
Deduction by Combining Semantic Tableaux and

Integer Programming�

Bernhard Beckert and Reiner H�ahnle
University of Karlsruhe� Institute for Logic� Complexity and Deduction Systems�
����� Karlsruhe� Germany� Phone	 
������������� FAX	 
�������������

Email	 fbeckert�haehnleg�ira�uka�de� WWW	 http���i��www�ira�uka�de�

Abstract� In this paper we propose to extend the current capabilities of automated reasoning
systems by making use of techniques from integer programming� We describe the architecture of
an automated reasoning system based on a Herbrand procedure �enumeration of formula instan�
ces� on clauses� The input are arbitrary sentences of �rst�order logic� The translation into clauses
is done incrementally and is controlled by a semantic tableau procedure using uni�cation� This
amounts to an incremental polynomial CNF transformation which at the same time encodes part
of the tableau structure and� therefore� tableau�speci�c re�nements that reduce the search space�
Checking propositional unsatis�ability of the resulting sequence of clauses can either be done with
a symbolic inference system such as the Davis�Putnam procedure or it can be done using integer
programming� If the latter is used a number of advantages become apparent�

Introduction

In this paper we propose to extend the current capabilities of automated reaso�
ning �AR� systems by combining the inference procedure semantic tableaux with
integer program �IP� solvers� We show that the resulting system has properties
which are interesting for such applications as formal program veri�cation� In Sec�
tion � we summarize some facts on semantic tableaux in order to make the paper
reasonably self�contained� In Section 	 we give a tableau�based polynomial time
translation from propositional logic into IPs� This translation will be lifted to
full �rst�order logic in Section 
� With an extended example we illustrate how
the system is supposed to work �Section �� and in Section � we summarize the
possible synergy eects from marrying AR and OR in the way suggested� Finally
we mention related and ongoing work� We had to omit all proofs due to limited
space�

� Semantic Tableaux

First we state some standard notions of computational logic that will be used in the
following� consult �Fitting� ����� for details� Let us �x a �rst�order language whose
terms and formulae are built up from countable sets of predicate symbols� function
symbols� constant symbols and object variables in the usual manner �for each arity
there are countably many function and predicate symbols�� We use the logical
connectives � �conjunction�� � �disjunction�� � �implication� and � �negation��

� This research was supported by Deutsche Forschungsgemeinschaft within the Schwerpunkt�
programm Deduktion�



	 Bernhard Beckert and Reiner H�ahnle

and the quanti�er symbols � and �� An atom is a formula of the form p�t�� � � � � tn��
where p is a predicate symbol and t�� � � � � tn are terms� Atoms and their negations
are called literals� A clause is a disjunction of literals� A formula is in conjunctive

normal form �CNF� if it is a conjunction of clauses� A variable is free if it is not
bound by a quanti�er �� or ��� A sentence is a formula not containing any free
variables� We use the standard notions of satis�ability and model� A sentence is
called a tautology if it is true in all models� i�e�� if its negation is unsatis�able�
Substitutions are mappings from variables to terms and are extended to formulae
as usual� We denote a substitution by fx� � t�� � � � � xn � tng� where fx�� � � � � xng
are the variables that occur in the term it is applied to� The application of � to a
term t is denoted by t��

Semantic �or analytic� tableaux are a sound and complete calculus for doing
logical inferences in full �rst�order logic� They were developed in the ����s from
Gentzen systems� For an introduction which covers the material needed here�
see �Fitting� ������ Following Fitting we divide the set of formulae of into four
classes� � for formulae of conjunctive type� � for formulae of disjunctive type�
� for quanti�ed formulae of universal type and �nally � for quanti�ed formulae
of existential type� This is called uniform notation� it simpli�es presentation and
proofs considerably� The classi�cation is motivated by the tableau expansion rules

which are associated with each formula� The rules characterize the assertion of a
truth value to a formula by means of asserting truth values to its direct subfor�
mulae� For example� 	�
 holds if and only if 	 and 
 hold� In the upper part of
Table I the rule schemata for the various formula types are given� Premises and
conclusions are separated by a horizontal bar� while vertical bars in the conclusion
denote dierent extensions which are to be thought as disjunctions� In the lower
part of Table I the correspondence between formulae and formula types is shown�

�

��

��

�

�� ��

�

���y�

where y is a new free
variable�

�

���f�x�� � � � � xn��

where f is a new �Skolem� function
symbol� and x�� � � � � xn are the free
variables occurring in ��

� �� ��

� � � � �

��� � �� �� ��
��� � �� � ��
��� � �

� �� ��

�� � �� � �

��� � �� �� ��
�� � �� �� �

� ���y�

��x���x� ��y�
���x���x� ���y�

� ���f�x�� � � � � xn��

���x���x� ���f�x�� � � � � xn��
��x���x� ��f�x�� � � � � xn��

TABLE I

Formula types and tableau rule schemata�

We use free variable quanti�er rules �Fitting� ����� H�ahnle and Schmitt� ������
Instead of �guessing� ground terms that are instantiated for universally quanti�ed
variables� a new free variable is introduced� that is instantiated later �on demand�



Deduction by Combining Semantic Tableaux and Integer Programming 


with a term that is useful�
For our purposes it is su�cient to visualize a tableau as a �nite binary tree�

whose nodes are �rst�order formulae� constructed as follows�

�� A �nite linear tree whose nodes are formulae taken from a set � of formulae
is a tableau for ��

	� If T is a tableau for � and 	 is a node from T then a new tableau T � for �
is constructed by extending a branch of T that contains 	 by as many new
linear subtrees as the rule� corresponding to 	 has extensions� the nodes of
the new subtrees being labelled with the formulae in the extensions��

A branch B of T is a maximal path in T � It is often identi�ed with the set of formu�
lae it contains� A tableau branch is closed i it contains a pair of complementary
formulae� i�e�� formulae of the form 	 and �	�� A tableau is closed �under �� i
there is a substitution � such that all branches B� of T� are closed�

To prove tautologyhood of a formula 	 we begin with a tree whose single node
is labelled by �	� that is we assume that 	 is false in some model� A tableau
proof represents a systematic search for such a model� Every tableau branch
corresponds to a partial possible model in which the formulae on the branch are
valid� Therefore� a complementary pair of formulae� and thus a closed branch�
denotes an explicit contradiction� since in no model both a formula and its negation
can be true�

A proof of the following theorem� that states soundness and completeness
of semantic tableaux� can be found in �Fitting� ����� �completeness part� and
�H�ahnle and Schmitt� ����� �soundness part��

Theorem �� Let 	 be any �rst�order sentence� Then there is a closed tableau for
f�	g i 	 is a �rst�order tautology�

Using the deduction theorem for �rst order logic�� an immediate corollary of
Theorem � is that for all sentences 	�� � � � � 	n� 	� f	�� � � � � 	ng j� 	 i there is a
closed tableau for f	�� � � � � 	n��	g�

Tableau construction for a set of formulae � is a highly non�deterministic pro�
cedure� We did not specify� for example� in which order the tableau rules should
be applied to the formulae on a branch� or how a closing substitution should be
searched for�

� It is obtained by looking up the subformulae corresponding to � and instantiating the mat�
ching rule schema �Table I��

� From the two formulae in the conclusion of a double negation only one copy needs to be
kept� Moreover� it is is su�cient for completeness to apply ��� �� and ��rules only once to every
formula in each branch� Consequently� formulae of these types may be deleted locally to the
current branch after rule application� Note� however� that ��formulae must be used repeatedly
sometimes and hence may not be removed�

� It is su�cient merely to consider complementary pairs of atomic formulae�
� For all sentences ��� � � � � �n� �� f��� � � � � �ng j	 � i
 ��� � � � �� �n� � � is a tautology �where

j	 denotes the logical consequence relation��



� Bernhard Beckert and Reiner H�ahnle

� p���

� ��x��p�x� � p�s�x���

� �p�s�s�����

� p�x�� � p�s�x���

� �p�x�� � p�s�x���

� p�x�� � p�s�x���

� �p�x�� 	 p�s�x���

�

�
�

�

Fig� �� The tableau proof described in Example ��

Example �� The tableau shown in Figure � proves that p�s�s�x��� is a logical
consequence of fp���� ��x��p�x� � p�s�x���g� Formulae �����
� are put on the
tableau initially� Formula ��� is derived from �	� by applying the ��rule� and then
��� and ��� are added by applying the ��rule to ���� Now� the left branch is closed
under the substitution fx� � �g by ��� and ���� The right branch of the tableau
is not closed under fx� � �g� thus� the ��rule has to be applied a second time
to �	� to derive ���� and then ��� and ��� from ���� At that point the whole tableau
is closed under the substitution fx� � �� x� � s���g� the middle branch by ���
and ���� and the right branch by �
� and ���� The middle branch could have been
closed under the substitution fx� � �g as well �using ��� and ����� this� however�
would have been useless and does not close the branch on the right� There is a
re�nement of semantic tableaux called regularity �Letz et al�� ���	� that can avoid
such closures� it is not allowed to put two identical formulae on a branch� This
condition would be violated under the substitution fx� � �g� because ��� and ���
would then become identical�

� Translating Semantic Tableaux into Integer Programs

In this section we describe a method using semantic tableaux for translating a
propositional� formula 	 �which needs not to be in any normal form� into a ����
IP C such that 	 is satis�able i C is feasible� Tableau rules are used to split and
transform 	� whereas IP methods are used to check whether the resulting tableau
is closed�

For propositional CNF formulae there is a well�known standard translation into
����IPs� Each clause of the form p� � � � � � pk � �pk�� � � � � � �pm �� � k � m�

� Lifting of this method to full �rst�order logic is described in Section ��



Deduction by Combining Semantic Tableaux and Integer Programming �

�i �

�i ��

�i ��

�i �

�i�j ��

�i
j�� ��

where j is a new IP
variable�

�i p

p � i

�i �p

�	 p � i

TABLE II

Propositional rules for signed ��formulae� ��formulae� and literals �p is an atomic formula��

corresponds to the constraint

p� � 	 	 	� pk � ��
 pk��� � 	 	 	� ��
 pm� � � �

The question whether a single tableau branch B is closed can as well be easily
transformed into a ����IP� B is closed i the set of constraints

fp � � � p � B� p an atomg  fp � � � �p � B� p an atomg

is infeasible� Using this translation� the question whether a whole tableau T is
closed results in a disjunctive programming problem� T is closed i there is a
solution to one of the IPs constructed for each of its branches� that way� nothing
is gained by using IPs� because the transformation does not make use of their
expressiveness�

Instead� we use techniques similar to that of disjunctive programming to encode
a whole tableau� including its structure� into a single ����IP� This translation makes
use of signed formulae	� A signed formula is a string of the form �i 	� where 	

is a �propositional or �rst�order� formula and i is a linear expression �for example
�
j��j��� The sign associates a logical truth value with the formula� For example�
�� 	 means that 	 is true� One could add signs of the form �i 	 to express �	 is

false� by �
 	� this� however� is not necessary as we may use �� �	 instead� By
employing signed formulae� tableau rules that are linear for ��formulae �in contrast
to the rule in Table I� can be de�ned� see the second rule in Table II� To generate
a ����IP� two additional rules are needed that translate literals into constraints�
see the two rules on the right of Table II�

There is� of course� a price to be paid for the linearity of the disjunctive ��
rules� New variables are introduced by their application� that we call branching
variables� Each assignment of ����values to the branching variables in the resulting
IP corresponds to one of the tableau branches and� thus� to a partial model� If�
for example� by assigning values to j�� � � � � jk� a linear expression i � i�j�� � � � � jk�
evaluates to �� then �i 	 means that 	 is part of the branch B corresponding to
that assignment and is valid in the partial model associated with B�

� Signed formulae �with di
erent types of signs� are frequently used in semantic tableaux for
non�classical logics� e�g� multiple�valued logics �Hahnle� ����a��



� Bernhard Beckert and Reiner H�ahnle

The rules from Table II can be used to step by step transform a set of signed
formulae into an IP�

Definition �� Let � � f	�� � � � � 	kg be a set of propositional formulae� and let
the sequence C
� � � � � Cn be formed according to the following rules�

�� C
 � f �� 	�� � � � � �� 	kg�

	� Cm is derived from Cm�� by applying one of the tableau rules from Table II to

 � Cm�� and replacing 
 by the result of the transformation �� � m � n��


� Cn consists only of constraints �i�e�� there are no a signed formulae left��

Then Cn is a ����IP associated with ��

The following soundness and completeness theorem holds�

Theorem �� If C is a ����IP associated with a set � of propositional formulae
�Def� ��� then�

C is infeasible i � is unsatis�able�

Theorem 	 implies that a propositional formula 	 is a tautology i the IP�s�
associated with f�	g are infeasible�

Example �� Let � � fp��pg� then C
 � f �� �p � �p�g� By applying the ��rule

we obtain C� � f ���j p� ���j�� �pg� the literal rules are applied to derive the
����IP

C� � f p � �
 j �

�
 p � � � j 
 �g

that is associated with �� Since C� is feasible� p � �p has to be satis�able �which
is� of course� true��

The two possible assignments of values �� or �� to the branching variable j

correspond two the two branches of the semantic tableau for p � �p� and thus to
the two possible models� in which p is either true or false�

In case �� or �� is a literal� the � rule can be optimized inasmuch as the intro�
duction of an additional variable can be avoided� the variable is simply replaced
by the literal itself� which then becomes part of the constraint �Table III��

Using this optimization� the formula from Example 	 is transformed into the
single constraint � 
 p � � 
 p whose feasibility �for all values of p� can be seen
immediately� Taking this optimization into account our translation collapses into
the standard translation mentioned at the beginning of this section in the case of
CNF input�



Deduction by Combining Semantic Tableaux and Integer Programming �

�i �

�i�p ��

if �� is a literal p�

�i �

�i�p ��

if �� is a literal p�

�i �

�i����p� ��

if �� is a literal �p�

�i �

�i����p� ��

if �� is a literal �p�

TABLE III

Optimized ��rules in the case when �� or �� is a literal�

�i �

�i�j�x������xn� ��

�i
j�x� �����xn��� ��

where j is a new n�ary predica�
te symbol� and x�� � � � � xn are the
free variables occurring both in ��
and ���

�i �

�i ���y�

where y is a new
free variable�

�i �

�i ���f�x�� � � � � xn��

where f is a new �Skolem� function
symbol� and x�� � � � � xn are the free
variables occurring in ��

TABLE IV

First�order constraint rules for ��� ��� and ��formulae�

� Lifting to First�Order Logic

Our lifting of the method described in the previous section to �rst�order logic is
based on Herbrand�s Theorem�� A set � of �rst�order sentences is �rst transformed
into an IP containing free variables�� Then� new instances of the parts of the IP
that correspond to universally quanti�ed �sub��formulae are added to the problem
until it becomes unsatis�able �if � is satis�able this process does� in general� not
terminate� because satis�ability of �rst�order sentences is undecidable��

The transformation rules for quanti�ed formulae ��� and ��rules� from Table I
can be adapted to signed formulae straightforwardly� The ��rules and the rules
for literals �Table II� remain unchanged for �rst�order logic� The ��formulae�
however� become slightly more complicated� It is necessary to parameterize the
branching variables with some of the free variables� The �rst�order rules are shown
in Table IV�

The de�nition of IPs associated with a set of formulae has to be adapted� Since
more than one instance of universally quanti�ed �sub��formulae may be needed� a
mechanism has to be added that allows to duplicate and instantiate parts of the
IP �Rule 	�b� in the de�nition��

Definition �� Let � � f	�� � � � � 	kg be a set of �rst�order sentences and let the
sequence C
� � � � � Cn be formed according to the following rules�

� A set � of clauses is unsatis�able i
 there is an unsatis�able �nite set of ground �i�e� variable�
free� instances of clauses from ��

� These free variables should not be confused with IP variables in constraints �e�g� branching
variables�� IP variables correspond to atomic formulae and� thus� might contain free variables�



� Bernhard Beckert and Reiner H�ahnle

�� C
 � f �� 	�� � � � � �� 	kg�

	� a� Cm is derived from Cm�� by applying the �� or the literal rules from
Table II� or the �� ��� or ��rules from Table IV to 
 � Cm�� and repla�
cing 
 by the result of the transformation �� � m � n�� or

b� there is a substitution � such that Cm � Cm��  �Cm�����


� Cn consists only of constraints �that is no signed formulae are left��

Then Cn is a ��rst�order	 ����IP associated with ��

Optimized versions of the ��rule in case when �� or �� is a literal �similar to
those in Table III� can still be used�

The following soundness and completeness theorem for �rst�order logic holds�
note� that in general not every IP associated with an unsatis�able set of formulae
is infeasible �in contrast to the propositional case� Theorem 	��

Theorem �� A �nite set � of �rst�order sentences is unsatis�able i at least one
of the �rst�order ����IPs associated with � is infeasible�

This theorem implies soundness and completeness of the following procedure that
can be used to prove a �rst�order formula 	 to be a tautology�

�� Apply ��� ��� ��� ��� and literal rules as long as possible to derive from C
 �
f �� �	g the ����IP C

