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Abstract

We consider the problem of �nding interval enclosures of all zeros of a nonlinear

system of polynomial equations. We present a method which combines the method

of Gr�obner bases (used as a preprocessing step), some techniques from interval

analysis, and a special version of the algorithm of E. Hansen for solving nonlinear

equations in one variable. The latter is applied to a triangular form of the system

of equations, which is generated by the preprocessing step. Our method is able

to check if the given system has a �nite number of zeros and to compute veri�ed

enclosures for all these zeros. Several test results demonstrate that our method is

much faster than the application of Hansen's multidimensional algorithm (or similar

methods) to the original nonlinear systems of polynomial equations.

1 Introduction

The general problem we address is:

Find, with certainty, all solutions in IRn of the nonlinear system

fk(x1; x2; : : : ; xn) = 0 for k = 1; : : : ;m

of m polynomials fk : IR
n ! IR.

Successful approaches to the corresponding bound constrained problem (i.e. lower and
upper bounds for the variables xi are known) are interval Newton methods in conjunction
with generalized bisection. These methods are also important tools for nonlinear opti-
mization methods, since they can be used to compute all critical points of the objective
function by applying the methods to its gradient. Such interval Newton methods are
described for example in [1], [10], [12], [13], [16], [17].

In this paper, we present a method which combines the method of Gr�obner bases, some
techniques from interval analysis, and a special version of the algorithm of E. Hansen for
solving nonlinear equations in one variable. The method is able to check if the given
problem has a �nite number of zeros and to compute veri�ed enclosures of all these zeros
in IRn without any constraints.
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The idea of our combined method is to �rst generate a triangular form of the system
of equations and to call Hansen's algorithm recursively for the reduced polynomials.

We �rst describe some details of the two algorithms combined in our method, and we
discuss special techniques to overcome problems occurring due to the interval arithmetical
modi�cation of the method of Gr�obner bases. We give a detailed overview of the steps of
our algorithm, and we introduce some strategies to accelerate the computations.

Finally, we give some notes about the portable implementation in PASCAL{XSC,
and we demonstrate by several test results that our method is much faster than the
application of multi-dimensional interval Newton methods to the original nonlinear system
of polynomial equations.

2 The Method of Gr�obner Bases

Our method uses the method of Gr�obner bases as a preprocessing step, so we �rst give
some details of this method. To make understanding easier, we start with some remarks on
polynomials. Afterwards, the essential parts of the theoretical background are explained.
Beginning with the most simple form of the algorithm of Buchberger using polynomials
with coe�cients in IR, we mention some criteria from the literature in order to present a
more comfortable and structured version of the algorithm. Then we develop the method
for polynomials with interval coe�cients and discuss some improvements.

2.1 Basic Properties of Polynomials and Polynomial Equations

The set of polynomials

n
f(x) =

X
ap � xp j ap 2 IR; p = 0; 1; 2; : : :

o

forms the ring R[x] with x 2 IR, [19]. We can also form a ring for the polynomials in
several variables, the ring R[x1; x2; : : : ; xn] = R[x1][x2] : : : [xn] (xi 2 IR, i = 1; : : : ; n) with
the elements

f(x1; x2; : : : ; xn) =
X

ap1:::pn � xp11 � � �xpnn ;

where ap1:::pn 2 IR and pi = 0; 1; 2; : : : for i = 1; : : : ; n.

Now, we interpret the polynomials (the left-hand sides of our polynomial system of
equations) as a basis B (a system of generators), and we consider the set of all linear
combinations (with polynomial coe�cients) of these generators, which is called an ideal

[8]. That is, our problem is speci�ed by B = (f1; f2; : : : ; fm) and the equations fk = 0
with fk 2 R[x1; x2; : : : ; xn] for k = 1; : : : ;m.

Two polynomials f and g are equivalent with respect to an ideal, if their di�erence
belongs to the ideal. We can always add any linear combination of the generators of the
ideal to the basis or we can discard one of the generators if it is a linear combination of
the others. Now, our aim is to produce a \simple" basis.
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The product of powers of variables x1; : : : ; xn is called monomial (short form: MON).
That is, a monomial is given by

x
p1
1 � � �xpnn ;

where pi 2 f0; 1; 2; : : :g for i = 1; : : : ; n. Each polynomial consists of such monomials. In
representing a polynomial, we can order the monomials di�erently, and we can also order
the variables inside a monomial di�erently. For example, we can write x1+x2+x3 instead
of x2 + x3 + x1 or x

2
1x2 + x23 + x22 instead of x23+ x22 + x21 � x2. Therefore, it would be nice

to have a canonical representation. So, we have to �x some ordering that describes which
monomials should be placed �rst in the canonical representation of a polynomial.

In the following, let � be an order over the monomials that satis�es the following
conditions:

� If M2 �M1, then for every monomial M3, we have M2M3 �M1M3.

� For all monomials M1 and M2 with M2 6= 1, we have M1M2 �M1.

For our purpose, we choose a lexicographic order with respect to the names of the variables.
That is we �x

x1 � x2 � x3 � : : : � xn

and

x
p1
1 � � � xpnn � x

q1
1 � � �xqnn () (p1 > q1) _ ((pi = qi; i = 1; : : : ; s) ^ (ps+1 > qs+1))

where s < n (e.g. we have x51 � x1 � x82 and x21 � x22 � x21 � x23).
Given such an order, we are now able to transform a polynomial into an exactly

determined form, where all monomials are written in decreasing order. We write

f = a0 �MON0 + : : :+ al �MONl

where MON0 � MON1 � : : : � MONl and l is the number of terms in the polynomial f .
We call the polynomial normalized , if a0 = 1.

The monomial PMON := MON0 we call the principal monomial , and PMON together
with the corresponding coe�cient a0 we call the principal term. So, within an ideal basis
B, fk is given by

fk = ak0 �MONk0 + : : :+ akl �MONkl

or by
fk = ak0 � PMONk + ak1 �MONk1 + : : :+ akl �MONkl

for k = 1; : : : ;m.

Example 2.1 Using the order x1 � x2 � x3, we have that

f1 = 3 � x3 � x2 + x1 is an invalid form,

f2 = 5 � x21 + x2 � x3 + 3 � x3 + 3 is a valid form, and

f3 = x1 � x2 + 2 � x22 is a valid normalized form.
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In the following, we assume the polynomials to be normalized, i.e. we always assume
the coe�cient of the principal monomial to be 1.

De�nition 2.1 A monomial MONp = x
p1
1 � � � xpnn is called a multiple of the monomial

MONq = x
q1
1 � � �xqnn , if pi � qi for all i = 1; : : : ; n. We also say that MONq divides MONp.

Example 2.2 x41 � x52 � x23 is a multiple of x21 � x22 � x23, but x41 � x2 � x63 is not a multiple of

x21 � x22 � x23.

De�nition 2.2 The least common multiple (short form: LCM) of two monomials

MONp = x
p1
1 � � �xpnn and MONq = x

q1
1 � � �xqnn is de�ned by

LCM(MONp;MONq) := xm1

1 � � � xmn

n

with mi := max(pi; qi) for all i = 1; : : : ; n.

Example 2.3 LCM (x41 � x2 � x63; x21 � x22 � x23) = x41 � x22 � x63

2.2 Buchberger's Algorithm

2.2.1 Construction of S-polynomials and M-reductions

The reader should keep in mind that arithmetical operations within a given ideal of
nonlinear polynomials are possible and lead back to elements of the same ideal. For this
reason we are allowed to make the following de�nitions.

De�nition 2.3 Let fi and fj be two non-zero polynomials in normalized form, and let

PMONi and PMONj be their principal monomials. Then the polynomial

S(fi; fj) =
LCM(PMONi;PMONj)

PMONi

� fi �
LCM(PMONi;PMONj)

PMONj

� fj

is called S-polynomial of fi and fj.

Due to the multiplications of the two polynomials by the special factors and the
succeeding subtraction, the resulting S-polynomial has a principal monomial that is less
than the LCM of both principal monomials of the given polynomials fi and fj.

Example 2.4 Let the polynomials fi = x21 � x22+ x22 and fj = x31+ x1 � x22 be given in the

order x1 � x2. Then we get

LCM(PMONi;PMONj) = x31 � x22
and

S(fi; fj) =
x31 � x22
x21 � x22

� (x21 � x22 + x22)�
x31 � x22
x31

� (x31 + x1 � x22)

= x1 � (x21 � x22 + x22)� x22 � (x31 + x1 � x22)
= (x31 � x22 + x1 � x22)� (x31 � x22 + x1 � x42)
= �x1 � x42 + x1 � x22:
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Remark: Obviously, S(f; f) = 0 and S(f; g) = �S(g; f).

A reduction of a polynomial can be done by a special form of an S-polynomial con-
struction.

De�nition 2.4 Let fi and fj be two given polynomials in normalized form, and let

PMONi and PMONj be their principal monomials, respectively. If PMONi is a multiple

of PMONj, then we de�ne a simpli�ed version of an S-polynomial construction by

M(fi; fj) = fi �
PMONi

PMONj

� fj:

The replacement of fi by M(fi; fj) we call M-reduction of fi, and we say \fi was reduced

by fj". If M(fi; fj) = 0 after performing the M-reduction, we call fi reduced to zero.

