� ILU(0): For this particular variant of the family of ILU methods (see section
6.4), �ll-in in the triangular factors L and U is only allowed in locations
corresponding to non-zeros in the original matrix. This method is parameter-
free, hence easy to use, but not tunable. The required amount of computer
memory for this method can be estimated in advance. Further, this approach
is strongly sequential, both in the set-up phase and during the iterative solve,
and thus not well-suited for the implementation on today's parallel computers.

� SPAI: As described in section 6.2, this method is a projection method. Hence,
this method is inherently parallel, although a parallel implementation of this
method is highly non-trivial due to a large amount of interprocessor com-
munication when used with adaptive pattern derivation (see the discussion
in section 6.2 for details on this matter). Depending on several parameters

Numerical Tests 153

that have to be prescribed, the amount of computer memory required for this
algorithm can be estimated in advance.

� Plain projection: Since this method is a projection method (described in
section 6.3), it is inherently parallel (detailed comments on that matter are
given after algorithm 13), and it is thus well suited for today's supercomput-
ers. Several parameters must be supplied for this algorithm. The amount of
computer memory for calculating the projective approximate inverse can be
estimated in advance.

� AINV: This is algorithm 14 (see section 6.6). The preconditioner calculated by
this method for unsymmetric matrices is an approximation to the inverses of
the triangular factors L and U , where A = LU is the Gaussian decomposition
of the matrix A. For this method, the remarks given to the AINV method for
symmetric linear systems apply.

� LU-projection: This algorithm (algorithm 16, see section 6.7.2) consists of
two projection methods; one for approximating the inverse L�1 of the lower
triangular matrix L, and one for approximating the inverse U�1 of the upper
triangular matrix U , where A = LU is the Gaussian decomposition of the
matrix A. Although this method is inherently parallel, an e�cient implemen-
tation of this method in a distributed computing environment is non-trivial
because of large amounts of interprocessor communication. Depending on sev-
eral parameters which must be supplied, the amount of computer memory for
calculating the projective approximate inverses can be estimated in advance.

As in the symmetric case, for this projection method a variant utilizing the
pattern of the original coe�cient matrix as �xed prescribed projection pattern,
called FSAI, is known. The FSAI algorithm requires no parameters, and is thus
easy to use, but, on the other hand, cannot be tuned in case of unsatisfactory
convergence of the preconditioned iteration. Both the set-up time and the
iterative solve can e�ciently be done in parallel.

The above summary of algorithmic properties of the preconditioning techniques
indicates that a comparison of these methods is complicated. All these precondi-
tioning methods di�er in the amount of �ll-in in the preconditioner, and hence in
computer memory required, in the resulting acceleration of the iterative solver, and
in the potential for parallelization. Therefore, we make the following selections for
our test environment:
For the methods that produce a one-sided preconditioner (SPAI and Plain projec-

tion), we precondition the original linear system from the right-hand side; for all
other methods, two-sided preconditioning is used. For all methods with adjustable

154 Numerical Tests

amount of �ll-in in the preconditioner (LTL-projection, AINV, SPAI, Plain pro-

jection and LU-projection), we try to select the corresponding parameters in
such a way that the resulting number of non-zeros in the obtained preconditioner is
comparable.

We compare the new preconditioning techniques, i.e. the LTL-projection, LU-pro-
jection and Plain projection, to some of the state-of-the-art preconditioning
approaches, by comparing the acceleration of the iterative solution process, the ac-
curacy of the obtained approximate solution of the linear system, and by comparing
the computational cost (i.e. by the number of oating-point operations) for forming
the preconditioners and for solving the preconditioned linear systems. Note that
comparing the number of oating-point operations for the di�erent methods gives
only limited evidence on the performance of these methods, since optimization as-
pects, like the particular potential for vectorization and parallelization, or cache
reuse, are not taken into consideration.

For simplicity, we do all tests on a one-processor machine. Further, for comparabil-
ity, we exclude the iterative nature of projection methods from the numerical tests,
i.e. no preconditioned iteration is interrupted for improving the current projective
approximate inverse by allowing more �ll-in in case of unsatisfactory convergence
(see the remarks given on pages 66 and 73 on this matter).

Although our selection of preconditioning techniques for the numerical tests does not
cover all known approaches, it is suitable for considering the potential of the new pro-
jection methods (LTL-projection, Plain projection and LU-projection). The
implicit methods (IC(0) and ILU(0)) are { although more sophisticated variants of
these approaches exist { known to be quite e�cient and robust. The e�ciency of
the recently proposed explicit techniques, AINV and SPAI, is roughly comparable to
the e�ciency of the implicit methods (see e.g. [9], [11]). Importantly, the explicit
methods have much more potential for parallelization than the implicit methods.

7.1 Implementation Details

We implemented the projection methods (i.e. LTL-projection, fixed-LU-projec-
tion, SPAI, Plain projection and LU-projection) and the incomplete decom-
positions (i.e. IC(0) and ILU(0)) with the Fortran-90 language and we represented
all oating-point numbers in double precision. The Fortran-77 sources of the AINV
method were kindly provided by M. Benzi and M. T _uma (the tests published in [11]
were done using this code).
All tests were computed on an one-processor machine.

7.1 Implementation Details 155

7.1.1 The Linear Solvers for the Preconditioned Linear Systems

In this section, we describe our implementation of the iterative linear solvers con-
sidered in our numerical tests.

Stopping Criteria
The iterative linear solvers considered in our numerical tests are CG (see 3.5.1),
PRES20 (see 3.5.2), BiCGstab (see 3.5.3) and ATPRES (see 3.5.4). The exact solution
x 2 IRn of the considered linear systems is a random vector with �1 �j xi j� 1
for i = 1; : : : ; n, and the right-hand side vector b 2 IRn is set to b := A � x. Thus,
the errors

x� xk

2
, where xk denotes the k-iterate of the induced iteration of the

original linear system (according to de�nition 3.1), are known for all tests.
The stopping criterion for the iterative solvers is a relative decrease of twelve orders
of magnitude of the residuals of the preconditioned iteration, i.e. the iterative
solver has converged, if

�rk2 < 10�12 �
�r0, where �rk denotes the k-th residual

of the preconditioned iteration, formally de�ned by �rk := PLAPRyk � PLb, with yk
denoting the k-th iterate of the preconditioned iteration. If this stopping criterion is
not attained after 1000 iterations, we consider the iterative solver to have diverged.

Observation of Round-O� Errors in the Iteration
The iterative solvers considered in our numerical tests belong to the family of con-
jugate Krylov subspace methods (see section 3.5). The residuals �rk of the solver
iterations are calculated by updating the previous residual, i.e. according to

�rk =
kX
i=1

�i;k (PLAPR)
i �r0 + �r0: (7.1)

For growing k, the amount of accumulated round-o� errors in the updated residuals
becomes larger due to the �nite precision arithmetic of computers. Particularly, if
the considered coe�cient matrix is ill-conditioned, the inuence of these round-o�
errors can become inacceptably large. Thus, in our numerical tests, we safeguard the
iterative solution process of the preconditioned linear systems by monitoring the rel-
ative deviation of the updated preconditioned residuals �rk from (7.1), as calculated
by the particular iterative solvers, from the "exact" residuals �rk := PLAPRyk�PLb,
i.e. we monitor the size of �rk2 � PLAPRyk � PLb

2PLAPRyk � PLb

2

; (7.2)

where yk denotes the k-th iterate of the preconditioned iteration. During all our
numerical tests, this relative deviation is only a few times larger than 10�5. Since
a relative deviation of the updated residuals from the exact residuals larger than

156 Numerical Tests

10�5 indicates numerical instabilities due to roundo�-errors in �nite precision, the
iteration is considered to have diverged in these cases and thus is stopped. These
cases are designated in the corresponding sections.

Normalization
In order to promote numerical stability, all linear systems considered in our numer-
ical tests were subjected to some diagonal scaling before applying any precondition-
ing technique or linear solver (see section 6.1 and the references therein for more
information on the e�ect of diagonal scaling).

Before applying any iterative solver or preconditioning technique, the symmetric
linear systems Ax = b are scaled from both sides with the diagonal matrix

DS :=

0
BBBB@
�Pn

j=1 ja1jj
�� 1

2

. . . �Pn
j=1 janjj

�� 1
2

1
CCCCA ; (7.3)

where alk denotes the (l; k)-th entry of the coe�cient matrix A. Hence, instead of
considering the original linear system Ax = b, the normalized linear system

DSADSx = DSb (7.4)

is considered, with the diagonal matrix DS de�ned in (7.3).

Analogously, before applying any iterative solver or preconditioning technique to
the unsymmetric linear systems, the linear system is scaled from the left-hand side
with the diagonal matrix

DU :=

0
B@sign (a11) =

Pn
j=1 ja1jj

. . .

sign (ann) =
Pn

j=1 janjj

1
CA ; (7.5)

where akk denotes the k-th diagonal entry and sign (akk) denotes the signum of
the k-th diagonal entry of the coe�cient matrix A. After that, the columns of
the unsymmetric linear systems are scaled in such a way that the largest element
in each column of the obtained coe�cient matrix has an absolute value of one.
Hence, instead of considering the original non-symmetric linear system Ax = b, the
normalized linear system

DUACy = DUb; Cy = x; (7.6)

7.1 Implementation Details 157

is considered, with the diagonal matrix DU de�ned in (7.5) and the diagonal matrix
C de�ned by

C :=

0
B@(max1�i�n jâi;1j)

�1

. . .

(max1�i�n jâi;nj)
�1

1
CA ;

where âi;j denotes the (i; j)-th element of the scaled coe�cient matrix DUA.

7.1.2 The Implementation of the Projection Methods

In this section, we discuss our implementation of the projection methods considered
in our numerical tests, which are the SPAI algorithm (algorithm 12), the Plain

projection algorithm (algorithm 13), the LTL-projection algorithm (algorithm
15) and the LU-projection algorithm (algorithm 16).
From the remarks given to the general pattern-adaptive projection methods (see
chapter 5), as well as the remarks given to the particular algorithms (SPAI, Plain
projection, LTL-projection and LU-projection), it is obvious, that numerous
variants for the practical implementation are possible.

Numerical Dropping in the Pattern Derivation Process
In the pattern derivation process for the projection methods, numerical dropping
can be applied with the aim of saving CPU-time. The fewer non-zeros are contained
in the Jk-residual, the cheaper both the calculation of the corresponding residual-
minimizing Jk-residuals sJk and the computation of the decrease rates may be. On
the other hand, the quality of the resulting projective approximate inverse may
deteriorate.
Since we are interested in giving a general overview of the properties of the new
projection methods, i.e. Plain projection, LTL-projection and LU-projec-

tion, we dispense with any kind of numerical dropping in the pattern derivation
process in our implementation of these methods. But we found it necessary to
do this kind of numerical dropping in our implementation of the SPAI algorithm.
Since the SPAI method is the computationally most expensive method, we set each
entry of the Jk-residuals with absolute value less than 10�4 to zero. Although the
computational cost of the SPAI method is reduced enormously by this numerical
dropping, SPAI still remains the most expensive among all methods tested.

Limiting the Number of Decrease Rates
The number of decrease rates calculated along the pattern derivation may be limited,
and, based on some heuristic, only a speci�ed number of decrease rates for the
pattern derivation may be calculated instead. Obviously, such a strategy is two-
edged: while it may be useful for reducing the computational cost of the pattern

158 Numerical Tests

derivation, it may deteriorate the quality of the obtained preconditioner. Since we
are interested in both exploring the behavior of the new projection methods (Plain
projection, LTL-projection, LU-projection), and in comparing these methods
with the known SPAI method, we refrained from limiting the number of decrease
rates for all projection methods tested.

The Linear Solver for the Inner Linear Systems
Since for every new column pattern in the pattern derivation process of the pro-
jection methods considered in our numerical tests the corresponding column of the
projective approximate inverse is calculated by solving a small linear system, in the
following referred to by "inner linear system", the choice of the applied linear
solver { the "inner linear solver" { is important, both for the overall computa-
tional cost of the pattern derivation and for the quality of the obtained precondi-
tioner.
For the Plain projection method, for the LTL-projection method and for the
LU-projection method, the inner linear systems have coe�cient matrices of the
form A (Jk; Jk) (or (A (Jk; Jk))

T), where Jk denotes some column pattern generated
in the pattern derivation process. In general applications, it is impossible to guar-
antee the non-singularity of this Jk-reduced matrices A (Jk; Jk) (or (A (Jk; Jk))

T) a
priori (which is theoretically demanded by lemma 4.5). Along our numerical tests,
the situation of singular A (Jk; Jk) never occurred. Still, these inner linear systems
possibly are nearly singular and ill-conditioned.
In our implementation of the LTL-projection method, we utilized the CG iteration
with the normalization from equation (7.4) for solving the inner linear systems.
We limited the number of iterations allowed for the inner linear solver to at most
equal the dimension of the inner linear system. Further, we interrupted the inner
iteration, if the corresponding residual was less than 10�5.
In our implementation of the projection methods for the non-symmetric linear sys-
tems (i.e. Plain projection, LU-projection and SPAI), we found it necessary
to utilize a dense QR-decomposition for solving the inner linear systems. The ad-
vantage of a dense QR-decomposition as inner linear solver is its reliability: if the
considered inner linear system is numerically non-singular, it is solved with high
accuracy. Further, a once calculated QR-decomposition can be updated with mod-
erate computational cost, if a row or a column is added to the considered linear
system (see e.g. [18] for details on this matter). Note that this situation occurs
notoriously along the pattern derivation of the projection methods: every time the
current column-pattern is augmented, a correspondingly augmented linear system
must be solved.
We implemented iterative inner solvers (PRES20, BiCGstab and ATPRES) for the
Plain projection method and the LU-projection method as well, but we found
that for some problems of our test collection the quality of the obtained projective

7.1 Implementation Details 159

approximate inverse was much worse, compared to the corresponding projective
approximate inverse obtained with the QR-decomposition as inner solver.
Since the QR-decomposition turned out to be computationally much more expen-
sive than the iterative methods, it is worthwhile to consider a cascaded approach:
the reliability, and, too, the accuracy of iterative inner solvers may be promoted by
applying some kind of preconditioning to them. For instance, some elaborated vari-
ant of ILU might be applied. Such an approach does not downgrade the parallelism
of the considered projection methods, since the inner linear systems are treated on
local processors.
Since we are interested in giving a general overview of the performance of SPAI,
Plain projection and LU-projection, we con�ne ourselves to consider only the
dense QR-factorization for solving the inner linear systems.