	� if the ����IP C is infeasible
then STOP ��	 is unsatis�able� 	 is a tautology�


� Choose a solution L of C� L � Atoms�C�� f�� �g

�� if there are �� p� q� such that ��p� � ��q� but L�p� �� L�q�
then C �� C  ��C�� GOTO 

else STOP ��	 satis�able� 	 is not a tautology�

Note� that the choice of the solution L is indeterministic� for completeness
backtracking has to be used or fairness strategies have to be employed� Since
the substitutions �� that are applied to generate new instances� are computed by
analyzing the solutions of the IPs� and since this analysis is global �and is not
restricted to single tableau branches�� the search space is much smaller than that
for semantic tableaux�

The pairs of atoms p� q that can be used to remove a solution are called links�
It is a good heuristic to prefer links that involve an atom �p or q� that is part of as
few links as possible� This heuristic can be encoded into a minimization problem
and integrated into the IP�

	 Note� that ��rules� too� are removed and replaced by ��



Deduction by Combining Semantic Tableaux and Integer Programming �


 Example

As an example� we use the procedure described above to prove �again� the for�
mula from Example � to be a tautology� i�e�� that � � fp���� ��x��p�x� �
p�s�x���� �p�s�s�x���g is unsatis�able� We initialize

C
 � f �� p���� �� ��x��p�x� � p�s�x���� �� �p�s�s�x���g �

By applying the literal rules �Table II� to �� p��� and �� �p�s�s�x��� we derive
the constraints

p��� � � ���

�
 p�s�s����� � � �	�

From �� ��x��p�x� � p�s�x��� we derive �� �p�x� � p�s�x��� using the ��rule

�Table IV�� then ������p�x�� p�s�x�� by applying the optimized ��rule�
� and �nal�

ly using the literal rule p�s�x�� � �
 ��
 p�x��� i�e��

��
 p�x�� � p�s�x�� � � �
�

The ����IP C consisting of �����
� is feasible� We �arbitrarily� chose the soluti�
on L�� where L��p���� � L��p�s�x��� � � and L��p�s�s������ � L��p�x�� � �� This
solution can be removed using the link p���� p�x�� since L��p���� �� L��p�x��� but
��p���� � ��p�x��� where � � fx � �g� Thus� we carry on with the IP C  C��
i�e�� we add the constraint

��
 p���� � p�s���� � � ���

The new problem ������� is still feasible� One solution is L�� where L��p���� �
L��p�s����� � L��p�s�x��� � � and L��p�s�s������ � L��p�x�� � �� We remove the
solution using the link p�s����� p�x� and apply � � fx� s���g to add

��
 p�s����� � p�s�s����� � � ���

The resulting ����IP ������� is infeasible� which proves � to be unsatis�able�
It is obviously useless to use the link p���� p�x� to remove the solution L��

because ��� would be added a second time� In general it is not as easy to recognize
useless links� fortunately� it is possible to adapt regularity �described in Example ��
and other strategies known from semantic tableaux to avoid using such links�

� Applying the non�optimized rule from Table II results in the two formulae ���j�x� �p�x�

and ��
j�x��� p�s�x�� containing a branching variable� and �nally in the constraints j�x�� ��	

p�x�� � � and ��	 j�x�� � p�s�x�� � ��



�� Bernhard Beckert and Reiner H�ahnle

� Synergy E�ects

In this section we list the bene�ts that can be gained from an interaction between
AR and OR techniques as suggested in the previous sections� Due to lack of space
we had to leave out concrete examples for many statements�


 The fact that logical formulae and the linear fragment of arithmetic are map�
ped into the same domain allows an e�cient representation of the search
space associated with formulae as they typically occur in veri�cation condi�
tions during formal program veri�cation� Arithmetic properties are awkward
to de�ne by purely logical means� On the other hand� if a special machinery
for dealing with purely arithmetical subproblems is used� tough problems
with redundancy and fairness tend to emerge� It is possible to view �rst�
order formulae over linear arithmetic as an extension of IP and the presented
mechanism as a solver that makes use of AR techniques to gain e�ciency�


 As a tableau procedure is used to produce instances of formulae the input is
not restricted to any normal form� for the same reason an adaptation of the
technique to certain non�classical logics is possible� see �H�ahnle� ����b� H�ahnle
and Ibens� ������ Both properties are important for many applications�


 Reductions of the search space �such as the regularity restriction de�ned
above� as they are commonly found in tableau�oriented procedures can be
built into the translation� The same holds for polynomial CNF transforma�
tion� cf� �Plaisted and Greenbaum� ������ and for an optimized version of
Skolemization �H�ahnle and Schmitt� ������


 The amount of backtracking which normally occurs in tableaux is greatly
reduced due to the e�cient representation of a whole tableau which still can
be checked rapidly for closure �unsatis�ability�� This kind of representation
makes it also possible to de�ne subsumption within the Ci� Moreover� the cost
function of integer programs can be employed to suggest substitutions that
lead to a favourable structure of the search space� In addition� a meaningful
cost function often improves the behaviour of IP solvers�


 Many IP solvers allow incremental solutions� Moreover� IP solvers tend to �nd
solutions of satis�able problems quickly� Hence� they promise to be e�cient for
large� combinatorially not too hard� and mostly satis�able problems such as
they result from large formal speci�cations� Speci�c techniques for managing
sparse matrices will be of advantage for such problems as well�


 Problem dependent heuristics can often be encoded as arithmetical properties
in which case they can be represented at the same level as the problems
themselves�



Deduction by Combining Semantic Tableaux and Integer Programming ��


 Some IP techniques such as detection of simple �polynomially solvable� cases�
generation of certain strong cuts or various preprocessing aids have no direct
logical counterparts� Therefore� it can be hoped that such techniques can
solve some problems quickly� where symbolic inference is in trouble�

Conclusion

Related Work The inference procedure as sketched in this paper is reminiscent
of the Primal Partial Instantiation Method developed by Hooker and Rago ����	�
������ The latter derives its name from the analogy between the generation of
new inequalities in the primal simplex method of Dantzig ����
� for solving linear
programs and the generation of new clauses�inequations in the procedure outlined
above� Our proposal diers from Hooker and Rago�s mainly in the following points�
�i� we work with full �rst�order logic� not only with function�free universal clauses�
�ii� our procedure encodes part of the structure of a semantic tableau into the
generated inequations� �iii� we take advantage of the optimizing part of IP solvers
for computing links �blocks in the terminology of Hooker and Rago� with a minimal
number of alternatives� whereas Rago ������ does not consider the use of IPs� but
generates sequences of ground �variable�free� clauses�

Further related work is �Kagan et al�� ���
� which provides a translation �wor�
king as well by partial instantiation� from de�nite logic programs into linear pro�
grams� It is restricted to the area of logic programming and� as the authors
concede� linear programming is not speci�cally exploited and could be substituted
by a symbolic inference procedure�

Ongoing and Future Work An implementation of the suggested procedure �imple�
mented in Prolog and C��� is under way� Once a prototype is operational we will
start to evaluate various heuristics�

Summary On the meta�level the potential synergy eects of putting together AD
and OR can be summarized as follows�

�� A mixed approach can switch implementation paradigms whenever it is of
advantage�

	� Some techniques of AD have no OR counterpart and vice versa� A mixed
procedure can employ all of them�


� Finally� an occasional change of the point of view often results in new ideas
such as the usage of cost functions to compute substitutions�

References

George B� Dantzig� Linear Programming and Extensions� Princeton University Press� �����
Melvin C� Fitting� FirstOrder Logic and Automated Theorem Proving� Springer�Verlag� �����



�	 Bernhard Beckert and Reiner H�ahnle

Reiner Hahnle and Ortrun Ibens� Improving temporal logic tableaux using integer constraints�
In Proceedings� International Conference on Temporal Logic� Bonn� Germany� pages ��������
Springer LNCS ���� �����

Reiner Hahnle and Peter H� Schmitt� The liberalized ��rule in free variable semantic tableaux�
Journal of Automated Reasoning�� �������������� October �����

Reiner Hahnle� Automated Deduction in MultipleValued Logics� volume �� of International Series
of Monographs on Computer Science� Oxford University Press� �����

Reiner Hahnle� Many�valued logic and mixed integer programming� Annals of Mathematics and

Arti�cial Intelligence� ���������������� December �����
John N� Hooker� New methods for computing inferences in �rst order logic� Working Paper�

GSIA� CMU Pittsburgh� April �����
Vadim Kagan� Anil Nerode� and V� S� Subrahmanian� Computing de�nite logic programs by

partial instantiation and linear programming� Draft Manuscript� �����
Reinhold Letz� Johann Schumann� Stephan Bayerl� and Wolfgang Bibel� SETHEO� A high�

perfomance theorem prover� Journal of Automated Reasoning� ������������� �����
David A� Plaisted and Steven Greenbaum� A structure�preserving clause form translation� Journal

of Symbolic Computation� ���������� �����
Gabriella Rago� Optimization� Hypergraphs and Logical Inference� PhD thesis� Dipartimento di

Informatica� Universit�a di Pisa� March ����� Available as Tech Report TD������


