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ABSTRACT. The purpose of this paper is to make some practically relevant results
in automated theorem proving available to many-valued logics with suitable modifi-
cations. We are working with a notion of many-valued first-order clauses which any
finitely-valued logic formula can be translated into and that has been used several times
in the literature, but in an ad hoc way. We give a many-valued version of polarity
which in turn leads to natural many-valued counterparts of Horn formulas, hyperreso-
lution, and a Davis-Putnam procedure. We show that the many-valued generalizations
share many of the desirable properties of the classical versions. Our results justify and
generalize several earlier results on theorem proving in many-valued logics.
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Introduction

The purpose of this paper is to make some practically relevant results in automated
theorem proving available to many-valued logics with suitable modifications. We are
working with a notion of many-valued first-order clauses which we call signed clauses
that has been used several times in the literature, but in a more ad hoc way. We will
consider clauses of the form

fS1 p1� � � � � Sm pmg�

where the Si are subsets of a finite or infinite set of truth values and the pi are
atomic formulas in the usual sense. In contrast to classical logic predicate symbols are
interpreted as functions whose range is the set of truth values. The signed clause above
is supposed to be satisfiable if there is an interpretation of the predicate and function
symbols occurring in the atoms such that for all variable assignments at least one of
the pi has a truth value in Si. There are no designated truth values, but it is shown
in [H 94] that every satisfiability problem in any finitely-valued first-order logic with
arbitrary designated truth values can be reduced to a satisfiability problem over signed
clauses.



In this paper we give a many-valued version of polarity (for a definition and
discussion of polarity in classical logic, see for example [M 82]) which in turn leads
to natural many-valued counterparts of Horn formulas, hyperresolution, and a Davis-
Putnam procedure. We show that the many-valued generalizations share many of the
desirable properties of the classical versions. Our results justify and generalize several
earlier results on theorem proving in many-valued logics.

We believe that the time has come for investigations such as the present one,
because in the subfield of automated deduction in nonclassical logics affairs have
by now reached a state, where it is understood quite well how suitable calculi for
automated deduction systems can be constructed in principle for a wide selection of
logics. There are resolution like calculi as well as tableaux like calculi for modal,
many-valued, intuitionistic, non-monotonic and many other logics. The performance,
however, of most systems based on those calculi is relatively poor when compared
to state-of-the-art theorem provers for classical logic. One of the reasons, of course,
is the inherently higher complexity of some nonclassical logics wrt their classical
counterparts. Alas, this is not the whole story: let us have a look at some successful
theorem proving paradigms from classical logic in order to see what might be missing.

� The Davis-Putnam-Loveland (DPL) procedure is among the fastest known me-
thods for satisfiability checking on two-valued propositional clauses.

� Modern Prolog compilers achieve rates of hundreds of thousands logical in-
ferences per second. Recall that the rule base of a standard Prolog program
consists of first-order definite Horn clauses.

� In the resolution based theorem prover Otter the hyperresolution rule and unit
resulting (UR) strategy often are keys to success.

Variable selection rules of the DPL procedure and hyperresolution rely explicitly
on the notion that literals occurring in a clause can either be positive or negative. The
same holds implicitly for Prolog programs which are based on Horn clauses.

These examples show that in classical logic formulas in clausal form induce de-
pendency relations between the literals in a natural way which are exploited by many
refinements of inference procedures. We need a clausal form that bears enough infor-
mation for determining such data dependencies in many-valued logics as well, in other
words, we need a notion of polarity of subformulas in many-valued logic.

In Section 1 of this paper we give formal definitions of some key notions of
computational logic.

In Section 2 we formally define a many-valued version of polarity. In Sections 3,
4, and 5, respectively, we apply this definition in order to obtain in a natural way
many-valued versions of Horn clauses, semantic clash resolution, and a DPL like
procedure.

1 Definitions and Notation

In Definitions 1 to 5 we recapitulate some required concepts from classical logic.



Definition 1 A first-order signature Σ is a triple hPΣ�FΣ� �Σi, where PΣ is a non-
empty family of predicate symbols, FΣ is a possibly empty family of function symbols
disjoint from PΣ, and �Σ assigns a non-negative arity to each member of PΣ �FΣ. Let
TermΣ be the set of Σ-terms over object variables Var � fx0� x1� � � �g, and let Term0

Σ
be the set of variable free terms called ground terms.

Definition 2 Let Σ0 be a propositional signature, that is, a denumerable set of
propositonal variables fp0� p1� � � �g. In the propositional case we define the set of
atoms to be Σ0, in the first-order case let AtΣ � fp�t1� � � � � tn�j p � PΣ� �Σ�p� �
n� ti � TermΣg. A literal l is either an atom p or a negated atom �p. In the first case
l is assigned positive polarity, in the second case negative polarity.

A clause is a finite set of literals. A Horn clause is a clause that contains at most
one literal with positive polarity.

A formula in clausal normal form (CNF) is a finite set of clauses which we require
to have pairwise disjoint object variables in the first-order case. A Horn formula is
a CNF formula that is made up from Horn clauses.

By a ‘Horn formula’ and ‘CNF formula’ we mean always a universally closed
formula in the first-order case as will become clear from the definitions.