The Decrease Rates for the Pattern Adaption
For the projection methods with adaptive pattern derivation (LTL-projection,
Plain projection, LU-projection and SPAI), we always use the diagonal pat-
tern as the initial projection pattern, i.e. we de�ne the initial projection pattern by
J0
k := (k) for k = 1; : : : ; n. Since none of the matrices considered in our numerical
tests has a zero on the main diagonal, this choice guarantees, that all considered
pattern adapting projection methods are explicit according to de�nition 4.3 in the
beginning of the pattern derivation. As discussed in the following, the explicitness
for the LTL-projection method, for the Plain projection method and for the
LU-projection method is not guaranteed in later steps of the pattern derivation:
The theoretical background of the LTL-projection algorithm (as deduced in sec-
tion 6.7.1) considers Hermitian positive de�nite matrices only. In our numerical
tests we apply the LTL-projection algorithm to symmetric matrices which are not
necessarily positive de�nite. Thus, if the considered matrix is symmetric but not
positive de�nite, the LTL-projection algorithm is possibly not well de�ned. In par-
ticular, the decrease rates �j and �j, calculated in step (1(b)iv) of the formulation of
the LTL-projection algorithm, given on page 130, are possibly not well-de�ned, or
are possibly negative, if the considered matrix A is not symmetric positive de�nite.
Further, in this case, the (Jk; Jk)-reduced matrix A (Jk; Jk), considered in steps (1a)
and (1c) of the LTL-projection algorithm, may be singular.
Analogously, we apply the Plain projection algorithm and the LU-projection

algorithm to non-symmetric matrices which are not necessarily positive real, as de-
manded by the theoretical background for these algorithms. Thus, the decrease rates
may be not well de�ned, or negative, for these algorithms. Further, the inner linear
systems, which have coe�cient matrices of the form A (Jk; Jk) (or (A (Jk; Jk))

T),
may be singular.
However, during our extensive numerical tests for the LTL-projection algorithm,
the LU-projection algorithm and for the Plain projection algorithm, no singular

160 Numerical Tests

inner linear system occurred at any time.

The case of negative decrease rates occurred in several tests. Note that, if the

matrix A 2 IKn�n is inde�nite, the expression
x2

A
is not a norm in IKn, but the

mnemonic abbreviation of xHAx. As a consequence, the decrease rates, calculated
by the LTL-projection algorithm, by the LU-projection algorithm, and by the
Plain projection algorithm may be negative. Thus, for choosing the new indices
in the pattern derivation process it is possible to refer either to the actual values or
to the absolute values of the decrease rates.

Our numerical tests done in the course of this work indicate, that for the pattern
derivation process always the absolute values of the applied decrease rates should
be applied.

Thus, in the numerical results stated for the LTL-projection algorithm, for the
LU-projection algorithm, and for the Plain projection algorithm, we always
consider the absolute values of the corresponding decrease rates.

7.2 The Test-Problems

In this section, we explain the generation of the test matrices from models of 3{
dimensional Navier-Stokes and 2-dimensional Laplacian di�erential equations. Fur-
ther, we briey comment on the test problems taken from the MatrixMarket4 col-
lections (see [19]).

The Navier{Stokes Model Based Problems
Let

5 :=

�
@

@x
;
@

@y
;
@

@z

�T

and

4 := 5T5 :=
@2

@2x
+

@2

@2y
+

@2

@2z
:

We consider the solution of the partial di�erential equation

4v + v + �
�
vT5

�
v = h (7.7)

for the velocity

v =

0
@v1v2
v3

1
A

4These matrices can be downloaded from http://math.nist.gov/MatrixMarket.

7.2 The Test-Problems 161

with Dirichlet boundary conditions on the unit cube. The parameter � in the partial
di�erential equation (7.7) simulates a Reynolds number. The right-hand sides

h =

0
@h1h2
h3

1
A

are determined in such a way that the partial di�erential equation (7.7) has the
exact solution

�v =

0
@�v1
�v2
�v3

1
A =

0
@sin (2�x) cos (2�y) cos (2�z)
cos (2�x) sin (2�y) cos (2�z)
cos (2�x) cos (2�y) sin (2�z)

1
A :

The linear systems arising from the partial di�erential equation (7.7) considered in
our numerical tests are obtained from a �nite di�erence discretization with consis-
tency order 4 and from linearization with the �rst Newton step. The linear systems
in our tests were generated with the FIDISOL program package [69]. The starting
solution for the Newton method are the boundary conditions, which are 1-D inter-
polated on the whole domain [64]. The matrices were generated on a 20� 20� 20
grid for the simulated Reynolds numbers � = 1; 500; 10000. The resulting matrices
have 29 non-zero diagonals and the dimension (24000� 24000).
The degree of di�culty for the matrices arising from the discretization of the partial
di�erential equation (7.7) depends on the simulated Reynolds number �: the larger
this number is, the more di�cult the iterative solution of the corresponding linear
system is. Circumstantial numerical tests with numerous di�erent iterative methods
are presented in [80]. In [79], the eigenvalues of such matrices on a coarser grid were
computed. For small simulated Reynolds numbers �, the eigenvalues of the matrices
lie in the positive halfplane close to the real axis. For larger �, the imaginary parts
of eigenvalues become larger as well. For � larger than some threshold value, the
eigenvalues are scattered all across the complex plane.
Table 2 lists the matrices of this origin considered in our numerical tests. The
dimension of the matrices in table 2 is denoted by n.

matrix n non-zeros Reynolds number

c1m1o4 24000 274776 1
c500m1o4 24000 274776 500

c100000m1o4 24000 274776 100000

Table 2: Test problems from the Navier{Stokes model

Table 3 summarizes the results of the unpreconditioned iterative solvers applied to
the linear systems (note that these are normalized, see equation (7.6)) with the

162 Numerical Tests

coe�cient matrices from table 2. We abbreviate by "its" the number of iterations
of the solvers; a "�" indicates that convergence was not attained in 1000 iterations.
For the BiCGstab iteration, we additionally give the Euclidian norm of the �nal
error, i.e.

x� � xk

2
, where x� denotes the exact solution of the linear system, and

xk denotes the �nal approximation to x�.

PRES20 BiCGstab ATPRES
matrix

its its jjx� � xkjj2 its

c1m1o4 193 72 3:9 � 10�9 707
c500m1o4 � � �

c100000m1o4 � � �

Table 3: The unpreconditioned iterative methods applied to the matrices from the
Navier{Stokes model

Note that the number of 1000 allowed iterations for a linear system with a dimension
of 24000 is quite small. We remark, that, if considerably more iterations are allowed,
the BiCGstab and the ATPRES iterations are known to converge, even for large
Reynolds numbers.

The Laplacian Model Based Problems
We are interested in the solution of a boundary value problem on the unit square
G = (0; 1)�(0; 1), i. e. in approximating the interior points of an equidistant square
(g + 2)� (g + 2) grid. We use �nite di�erence discretization with 5-point di�erence
stars. Let the boundary value problem be

�4 u+ (ux + uy) = 0 for (x; y) 2 G (7.8)

u (x; y) = f (x; y) for (x; y) 2 @G;

where 4 denotes the Laplacian operator, 2 IR is constant, and the function

f : IR� IR 7! IR

is continuous on @G.
The matrix A resulting from such a discretization is structural symmetric and has
the block-tridiagonal form

A =

0
BBBBBB@

D U

L D
. . .

.
. U

L D

1
CCCCCCA 2 IRg2�g2 : (7.9)

7.2 The Test-Problems 163

The block matrices L; U 2 IRg�g are the diagonal matrices

L =

�
�1�

g + 1

�
I;

U =

�
�1 +

g + 1

�
I;

where I denotes the identity in IRg�g. The block matrices D 2 IRg�g have the
tridiagonal form

D = tridiag

�
�1�

g + 1
; 4;�1 +

g + 1

�
:

The parameter from the partial di�erential equation (7.8) is a measure for the
skew-symmetric part 1

2

�
A� AT

�
of the matrix A from (7.9), since

1

2

�
A� AT

�
=

0
BBBBBB@

�D I

�I �D
. . .

.
. I

�I �D

1
CCCCCCA �

g + 1
;

where
�D := tridiag (�1; 0; 1) :

The symmetric part 1
2

�
A+ AT

�
of A is independent of the parameter .

For our numerical tests, we set g := 50 and we consider the parameters = 1, 100
and 1000. Table 4 summarizes the matrices of this kind which we considered in our
numerical tests, where n denotes the dimension of the matrices.

matrix n non-zeros

l 50 1 2500 12300 1
l 50 100 2500 12300 100
l 50 1000 2500 12300 1000

Table 4: Test problems from the Laplacian model

In table 5, we summarize the results of the unpreconditioned iterative solvers applied
to the linear systems with the coe�cient matrices from table 4 (those linear systems
were normalized before applying the iterative methods, see equation (7.6)). As
before, by "its" we abbreviate the number of iterations until convergence; a "�"

164 Numerical Tests

indicates that the iteration did not converge in 1000 iterations. For BiCGstab, we
give the the Euclidian norm of the �nal error, i.e. of the di�erence between the
approximate and the exact solution of the considered linear system.

PRES20 BiCGstab ATPRES
matrix

its its jjx� � xkjj2 its

l 50 1 496 118 5:2 � 10�9 �
l 50 100 266 215 5:8 � 10�11 424
l 50 1000 531 � 683

Table 5: The unpreconditioned iterative methods applied to the matrices from the
Laplacian model

The Problems from MatrixMarket Collections
The example problems from the MatrixMarket collections (see [19]) arise from a
wide range of di�erent practical applications. The degree of di�culty of the chosen
test problems varies between simple (1138bus, orsirr2) and substantial (s3rmq4m1,
utm3060). The largest symmetric matrices (s1rmq4m1, s3rmq4m1) have a dimension
of 5489 and contain 143300 non-zeros in their upper triangular part. The largest
unsymmetric matrix (memplus) has a dimension of 17758 and contains 126150 non-
zeros. Tables 6 and 8 summarize the symmetric and the non-symmetric matrices
considered in our tests, where the dimension of the matrices is abbreviated by n.

matrix n non-zeros Application Origin

1138bus 1138 2596 Power system admittance Harwell{Boeing
nasa2910 2910 88603 Structural analysis Tim Davis Collection
bcsstk21 3600 15100 Structural engineering Harwell{Boeing
bcsstk23 3134 24156 Structural engineering Harwell{Boeing
s1rmq4m1 5489 143300 Structural mechanics Cylshell
s3rmq4m1 5489 143300 Structural mechanics Cylshell

Table 6: Symmetric test problems from the MatrixMarket collections

In table 7, we present the results obtained by the unpreconditioned CG method ap-
plied to the symmetric linear systems from the MatrixMarket test problems (note
that the linear systems are normalized according to (7.4)). The symbol "�" in-
dicates that the iteration did not converge within 1000 steps. For the converging
cases, we give the �nal error as well.

7.2 The Test-Problems 165

CG
matrix

its jjx� � xkjj2
1138bus �
nasa2910 �
bcsstk21 660 1:4 � 10�3

bcsstk23 �
s1rmq4m1 846 9:0 � 10�5

s3rmq4m1 �

Table 7: Performance of the CG method applied to the symmetric MatrixMarket
problems

matrix n nz Application Origin

orsirr2 886 5970 Oil reservoir simulation Harwell{Boeing
pores2 1224 9613 Reservoir modeling Harwell{Boeing

sherman2 1080 23094 Oil reservoir modeling Harwell{Boeing
saylr4 3564 22316 Oil reservoir modeling Harwell{Boeing

memplus 17758 126150 Memory circuit design Hamm
utm1070b 1700 21509 Nuclear physics (plasmas) Sparskit
utm3060 3060 42211 Nuclear physics (plasmas) Sparskit

Table 8: The unsymmetric test problems from the MatrixMarket collections

Table 9 summarizes the results obtained with the unpreconditioned iterations for
the non-symmetric problems (normalized according to (7.6)) from the MatrixMarket
collections. The "�" indicates, that the iteration did not converge within 1000
iterations. For the BiCGstab iteration we additionally give the �nal error for the
converging cases.

PRES20 BiCGstab ATPRES
matrix

its its jjx� � xkjj2 its

orsirr2 668 367 1:1 � 10�7 �
pores2 � � �

sherman2 � � �
saylr4 � � �

memplus � 765 3:9 � 10�6 �
utm1070b � � �
utm3060 � � �

Table 9: Performance of the unpreconditioned iterative solvers applied to the un-
symmetric MatrixMarket problems

166 Numerical Tests

The results given in tables 3, 5, 7 and 9 make plain that the considered iterative
methods perform unsatisfactorily for the problems in our test collection. In the
remainder of this chapter, we consider how the performance of the iterative solvers
is promoted by di�erent kinds of preconditioners.

7.3 An Illustrated Example

In this section, we demonstrate the potential of pattern adaptive projection meth-
ods by considering the Plain projection method applied to the matrix orsirr2
(this matrix is contained in the Harwell{Boeing collection, see table 8 and [22]).
In particular, we compare the pattern of the true inverse of the matrix orsirr2 to
three di�erent projective approximate inverses determined by the Plain projec-

tionmethod. Further, we compare the eigenvalue distribution of the original matrix
orsirr2 and of the three preconditioned matrices. Finally, we examine the conver-
gence of the BiCGstab solver applied to the unpreconditioned and to the three
preconditioned linear systems.
The matrix orsirr2 is an element of IR886�886, has 5970 non-zeros, and is non-
symmetric (note that we actually consider the normalized matrix orsirr2, according
to (7.6)).

First of all, we calculated the exact inverse of the matrix orsirr2 by calculating its
QR-decomposition orsirr2 = QR, with Q orthogonal and R upper triangular, and
then by computing the k-th column of the inverse by R�1QTuk for k = 1; : : : ; 886,
where uk denotes the k-th unit vector in IR886. The obtained inverse of the matrix
orsirr2 has 784996 non-zeros, i.e. is completely dense.
But, although the exact inverse of the matrix orsirr2 is completely dense, the absolute
values of the entries in the inverse widely di�er in their size. The largest entry in
absolute value of the inverse is about 265; the average of all entries in absolute value
is about 2.76. If all entries of the inverse with an absolute value less than 30 are
set to zero, we obtain a matrix with 13821 non-zeros only. In the following, we
denote this matrix by orsirr2 13821. Figure 2 shows a plot of the distribution of the
non-zeros in the matrix orsirr2 13821.
The exact inverse of the matrix orsirr2 contains elements which widely di�er in their
size. Thus it is promising to approximate the inverse of orsirr2 with a sparse matrix,
i.e. with about the same amount of non-zeros as contained in the matrix orsirr2,
such that the approximate inverse is an e�cient preconditioner.
We calculated two di�erent projective approximate inverses of the matrix orsirr2 by
the Plain projection algorithm. The parameters for these projective approximate
inverses are chosen in such a way that one of the resulting projective approximate
inverses contains at most the same number of non-zeros as the original matrix
orsirr2. The resulting projective approximate inverse has 3009 non-zeros; we denote

7.3 An Illustrated Example 167

Figure 2: The pattern of the matrix orsirr2 13821. This is the exact inverse of orsirr2,
where all entries with an absolute value less than 30 were set to zero. The matrix
orsirr2 13821 has 13821 non-zeros.

this matrix by orsirr2 3009. The other projective approximate inverse was allowed
to have about twice as many non-zeros as the matrix orsirr2 3009. The resulting
projective approximate inverse contains 8060 non-zeros; we denote this matrix by
orsirr2 8060.
Figures 3 and 4 show the patterns of projective approximate inverses orsirr2 3009
and orsirr2 8060. Note the similarity of the patterns of the projective approximate
inverses orsirr2 3009 and orsirr2 8060 compared to the pattern of the dropped exact
inverse orsirr2 13821. This similarity shows that the "large" entries of the exact
inverse of the matrix orsirr2 are captured by the adaptive pattern derivation process
of the Plain projection method. In [38], similar plots of approximate inverses of
the matrix orsirr2, which are determined by the SPAI method, are shown.
Note that the non-singularity of the projective approximate inverses orsirr2 3009
and orsirr2 8060, shown in plots 3 and 4, is not guaranteed by theory. Further, no
information on the distribution of the eigenvalues of the coe�cient matrix of the
preconditioned linear system, i.e. the matrix orsirr2 multiplied by orsirr2 3009 or
orsirr2 8060, is available (see the brief discussion on pp. 32{34 and the references
therein for comments on the connection between the eigenvalue distribution and the
convergence of Krylov subspace methods). Hence, it is impossible to assess a priori
whether or not those projective approximate inverses are e�cient preconditioners
for linear systems with the coe�cient matrix orsirr2.