Example 2.5 Let the polynomials fi = x1 � x42� x22 and fj = x1 � x2 � x2 be given in the

order x1 � x2. Then a single M-reduction is given by

fi := (x1 � x42 � x22)�
x1 � x42
x1 � x2

� (x1 � x2 � x2)

= (x1 � x42 � x22)� x32 � (x1 � x2 � x2)

= (x1 � x42 � x22)� (x1 � x42 � x42)

= x42 � x22:

2.2.2 Theoretical Background

For a polynomial system of equations, i.e. a set G of polynomials generating an ideal, let
us give some relevant de�nitions and theorems from [8].

De�nition 2.5 A polynomial f is reduced with respect to G, if no principal monomial of

an element of G divides the principal monomial of f .

De�nition 2.6 A system of generators (or a basis) G of an ideal I is called a standard

basis or Gr�obner basis (with respect to the order �), if every reduction of an f of I to a

reduced polynomial (with respect to G) always gives zero.

Theorem 2.1 Every ideal has a Gr�obner basis with respect to the lexicographic order.

Theorem 2.2 Two ideals are equal if and only if they have the same reduced standard

basis with respect to the lexicographic order.

These theorems can be generalized to other orders than the lexicographic one if the
chosen order ful�lls the criteria mentioned above. The proofs can be found in the publi-
cations of Buchberger ([2], [3], [4], [5], [6], [7]).
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2.2.3 Notation

In the description of the algorithms, we use the following notations:

G basis of an ideal (i.e. the given system of equations)

F triangular form of the basis after termination of the algorithm

fi, gj polynomials of F and G

S(:; :) S-polynomial construction

B set of all combinations of S-polynomial constructions to be performed

LF index of the last polynomial in F

LG index of the last polynomial in G

h polynomial

We use indentation to mark compound statements and to avoid \begin { end" notation
in some cases.

2.2.4 The Algorithm in IR

The algorithm of Buchberger is based on the theory of Gr�obner bases and transforms an
arbitrary polynomial system of equations into a triangular form. By triangular form in
this context, we mean a system of polynomial equations

fk(x1; x2; : : : ; xn) = 0; k = 1; : : : ; l;

where

f1 = f1(x1; x2; : : : ; xl�1; xl; : : : ; xn);

f2 = f2(x2; : : : ; xl�1; xl; : : : ; xn);

...

fl�1 = fl�1(xl�1; xl; : : : ; xn);

fl = fl(xl; : : : ; xn):

The transformation to triangular form is done by using constructions of S-polynomials and
M-reductions. The triangular system then has the same zeros as the original system. For
the �nal numerical part of our combined method, we are interested in a perfect triangular
form where l = n.

Theorem 2.3 A basis G is a standard basis if and only if, for every pair of polynomials

f and g of G, S(f; g) reduces to zero with respect to G.
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A basic version of the algorithm was given by Buchberger in [5].

Algorithm I:

input a polynomial system of equations G

F := G; LF := LG; B := f(i; j) j 1 � i < j � LGg;
while exists (i; j) 2 B do

begin

h := S(fi; fj);
if h 6= 0 then
begin

LF := LF + 1;
B := B [ f(k; LF ) j 1 � k < LFg;
F := F [ fhg; f h is added to the basis F g

end;
B := B � (i; j);

end;

output a Gr�obner basis F with ideal(F ) = ideal(G)

Algorithm I performs the construction of S-polynomials for all possible combinations of
polynomials of G (including those coming up during the computation of new polynomials).
For each S-polynomial which is not equal to zero, the following steps have to be done:

� The new polynomial has to be added to the ideal.

� The set B of pairs of polynomials which still have to be used for a construction of
an S-polynomial has to be updated, that means

{ (i; j) has to be removed as it was already performed, and

{ all new pairs that can be built from the new polynomial and the existing
polynomials in F have to be added to B.

In [2], Buchberger gives some criteria for superuous steps:

� If the LCM of the principal monomials of two polynomials is the product of the prin-
cipal monomials, then their S-polynomial can always be reduced to zero. Therefore
those combination can be left out.

� If the LCM of the principal monomials of two polynomials is equal to one of these
principal monomials, then the corresponding polynomial can be removed from the
ideal basis after the S-polynomial is built and all possible M-reductions are done.
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The following algorithm incorporates these two criteria, and it gives a more structured
form of the method of Gr�obner bases.