Definition 3 A propositional interpretation I0 is a mapping from Σ0 to f0� 1g. A
first-order (Σ-)structure MΣ � hDM � IM i consists of a non-empty domain DM

and an interpretation IM that assigns to each function symbol f � FΣ a mapping
IM �f� : D�Σ�f�

M � DM and to each prediate symbol p � PΣ a relation in D�Σ�p�
M . A

variable assignment is a mapping � : Var � DM .

In the following we omit the subscripts Σ, M , when no confusion can arise.

Definition 4 Valuation functions valM�� for terms t � TermΣ are defined inductively
relative to a structure M and a variable assignment � as usual:

valM���x� � ��x� if x � Var

and
valM���f�t1� � � � � tm�� � I�f��valM���t1�� � � � � valM���tm��

otherwise, provided ��f� � m. valM�� is extended to literals via:

valM���p�t1� � � � � tm�� � 1 iff hvalM���t1�� � � � � valM���tm�i � I�p�

valM����p�t1� � � � � tm�� � 1 iff hvalM���t1�� � � � � valM���tm�i �� I�p�

Definition 5 A propositional literal p (�p) is satisfiable by an interpretation I0 iff
I0�p� � 1 (I0�p� � 0). A first-order literal l is satisfiable iff there is a Σ-structure M
and a variable assignment � such that valM���l� � 1.

A propositional clause is satisfiable iff at least one literal is satisfiable. A first-order
clause C is satisfiable iff for some Σ-structure M for every variable assignment � at
least one literal in C is satisfied. A (propositional) CNF formula Φ is satisfiable iff



all clauses in Φ are simultaneously satisfiable by the same structure (interpretation)
which is then called model of Φ.

Let Φ be a CNF formula and C a clause. Then C is a logical consequence of Φ,
in symbols Φ � C, iff every model of Φ is a model of C. Two sets of formulas are
logically equivalent iff they have the same models.

For many-valued semantics up to the atomic level only the following definitions
must be changed:

Definition 6 A truth value setN is either the finite set of equidistant rationalnumbers
f0� 1

n�1 � � � � � 1gwith cardinalityn or the real unit interval. In the latter case we speak
of �-valued logic. An (n-valued) propositional interpretation I0 is a mapping
from Σ0 to N . An (n-valued) first-order (Σ-)structure MΣ � hDM � IM i over a
signature Σ is defined only for finite N and consists of a non-empty domain DM and
an interpretation IM that assigns to each function symbol f � F a mapping IM �f� :
D
��f�
M � DM , and to each prediate symbol p � P a function IM �p� : D��p�

M � N .
In the many-valued case, valM�� is defined on atoms by valM���p�t1� � � � � tm�� �
I�p��valM���t1�� � � � � valM���tm��.

2 Many-Valued Clauses and Polarity

Now we are going to define formally our notion of many-valued clause and many-
valued CNF formula which we call signed clause and signed formula. We justify our
particular choice as follows: first, it is demonstrated in [H 93a, H 94] that any satisfia-
bility problem in finitely-valued first-order logic can be translated into a satisfiability
preserving set of signed first-order clauses which, moreover, is polynomial in size to
the input; second, [L-M-R 93, L-M-R 94] show that signed formulas can emulate an-
notated logics [L-H-S-dC 91] without significant overhead; third, [L-M-R 94] shows
that inference on signed formulas can be used to model fuzzy inference; and forth,
as can be observed below, all notions from classical logic we considered carry over
naturally to the case of signed formulas.

In Lemma 22 below we show that in fact a sublanguage of the language of signed
formulas called regular formulas is sufficient to express any signed formula. As a
consequence, we will take regular formulas as the starting point of our investigation
into computational properties of many-valued logic.

Definition 7 Let S 	 N and p be an atom. Then S p is called a signed literal and S
its sign. A finite set of signed literals is called a signed clause. A formula in signed
CNF, or a signed formula for short, is a finite set of signed clauses which we require
to have pairwise disjoint object variables in the first-order case.

Definition 8 A propositional signed literal S p is satisfiable by an interpretation I0

iff I0�p� � S. A first-order signed literal S p is satisfiable iff there is a Σ-structure M
and a variable assignment � such that valM���p� � S.



A propositional signed clause is satisfiable iff at least one literal is satisfiable. A
first-order signed clause C is satisfiable iff for some Σ-structure M for every variable
assignment � at least one literal in C is satisfied.

A signed formula Φ is satisfiable iff all clauses in Φ are simultaneously satisfiable
by the same (n-valued) interpretation, respectively, by the same (n-valued) structure
which, in either case, is then called (n-valued) model of Φ.

Logical consequence and logical equivalence are defined as in the classical case,
but wrt many-valued models.

Definition 9 Let �i denote the set fj � N j j 
 ig and let �i denote the set
fj � N j j � ig. If a sign S is equal to either �i or �i for some i � N , then it is
called regular sign.

Definition 10 A regular clause is a signed clause made up of signed literals in which
only regular signs occur. A literal S p that occurs in a regular clause has positive
polarity if S � �i for some i, and it has negative polarity if S � �i for some i.

Usually we simply say that a literal S p is positive (negative) when it has positive
(negative) polarity.