168 Numerical Tests

Figure 3: The pattern of the projective approximate inverse orsirr2 8060 of the
matrix orsirr2, calculated by the Plain projection algorithm with 8060 non-zeros

Figure 4: The pattern of the projective approximate inverse orsirr2 3009, calculated
by the Plain projection algorithm with 3009 non-zeros

7.3 An Illustrated Example 169

In order to obtain an approximate inverse of the matrix orsirr2, for which the non-
singularity and the eigenvalue distribution of the preconditioned coe�cient matrix
is known by theory, we calculated a projective approximate inverse of orsirr2 by
the Plain projection algorithm in such a way that the one-norm of each col-
umn of the preconditioned coe�cient matrix is less than 0:9. In this situation,
proposition 3.5 applies, stating that the preconditioned coe�cient matrix is non-
singular with eigenvalues clustered in a disk around one with a radius of 0:9. The
obtained projective approximate inverse has 17031 non-zeros; we denote this ma-
trix by orsirr2 17031. Note that the number of oating-point operations as well
as the required computer memory for the calculation of the matrix orsirr2 17031
greatly exceeds the corresponding quantities required for calculating the projective
approximate inverses orsirr2 3009 and orsirr2 8060.

The pattern of the projective approximate inverse orsirr2 17031 is shown in �gure
5. The similarity of this plot compared to the plots of the matrices orsirr2 8060 and
orsirr2 3009 (�gures 3 and 4) suggests that the matrices orsirr2 8060 and orsirr2 3009
act on the eigenvalue distribution of the corresponding preconditioned linear sys-
tems, in a way comparable to the matrix orsirr2 17031.

Figure 5: The pattern of the projective approximate inverse orsirr2 17031. The
one-norm of each column of this matrix is less than 0.9

170 Numerical Tests

Figures 6, 7, 8 and 9 show the eigenvalue distribution of the original matrix orsirr2,
and of the matrix orsirr2 multiplied by one of the three projective approximate
inverses orsirr2 3009, orsirr2 8060 and orsirr2 17031.
Table 10 provides some insight in the distribution of the eigenvalues of the matrix
orsirr2, and of the matrix orsirr2 multiplied by one of the three projective approxi-
mate inverses orsirr2 3009, orsirr2 8060 and orsirr2 17031. The left-hand side column
of table 10 gives the radius of the considered disc around (1; 0) 2 IC. The remainder
of the corresponding lines in table 10 state the number of eigenvalues of the four
particular matrices contained in these discs. Obviously, preconditioning the matrix
orsirr2 with the matrices orsirr2 3009, orsirr2 8060 or orsirr2 17031 has the e�ect of
clustering the eigenvalues around the point (1; 0) in the complex plane.

radius around orsirr2 � orsirr2 � orsirr2 �
(1; 0) 2 IC

orsirr2
orsirr2 3009 orsirr2 8060 orsirr2 17031

0.1 174 448 450 439
0.2 182 632 638 638
0.3 186 694 750 764
0.4 194 764 810 827
0.5 198 828 846 856
0.6 202 838 863 870
0.7 318 849 870 881
0.8 546 860 880 886
0.9 546 876 884 886
1.0 886 886 886 886

Table 10: The number of eigenvalues in discs around (1; 0) 2 IC of orsirr2, and of
orsirr2 multiplied by orsirr2 3009, orsirr2 8060 or orsirr2 17031

The eigenvalues of the original matrix orsirr2 are close to the real axis, loosely
clustered in �ve spots, where one of them is close to the origin, with real parts
between 3:9 � 10�4 and 2. Only sixteen eigenvalues of the matrix orsirr2, shown in
�gure 6, have a non-vanishing imaginary part (the largest imaginary part has an
absolute value of 2:2 � 10�3).
The eigenvalues of the matrix orsirr2 multiplied by the projective approximate in-
verse orsirr2 3009 have real parts between 2:8 � 10�2 and 1.67. The number of eigen-
values with non-vanishing imaginary parts is 472 (the largest imaginary part has
an absolute value of 0:304). Compared to the eigenvalues of the original matrix
orsirr2, the number of complex eigenvalues is drastically enlarged. The percentage
of eigenvalues contained in the disc with radius 0.5 around (1; 0) 2 IC is 93.4. The
corresponding percentage for the original matrix orsirr2 is only 22.3.

7.3 An Illustrated Example 171

Similar observations { with even more clustering of the eigenvalues around (1; 0) 2 IC
{ hold for the product matrices formed between orsirr2 and orsirr2 8060, or respec-
tively orsirr2 17031.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5 2

im
ag

in
ar

y
ax

is

real axixs

Figure 6: The eigenvalues of the matrix orsirr2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5 2

im
ag

in
ar

y
ax

is

real axixs

Figure 7: The eigenvalues of matrix orsirr2 multiplied by the projective approximate
inverse orsirr2 3009

172 Numerical Tests

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5 2

im
ag

in
ar

y
ax

is

real axixs

Figure 8: The eigenvalues of matrix orsirr2 multiplied by the projective approximate
inverse orsirr2 8060

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5 2

im
ag

in
ar

y
ax

is

real axixs

Figure 9: The eigenvalues of matrix orsirr2 multiplied by the projective approximate
inverse orsirr2 17031

Finally, we consider the convergence of the BiCGstab solver applied to the original
system with the coe�cient matrix orsirr2, and to the linear systems preconditioned
with the matrices orsirr2 3009, orsirr2 8060 and orsirr2 17031 (the design of those
linear systems and the stopping criterion for the iteration is described in section
7.1.1).

7.3 An Illustrated Example 173

Figure 10 portrays the performance of the four iterations. The unpreconditioned
iteration is represented by the curve "no prec". The curves "pp 3009", "pp 8060"
and "pp 17031" denote the correspondingly preconditioned iterations.
The upper two graphs consider the residuals of the iterations. Note that, for the
preconditioned iterations, the preconditioned residuals { and not the induced origi-
nal residuals (see de�nition 3.1) { are plotted. On the vertical axes of the two upper

graphs, the decadic logarithm of the relative residuals (i.e. log
�
jjrkjj2
jjr0jj2

�
, where rk

denotes the k-th residual of the iteration for k � 0) is settled. The upper left-hand
side graph compares the residual decrease to the number of iteration steps; the up-
per right-hand side graph compares the residuals to the number of oating-point
operations.
On the vertical axis of the lower graph, the decadic logarithm of the relative er-

rors (i.e. log
�
jjekjj2
jje0jj2

�
, where rk denotes the k-th original error of the iteration for

k � 0) is settled. Note that, for the preconditioned iterations, not the errors of
the preconditioned iteration but the errors of the corresponding original iterations
(see de�nition 3.1) are shown. The lower graph shows the behavior of the errors
correlated to the iteration steps.
We dispense with plotting the curve "pp 17031" in the upper right-hand side graph,
because the set-up cost for the preconditioner orsirr2 17031 is about 2:8�109 oating-
point operations. Thus, if this curve is displayed in the upper right-hand side graph,
the three other curves become indistinguishable from the vertical axis.
The unpreconditioned iteration requires 367 iteration steps. The number of itera-
tions is drastically reduced by applying any of the three preconditioners orsirr2 3009
(51 iterations), orsirr2 8060 (36 iterations) or orsirr2 17031 (20 iterations). Con-
sidering the set-up cost for the three preconditioners, we see that the number of
oating-point operations for the matrix orsirr2 17031 is prohibitively high. As seen
in �gure 10, the set-up cost for the matrices orsirr2 3009 and orsirr2 8060 is accept-
able. Both preconditioned iterations have an overall computational cost smaller
that the unpreconditioned iteration.
Altogether, the above considerations indicate that the Plain projection algorithm
is a promising preconditioning technique. In particular, the Plain projection

method has the potential to determine adaptively useful patterns of approximate
inverses, in such a way that these are e�cient accelerators for iterative solvers.
Further, the eigenvalues of the preconditioned systems tend to be clustered around
the point (1; 0) in the complex plane.
In the remainder of this section, we survey the properties of the Plain projection

method, and the LTL-projection and LU-projection methods, by considering
numerous test problems and by comparing these methods to the state-of-the-art
methods.

174 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 50 100 150 200 250 300 350

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 5e+06 1e+07 1.5e+07 2e+07
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 50 100 150 200 250 300 350

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

no_prec
pp_3009
pp_8060
pp_17031

Figure 10: Convergence of BiCGstab applied to orsirr2 with and without precondi-
tioning

7.4 Numerical Experiments for the Symmetric Matrices 175

7.4 Numerical Experiments for the Symmetric Matrices

In this section, we describe the performance of the LTL-projection algorithm (algo-
rithm 15) applied to the symmetric matrices from our test set. Further, we compare
the results obtained by the LTL-projection algorithm to the results obtained by
the AINV algorithm (algorithm 14), by the IC(0) algorithm (see section 6.5) and by
the FSAI algorithm (this algorithm coincides with the LTL-projection algorithm
by de�ning the �xed projection pattern equal to the pattern of the original matrix).
For all tests with the symmetric matrices, we consider the CG iterative solver.
In table 11, we summarize the results obtained by applying the CG solver without
preconditioning and by applying the IC(0) method. We state both the number of
iteration steps and, in case of convergence within 1000 steps, the Euclidian norm of
the �nal error of the induced iteration for the original linear system (see de�nition
3.1). The symbol "�" indicates that convergence was not attained in 1000 itera-
tions. The "y"-symbol for the matrices nasa2910, bcsstk21 and bcsstk23 indicates
that the IC(0) algorithm broke down due to negative diagonal entries in the incom-
plete factor PL � L. This problem occurs because symmetric matrices nasa2910,
bcsstk21 and bcsstk23 are not positive de�nite. As indicated by the z-symbol, the
CG iteration with IC(0) preconditioning for the matrix s3rmq4m1 is interrupted af-
ter 180 iterations due to an excessive accumulation of round-o� errors (see page
155). The unpreconditioned CG iteration fails to converge on four problems. The
IC(0) preconditioner causes a drastical acceleration of the convergence rate for the
matrices 1138bus and s1rmq4m1).

CG CG
matrix

IC(0) jjx� � xkjj2 unprec. jjx� � xkjj2
1138bus 154 3:2 � 10�7 �
nasa2910 y { �
bcsstk21 y { 660 1:4 � 10�3

bcsstk23 y { �
s1rmq4m1 107 2:6 � 10�6 846 9:0 � 10�5

s3rmq4m1 z �

Table 11: Performance of the CG solver applied to the symmetric linear systems
preconditioned by the IC(0) method and unpreconditioned

In table 12, we summarize the performance of the AINV preconditioner. The column
"thresh." contains the particular dropping threshold for the biconjugate vectors (see

176 Numerical Tests

section 6.6). The number of non-zeros in the particular preconditioning matrices is
abbreviated by "nz(P)". The two columns on the right-hand side state the number
of iterations, and, in case of convergence, the Euclidian norm of the �nal error for
the original system. As indicated by the symbol "�", for four problems no choice
for the dropping threshold could be found in such a way that the preconditioned
iteration converged within 1000 iterations. This is, although in these cases �ll-in of
about three times of non-zeros in the upper triangular part of the original matrix
was allowed. For the two converging cases, the choice of the dropping thresholds
was very sensitive with regards to changes of the amounts of �ll-in and with regards
to the obtained convergence rate, too.

matrix thresh. nz(P) CG jjx� � xkjj2
1138bus 0.15 3428 128 3:5 � 10�7

nasa2910 �
bcsstk21 0.184 21067 372 3:5 � 10�4

bcsstk23 �
s1rmq4m1 �
s3rmq4m1 �

Table 12: Performance of the CG solver applied to the symmetric linear systems
preconditioned by the AINV method

Table 13 summarizes the results obtained by the LTL-projection algorithm. For
each of the test matrices three rows are given. The row with the label "�xed"
contains the results for the FSAI algorithm. The rows with the "u" label and with the
"m" label correspond to the LTL-projection algorithm applied with the univariate
decrease rates ~�j from (6.50) and with the decrease rates ~�j from (6.51) respectively.
For both variants of the pattern adaptive LTL-projection algorithms, the initial
projection pattern is always the diagonal pattern, i.e. the initial pattern is de�ned
by J0

k := (k) for k = 1; : : : ; n.
The column labeled "nz(P)" states the number of non-zeros in the obtained pre-
conditioners.
For the LTL-projection algorithm, three control parameters for the pattern deriva-
tion must be supplied (those are explained in detail for algorithm 8, see pages 68{69).
These parameters are

i) mf : The maximum number of non-zeros in each column of the projective
approximate inverse.

ii) ms : The maximum number of pattern updating steps for each column-
pattern.

7.4 Numerical Experiments for the Symmetric Matrices 177

iii) mfps : The maximum number of indices added in one updating step to the
column-pattern.

Since for the LTL-projection algorithm only the quantitative stopping criterion
can be applied (see pages 67{68), controlling the amount of �ll-in in the precondi-
tioner is possible. We tried to select the above parameters in such a way that the
obtained projective approximate inverses have at most twice as many non-zeros as
the corresponding original matrices. The particular choices for the parameters mf ,
ms, mfps, as stated in table 13, are obtained after a few test runs of each test
problem. The sensitivity of the LTL-projection algorithms to variations of these
parameters, regarding quality of the obtained preconditioners, depends on the tests
problems and is not known a priori.

The FSAI algorithm fails on two of test problems; the iteration with the matrix
bcsstk21 fails to converge, and, as indicated by the z-symbol, the iteration with
the matrix s3rmq4m1, is interuppted after 580 iterations due to an excessive accu-
mulation of round-o� errors (see page 155). The LTL-projection algorithms with
adaptive pattern derivation fail on one of the test problems. The iteration with the
matrix s3rmq4m1 is interrupted after 320 iterations (with the ~�j decrease rates),
and after 340 iterations (with the ~�j decrease rates), because of an excessive accu-
mulation of round-o� errors (see page 155). This problem could not be alleviated
by varying the control parameters for the pattern derivation.
The initial residuals of the iterations with the matrix bcsstk23 is for the two LTL-pro-
jection algorithms approximately 8:4 � 108. Although the the preconditioned it-
erations converge, the �nal errors are large. The initial errors for both iterations
are about 9:1 � 108. Hence, for obtaining a better approximation to the solution of
the preconditioned linear systems with bcsstk23, more iteration steps, and hence a
stricter stopping criterion for the iteration is necessary. However, this is a di�cult
task in a double-precision arithmetic. For problems like these, an arithmetic with
a higher accurary should be utilized to prevent exessive accumulation of round-o�
errors. See e.g. [44] for a detailed survey on high precision computing.

In practice, iterative solvers for linear systems are controlled by monitoring the
norms of the residuals, because the errors are unknown. The norms of the residuals
and errors are connected as stated by (3.5) for an unpreconditioned iteration, and
by (3.12) for a preconditioned iteration. If the coe�cient matrix of the considered
linear system has a small condition number, the connection between the residuals
and errors is strong, i.e. a decrease of the norms of the residuals indicates a cor-
responding decrease of the error-norms. Conversely, if the considered coe�cient
matrix has a large condition number, the connection between the residuals and er-
rors is weak, i.e. a decrease of the residual norms in the course of the iteration does
not necessarily indicate correspondly decreasing error norms (such an example is the

178 Numerical Tests

decrease LTL-projection CG
matrix

rates
nz(P)

mf ms mfps its jjx� � xkjj2
�xed 2596 { { { 228 4:9 � 10�7

1138bus u 2723 3 2 1 172 9:2 � 10�7

m 2723 3 2 1 172 8:4 � 10�7

�xed 88090 { { { 397 8:1 � 10�5

nasa2910 u 72314 26 5 5 190 1:0 � 10�4

m 72315 26 5 5 195 7:7 � 10�5

�xed 15100 { { { 354 6:2 � 10�4

bcsstk21 u 21523 6 5 1 290 4:3 � 10�4

m 21523 6 5 1 282 6:8 � 10�4

�xed 24156 { { { �
bcsstk23 u 46673 15 7 2 575 9:6 � 101

m 68121 22 7 3 669 3:7 � 102

�xed 143300 { { { 297 1:5 � 10�5

s1rmq4m1 u 180609 33 8 4 163 3:4 � 10�6

m 180609 33 8 4 165 3:7 � 10�6

�xed 143300 { { { z
s3rmq4m1 u 202427 37 9 4 z

m 202427 37 9 4 z

Table 13: Performance of the CG method with LTL-projection preconditioning

matrix bcsstk23, see �gure 14). Thus, for theoretical investigations, it is important
to consider both residuals and errors. Therefore, and for obtaining an impression
of the performance of the considered preconditioners, we give in �gures 11{16 the
plots obtained for the symmetric test problems. The curve with the label "un-
preconditioned" is obtained for the unpreconditioned CG iteration. The curve with
the label "FSAI" is obtained for the FSAI preconditioner. Curves "LTL-projection
(u)" and "LTL-projection (m)" are obtained for the LTL-projection algorithm
with the adaptive pattern derivation based on the univariate decrease rates ~�j, and
~�j respectively. The labels IC(0) and AINV designate the curves obtained for the
corresponding preconditioners. The layout of the graphs is as explained on page
173.

Comparison of the Preconditioners for Symmetric Linear Systems
The unpreconditioned CG iteration has, in general, the slowest rate of convergence;
it fails to converge in four out of six test problems. In the two converging tests, the
unpreconditioned iteration is the slowest of all, both measured by iterations and by

7.4 Numerical Experiments for the Symmetric Matrices 179

oating-point operations.
Only for two test problems (1138bus and bcsstk21), the AINV algorithm produces
e�cient preconditioners. In the converging cases, the set-up cost for the precondi-
tioners is slightly larger than for the IC(0), while it is smaller than for the adaptive
LTL-projection. In the three cases, where the IC algorithm is applicable (1138bus,
s1rmq4m1 and s3rmq4m1), it is the best method in one case and second best in
the other, regarding both set-up cost and iteration steps. This is, although more
sophisticated and e�cient variants of the family of IC methods are known. The CG
iteration with the matrix s3rmq4m1 preconditioned by IC(0) is interuppted because
of an excessively large accumulation of round-o� errors. However, since the same
problem occurs for LTL-projection preconditioning, the matrix s3rmq4m1 can be
regarded as a di�cult problem for preconditioning.
The FSAI algorithm fails in two cases (for bcsstk23 and s3rmq4m1), and the accel-
eration of the CG iteration is in all cases poorer than the acceleration obtained by
the adaptive LTL-projection algorithms. These algorithms fail only on one of the
test problems, namely s3rmq4m1, caused by excessive round-o� error accumulation.
Although the set-up cost for the adaptive LTL-projection algorithms is higher than
for the FSAI algorithm, the obtained acceleration of the iterations leads to a better
overall performance. Regarding the number of iterations, both pattern adaptive
LTL-projection algorithms perform almost the same, while the set-up cost for the
LTL-projection algorithm with the univariate decrease rates ~�j tends to be compu-
tationally cheaper than the set-up cost for the LTL-projection algorithm with the
decrease rates ~�j. Since both adaptive LTL-projection algorithms are inherently
parallel, these di�erences in the set-up cost are probably marginal in a parallel im-
plementation.
In case of convergence, all considered iterations provide about the same reduction
of the errors of the corresponding induced original linear system.

Altogether, the presented results indicate that the LTL-projection algorithm with
adaptive pattern derivation is in overall performance, although more expensive in
the set-up cost, in e�cacy comparable to the IC(0) approach. Thus, and since the
LTL-projection algorithm is inherently parallel, the LTL-projection algorithm is
a promising preconditioning technique.

180 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 1e+07 2e+07 3e+07 4e+07 5e+07
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 FSAI
 L^TL-Projection (u)
 L^TL-Projection (m)
 AINV
 IC(0)

Figure 11: Comparison of the preconditioning methods for symmetric linear systems
with the CG solver applied to the matrix 1138bus.

7.4 Numerical Experiments for the Symmetric Matrices 181

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+08 4e+08 6e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 FSAI
 L^TL-Projection (u)
 L^TL-Projection (m)

Figure 12: Comparison of the preconditioning methods for symmetric linear systems
with the CG solver applied to the matrix nasa2910.

182 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 100 200 300 400 500 600

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 4e+07 8e+07 1.2e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 100 200 300 400 500 600

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 FSAI
 L^TL-Projection (u)
 L^TL-Projection (m)
 AINV

Figure 13: Comparison of the preconditioning methods for symmetric linear systems
with the CG solver applied to the matrix bcsstk21.

7.4 Numerical Experiments for the Symmetric Matrices 183

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+08 4e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 FSAI
 L^TL-Projection (u)
 L^TL-Projection (m)

Figure 14: Comparison of the preconditioning methods for symmetric linear systems
with the CG solver applied to the matrix bcsstk23.

184 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 100 200 300 400 500 600 700 800 900

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 4e+08 8e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 100 200 300 400 500 600 700 800 900

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 FSAI
 L^TL-Projection (u)
 L^TL-Projection (m)
 IC(0)

Figure 15: Comparison of the preconditioning methods for symmetric linear systems
with the CG solver applied to the matrix s1rmq4m1.

7.4 Numerical Experiments for the Symmetric Matrices 185

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 5e+08 1e+09
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 FSAI
 L^TL-Projection (u)
 L^TL-Projection (m)
 IC(0)

Figure 16: Comparison of the preconditioning methods for symmetric linear systems
with the CG solver applied to the matrix s3rmq4m1.

186 Numerical Tests

7.5 Numerical Experiments with the Non-Symmetric Ma-

trices

In this section, we consider the non-symmetric matrices contained in our test set. We
discuss the new projection methods, i.e. Plain projection and LU-projection, in
detail and we compare these new methods to some state-of-the-art preconditioning
techniques.
In section 7.5.1, we discuss the Plain projection algorithm. In particular, we
consider the e�ciency of three variants of the adaptive pattern derivation and we
consider the performance of the preconditioned iteration for three di�erent iterative
solvers for non-symmetric linear systems.
The LU-projection algorithm is considered in section 7.5.2. We consider two dif-
ferent strategies regarding the adaptive pattern derivation, and we consider the
FSAI algorithm, i.e. the LU-projection algorithm with the prescribed projection
pattern being set to the pattern of the original matrix. We compare the properties
of these strategies by applying three di�erent iterative solvers for non-symmetric
linear systems.
In section 7.5.3, we compare the Plain projection algorithm and the LU-pro-

jection algorithm to some state-of-the-art preconditioning techniques for non-
symmetric linear systems. The methods considered are ILU(0), AINV, SPAI and
FSAI.

7.5.1 The Plain projection Method

In this section, we discuss the numerical properties of the Plain projection algo-
rithm (algorithm 13, see section 6.3) by considering the non-symmetric test problems
(see section 7.2). We consider three variants for the adaptive pattern derivation,
which di�er in the particular utilized decrease rates.
Further, we consider three iterative solvers, namely PRES20, BiCGstab and ATPRES

(see sections 3.5.2{3.5.4), for the preconditioned linear systems.

The �rst variant of the Plain projection algorithm is obtained by utilizing the
univariate decrease rates

�j =

�
uTj rJk

�2uj2A
from (6.26) for the pattern derivation. Note that the univariate decrease rates �j
coincide with the estimates ~�2j from (6.31) for the univariate decrease rates. For

7.5 Numerical Experiments with the Non-Symmetric Matrices 187

notational convenience, we denote the resulting Plain projection algorithm by
us-Plain projection.
For the second variant of the Plain projection algorithm, we utilize the estimated
univariate decrease rates

~�1j =

�
uTj A

TPuk + uTj rJk
�2uj2A

from (6.30) for the pattern derivation. We denote this variant by ue-Plain pro-

jection.
The third variant of the Plain projection algorithm is obtained by using the
decrease rates

�j =
j uHj rJk j

2uj2A � gHj yj

from (6.27) for the pattern derivation, where the vector gj 2 IK#Jk is de�ned by
gj := A(Jk; j); and the vector yj 2 IK

#Jk is the solution of the (#Jk �#Jk)-linear
system A(Jk; Jk)yj = gj: We denote this algorithm by m-Plain projection.

Note that the matrices employed for our numerical tests of the Plain projection

algorithm are non-symmetric and possibly inde�nite. Thus, the Plain projec-

tion algorithm, as deduced in section 6.3, is possibly not well de�ned for the non-
symmetric matrices in our test set. In particular, the representation of the decrease
rates �j and �j, as stated by Corollary 6.44 requires the matrix A to be symmetric.
Further, the candidate sets from de�nition 5.1 are not known a priori. Thus, in our
implementation we simply determine the particular decrease rates for all indices j
which are not elements of the current column-pattern Jk. In spite of this scruples,
in all our numerical tests, a singular inner system never occurred.

Note that, if the matrix A 2 IKn�n is inde�nite, the expression
x2

A
is not a vector-

norm for x 2 IKn, but the mnemonic abbreviation of xHAx. As a consequence, the
decrease rates �j, ~�

1
j and �j may be negative. Thus, for choosing the new indices in

the pattern derivation process it is possible both to refer to the actual values or to
the absolute values of the decrease rates �j, ~�

1
j and �j.

Our numerical tests done in the course of this work indicate, that for the pattern
derivation process always the absolute values of the decrease rates �j, ~�

1
j or �j should

be applied.
The initial projection pattern for all three variants of the Plain projection algo-
rithm is always the diagonal pattern, i.e. J0

k := (k) for k = 1; : : : ; n. Since all of
the matrices in our test set have a zero-free diagonal, for this choice of the initial
projection pattern the �rst step of the pattern derivation of the considered Plain

projection algorithms is always practical according to de�nition 4.3. Note that
utilizing diagonal intial projection patterns is no restriction because matrices with

188 Numerical Tests

zeros on the main diagonal can easily be permuted to have a zero-free main diagonal,
see e.g. [23].
For the Plain projection algorithm, four control parameters for the pattern deriva-
tion must be supplied (those are explained in detail for algorithm 8, see pages 68{69).
Those parameters are

i) mf : The maximum number of non-zeros in each column of the projective
approximate inverse.

ii) �k : The threshold value for the qualitative stopping criterion.

iii) ms : The maximum number of pattern updating steps for each column-
pattern.

iv) mfps : The maximum number of indices added in one updating step to the
column-pattern.

In all tests of the Plain projection algorithms, we utilize the combined stopping
criterion. We tried to select the above parameters in such a way that the obtained
projective approximate inverses have at most twice as many non-zeros as the corre-
sponding original matrices. The particular choices for the parameters mf , �k, ms,
mfps, as stated in table 13, are obtained after a few test runs of each test problem.
The sensitivity of the Plain projection algorithms to changes of these parameters
depends on the tests problems and is not known a priori.

Comparison of the Plain projection Algorithms
The performance results of the Plain projection algorithms are stated in table
14. The column nz(P) this table contains the number of non-zeros in the particular
projective approximate inverses. For the BiCGstab iteration, we state, in addition
to the number of iterations, the �nal error of the induced iteration for the original
linear systems (see de�nition 3.1).
First of all, we note that the performance of the three iterative methods shows dras-
tical di�erences. The BiCGstab method is by far the most robust iterative solver. It
fails only on eight out of 39 test runs. The PRES20 method fails on 21 test runs. The
reason for this is probably the truncation which forces a short recurrence for this
method (see page 33, section 3.5.2 and the references therein). The ATPRES iteration
fails on 31 out of 39 test runs. This is probably due to the fact that this iterative
method is relatively stable, but slow in convergence (see page 33, section 3.5.4 and
the references therein). The large number of diverging test runs suggests that the
ATPRES iteration does not collaborate with the Plain projection preconditioning
technique.
We consider the results for the BiCGstab iteration in greater detail: the us-Plain
projection and the ue-Plain projection fail only in two cases (for the matrices

7.5 Numerical Experiments with the Non-Symmetric Matrices 189

l 50 1000 and c100000m1o4), while the m-Plain projection additionally fails for
the matrices sherman2 and c500m1o4. In case of convergence, the acceleration of
the BiCGstab iteration, the Euclidian norm of the �nal error, and the number of
non-zeros in the projective approximate inverses, is, in tendency, about the same
for all three Plain projection algorithms. As stated by the plots in �gures 17{28,
the computational complexity (i.e. the number of oating-point operations) of the
three Plain projection algorithms shows considerable di�erences. In tendency,
the cheapest variant is the us-Plain projection algorithm, while the computa-
tional cost for the ue-Plain projection algorithm is only slightly higher. In gen-
eral, the computational complexity for the m-Plain projection algorithm is by
far the highest of the three variants. The computational complexity for all three
variants of the Plain projection algorithm is dominated by the solving the inner
linear systems.
All three variants of the Plain projection algorithm fail on the matrices l 50 1000
and c100000m1o4. Interestingly, this does not necessarily indicate that these ma-
trices cannot be preconditioned by projective approximate inverses. Conversely,
the projective approximate inverse of the matrix l 50 1000 determined on the �xed
projection pattern equal to the original pattern contains only 12300 non-zeros and
leads to rapid convergence (see �gure 26). However, the same strategy fails to work
for the matrix c100000m1o4.
The convergence behavior of the preconditioned iterations, as summarized in table
14, is visualized in �gures 17{28. In these �gures, the curves denoted by the "us "
pre�x correspond to the us-Plain projection. The curves with the "ue " pre�x are
obtained by the ue-Plain projection, and the curves pre�xed by "m " correspond
to the m-Plain projection.

The results for the three Plain projection algorithms, as stated by table 14 and by
�gures 17{28, indicate that the Plain projection preconditioning techniques sub-
stantially accelerate the BiCGstab iteration. For a comparison to the corresponding
results for the unpreconditioned iterations see tables 3, 5 and 9.

190 Numerical Tests

decrease Plain projection PRES20 BiCGstab ATPRES
matrix

rates mf ms mfps �k
nz(P)

its its jjx� � xkjj2 its

orsirr2 us,ue,m 6 5 1 0:5 3009 96 51 9:6 � 10�9 �

us 13 6 2 0:4 7781 650 128 4:4 � 10�10 �
pores2 ue 13 6 2 0:5 7303 � 126 1:2 � 10�8 �

m 13 6 2 0:5 6495 � 118 2:2 � 10�8 �

us 40 13 3 0:3 17778 � 35 1:6 � 10�9 �
sherman2 ue 31 10 3 0:33 15210 347 70 4:9 � 10�10 �

m � � �

us 21 10 2 0:3 42544 � 354 1:8 � 10�6 �
saylr4 ue 21 10 2 0:3 43156 � 329 1:8 � 10�6 �

m 15 7 2 0.3 38568 � 889 2:6 � 10�6 �

us 11 5 2 0:75 33808 392 372 7:1 � 10�7 �
memplus ue 11 5 2 0:75 37130 344 562 3:9 � 10�7 �

m 11 5 2 0:75 33826 363 162 3:7 � 10�7 �

us 15 7 2 0:3 20050 � 358 2:2 � 10�7 �
utm1700b ue 15 7 2 0:3 21078 � 385 9:5 � 10�8 �

m 15 7 2 0:3 20062 � 346 1:2 � 10�7 �

us 19 9 2 0:4 42069 � 401 5:0 � 10�7 �
utm3060 ue 19 9 2 0:4 45796 � 847 5:7 � 10�7 �

m 19 9 2 0:4 42254 � 336 3:4 � 10�7 �

us,m 6 5 1 0:3 14407 224 73 7:4 � 10�9 566
l 50 1

ue 5 4 1 0:3 12295 211 81 3:4 � 10�10 883

us 11 5 2 0:5 25754 � 53 8:7 � 10�11 �
l 50 100 ue 11 5 2 0:5 26026 76 35 5:7 � 10�11 217

m 11 5 2 0:5 25754 145 57 3:9 � 10�13 539

us,ue,m � � �
l 50 1000

�xed 12300 283 156 1:2 � 10�9 �

us 5 2 2 0:3 92856 144 61 3:3 � 10�8 362
c1m1o4 ue 5 2 2 0:3 92928 147 54 1:0 � 10�8 341

m 5 2 2 0:3 92856 144 55 1:5 � 10�8 362

us 11 10 1 0:3 189357 635 264 9:4 � 10�9 �
c500m1o4 ue 11 10 1 0:3 195374 584 173 3:4 � 10�9 �

m � � �

c100000m1o4 us,ue,m � � �

Table 14: Performance of the solvers applied to the unsymmetric linear systems
precondititioned by the Plain projection algorithm

7.5 Numerical Experiments with the Non-Symmetric Matrices 191

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+07 4e+07 6e+07
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 us_atpres
 us_bicgstab
 us_pres20
 m_atpres
 m_bicgstab
 m_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 17: Convergence of the unsymmetric solvers precondititioned by the Plain

projection method for the matrix orsirr2.

192 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 3e+07 6e+07 9e+07 1.2e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 us_atpres
 us_bicgstab
 us_pres20
 m_atpres
 m_bicgstab
 m_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 18: Convergence of the unsymmetric solvers precondititioned by the Plain

projection method for the matrix pores2.

7.5 Numerical Experiments with the Non-Symmetric Matrices 193

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 1e+08 2e+08 3e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 us_atpres
 us_bicgstab
 us_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 19: Convergence of the unsymmetric solvers precondititioned by the Plain

projection method for the matrix sherman2.

194 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+08 4e+08 6e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 us_atpres
 us_bicgstab
 us_pres20
 m_atpres
 m_bicgstab
 m_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 20: Convergence of the unsymmetric solvers precondititioned by the Plain

projection method for the matrix saylr4.

7.5 Numerical Experiments with the Non-Symmetric Matrices 195

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 3e+08 6e+08 9e+08 1.2e+09
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 us_atpres
 us_bicgstab
 us_pres20
 m_atpres
 m_bicgstab
 m_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 21: Convergence of the unsymmetric solvers precondititioned by the Plain

projection method for the matrix memplus.

196 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 1e+08 2e+08 3e+08 4e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 us_atpres
 us_bicgstab
 us_pres20
 m_atpres
 m_bicgstab
 m_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 22: Convergence of the unsymmetric solvers precondititioned by the Plain

projection method for the matrix utm1700b.

7.5 Numerical Experiments with the Non-Symmetric Matrices 197

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 3e+08 6e+08 9e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 us_atpres
 us_bicgstab
 us_pres20
 m_atpres
 m_bicgstab
 m_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 23: Convergence of the unsymmetric solvers precondititioned by the Plain

projection method for the matrix utm3060.

198 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 3e+07 6e+07 9e+07 1.2e+08 1.5e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 us_atpres
 us_bicgstab
 us_pres20
 m_atpres
 m_bicgstab
 m_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 24: Convergence of the unsymmetric solvers preconditioned by the Plain

projection method for the matrix l 50 1.

7.5 Numerical Experiments with the Non-Symmetric Matrices 199

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 1e+08 2e+08 3e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 us_atpres
 us_bicgstab
 us_pres20
 m_atpres
 m_bicgstab
 m_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 25: Convergence of the unsymmetric solvers preconditioned by the Plain

projection method for the matrix l 50 100.

200 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 5e+07 1e+08 1.5e+08 2e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 fixed_atpres
 fixed_bicgstab
 fixed_pres20

Figure 26: Convergence of the unsymmetric solvers preconditioned by the Plain

projection method applied to the matrix l 50 1000.

7.5 Numerical Experiments with the Non-Symmetric Matrices 201

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+08 4e+08 6e+08 8e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 us_atpres
 us_bicgstab
 us_pres20
 m_atpres
 m_bicgstab
 m_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 27: Convergence of the unsymmetric solvers preconditioned by the Plain

projection method for the matrix c1m1o4.

202 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 1e+09 2e+09 3e+09 4e+09 5e+09
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 us_atpres
 us_bicgstab
 us_pres20
 m_atpres
 m_bicgstab
 m_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 28: Convergence of the unsymmetric solvers preconditioned by the Plain

projection method for the matrix c500m1o4.

7.5 Numerical Experiments with the Non-Symmetric Matrices 203

7.5.2 The LU-projection algorithm

In this section, we discuss the numerical properties of the LU-projection algorithm
derived in section 6.7.2.
We consider three variants of this algorithm. The �rst variant prescribes the pro-
jection pattern to equal the pattern of the original matrix. This method is denoted
by FSAI. Further, we consider two new pattern adaptive variants of the LU-projec-
tion algorithm. These algorithms di�er in the utilized estimates for the univariate
decrease rates. The �rst pattern adaptive variant, denoted by us-LU-projection,
utilizes the estimates ~�2j and ~�4j , de�ned in (6.70) and (6.72). The second variant,

denoted by ue-LU-projection, uses the estimates ~�1j and
~�3j , de�ned in (6.69) and

(6.71), for the pattern derivation.
For reasons of simplicity, we use the same parameters for controlling the pattern
derivation for both triangular projective approximate inverses. The performance of
these three considered variants of the LU-projection algorithm is summarized in
table 15. The parameter choices, as shown in table 15, are obtained after a few
test runs for the pattern adaptive LU-projection variants. In table 15, the rows
with the entry "�xed" in the column "decrease rates" contain the results obtained
by FSAI preconditioning; the rows with the entries "us" and "ue" contain the re-
sults of the us-LU-projection algorithm and of the ue-LU-projection algorithm,
respectively. The columns nz(L) and nz(U) in this table contain the number of
non-zeros in the lower and in the upper triangular projective approximate inverse.

Comparison of the LU-projection Algorithms
Similar to the results for the Plain projection algorithm, the di�erences in the
performance of the iterative solvers are drastical. The BiCGstab iteration is by far
the most stable; it fails only in 13 out of 39 tests runs. The PRES20 iteration fails
in 24 cases and the ATPRES iteration fails in 33 cases.
We consider the performance of the BiCGstab iteration in greater detail. The FSAI
algorithm fails on seven out of the 13 test problems, while the pattern adaptive algo-
rithms us-LU-projection and ue-LU-projection fail on three test problems only.
In six out of the seven converging tests with the FSAI algorithm, the corresponding
unpreconditioned linear systems converged as well. Thus, the FSAI algorithm is not
a robust preconditioning technique.
The performance of the two pattern adaptive variants us-LU-projection and ue-
LU-projection is comparable, while the set-up cost for ue-LU-projection is, in
tendency, higher than for us-LU-projection. The number of non-zeros in the tri-
angular projective approximate inverses with adaptively determined projection pat-
terns is limited to four times the number of non-zeros in the original matrix. In
all cases, the number of non-zeros in the triangular factors for the patterns adap-
tive LU-projection variants is higher than the number of non-zeros for the Plain

204 Numerical Tests

projection variants.
In �gures 29{38, the plots of the preconditioned iterations are shown. The curves
pre�xed by "FSAI " are obtained by FSAI preconditioning, and the curves pre�xed
by "us " and "ue " correspond to us-LU-projection and to ue-LU-projection,
respectively.

Altogether, the results for FSAI indicate, that this variant is not recommendable.
The pattern adaptive variants us-LU-projection and ue-LU-projection, are ca-
pable of substantially accelerating the BiCGstab iteration.
The required number of non-zeros in the triangular projective approximate inverses
is considerable larger than for the Plain projection algorithms, while the accel-
eration of the iterative solve is somewhat less than for Plain projection.
The e�ciency of LU-projection may be promoted by permuting the linear system
prior to applying the LU-projection algorithms. In [7], it is surveyed that various
permutations may promote the e�ciency of incomplete factorizations (e.g. ILU).
Analogous results are reported in [10] for the AINV preconditioning technique.

7.5 Numerical Experiments with the Non-Symmetric Matrices 205

decrease LU-projection PRES20 BiCGstab ATPRES
matrix

rates mf ms mfps
nz(PL) nz(PU) its its jjx� � xkjj2 its

�xed { { { 3428 3428 407 189 1:8 � 10�8 �
orsirr2 us 6 5 1 5224 5227 85 37 1:2 � 10�8 �

ue 6 5 1 5224 5227 80 36 3:1 � 10�9 �

�xed { { { 5368 4826 � 377 1:1 � 10�8 �
pores2 us 11 5 2 12643 12219 371 62 1:1 � 10�8 �

ue 11 5 2 11999 9388 � 101 6:8 � 10�9 �

�xed { { { 10952 13098 � � �
sherman2 us 40 13 3 30779 40718 � 119 5:8 � 10�8 �

ue 31 10 3 23794 30108 182 42 2:3 � 10�8 �

�xed { { { 12940 12940 � � �
saylr4 us 13 6 2 45951 45950 � 278 6:8 � 10�7 �

ue 13 6 2 45951 45952 � 348 3:2 � 10�7 �

�xed { { { 70385 70069 789 366 1:6 � 10�6 �
memplus us 5 2 2 84405 84405 536 169 1:9 � 10�7 �

ue 5 2 2 84405 84405 473 170 9:8 � 10�8 �

�xed { { { 11542 11603 � 836 6:4 � 10�8 �
utm1700b us 13 6 2 19535 19367 � 410 7:0 � 10�8 �

ue 13 6 2 19302 19362 � 465 1:2 � 10�7 �

�xed { { { 22668 22541 � � �
utm3060 us 17 8 2 48307 47549 � 371 1:1 � 10�6 �

ue 17 8 2 47444 47477 � 369 4:8 � 10�7 �

�xed { { { 7400 7400 181 58 1:1 � 10�8 613
l 50 1 us 5 2 2 12347 12347 161 61 1:6 � 10�8 411

ue 5 2 2 12347 12347 146 53 5:2 � 10�9 422

�xed { { { 7400 7400 � � �
l 50 100 us 9 4 2 22235 22236 � 69 2:1 � 10�11 �

ue 6 5 1 14985 14985 308 62 3:6 � 10�11 �

�xed { { { 7400 7400 � � �
l 50 1000

us, ue � � �

�xed { { { 149388 149388 80 35 1:9 � 10�8 218
c1m1o4 us 5 2 2 93983 105636 81 36 5:1 � 10�9 226

ue 5 2 2 93983 105215 225 39 7:5 � 10�9 101

�xed { { { 149388 149388 � � �
c500m1o4

us, ue � � �

�xed { { { 149388 149388 � � �
c100000m1o4

us, ue � � �

Table 15: Performance of the solvers applied to the unsymmetric linear systems
preconditioned by the LU-projection algorithm

206 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+07 4e+07 6e+07 8e+07 1e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 FSAI_atpres
 FSAI_bicgstab
 FSAI_pres20
 us_atpres
 us_bicgstab
 us_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 29: Convergence of the unsymmetric solvers preconditioned by the LU-pro-
jection method for the matrix orsirr2.

7.5 Numerical Experiments with the Non-Symmetric Matrices 207

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 5e+07 1e+08 1.5e+08 2e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 FSAI_atpres
 FSAI_bicgstab
 FSAI_pres20
 us_atpres
 us_bicgstab
 us_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 30: Convergence of the unsymmetric solvers preconditioned by the LU-pro-
jection method for the matrix pores2.

208 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 3e+08 6e+08 9e+08 1.2e+09
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 FSAI_atpres
 FSAI_bicgstab
 FSAI_pres20
 us_atpres
 us_bicgstab
 us_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 31: Convergence of the unsymmetric solvers preconditioned with the LU-pro-
jection method for the matrix sherman2.

7.5 Numerical Experiments with the Non-Symmetric Matrices 209

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 3e+08 6e+08 9e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 FSAI_atpres
 FSAI_bicgstab
 FSAI_pres20
 us_atpres
 us_bicgstab
 us_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 32: Convergence of the unsymmetric solvers preconditioned with the LU-pro-
jection method for the matrix saylr4.

210 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 5e+08 1e+09 1.5e+09 2e+09
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 FSAI_atpres
 FSAI_bicgstab
 FSAI_pres20
 us_atpres
 us_bicgstab
 us_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 33: Convergence of the unsymmetric solvers preconditioned by the LU-pro-
jection method for the matrix memplus.

7.5 Numerical Experiments with the Non-Symmetric Matrices 211

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 1e+08 2e+08 3e+08 4e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 FSAI_atpres
 FSAI_bicgstab
 FSAI_pres20
 us_atpres
 us_bicgstab
 us_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 34: Convergence of the unsymmetric solvers preconditioned with the LU-pro-
jection method for the matrix utm1700b.