3 Many-Valued Horn Clauses

Our aim is to define a natural many-valued generalization of Horn clauses. We claim
that regular signed clauses are the proper basis for doing so. The definition is natural
enough:

Definition 11 A regular clause is a many-valued Horn clause if it contains at most
one positive literal. A regular clause is said to be a positive (negative) regular clause
if it contains only positive (negative) literals.

Regular formulas and many-valued Horn formulas are defined in the obvious way
like signed formulas above.

Example 12 In the many-valued Horn formula Φ defined below all singleton clauses
are positive while the fifth clause from the right is a negative clause.

Φ � ff �0�3 p1� �0�3 p2� �0�7 p3g� f �0�6 p3� �0�6 p4� �0�4 p5g�

f �0�4 p5� �0�4 p6� �0�6 p8g� f �0�5 p5� �0�5 p9g� f �0�5 p8� �0�5 p10g�

f �0�4 p10� �0�6 p5g� f �0�5 p8� �0�5 p9g� f �0�6 p1g�

f �0�6 p2g� f �0�8 p4g� f �0�4 p6gg

Remark 13 1. Escalada Imaz & Manya Serres [EI-MS 94] give the following
definition of a many-valued propositional Horn clause: if C is a classical Horn
clause and i � IR, then hC; ii is a many-valued Horn clause which is satisfiable
iff I�C� 
 i where I�p � q� � maxfI�p�� I�q�g and I��p� � 1  I�p�. Now
consider a many-valued Horn clause in our sense of the form



Ci � f �1�i p1� � � � � �1�i pk� �i pg�

By definition, Ci is satisfiable by I iff one of its literals is satisfiable iff 1 
I�p1� 
 i or � � � or 1  I�pk� 
 i or I�p� 
 i, which is the case iff maxf1
I�p1�� � � � � 1I�pk�� I�p�g 
 i. The latter is equivalent to I��p1�� � ��pk�p� 

i, where ��� are interpreted in the sense of [EI-MS 94], in other words iff
h�p1 � � � � � pk � p; ii is a satisfiable many-valued Horn clause in the sense
of [EI-MS 94]. This shows that the many-valued Horn clauses of [EI-MS 94]
are a special case of our notion. On the other hand, it is easy to see that
the many-valued Horn formulas of [EI-MS 94] are less expressive than ours.
Consider, for instance, the many-valued Horn formula f �i p� �j pg for any
i � j such that i �� 1 j. Such a formula is clearly not equivalent to any set
of Horn clauses in the sense of [EI-MS 94]: the set of many-valued functions
that can be characterized with a conjunctive combination of clauses of the
form f �1�j p� �j pg, f �k pg, and f �i pg does not include the function

corresponding to the clause f �i p� �j pg for i � j and i �� 1 j.

2. Schmitt [S 86] defines a first-order clause languagebased on literals that consist
of atoms prefixed by arbitrary combinations of three-valued unary operators
from the set f���g, where� is defined as in [EI-MS 94] (cf. previous paragraph)
and� is defined as valM����p� � 1valM���p� . Literals l in [S 86] are called
satisfiable iff valM���l� 
 1. Satisfiability of clauses and formulas is as in our
setting. In [S 86] literals of the form p���p (and equivalent combinations) are
called positive, literals of the form �p��p are called negative. Now, obviously,
the (in Schmitt’s sense) negative literal �p is satisfiable with respect to valM��

in Schmitt’s sense iff valM����p� 
 1 iff valM���p� � f0� 1
2g iff valM���p� �

1
2

iff the (in our sense) negative literal � 1
2 p is satisfiable in our sense. Similarly,

all other combinations of ��� can be characterized with regular signs and
matching polarity. Hence, Schmitt’s three-valued Horn clauses again are a
special case of our notion.

3.1 Computational Complexity

We begin our discussion of many-valued Horn formulas by defining a satisfiability
checking procedure for them. It is a generalization of the algorithm given by Gallo
& Urbani in [G-U 89] for classical propositional Horn formulas. Gallo & Urbani’s
algorithm in turn is a generalization of Dowling & Gallier’s procedure [D-G 84], the
latter being the base of the algorithms defined in [EI-MS 94].

Let Φ be a set of many-valued Horn clauses. We note that every Horn clause can
be written in rule form, namely, if C is of the form

f �i1 p1� � � � � �ik pk� �i pg�

then we rewrite it as



�i1 p1 � � � � � �ik pk � �i p�

where �i p abbreviates the negation of �i p.
Facts and negative clauses are adorned with pseudo-literals denoting truth and

falsity, thus we write T � �i p for f �i pg and �i1 p1 � � � � � �ik pk � F for
f �i1 p1� � � � � �ik pkg, where T can be interpreted as N p or �1 p and F as � p or
�1 p (for arbitrary p) in the regular clause framework. We assign negative polarity to
T and positive polarity to F . A literal of the form �i p has negative polarity, because
it occurs implicitly negated in the premise of an implication and expands to �i p.

Given a finite set Φ � fC1� � � � � Cmg of such rules we associate a finite, labelled,
directed graph GΦ with it whose node set consists of all the literals occurring in Φ
(including T and F 1), and whose edges are defined as follows:

1. If li is a literal occurring in the body of a rule Ch in Φ, and lj is its head literal,
then there is an edge from li to lj with label h in GΦ.