212 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+08 4e+08 6e+08 8e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 FSAI_atpres
 FSAI_bicgstab
 FSAI_pres20
 us_atpres
 us_bicgstab
 us_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 35: Convergence of the unsymmetric solvers preconditioned with the LU-pro-
jection method for the matrix utm3060.

7.5 Numerical Experiments with the Non-Symmetric Matrices 213

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 3e+07 6e+07 9e+07 1.2e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 FSAI_atpres
 FSAI_bicgstab
 FSAI_pres20
 us_atpres
 us_bicgstab
 us_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 36: Convergence of the unsymmetric solvers preconditioned with the LU-pro-
jection method for the matrix l 50 1.

214 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+08 4e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 FSAI_atpres
 FSAI_bicgstab
 FSAI_pres20
 us_atpres
 us_bicgstab
 us_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 37: Convergence of the unsymmetric solvers preconditioned with the LU-pro-
jection method for the matrix l 50 100.

7.5 Numerical Experiments with the Non-Symmetric Matrices 215

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+08 4e+08 6e+08 8e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 FSAI_atpres
 FSAI_bicgstab
 FSAI_pres20
 us_atpres
 us_bicgstab
 us_pres20
 ue_atpres
 ue_bicgstab
 ue_pres20

Figure 38: Convergence of the unsymmetric solvers preconditioned with the LU-pro-
jection method for the matrix c1m1o4.

216 Numerical Tests

7.5.3 Comparison of Plain projection and LU-projection to the Stan-
dard Preconditioning Techniques for Non-Symmetric Linear Sys-
tems

In this section we compare the performance of the Plain projection method and
the LU-projection method to some state-of-the-art preconditioning techniques.
The chosen methods are ILU(0) (see section 6.4), SPAI (see section 6.2) and AINV

(see section 6.6).
Table 16 summarizes the results obtained by the AINV method. The three iterative
solvers perform similar to the observations for Plain projection and LU-projec-

tion. While the BiCGstab iteration is by far the most stable iterative method (it
fails only in two out of the 13 test cases), the PRES20 iteration is much more unstable
(it fails on seven test problems). The ATPRES iteration fails to converge in 10 out of
the 13 tests.
The dropping threshold for the AINV method, as stated in the column denoted
"thresh." in table 16, is chosen such that the obtained approximate inverses have
at most twice the number of non-zeros, given in the column labeled "nz", of the
original matrix. For the matrices utm1700b and utm3060, substantially more �ll-in
must be allowed to obtain a converging preconditioned iteration. The dropping
thresholds are obtained by adjusting them along a few test runs.

PRES20 BiCGstab ATPRES
matrix thresh. nz

its its jjx� � xkjj2 its

orsirr2 0.1 4903 76 41 1:9 � 10�8 �
pores2 0.1 12473 � 54 9:8 � 10�9 �

sherman2 0.01 23462 476 223 1:6 � 10�9 �
saylr4 0.1 49231 � 53 1:5 � 10�7 �

memplus 0.05 68142 346 229 9:6 � 10�8 �
utm1700b 0.1 135191 � 300 5:8 � 10�5 �
utm3060 0.1 274862 � 249 1:1 � 10�4 �
l 50 1 0.1 12540 204 64 1:2 � 10�8 614

l 50 100 0.1 70191 43 16 4:7 � 10�11 94
l 50 1000 � � �
c1m1o4 0.1 123162 86 36 3:1 � 10�9 231

c500m1o4 0.1 397967 � 181 2:4 � 10�8 �
c100000m1o4 � � �

Table 16: Performance of the solvers applied to the unsymmetric linear systems
preconditioned with the AINV method

7.5 Numerical Experiments with the Non-Symmetric Matrices 217

The results for the ILU(0) preconditioning technique are summarized in table 17.
Further, for comparison, in table 17 the performance of the unpreconditioned it-
erations, as given in tables 3, 5 and 9, is included. The BiCGstab iteration with
ILU(0) preconditioning converges in 11 of the 13 test cases; it fails to converge for
the matrices l 50 1000 and c100000m1o4 only. As indicated by the z-symbol, for
the matrix l 50 1000, the iterations with ILU(0) preconditioning were stopped due
to a relative deviation of the updated residuals to the original ones of more than
10�5 in the Euclidian norm (see page 155).

ILU(0) unpreconditioned
matrix PRES20 BiCGstab ATPRES PRES20 BiCGstab ATPRES

its its jjx� � xkjj2 its its its jjx� � xkjj2 its

orsirr2 66 34 1:3 � 10�8 591 668 367 1:1 � 10�7 �
pores2 297 31 7:8 � 10�9 � � � �

sherman2 22 10 8:6 � 10�11 � � � �
saylr4 � 45 7:4 � 10�8 � � � �

memplus 851 360 8:3 � 10�7 � � 765 3:9 � 10�6 �
utm1700b 818 101 2:4 � 10�8 � � � �
utm3060 804 104 1:5 � 10�7 � � � �
l 50 1 111 37 2:4 � 10�9 228 496 118 5:2 � 10�9 �

l 50 100 292 18 6:0 � 10�7 � 266 215 5:8 � 10�11 424
l 50 1000 z z z 531 � 683
c1m1o4 49 27 3:8 � 10�9 120 193 72 3:9 � 10�9 707

c500m1o4 212 87 2:1 � 10�9 � � � �
c100000m1o4 � � � � � �

Table 17: Performance of the solvers applied to the unsymmetric linear systems
preconditioned with the ILU(0) method

The results obtained for the SPAI preconditioning technique are summarized in table
18. Similar to the previous tests, the di�erences in the performance of the iterative
solvers are dramatic. While the BiCGstab iteration fails only in a few cases, the
other two iterations have a high failure rate.
The column "decrease rates" in table 18 denotes the two variants of the SPAI al-
gorithm obtained by utilizing either the univariate decrease rates de�ned in (6.17)
(these rows have the entry "us") or the decrease rates de�ned in (6.18) (the corre-
sponding rows have the entry "m"). In all tests, the computational complexity of the
SPAI variants is dominated by the pattern derivation. Because the computational
cost for both variants of the SPAI algorithm greatly exceeds the computational cost

218 Numerical Tests

for all other preconditioning techniques, numerical dropping in the residual, as dis-
cussed on page 157, is applied.
We consider the performance of the BiCGstab iteration: for four matrices of the test
set (these are utm1700b, utm3060, l 50 1000 and c100000m1o4), no parameters for
the SPAI algorithm, yielding a converging preconditioned iteration, could be found.
Apart from the higher computational cost for the variant using the decrease rates
from (6.18) for the pattern derivation, both variants of the SPAI algorithm perform
about the same.

decrease SPAI parameters PRES20 BiCGstab ATPRES
matrix

rates mf ms mfps �k
nz(P)

its its jjx� � xkjj2 its

us 11 5 2 0:5 3257 226 71 1:9 � 10�8 545
orsirr2

m 11 5 2 0:5 3174 191 63 1:5 � 10�8 539

us 41 4 10 0:3 16932 � 153 4:5 � 10�8 957
pores2

m 41 4 10 0:3 16882 � 132 2:3 � 10�8 882

us 51 10 5 0:3 11588 65 33 1:8 � 10�9 107
sherman2

m 51 10 5 0:3 11098 26 14 1:2 � 10�8 55

us 51 10 5 0:3 38633 � 274 1:1 � 10�6 �
saylr4

m 51 10 5 0:3 38184 � 241 1:1 � 10�5 �

us 16 3 5 0:5 43933 810 378 1:1 � 10�6 880
memplus

m 16 3 5 0:5 43933 536 470 1:3 � 10�6 853

utm1700b us,m � � �

utm3060 us,m � � �

us 5 2 2 0:4 7126 413 108 5:2 � 10�9 �
l 50 1

m 7 3 2 0:4 7126 413 108 5:1 � 10�9 �

l 50 100 us 13 3 4 0:4 22092 183 56 2:6 � 10�10 582
m 13 3 4 0:4 22092 183 58 7:3 � 10�10 582

l 50 1000 us,m � � �

us 7 1 6 0:4 43596 148 74 1:1 � 10�9 702
c1m1o4

us 7 1 6 0:4 43596 155 66 9:2 � 10�9 703

us 13 2 6 0:4 129984 � 203 8:9 � 10�8 �
c500m1o4

m 13 2 6 0:4 129744 � 201 4:7 � 10�9 �

c100000m1o4 us,m � � �

Table 18: Performance of the solvers applied to the unsymmetric linear systems
preconditioned with the SPAI method

7.5 Numerical Experiments with the Non-Symmetric Matrices 219

Comparison of the Preconditioners for the Non-Symmetric Linear Sys-
tems
In �gures 39{50, the plots of the BiCGstab iterations without preconditioning and
preconditioned by SPAI, FSAI, LU-projection, Plain projection, ILU(0) and
AINV are shown (the terms "us", "ue" and "m" in these �gures refer to the utilized
decrease rates for SPAI (see page 217), for Plain projection (see page 186) and
for LU-projection (see page 203).
The robustness of ILU(0), AINV and Plain projection, regarding the number of
not converging BiCGstab iterations, is comparable. All these methods fail for the
matrices l 50 1000 and c100000m1o4 only. The SPAI and LU-projection precon-
ditioners fail on slightly more problems. The FSAI method is not stable; it fails on
seven out of the 13 test problems, and in case of convergence the acceleration of the
iteration is slow.
As for the computational complexity of the tested methods, ILU(0) and AINV are
the cheapest methods. The pattern adaptive projection methods Plain projec-

tion and LU-projection are more expensive, at least in a sequential environment.
The computational complexity for constructing the SPAI preconditioners exceeds
the cost for the other methods by far.
We summarize the results obtained for the considered preconditioning techniques
for the BiCGstab solver in table 19:

unpre-
condi-
tioned

LU-pro-

jection

(us)

Plain

projec-

tion(us)
matrix FSAI SPAI ILU(0) AINV

(us)

orsirr2 367 189 71 37
�

�

�

�51
�

�

�

�34
�

�

�

�41

pores2 � 377 153 62
�

�

�

�128
�

�

�

�31
�

�

�

�54

sherman2 � � 33 119
�

�

�

�35
�

�

�

�10
�

�

�

�223

saylr4 � � 274 278
�

�

�

�354
�

�

�

�45
�

�

�

�53

memplus 765 366 378 169
�

�

�

�372
�

�

�

�360
�

�

�

�229

utm1700b � 836 �
�

�

�

�410
�

�

�

�358
�

�

�

�101 300

utm3060 � � � 371
�

�

�

�401
�

�

�

�104
�

�

�

�249

l 50 1 118
�

�

�

�58 108 61 73
�

�

�

�37
�

�

�

�64

l 50 100
�

�

�

�215 � 56 69 53
�

�

�

�18
�

�

�

�16
l 50 1000 � � � � � z �

c1m1o4 72 35 74 36
�

�

�

�61
�

�

�

�27
�

�

�

�36

c500m1o4 � � 203 �
�

�

�

�264
�

�

�

�87
�

�

�

�181
c100000m1o4 � � � � � � �

Table 19: Comparison of the preconditioners for the unsymmetric test problems for
the BiCGstab iteration

220 Numerical Tests

In table 19, the three iterations with the fewest iteration steps are written in bold-
face. Further, the three iterations with the smallest overall number of oating-point
operations (this is set-up cost for the preconditioner plus cost for the preconditioned
iteration) are contained in oval boxes. With this notation, the e�ciency and the ro-
bustness of ILU(0) and AINV becomes obvious. The newly proposed preconditioning
techniques Plain projection and LU-projection perform comparable to ILU(0)

and AINV, although the set-up cost for Plain projection and LU-projection is,
in a sequential environment, larger than for ILU(0) and AINV. However, since Plain
projection and LU-projection are inherently parallel, in a parallel environment
this situation may be reversed.
With the results displayed in table 19, it appears that the FSAI method is not an
e�cient preconditioning technique. Further, because FSAI works without adaptive
pattern derivation, it is clearly inferior to the LU-projection method.
The SPAI algorithm is, although in robustness comparable to LU-projection and
Plain projection, due to its enormous set-up cost inferior to LU-projection and
Plain projection.
None of the tested preconditioners worked su�ciently for the matrices l 50 1000
and c100000m1o4. Interestingly, for the matrix l 50 1000, the unpreconditioned
PRES20 and ATPRES solvers converge (see table 5 and �gure 48). Further, if the
Plain projection algorithm is applied without adaptive pattern derivation, i.e.
if the pattern of the matrix l 50 1000 is used as the �xed projection pattern, the
Plain projection determines a projective approximate inverse which converges
with the BiCGstab iteration (see table 14 and �gure 48). This shows, that sparse
approximate inverse preconditioning for the matrix l 50 1000 is possible. However,
analogous results do not hold for the matrix c100000m1o4.

7.5 Numerical Experiments with the Non-Symmetric Matrices 221

-14

-12

-10

-8

-6

-4

-2

0

0 50 100 150 200 250 300 350 400

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+07 4e+07 6e+07 8e+07
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 50 100 150 200 250 300

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 SPAI (us)
 FSAI
 LU-Projection (us)
 Plain Projection (us)
 ILU(0)
 AINV

Figure 39: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix orsirr2.

222 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 4e+08 8e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 SPAI (us)
 FSAI
 LU-Projection (us)
 Plain Projection (us)
 ILU(0)
 AINV

Figure 40: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix pores2.

7.5 Numerical Experiments with the Non-Symmetric Matrices 223

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+08 4e+08 6e+08 8e+08 1e+09
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 SPAI (us)
 FSAI
 LU-Projection (ue)
 Plain Projection (ue)
 ILU(0)
 AINV

Figure 41: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix sherman2.

224 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+09 4e+09 6e+09
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 SPAI (us)
 FSAI
 LU-Projection (us)
 Plain Projection (us)
 ILU(0)
 AINV

Figure 42: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix saylr4.

7.5 Numerical Experiments with the Non-Symmetric Matrices 225

-14

-12

-10

-8

-6

-4

-2

0

0 100 200 300 400 500 600 700

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 4e+09 8e+09 1.2e+10
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 100 200 300 400 500 600 700

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 SPAI (us)
 FSAI
 LU-Projection (ue)
 Plain Projection (m)
 ILU(0)
 AINV

Figure 43: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix memplus.

226 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 1e+08 2e+08 3e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 FSAI
 LU-Projection (us)
 Plain Projection (us)
 ILU(0)
 AINV

Figure 44: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix utm1700b.

7.5 Numerical Experiments with the Non-Symmetric Matrices 227

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 1e+08 2e+08 3e+08 4e+08 5e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 FSAI
 LU-Projection (ue)
 Plain Projection (us)
 ILU(0)
 AINV

Figure 45: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix utm3060.

228 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 20 40 60 80 100 120

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 5e+07 1e+08 1.5e+08 2e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 20 40 60 80 100 120

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 SPAI (us)
 FSAI
 LU-Projection (ue)
 Plain Projection (ue)
 ILU(0)
 AINV

Figure 46: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix l 50 1.

7.5 Numerical Experiments with the Non-Symmetric Matrices 229

-14

-12

-10

-8

-6

-4

-2

0

0 50 100 150 200

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 2e+08 4e+08 6e+08 8e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 50 100 150 200

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 SPAI (us)
 FSAI
 LU-Projection (ue)
 Plain Projection (ue)
 ILU(0)
 AINV

Figure 47: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix l 50 100.

230 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 5e+07 1e+08 1.5e+08 2e+08
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 PRES20 unpreconditioned
 BiCGstab unpreconditioned
 ATPRES unpreconditioned
 Plain Projection (fixed) + PRES20
 Plain Projection (fixed) + BiCGstab
 Plain Projection (fixed) + ATPRES

Figure 48: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix l 50 1000.

7.5 Numerical Experiments with the Non-Symmetric Matrices 231

-14

-12

-10

-8

-6

-4

-2

0

0 10 20 30 40 50 60 70 80

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 1e+10 2e+10 3e+10 4e+10
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 10 20 30 40 50 60 70 80

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 SPAI (us)
 FSAI
 LU-Projection (us)
 Plain Projection (ue)
 ILU(0)
 AINV

Figure 49: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix c1m1o4.

232 Numerical Tests

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|r
_
n
||
/|
|r

_
o
||
)

iterations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09 3e+09
floating-point operations

Residuals

-14

-12

-10

-8

-6

-4

-2

0

0 200 400 600 800 1000

lo
g
(|

|e
_
n
||
/|
|e

_
o
||
)

iterations

Errors

 unpreconditioned
 SPAI (us)
 FSAI
 Plain Projection (us)
 ILU(0)
 AINV

Figure 50: Comparison of the preconditioning methods for non-symmetric linear
systems with the BiCGstab solver applied the matrix c500m1o4.

Summary and Outlook 233

8 Summary and Outlook

In this chapter, a summary of the theoretical and practical results of this thesis is
given. Further, open questions and problems are named.

In chapter 1, we have explained the general set of problems regarding the e�ciency
and robustness of iterative solvers, as well as the aim and the di�culties of promo-
ting the robustness and e�ciency of iterative solvers by preconditioning. The large
number of problems and open questions in this area of today's scienti�c computing
research was the motivation for this work.
In this thesis, we have considered projection methods { an entire class of inherently
parallel methods for calculating approximate inverses { and we have considered the
properties of particular projection methods applied as preconditioners for iterative
solvers.
We have developed a theoretical framework for projection methods, including crite-
ria and formulae for the explicit calculation of approximate inverses by projection
methods. Importantly, we have deduced new approximation statements for general
projection methods, which state on the distance between an approximate inverse
calculated by a projection method and the true inverse. Based on these approxima-
tion statements, we have developed strategies for the adaptive derivation of sparsity
patterns for approximate inverses calculated by projection methods. We have uti-
lized this new theoretical framework for general projection methods in three ways:

i) We have classi�ed some known preconditioning techniques, namely norma-
lization (see section 6.1), SPAI (see section 6.2), FSAI (see section 6.7) and
a further preconditioning technique proposed by Kolotilina and Yeremin in
[46] (see section 6.3) in terms of projection methods and thereby we have
provided the theoretical framework of projection methods for these precondi-
tioning techniques.

ii) We have proposed strategies and algorithms for the adaptive derivation of
sparsity patterns for general projection methods (algorithms 8 and 9, see chap-
ter 5).

iii) We have obtained three new, inherently parallel preconditioning algorithms,
namely Plain projection, LTL-projection and LU-projection, which are
particular projection methods being capable of adaptively determining the
sparsity pattern of the calculated approximate inverse.

In chapter 7, we compared the numerical properties of state-of-the-art precondi-
tioning techniques (ILU, IC, SPAI, AINV and FSAI) to the properties of the three

234 Summary and Outlook

newly proposed preconditioning techniques (Plain projection, LTL-projection,
LU-projection), which are projection methods with adaptive pattern derivation.
For the symmetric linear systems in our set of test problems, we compared IC(0),
AINV, FSAI and LTL-projection. Basically, FSAI and LTL-projection are obtained
by the same projection method. But, while the FSAI algorithm utilizes the upper
triangle of the original matrix as a �xed a priori pattern for the calculated approxi-
mate inverse, the LTL-projection algorithm adaptively determines the pattern for
the calculated approximate inverse. The results of our numerical tests indicate that
the LTL-projection algorithm is clearly superior to the FSAI method. Further-
more, in overall performance, the new LTL-projection algorithm is comparable to
IC(0) and AINV. Since LTL-projection is inherently parallel, it is a promising new
preconditioning technique.

For the unsymmetric linear systems, we compared ILU(0), SPAI, AINV, FSAI to the
newly proposed algorithms Plain projection and LU-projection. The results of
these tests indicate that, as for robustness, Plain projection and LU-projection

are comparable to the known methods ILU(0), SPAI and AINV. Among all tested
methods, the SPAI algorithm required by far the most oating-point operations for
determining the approximate inverse. Therefore, and because the Plain projec-

tion and LU-projection algorithms o�er even more potential for parallelization,
these new methods are superior to SPAI.

Altogether, the numerical results discussed in chapter 7 indicate that the new pat-
tern adaptive projection methods LTL-projection, Plain projection and LU-pro-
jection are promising new preconditioning techniques, competitive to some of the
best known preconditioning methods. In particular, because of the inherent par-
allelism of LTL-projection, Plain projection and LU-projection, these new
methods are well suited for parallel computers. However, exploring the properties
of parallel implementations of LTL-projection, Plain projection and LU-pro-

jection is beyond the scope of this thesis and will be subject to future research.
Further, the theoretical background for LTL-projection, Plain projection and
LU-projection can be further investigated. Conditions for the non-singularity of
projective approximate inverses, as well as statements on the relation between the
approximation statements given in chapter 4 and the convergence of the precondi-
tioned iteration will be subject to supplemental research.
Since the algorithms based on LTL-projection, Plain projection and LU-pro-

jection depend on several parameters, these algorithms are not easy to use. Fur-
ther, if a suitable con�guration of these parameters is found, it is an open question,
whether these are optimal or not. Additionally, the relation between these pa-
rameters is unknown in general. Supplemental numerical testing accompanied by
theoretical investigations on these problems is necessary.
The implementation of LTL-projection, Plain projection and LU-projection

allows numerous variants, e.g. the choice of the solver for the inner linear systems

Summary and Outlook 235

and various strategies for numerical dropping in the pattern derivation process. Fur-
ther tests on the inuence of these choices on the performance of the preconditioned
iterations are necessary.
Since preconditioning is particularly needed for ill-conditioned linear systems, and
because determining sparse approximate inverses is an ill-posed problem, round-o�
errors caused by the �nite precision of computers have to be taken into account. In
this context, considering high precision computing and stable implementations of
iterative solvers become topics. A sophisticated survey on high precision computing
is given by Kaucher, Kulisch and Ullrich in [44]. Ample discussions on the stability
of particular iterative solvers are given by Rozlo�zn��k in [57], by Rozlo�zn��k and Weiss
in [58], by Drko�sov�a, Rozlo�zn��k, Strako�s and Greenbaum in [21], and by Greenbaum
in [33].

236 Summary and Outlook

LIST OF TABLES 237

List of Tables

1 The preconditioning techniques considered in sections 6.1{6.7 145
2 Test problems from the Navier{Stokes model 161
3 The unpreconditioned iterative methods applied to the matrices from

the Navier{Stokes model . 162
4 Test problems from the Laplacian model 163
5 The unpreconditioned iterative methods applied to the matrices from

the Laplacian model . 164
6 Symmetric test problems from the MatrixMarket collections 164
7 Performance of the CG method applied to the symmetric MatrixMar-

ket problems . 165
8 The unsymmetric test problems from the MatrixMarket collections 165
9 Performance of the unpreconditioned iterative solvers applied to the

unsymmetric MatrixMarket problems 165
10 The number of eigenvalues in discs around (1; 0) 2 IC of orsirr2, and

of orsirr2 multiplied by orsirr2 3009, orsirr2 8060 or orsirr2 17031 . . 170
11 Performance of the CG solver applied to the symmetric linear systems

preconditioned by the IC(0) method and unpreconditioned 175
12 Performance of the CG solver applied to the symmetric linear systems

preconditioned by the AINV method 176
13 Performance of the CG method with LTL-projection preconditioning 178
14 Performance of the solvers applied to the unsymmetric linear systems

precondititioned by the Plain projection algorithm 190
15 Performance of the solvers applied to the unsymmetric linear systems

preconditioned by the LU-projection algorithm 205
16 Performance of the solvers applied to the unsymmetric linear systems

preconditioned with the AINV method 216
17 Performance of the solvers applied to the unsymmetric linear systems

preconditioned with the ILU(0) method 217
18 Performance of the solvers applied to the unsymmetric linear systems

preconditioned with the SPAI method 218
19 Comparison of the preconditioners for the unsymmetric test problems

for the BiCGstab iteration . 219

List of Algorithms

1 Residual-Minimizing Smoothing for the Euclidian Norm . . . 27
2 CG + Residual-Minimizing Smoothing 35
3 PRES20 . 36

238 LIST OF FIGURES

4 BiCGstab + Residual-Minimizing Smoothing 39
5 ATPRES . 41
6 Projective Approximate Inverse 50
7 Projective Approximate Inverse with diagonal ZR 53
8 Pattern Adaptive Projective Approximate Inverse 70
9 Pattern Adaptive Projective Approximate Inverse with diago-

nal ZR . 74
10 Multivariate Pattern Adaptive Projective Approximate Inverse 86
11 Univariate Pattern Adaptive Projective Approximate Inverse 95
12 SPAI . 105
13 Plain projection . 113
14 AINV . 119
15 LTL-projection . 130
16 LU-projection . 142

List of Figures

1 An example for Residual-Minimizing Smoothing 28
2 The pattern of the matrix orsirr2 13821 167
3 The pattern of the projective approximate inverse orsirr2 8060 . . . 168
4 The pattern of the projective approximate inverse orsirr2 3009 . . . 168
5 The pattern of the projective approximate inverse orsirr2 17031 . . . 169
6 The eigenvalues of the matrix orsirr2 171
7 The eigenvalues of matrix orsirr2multiplied by the projective approxi-

mate inverse orsirr2 3009 . 171
8 The eigenvalues of matrix orsirr2multiplied by the projective approxi-

mate inverse orsirr2 8060 . 172
9 The eigenvalues of matrix orsirr2multiplied by the projective approxi-

mate inverse orsirr2 17031 . 172
10 Convergence of BiCGstab applied to orsirr2 with and without precon-

ditioning . 174
11 Comparison of the preconditioners for the matrix 1138bus 180
12 Comparison of the preconditioners for the matrix nasa2910 181
13 Comparison of the preconditioners for the matrix bcsstk21 182
14 Comparison of the preconditioners for the matrix bcsstk23 183
15 Comparison of the preconditioners for the matrix s1rmq4m1 184
16 Comparison of the preconditioners for the matrix s3rmq4m1 185
17 The Plain projection method for the matrix orsirr2 191
18 The Plain projection method for the matrix pores2 192
19 The Plain projection method for the matrix sherman2 193

LIST OF FIGURES 239

20 The Plain projection method for the matrix saylr4 194
21 The Plain projection method for the matrix memplus 195
22 The Plain projection method for the matrix utm1700b 196
23 The Plain projection method for the matrix utm3060 197
24 The Plain projection method for the matrix l 50 1 198
25 The Plain projection method for the matrix l 50 100 199
26 The Plain projection method for the matrix l 50 1000 200
27 The Plain projection method for the matrix c1m1o4 201
28 The Plain projection method for the matrix c500m1o4 202
29 The LU-projection method for the matrix orsirr2 206
30 The LU-projection method for the matrix pores2 207
31 The LU-projection method for the matrix sherman2 208
32 The LU-projection method for the matrix saylr4 209
33 The LU-projection method for the matrix memplus 210
34 The LU-projection method for the matrix utm1700b 211
35 The LU-projection method for the matrix utm3060 212
36 The LU-projection method for the matrix l 50 1 213
37 The LU-projection method for the matrix l 50 100 214
38 The LU-projection method for the matrix c1m1o4 215
39 Comparison of the preconditioners for the matrix orsirr2 221
40 Comparison of the preconditioners for the matrix pores2 222
41 Comparison of the preconditioners for the matrix sherman2 223
42 Comparison of the preconditioners for the matrix saylr4 224
43 Comparison of the preconditioners for the matrix memplus 225
44 Comparison of the preconditioners for the matrix utm1700b 226
45 Comparison of the preconditioners for the matrix utm3060 227
46 Comparison of the preconditioners for the matrix l 50 1 228
47 Comparison of the preconditioners for the matrix l 50 100 229
48 Comparison of the preconditioners for the matrix l 50 1000 230
49 Comparison of the preconditioners for the matrix c1m1o4 231
50 Comparison of the preconditioners for the matrix c500m1o4 232

240 REFERENCES

References

[1] O. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned
conjugate gradient method. Numer. Math., 48:499{523, 1986.

[2] M. W. Benson. Iterative solution of large scale linear systems. Thesis, Lakehead
University, Thunder Bay, Canada, 1973.

[3] M. Benzi, J. K. Cullum, and M. T _uma. Robust approximate inverse precondi-
tioning for the conjugate gradient method. Technical Report LA-UR-99-2899,
Los Alamos National Laboratory, June 1999.

[4] M. Benzi, R. Kouhia, and M. T _uma. An assessment of some preconditioning
techniques in shell problems. Technical Report LA-UR-97-3892, Los Alamos
National Laboratory, September 1997.

[5] M. Benzi, J. Mar��n, and M. T _uma. A two-level parallel preconditioner based
on sparse approximate inverses. In David R. Kincaid et. al., editor, Iterative
Methods in Scienti�c Computation II, pages 1{11. IMACS, 1999.

[6] M. Benzi, C.D. Meyer, and M. T _uma. A sparse approximate inverse precondi-
tioner for the conjugate gradient method. SIAM J. Sci. Comput., 17(5):1135{
1149, 1996.

[7] M. Benzi, D. B. Szyld, and A. van Duin. Orderings for incomplete factoriza-
tion preconditioning of nonsymmetric problems. Report 97-91, Department of
Mathematics, Temple University, Philadelphia, PA 19122-2585, USA, 1997.

[8] M. Benzi and M. T _uma. A comparison of some preconditioning techniques for
general sparse matrices. Dipartimento di Matematica, Universit�a degli Studi
di Bologna, 40127 Bologna, Italy.

[9] M. Benzi and M. T _uma. A sparse approximate inverse preconditioner for non-
symmetric linear systems. Dipartimento di Matematica, Universit�a degli Studi
di Bologna, 40127 Bologna, Italy.

[10] M. Benzi and M. T _uma. Orderings for factorized sparse approximate inverse
preconditioners. Technical Report LA-UR-98-2175, Los Alamos National Lab-
oratory, May 1998.

[11] M. Benzi and M. T�uma. A comparative study of sparse approximate inverse
preconditioners. Applied Numerical Mathematics, 30(2{3):305{340, 1999.

[12] C. Brezinski. Projection Methods for Systems of Equations. Studies in Com-
putational Mathematics. North Holland, Amsterdam, 1997.

REFERENCES 241

[13] L. Brieger and G. Lecca. Parallel multigrid preconditioning of the conju-
gate gradient method for systems of subsurface hydrology. J. Comput. Phys.,
142(1):148{162, 1998.

[14] Z. Cai, T. A. Manteu�el, and S. F. McCormick. First-order system least squares
for velocity-vorticity-pressure form of the Stokes equations, with application
to linear elasticity. Electronic Transactions on Numerical Analysis (ETNA),
3:150{159, December 1995.

[15] T. F. Chan, W. P. Tang, and W. L. Wan. Wavelet sparse approximate inverse
preconditioners. Report CAM 97-34, Mathematics Dept., UCLA, 1997.

[16] E. Chow and Y. Saad. Approximate inverse preconditioners for general sparse
matrices. Research Report UMSI 94/101, University of Minnesota, Super-
computer Institute, 1200 Washington Avenue South, Minneapolis, Minnesota
55415, USA, 1994.

[17] J. D. F. Cosgrove, J. C. Diaz, and A. Griewank. Approximate inverse precon-
ditionings for sparse linear systems. Intern. J. Computer Math., 44:91{110,
1992.

[18] J. W. Daniel, W. B. Gragg, L. Kaufmann, and G. W. Stewart. Reorthogonal-
ization and stable algorithms for updating the Gram-Schmidt QR factorization.
Mathematics of Computation, 30(136):772{795, 1976.

[19] T. Davis. University of orida sparse matrix collection,
http://www.cise.u.edu/�davis/sparse/,
ftp://ftp.cise.u.edu/pub/faculty/davis/matrices/. NA Digest, Volume 97(no.
23), June 7, 1997.

[20] V. R. Deshpande, M. J. Grote, P. Messmer, and W. B. Sawyer. Parallel sparse
approximate inverse preconditioner. Technical Report TR-96-14, Swiss Center
for Scienti�c Computing (CSCS/SCSC), via Cantonale, 6928 Manno, Switzer-
land, 1996.

[21] J. Drko�sov�a, M. Rozlo�zn��k, Z. Strako�s, and A. Greenbaum. Numerical stability
of GMRES. BIT, 3:309{330, 1995.

[22] I. S. Du�, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM
Transactions on Mathematical Software, 15(1):1{14, 1989.

[23] I.S. Du�. Permutations for a zero-free diagonal. ACM Transactions on Math-
ematical Software, 7(3):387{390, September 1981.

242 REFERENCES

[24] M. R. Field. Improving the performance of factorised sparse approximate in-
verse preconditioner. Technical Report HDL-TR-98-199, Hitachi Dublin Lab-
oratory, 1998.

[25] M. R. Field. A parallel factorised sparse approximate inverse preconditioner
with improved choice of sparsity pattern. Technical Report HDL-TR-99-214,
Hitachi Dublin Laboratory, 1999.

[26] R. W. Freund. On conjugate gradient type methods and polynomial precon-
ditioners for a class of non-Hermitian matrices. Numer. Math., 57:285{312,
1990.

[27] S. Fujino and S. Doi. Optimizing multicolor ICCG methods on some vectorcom-
puters. In R. Beauwens and P. de Groen, editors, Iterative Methods in linear
Algebra, pages 349{358. Elsevier Science Publishers B. V. (North-Holland),
1992.

[28] S. Fujino and T. Takeuchi. ILU factorization well suited to the vector pro-
cessor using a variant of the 5-point di�erence scheme. Comp. Phys. Comm.,
85(3):371{381, 1995.

[29] S. Fujino, S. Zhang, and M. Mori. Visualization of convergence behavior of
Bi-CGSTAB method. Supercomputer, 8(6):127{135, 1992.

[30] R. Glowinski, A. Rieder, R. Wells jr., and X. Zhou. A wavelet multigrid precon-
ditioner for dirichlet boundary value problems in general domains. Modelisation
Math. Anal. Numer., 30(6):711{729, 1996.

[31] G. Golubovici and C. Popa. Interpolation and related coarsening techniques
for the algebraic multigrid methods. In Proceedings of the Fourth European
Conference on Multigrid Methods, July 1993, Amsterdam, volume 116 of Intern.
Series of Numer. Math, pages 201{213, Berlin, 1994. Birkh�auser Verlag.

[32] N.I.M. Gould and J. Scott. Sparse approximate-inverse preconditioners using
norm-minimization techniques. SIAM J. Sci. Comput., 19(2):605{625, 1998.

[33] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, 1997.

[34] I. Gustafsson. A class of �rst order factorization methods. BIT, 18(1):142{156,
1978.

[35] W. Hackbusch. Multigrid Methods and Applications. Springer-Verlag, Berlin,
1985.

REFERENCES 243

[36] D. R. Hare, C. R. Johnson, D. D. Olesky, and P. van den Driessche. Sparsity
analysis of the QR factorization. SIAM J. Matrix Anal. Appl., 14(3):655{669,
1993.

[37] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. Nat. Bur. Standards, 49:409{435, 1952.

[38] T. Huckle. Approximate sparsity patterns for the inverse of a matrix and
preconditioning. Applied Numerical Mathematics, 30(2{3):291{303, 1999.

[39] T. Huckle and M. Grote. A new approach to parallel preconditioning with
sparse approximate inverses. Internal Report SCCM94-03, Stanford University,
1994.

[40] V. P. Il'in. Iterative Incomplete Factorization Methods. World Scienti�c Pub-
lishing Co. Pte. Ltd, Singapore, 1992.

[41] O. G. Johnson, C. A. Micchelli, and G. Paul. Polynomial preconditioners for
conjugate gradient calculations. SIAM J. Numer. Anal., 20(2):362{376, 1983.

[42] W. D. Joubert and D. Manteu�el. Iterative methods for nonsymmetric linear
systems. In D. R. Kincaid and L. J. Hayes, editors, Iterative Methods for Large
Linear Systems, pages 149{171. Academic Press, Boston, 1990.

[43] I.E. Kaporin. High quality preconditioning of a general symmetric positive
de�nite matrix based on its utu + utr + rtu-decomposition. Numer. Linear
Algebra Appl., 5:483{509, 1998.

[44] E. Kaucher, U. Kulisch, and C. Ullrich. Computerarithmetic. Teubner-Verlag,
Stuttgart, 1987.

[45] S.A. Kharchenko, L.Yu. Kolotilina, A.A. Nikishin, and A.Yu. Yeremin. A ro-
bust AINV-type preconditioning method for constructing sparse approximate
inverse preconditioners in factored form. To appear in Numerical Linear Alge-
bra and Applications.

[46] L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse
preconditionings i. theory. SIAM J. Matrix Anal. Appl., 14(1):45{58, 1993.

[47] L. A. Krukier. Convergence of triangular iterative methods based on the skew-
symmetric part of the matrix. Applied Numerical Mathematics, 30(2{3):281{
290, 1999.

[48] G. I. Marchuk. Methods for Calculating the Nuclear Reactors. Atomizdat,
Moskva, 1958. In Russian language.

244 REFERENCES

[49] U. Meier Yang. Preconditioned conjugate gradient-like methods for nonsym-
metric linear systems. Tech. Report CSRD 1210, University of Illinois at
Urbana-Champaign, Center for Supercomputing Research and Development,
465 CSRL-1308 West Main Street, Urbana, IL 61801-2307, USA, 1992.

[50] U. Meier Yang and K. A. Gallivan. A new family of preconditioned iterative
solvers for nonsymmetric linear systems. Appl. Numer. Math., 19(3):287{317,
1995.

[51] U. Meier Yang and K.A. Gallivan. A new family of block methods. Applied
Numerical Mathematics, 30(2{3):155{173, 1999.

[52] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for
linear systems of which the coe�cient matrix is a symmetric M-matrix. Math.
Comp., 31:148{162, 1977.

[53] N. S. Mendelsohn. Some elementary properties of ill conditioned matrices and
linear equations. American Mathematical Monthly, 63:285{295, 1956.

[54] G�erard Meurant. Computer Solution of Large Linear Systems. Number 28
in Studies in Mathematics and its Applications. North Holland, Amsterdam,
1999.

[55] C. Popa. Preconditioning for the ful�lment of the approximation assumption in
the algebraic multigrid method. Stud. Univ. Babes-Bolyai, 40(1):77{102, 1995.

[56] L. Portugal, F. Bastos, J. Judice, J. Paix~ao, and T. Terlaky. An investigation
of interior point algorithms for the linear tranportation problem. Report 93-
100, Delft University of Technology, Faculty of Technical Mathematics and
Informatics, 1993.

[57] M. Rozlo�zn��k. Numerical Stability of the GMRES Method. PhD thesis,
Academy of Sciences of the Czech Republik, Institute of Computer Science,
Prague, 1997.

[58] M. Rozlo�zn��k and R. Weiss. On stable implementations of the generalized
minimal error method. J. Comp. and Appl. Math., 98(1):49{62, 1998.

[59] Y. Saad. Preconditioning techniques for nonsymmetric and inde�nite linear
systems. J. Comput. Appl. Math., 24:89{105, 1988.

[60] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Research Report
UMSI 92/38, University of Minnesota, Supercomputer Institute, 1200 Wash-
ington Avenue South, Minneapolis, Minnesota 55415, USA, 1992.

REFERENCES 245

[61] Y. Saad. A exible inner-outer preconditioned GMRES algorithm. SIAM J.
Sci. Comput., 14(2):461{469, 1993.

[62] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Com-
pany, Boston, 1996.

[63] J. Schoeberl. Robust multigrid preconditioning for parameter-dependent prob-
lems. i: The stokes-type case. In W. Hackbusch (ed.) et al., editor, Multi-
grid methods V. Proceedings of the 5th European multigrid conference, held in
Stuttgart, Germany, October 1{4, 1996, pages 260{275. Berlin: Springer. Lect.
Notes Comput. Sci., 1998.

[64] W. Sch�onauer. Scienti�c Computing on Vector Computers. North-Holland,
Amsterdam, New York, Oxford, Tokyo, 1987.

[65] W. Sch�onauer and H. H�afner. Supercomputers: The hardware, the architecture.
In R. Vichnevetsky and J. J. H. Miller, editors, Proceedings of the 13th IMACS
World Congress on Computation and Applied Mathematics, Dublin, Ireland,
July 22-26, pages 725{727, 1991.

[66] W. Sch�onauer, H. M�uller, and E. Schnepf. Pseudo-residual type methods for the
iterative solution of large linear systems on vector computers. In M. Feilmeier,
J. Joubert, and U. Schendel, editors, Parallel Computing 85, pages 193{198.
Elsevier Science Publishers B. V. (North-Holland), 1986.

[67] W. Sch�onauer and K. Raith. A polyalgorithm with diagonal storing for the
solution of very large inde�nite linear banded systems on vector computers.
In M. Ruschitzka, editor, Parallel and Large-Scale Computers: Performance,
Architecture, Applications, volume II of IMACS Transaction on Scienti�c Com-
putation, pages 213{220. North-Holland, 1983.

[68] W. Sch�onauer, M. Schlichte, and R. Weiss. Wrong ways and promising ways
towards robust and e�cient iterative linear solvers. In Advances in Computer
Methods for Partial Di�erential Equations VI, pages 7{14. Publ. IMACS, 1987.

[69] W. Sch�onauer, E. Schnepf, and H. M�uller. The FIDISOL program package.
Internal report 27/85, University of Karlsruhe, Computing Center, Postfach
6980, 76128 Karlsruhe, Germany, 1985.

[70] J. R. Shewchuk. Conjugate gradient method without the agonizing pain. In-
ternal Report CMU-CS-94-125, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, USA, 1994.

246 REFERENCES

[71] G. L. G. Sleijpen and D. R. Fokkema. BiCGStab(l) for linear equations involv-
ing unsymmetric matrices with complex spectrum. Electronic Transactions on
Numer. Anal. (ETNA), 1:11{32, 1993.

[72] G. L. G. Sleijpen and H. A. van der Vorst. Maintaining convergence properties
of BiCGstab methods in �nite precision arithmetic. Numerical Algorithms,
10(3{4):203{223, 1995.

[73] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems.
SIAM J. Sci. Stat. Comp., 10(1):36{52, 1989.

[74] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag,
Berlin, second edition, 1993.

[75] F. Stummel and K. Hainer. Praktische Mathematik. Teubner-Verlag, Stuttgart,
1982.

[76] H. A. van der Vorst. Guidelines for the usage of incomplete decompositions in
solving sets of linear equations as they occur in practical problems. J. Comput.
Phys., 44:134{155, 1981.

[77] H. A. van der Vorst. Preconditioning by Incomplete Decompositions. PhD
thesis, University of Utrecht, The Netherlands, 1982. ACCU Series 32.

[78] H. A. van der Vorst. BI-CGSTAB: A fast and smoothly converging variant of
BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput., 13(2):631{644, 1992.

[79] R. Weiss. Error-minimizing Krylov subspace methods. SIAM J. Sci. Comput.,
15(3):511{527, 1994.

[80] R. Weiss. Parameter-Free Iterative Linear Solvers. Mathematical Research,
vol. 97. Akademie Verlag, Berlin, 1996.

[81] R. Weiss, H. H�afner, and W. Sch�onauer. LINSOL (LINear SOLver)|
description and user's guide for the parallelized version. Internal report 61/95,
University of Karlsruhe, Computing Center, Postfach 6980, 76128 Karlsruhe,
Germany, 1995.

[82] G. Wittum and F. Liebau. On truncated incomplete decompositions. BIT,
29:719{740, 1989.

[83] M. Zimmermann. Projektionsverfahren zur Pr�akonditionierung von verallge-
meinerten CG-Verfahren. Internal report 55/95, University of Karlsruhe, Com-
puting Center, Postfach 6980, 76128 Karlsruhe, Germany, 1995. Diploma thesis.

Lebenslauf

Name: Claus Peter Koschnski

Gebohren: am 18. M�arz 1970 in Essen

Familienstand: ledig

1976 { 1980 Dionysius Grundschule in Essen Borbeck

1980 { 1989 Don-Bosco Gymnasium in Essen Borbeck

1989 Abitur

1989 { 1990 Grundwehrdienst

1990 { 1995 Studium der Mathematik an der Universit�at
(GHS) Essen

Oktober 1995 Diplompr�ufung

Nov. 1995 { M�arz 1996 wissenschaftlicher Angestellter am Institut f�ur
experimentelle Mathematik der Universit�at
(GHS) Essen

April 1996 { Juli 1998 Mitarbeiter in der Abteilung Netzwerke des
Rechenzentrums der Universit�at (TH) Karlsruhe

April 1996 { Oktober 1999 Anfertigung der Dissertatrion Properties of
Approximate Inverses and Adaptive Control
Concepts for Preconditioning in der For-
schungsgruppe "Numerikforschung f�ur Super-
computer" am Rechenzentrum der Universit�at
(TH) Karlsruhe