2. For each pair of literals �i p and �j p such that i � j there is an unlabelled
edge from �i p to �j p in GΦ.

Let us call edges of the former kind inference edges and edges of the latter kind
propagation edges (in two-valued logic we have unsigned atoms in a rule base, so
propagation edges are not needed). By definition, all edges going out from positive
nodes are unlabelled propagation edges, all edges coming into positive nodes are
labelled inference edges, and vice versa for negative nodes.

In Figure 1 the graph corresponding to the Horn clause set from Example 12 is
shown. For sake of readability �i p has been abbreviated with � ip and �i p with
ip.

Let us denote with lab�l� the set of labels of edges entering into a positive node,
with prem�h� the set of negative literals that occur in Ch, and, if D is a set of negative
literals, with prop�D� the set positive literals that have an outgoing edge to some
member of D. Now we are able to define a distance function d on the positive nodes
of GΦ and T that indicates provability:

d�lj� � 1 � min
h�lab�lj �

fmaxfd�li�j li � prop�prem�h��gg

We adopt the convention that prop�fTg� � fTg and initially set d�T � � 0. If d is
undefined for a positive node l, then we set d�l� ��. A positive node l is reachable
iff d�l� ��. In Figure 1 the reachable nodes are framed.

Theorem 14 Let l be a positive node which is reachable in GΦ. Then Φ� l.

1We may assume that positive and negative clausesand, therefore,T andF occur in Φ, because otherwise
Φ is trivially satisfiable.



Proof: The proof is a straightforward induction over the distance of l similar as
in [G-U 89].

Corollary 15 Φ is satisfiable iff F is unreachable in GΦ.
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Figure 1: The graph corresponding to the Horn formula from Example 12. The framed
nodes are contained in the reachability set.

Moreover, similarly as in [G-U 89], reachability can be checked in linear time wrt
the size of GΦ.

Unfortunately, the size of GΦ from Φ is not linear wrt to the size of Φ as it is in
classical logic. The culprit is easily identified as the second clause in the definition of



GΦ which is not needed in the classical case. Obviously, up to mk edges are added
by this clause, where m is the number of clauses in Φ, and k is the maximal number
of clauses sharing a negative literal with the same atom and different annotation (if
we assume without loss of generality that there is at most one negative literal with the
same atom per clause).

It is possible, however, to represent the positive nodes with the same atom p as
a list sorted according to increasing value of their annotations. The edges from the
positive literals to a negative literal with atom p are not explicitly computed, instead
the value of the highest reachable annotation in the list is stored and updated. Thus for
each atom p only one edge is actually used at a time and the sorted list can be accessed
in logk steps. Together we have a complexity O�jΦj� jΣΦj logk� (where jΣΦj is the
number of different atoms occurring in Φ) which is the same as [EI-MS 94] gives for
its more restricted class of many-valued Horn formulas.

When the number of truth values is finite (say, there are n truth values) k is bound
by n. Hence the complexity again is linear. For an unbounded number of truth values
we have an additional logarithmic factor in comparison to the classical case which is
due to the fact that an atom can occur negatively with k different annotations.

As [EI-MS 94] remarks, this seems to be exactly the price we have to pay for the
increased expressivity of real-valued Horn clauses. We have shown, however, that the
notion of [EI-MS 94] is not quite as general as it could be.

3.2 Admitting Generic Examples

We now turn to the first of two justifications of our claim that many-valued Horn
clauses based on regular clauses are a proper generalization of the classical case.

In [M 87] Makowsky gave an illuminating characterization of propositional and
first-order Horn formulas based on the notion of generic examples. In the present
subsection we demonstrate that at least for propositional logic this characterization
can be extended to multiple truth values. First we introduce the classical notion:

Definition 16 A classical propositional Σ0-interpretation I is a generic model of a
set of clauses Φ iff

1. I is a model of Φ and

2. For all p � Σ0: I�p� � 1 iff Φ � p (that is, only such facts are in I which are
contained in all models of Φ).

Further, if �Ii�i�J is a non-empty family of interpretations, then we define the
interpretation

T
i�J Ii via

T
i�J Ii�p� � mini�J Ii�p�. With Imin�Φ we abbreviate the

interpretation
T
fIj I is a model of Φg.

Definition 17 A set of clauses admits generic models iff for every set of positive
literals Δ the clause set Φ� Δ either is not satisfiable or it has a generic model.

Before we move on to the multi-valued case let us explain the meaning of these
notions. Consider, for instance, Φ1 � ffp� qgg�Φ2 � ffpg� fqgg�Φ3 � ffp� q��rgg.



Φ1 does not have a generic model, because no fact is implied by Φ1, but at least one of
p, q must be true if Φ1 is to be satisfied. Φ2 and Φ3 have generic models fp� qg and �,
respectively. Φ2 does admit generic models, because its generic model is not affected
by adding any positive literals. In contrast to this, Φ3 does not admit generic models
since adding the fact frg necessitates r to be true in any potential generic model for
Φ3 �ffrgg, but neither p nor q does follow from Φ3 �ffrgg, although at least one of
them must be true in a model.

Having a generic model is a robustness condition that corresponds to monotonicity
of reasoning under the closed world assumption (CWA): when only Horn clauses are
present, adding facts can only cause inference of new facts, whereas in the case of
non-Horn clauses one might infer disjunctive information, for instance, Φ1 can be
inferred from Φ3 � ffrgg.

Thus, having generic models is a crucial property for formulas to have if one is
interested in rule-based reasoning.

For the many-valued case we have to change the preceding definitions only slightly.
Besides substituting ‘many-valued’ for ‘classical’ in Definition 16, all that has to be
done is to replace clause 2 of Definition 16 with:

For all p � Σ0� i � N : I�p� 
 i iff Φ� �i p

To avoid technical complications with infinite sets of clauses we work with finitely-
valued logics for the rest of this subsection.

The following results were stated and proved in [M 87] for classical logic. Here
we give the many-valued generalizations:

Theorem 18 Every set of regular clauses Φ has at most one generic model. If Φ has
a generic model, then it is given by Imin�Φ. If Φ is Horn, then it is satisfiable iff it has
a generic model.

Proof: Without loss of generality assume that I1� I2 are generic for Φ, I1�p� � i1,
I2�p� � i2 and i1 � i2. Thus I1�p� �
 i2, hence, since I1 is generic, Φ � � �i2 p. But
from the genericity of I2 we have that Φ � �i2 p, a contradiction. This proves that
there is at most one generic model. The second claim is immediate from the definition.
Now assume that Φ is Horn. The non-trivial direction is when Φ is satisfiable. It
is easy to verify that the model given back by the satisfiability checking algorithm
presented in the previous section is exactly Imin�Φ.

Theorem 19 Let Φ be a set of regular clauses. Φ admits generic models iff Φ is
logically equivalent to the set

ΦH � fCjC is a many-valued Horn clause and Φ� Cg�

Proof: The non-trivial direction is ΦH�Φ. AssumeD is a non-Horn clause that does
not follow from ΦH . Let D � f �i1 p1� � � � � �ik pkg � E, where E is a negative
clause. Now, if we had Φ� �ij pj for some j, then f �ij pjg � ΦH , and then also
ΦH �D which was assumed not to hold. Therefore, we may assume that



Φ� �ij pj for no j (1)

Since clauses that contain literals of the form �1 p are equivalent to the Horn
clause fTg, we may assume that D does not contain such literals. Therefore, the set

Δ � f �j pj �i p � E� j � i arbitrary, but fixedg

is well-defined. Then Φ � Δ has no generic model. To see this, assume there is a
generic model I for Φ � Δ. By genericity of I, Δ�Φ, and in particular D are satisfied
by I. By (1) I�pj� � ij for all j, and from the satisfiability of Δ we have that I�p� � i

for all �i p� E, thus D cannot be satisfied by I, a contradiction.
From Remark 13.1 it is obvious that the many-valued Horn formulas of [EI-MS 94]

are not sufficient to characterize admission of generic models. Also there seems to be
no natural variant of generic models under which it would be.

Makowsky [M 87] extended the notion of having vs admitting models to the first-
order level. One of the results is that universal first-order Horn theories can be cha-
racterized by the fact that they admit initial term models. We expect that Makowsky’s
results can be carried over to the present case. Instead of pursuing this avenue further,
however, we want to extend a more familiar characterization of universal first-order
Horn clauses to the many-valued case in the following section.

3.3 Preservation Under Direct Products

One of the most important characterizations of Horn formulas2 is the model theoretic
one via direct products. One part of it is a generalization of the observation that
many algebraic theories such as groups or rings are preserved under direct products
which means for example that the direct product of groups again is a group. This
preservation result can be shown in general for Horn formulas, thus any theory that
can be characterized by Horn formulas is preserved under direct products. On the
other hand, it turns out that if a formula is preserved under direct products then it must
be equivalent to a Horn formula which gives a characterization of Horn formulas.

In the present section we show that this important characterization carries over to
many-valued structures and Horn formulas. See for example [H 92, H 93b] for an
extended discussion of direct products and related notions.

Definition 20 Let �Mi�i�J�hDi� Iii be a non-empty family of many-valued structures
over the same signature. Then we define the direct product

Q
i�J Mi � hD� Ii as

follows: The domain D is the direct (Cartesian) product DJ�
Q

i�J Di, that is, the
family of functions g : J �

S
i�J Di such that g�i��Di for all i�J . We define the

interpretation of terms in
Q

i�J Mi via

I�f��t1� � � � � tm� �
�
Ii�f��t1�i�� � � � � tm�i��

�
i�J

for t1� � � � � tm�D

and the interpretation of atoms in
Q

i�J Mi via

2What we call Horn formulas is in model theory usually called more precisely universal Horn sentence.



I�p��t1� � � � � tm� � minfIi�p��t1�i�� � � � � tm�i��j i�Jg for t1� � � � � tm�D�

Recall that we work with only a finite number of truth values in the first-order case,
therefore, it is sufficient to use min in the definition of I�p�.

Our definition of direct products of structures differs slightly from the one suggested
in [W-W 69] which considers function-free languages and specifies only the value of
the i-th component I�p��i� of I�p�, but leaves open the value of I�p�; on the other
hand, a treatment of generalized quantifiers which we do not need here can be found
there.

The definition of many-valued direct product coincides with the classical definition
for the truth value set N � f0� 1g provided that two-valued predicates are considered
as f0� 1g-valued functions. The following is identical to the classical definition:

Definition 21 A formula Φ is preserved under direct products iff for all non-empty
families �Mi�i�J of models for Φ, the direct product is also a model of Φ.

Before we prove the main theorem of this section we state a lemma which ensures
that it is sufficient to work with regular formulas rather than with signed formulas.

Lemma 22 Every signed formula Φ is logically equivalent to some regular formula
ΦR.

Proof: It is sufficient to replace each clause C � Φ with a finite number of regular
clauses C1� � � � � Cm that are logically equivalent to C. Let C � fl1� � � � � lkg and
assume that all literals up to lr are regular, so lr�1 � S p is the first non-regular
literal in C. If S is an interval, that is, S � f a

n�1 � � � � �
b

n�1g for certain 0 � a � b �

n  1, then replace C with the two clauses C� � fl1� � � � � lr� � b
n�1 p� lr�2� � � � � lkg

and C�� � fl1� � � � � lr� � a
n�1 p� lr�2� � � � � lkg. If S is not an interval, then take an

arbitrary partition3 S1 � � � � � Sl of S into intervals Si, and replace C with C��� �
fl1� � � � � lr� S1 p� � � � � Sl p� lr�2� � � � � lkg, then apply the first kind of transformation to
C���. It is obvious that a finite number of such transformation steps must yield a set of
regular clauses as desired.

It remains to show that both transformations do not change the models of a clause
C. Obviously, it is enough to show that (i) � f a

n�1 � � � � �
b

n�1g p iff � � a
n�1 p and

� � b
n�1 p for all 0 � a � b � n1; and (ii) �f�S �S��pg iff � fS p� S� pg. Both,

however, follow immediately from the definitions.

Theorem 23 A signed formula Φ is preserved under direct products iff it is logically
equivalent to some many-valued Horn formula ΦH .

3This is always possible since the number of truth values is finite.



Proof: Assume that �Mi�i�J are models of a Horn formula Φ. Let M be the direct
product of the Mi. We must show that M is a model of Φ. Let � be any variable
assignment for M . By definition, each C � Φ is satisfied for each variable assigment
�i in all Mi. First we assume that there is a negative literal �j p � C that is
satisfied in some Mi (which is always the case for negative clauses). Hence, we have
valMi��i�p� � j, which, by definition of direct products, implies valM���p� � j, thus
C is satisfied in M . If, on the other hand, C is positive, and for all i a positive literal
in C is satisfied, then (since C is Horn) this positive literal must be the same literal
for all i, say �j p. Again, by definition of direct products, valMi��i�p� 
 j for all i
implies valM���p� 
 j, so M satisfies C.

For the other direction we adapt the proof of the classical result given in [C 81,
Section VI.4]. First we reduce Φ: let MΦ be the class of models for Φ and let Φ be
the set of regular clauses modelled byMΦ (obviously, Φ 	 Φ). For C � fl1� � � � � lmg
denote with C�k� the clause fl1� � � � � lk�1� lk�1� � � � � lmg. Then, while there is a
C � Φ and k withC�k� � Φ, replace C withC�k�. Call the resulting clause set Φ� the
reduction of Φ. We may further assume that Φ� does not contain tautologous clauses
of the form f �0 p� Cg or f �1 p�Dg. It is easy to see that Φ� is still preserved under
direct products: if �Mi�i�J are models of C� � Φ�, then they are also models of a
certain C � Φ such that C� 	 C. Now, Φ is preserved under direct products, henceQ

i�J Mi is a model of C. But
Q

i�J Mi � MΦ which was defined to model Φ�, so
we have that

Q
i�J Mi is a model of C� as well.

We claim that Φ� is many-valued Horn. Assume the contrary, which means that we
have a clause C � fl1� l2� � � � � lmg � Φ� where l1 and l2 are positive, say l1 � �i1 p1

and l2 � �i2 p2. Denote withMk a model forC which is not a model forC�k�. Since
Φ� is reduced, such models must exist. By assumption, M1 models fl1� l2� � � � � lmg
and there exists an assignment �1 such that none of the literals l2� � � � � lm is satisfied
by M1 and �1. By definition of satisfiability, we conclude that �l1 � �i1�

1
n�1 p1

is not satisfied by M1 and �1. Hence, none of �l1� l2� � � � � lm is satisfied by M1 and
�1. By similar reasoning, none of l1��l2� l3� � � � � lm is satisfied by certain M2 and �2.
By definition of direct products, we have that none of l1� l2� l3� � � � � lm is satisfied by
M � M1 �M2 and � � ��1� �2�, hence M is not a model of C � fl1� l2� � � � � lmg.
But we did assume that both M1 and M2 are models of C, and by preservation of Φ�

under direct products M must be a model of C as well which is a contradiction.

4 Refinements of Signed Resolution and their Completeness Proofs

In this section we return from Horn clauses to the full language of regular clauses in
order to establish well known properties and techniques from the classical case for the
latter. We are only concerned with propositional logic, because all deviations from
classical logic occur on the ground level while lifting is done exactly as in the classical
case and presents no new insights. This is due to the fact that our definition of signed
clause is classical above the literal level and that we did not change the properties of
terms and substitutions.

Consider the following resolution rule for general signed clauses:



fS1 pg �D1 � � � fSn pg �Dn

D1 � � � � �Dn
provided that

n�

i�1

Si � � (2)

It is shown to be refutationally complete for signed clauses together with the
following merging rule in [H 94]:

fS1 p� � � � � Sm pg �D

f�S1 � � � � � Sm� pg �D
(3)

The argument used there for establishing completeness was n-ary semantic trees.
The same technique was used by Baaz & Fermüller [B-F 92] and Stachniak &
O’Hearn [S-O 90] to prove related results.

In classical logic there are more ways to prove a resolution system complete
some of which have advantages over semantic trees. Our aim is to transfer as many
computational insights from classical logic to many-valued logic. Therefore, it is
desirable to have a wide range of techniques for proving completeness. While semantic
trees can be used to establish completeness for a number of many-valued resolution
rules and refinements (for instance, ordered resolution, see [B-F 92]), they are either
not suitable or more complicated than necessary for other refinements such as linear
resolution restrictions.

In the following we propose a many-valued version of Anderson & Bledsoe’s
excess literal technique [A-B 70] which works particulary well with regular clauses
and we show that it can be easily used to prove completeness of a version of semantic
clash resolution for regular clauses.4

Definition 24 Let Φ be an unsatisfiable set of signed clauses. We define the excess
literal parameter k as k�Φ� � jflj l � C � Φgj  jfCjC � Φgj.

The idea of a completeness proof based on excess literals is to prove by induction
on k that for any number of excess literals in an unsatisfiable clause set Φ the empty
clause may be deduced from Φ.

Let us illustrate the principle with the following generalized version of negative
hyperresolution [R 65] which acts on regular clauses:

Many-valued negative hyperresolution

f �i1 p1g �D1 � � � f �in png �Dn f �j1 p1� � � � � �jn png �E

D1 � � � � �Dn �E

provided n 
 1� il � jl for all 1 � l � n� D1� � � � � Dn� E are negative

(4)

We note that every unsatisfiable set of regular clauses contains clauses as required
for hyperresolution, because each such set must contain clauses with at least one

4The classical version of this result can be proved with a generalized version of semantic trees [K-H 69],
but combining the latter with multiple truth values generates technical difficulties which are elegantly
avoided in the excess literal technique.



positive literal and purely negative clauses. The first n input clauses are commonly
called electrons and the non-negative input clause is called the nucleus.

Each hyperresolution step in turn produces a negative clause which can be subse-
quently used as an input for another hyperresolution step.

Theorem 25 Let Φ be an unsatisfiable set of regular clauses. Then � can be derived
from Φ by a finite number of applications of many-valued negative hyperresolution.

Proof: k�Φ� � 0: That is, the number of literals in Φ is equal to the number of clauses
in Φ. If � � Φ we are done; otherwise, Φ must consist entirely of unit clauses. Now
Φ is unsatisfiable, so there must be two clauses f �i pg and f �j pg such that i � j.
Taking the second as the nucleus and the first as the single electron, hyperresolution
immediately produces the empty clause.

k�Φ� � 0: Again we assume that not already � � Φ. Moreover, there is a non-
positive clauseC � Φ with at least two literals. For if not, then all negative literals in Φ
appear in unit clauses. There must be a positive clause in Φ that produces immediately
the empty clause with suitable negative unit clauses as electrons, otherwise, Φ would
have a model that makes true all negative unit clauses and one literal not covered by
any electron in each positive clause.

Hence we have a non-positive non-unit clauseC � f �i pg�D � Φ withD �� �.
Let Φ� � Φ  fCg, Φ1 � Φ� � fDg, and Φ2 � Φ� � ff �i pgg. By definition of
clause satisfiability, both Φ1 and Φ2 are unsatisfiable. Moreover, k�Φ1� � k�Φ� and
k�Φ2� � k�Φ�, because the Φi were obtained by removing at least one literal from C.
By the induction hypothesis we know that � can be deduced from Φ1 and from Φ2.

Consider a hyperresolutionproof of Φ1. We note that if we replace each occurrence
ofD byC � f �i pg�D in this proof then (i) still each step is a valid hyperresolution
step and (ii) the last clause either is � or ff �i pgg. In the first case we are done; the
second case gives us a hyperresolution derivation of ff �i pgg from Φ which can be
extended to a proof of Φ using the induction hypothesis applied to Φ2.

There are a few things worth pointing out in connection with this proof. First, one
notices that our notion of many-valued clauses, polarity, and satisfiability were natural
enough to take this proof virtually unaltered from [A-B 70]. Second, in [H 94] it is
stated (without proof) that the rules

Regular resolution

f �i1 pg �D1 � � � f �in pg �Dn f �j pg �E

D1 � � � � �Dn �E

provided that j � maxfikj 1 � k � ng

(5)



Regular merging

f �i1 p� � � � � �in p� �j1 q� � � � � �jm qg � D

f �i p� �j qg � D

where i�maxfikj 1�k�ng� j�minfjlj 1�l�mg

(6)

are complete on regular clauses. It is not unproblematic to prove this result with
the semantic tree technique whereas the proof is quite straightforward with the excess
literal technique and can be left to the reader in good conscience. It suffices to
consider any clause with more than one literal in the induction step. Similarly, the
excess literal technique provides an easy completeness proof for the signed resolution
rule (2). It is interesting to note that from the excess literal proofs it is obvious
that neither of the merging rules (3), (6) is needed for completeness. This is quite
complicated to see in the proof using semantic trees and in fact has gone unnoticed
in [H 94, L-M-R 93, M-R 93].

5 A Many-Valued Davis-Putnam Procedure

One of the most competitive decision procedures for satisfiability of classical clauses
is the Davis-Putnam-Loveland procedure (DPL) [D-L-L 62] (for an assessment of its
efficiency, see [B-B 92]). Below we give a formulation in pseudo Pascal code. The
procedure call dpl sat(S) terminates normally if S is unsatisfiable and it halts
otherwise.

procedure dpl_sat(S: set of clause);
var L: literal;
begin
S := unit_resolve(S);
if S=� then

halt; /* S satisfiable */
if � ��S then

begin
L := pick_literal(S);
dpl_sat(S�fLg);
dpl_sat(S�fLg)

end
end;



function unit_resolve(S: set of clause): set of clause;
var L: literal;
var C: clause;
begin

while �fLg �S do begin
S := fCj L ��C�Sg; /* keep unsubsumed */
S := fCfLgj C�Sg /* unit resolve */

end
end;

With L we denote the complement of L. The function pick_literal (often
called branching rule or literal selection rule) selects a literal that occurs in S. Its
implementation turns out to be crucial for the performance of DPL. One of the best
choices of L is the so-called two-sided Jeroslow-Wang rule [J-W 90, H 93c]. Given a
set of clauses S we define for each literal L that occurs in S the following function:

J�L� �
X

L�C�S

2�jCj

Now define pick_literal(S) to be the literal that maximises J�L� � J�L�.
We close this paper by demonstrating that DPL including the two-sided Jeroslow-

Wang branching rule can be extended to regular clauses naturally.
The most crucial difference that arises from the presence of more than two truth

values is manifested in the branching rule. Of course, it would be possible to give a
straightforward generalization that causes branching into n subproblems. This would
be very inefficient. Therefore, the rationale in the design of a many-valued DPL for
regular clauses should be (i) to keep the branching degree as low as possible and (ii),
according to [H 93c], unit clauses generated by branching should produce as many
new unit clauses as possible during unit resolution.

The proper choice for the many-valued version of J�L�, therefore, is to maximise
J�L� � J�L�, where

J�L� �
X

�L� :L��L
L��C�S

2�jCj

In the definition of J subsumption of signed literals is defined as follows: S p 	
T q iff p � q and S 	 T . The complement of a signed literal S p is denoted with S p

and defined to be �N  S� p.
Using this terminology in the code as well we can leave dpl_sat unaltered while

unit_resolve must be changed only slightly:



function unit_resolve(S: set of clause): set of clause;
var L, L’: literal;
var C: clause;
begin

while �fLg �S do begin
S := fCj � �L’�C�S s.th. L	L’g; /* keep unsubs. */
S := fCfL’j L’�C and L’	 Lgj C�Sg /* unit res. */

end
end;

We remark that unit_resolve is complete for many-valued Horn clauses, but
its run-time complexity is quadratic wrt the input in the worst case as opposed to
the algorithm used in Section 3.1. We assume that using a similar representation of
clauses as in Section 3.1 one could design a substitute forunit_resolvewith linear
worst-case complexity.

Example 26 Consider the following set of clauses:

Φ � ff �1 p� �1 qg� f �1 p� �0 pg� f � 1
2 p� �1 qg� f � 1

2 p� � 1
2 qg�

f � 1
2 p� � 1

2 qg� f � 1
2 p� � 1

2 qg� f � 1
2 p� � 1

2 qgg

A many-valued DPL refutation of Φ is depicted in Figure 2. pick literal
applied to Φ gives �1 p which is shown in the root of the tree. There are no fur-
ther branching steps necessary. In the linear subtrees the result of each round of
simplification in unit resolve is displayed.

Conclusion

In this paper we tried to provide a conceptual and theoretical justification of a many-
valued generalization of conjunctive clause formulas called regular formulas and a
class of Horn formulas derived from them. The main advantage is that many important
notions from computational logic in the classical case can be transferred extremely
naturally due to a many-valued version of polarity which is built into regular formulas.
This means that refinements of inference procedures for classical logic that exploit
data dependencies can be generalized to many-valued logic.

Lemma 22 states that regular formulas are a sufficient generalisation of the classical
case, because arbitrary signed formulas are not really necessary. Our many-valued
Horn formulas have many desirable properties of classical Horn formulas, while a
smaller class of Horn formulas with similar computational characteristics as defined
in [EI-MS 94] is not sufficient. We are convinced that other properties of classical
Horn formulas (see [H 92, EI-MS 94]) hold for our many-valued version as well. We
believe that the present work at the same time unifies and justifies [S 86, L-M-R 93,
M-R 93, EI-MS 94].



L � �1 p

S � f �1 pg

ff �1 qg� f � 1
2 qg� f � 1

2 qgg

�

S � f � 1
2 pg

ff �1 qg� f �0 pg� f � 1
2 p� � 1

2 qg,

f � 1
2 p� � 1

2 qg

ff � 1
2 pg� f �0 pgg

�

Figure 2: A many-valued DPL proof.
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