Algorithm II:

input a polynomial system of equations G

F := G; LF := LG; i := 1;
while (i � LF � 1) do
begin

j := i+ 1;
while (j � LF ) do
begin

if LCM(PMON(fi);PMON(fj)) 6= PMON(fi) � PMON(fj) then
begin

h := S(fi; fj);
while (M-reduction of h by fk from F is possible) do
h :=M(h; fk);

if (h is not reduced to 0) then
F := F [ fhg; LF := LF + 1; f h is added to F g

if PMON(fj) = LCM(PMON(fi);PMON(fj)) then
F := F � fj; LF := LF � 1; f Remove fj from F g
Renumber the polynomials in F ;

else if PMON(fi) = LCM(PMON(fi);PMON(fj)) then
F := F � fi; LF := LF � 1; f Remove fi from F g
Renumber the polynomials in F ;
i := i� 1; j := LF + 1; f Exit j-loop g

else

j := j + 1;
end

else

j := j + 1;
end

i := i+ 1;
end

output a Gr�obner basis F with ideal(F ) = ideal(G)

In Algorithm II, similarities to the Gaussian algorithm are noticeable. In general, we can
say it is a generalization of the Gaussian algorithm for systems of nonlinear polynomials.
Therefore, there are two cases:

1. Linear polynomials: in this case, the algorithm is close to the Gaussian algorithm
except for the order of the reductions. All constructions of S-polynomials are also
M-reductions.
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2. Nonlinear polynomials: in this case, the desired triangular form of the given system
can only be achieved by adding new polynomials to the basis. With the help of the
new polynomials, it is possible to perform the necessary reductions. This change
in the nonlinear case is due to the fact that no limits (depending on the dimension
of the system) for the occurring monomials can be given. Thus, not all monomials
needed for the reductions are necessarily in the given system.

Example 2.6 We apply Algorithm II to the system

f1 = x21 � x3 = 0
f2 = x21 � x22 = 0
f3 = x2 � x23 = 0:

For the �rst S-polynomial construction with LCM = x21, we obtain

h1 = S(f1; f2) =
x21
x21
(x21 � x3)�

x21
x21
(x21 � x22) = x22 � x3:

The M-reduction with f3 results in

h2 = M(h1; f3) = x22 � x3 �
x22
x2
(x2 � x23) = x2x

2
3 � x3:

A further M-reduction with f3 gives

h3 = M(h2; f3) = x2x
2
3 � x3 �

x2x
2
3

x2
(x2 � x23) = x43 � x3;

and thus, h3 is added to the basis, and f2 is removed. No more constructions of S-

polynomials have to be done subsequently, and the resulting system is given by

f1 = x21 � x3 = 0
f2 = x2 � x23 = 0
f3 = x43 � x3 = 0:

Due to the simpli�cations, Algorithm II might result in a system that is not totally
reduced to triangular form. We correct this \mistake" by starting the algorithm again
and again as long as there are possible S-polynomial constructions and M-reductions that
still alter the system. In most cases, about three calls of the algorithm are su�cient.

2.2.5 Termination and Solution Set Criteria

In [2], Buchberger proofs that Algorithm II terminates after a �nite number of steps for
any given ideal. He also gives two criteria for the set of solutions [8]:

1. A system of polynomial equations is inconsistent (it cannot be satis�ed, even if we

add polynomial extensions) if and only if the corresponding standard basis contains

a constant.



50 Christine J�ager and Dietmar Ratz

2. The system of polynomial equations has a �nite number of solutions if and only

if each variable appears alone (such as zn) in one of the principal terms of the

corresponding standard basis.

We will use this second criterion in our combined method to check whether it makes sense
to call our one-dimensional solver or not (see Algorithm IV).

2.3 An Interval Version of Buchberger's Algorithm

Applying in�nite precision arithmetic, Algorithm II leads to su�cient results. It is also
possible to implement the algorithm on a computer using rational numbers instead of real
ones (that is what Computer-Algebra-Systems normally do) to guarantee exact mathe-
matical operations on the machine if enough storage capacity is available. The price we
must pay for the \exactness" is a great amount of computing time.

In a similar way as for linear systems of equations, we might implement Buchberger's
algorithm with ordinary oating-point arithmetic. Additionally, this enables a very simple
\communication" for Buchberger's method with other numerical procedures. Due to the
fact that, in general, no exact computations are possible in oating-point arithmetic, we
have to deal with the errors produced by rounding operations.

2.3.1 Some Aspects of Computer Arithmetic

In our general de�nition of S-polynomials and M-reductions, we used normalized polyno-
mials. For this purpose, it was necessary to divide all polynomials by the real coe�cient
of the principal monomial. Using oating-point operations, even the normalization alone
may produce rounding errors.

Example 2.7 Consider the polynomial p = 30x21x2x
2
3+10x2x

2
3+3x3, the real coe�cients

of which are exactly representable on the computer. In order to normalize it, we must

divide the principal coe�cient of p by 30. On the computer, where our real coe�cients

of the polynomial p are represented with a �nite number of mantissa digits we get the

\normalized" 1
30
p � x21x2x

2
3 + 0:333 : : : 3x2x

2
3 + 0:1x3, which is only an approximation of

the normalized p (in decimal arithmetic as well as in binary arithmetic).

Thus, the normalized polynomial may only be an approximation of the original poly-
nomial and the probability for the successive arithmetical operations leading to another
error (for example a cancellation error) is close to 1. So, we decided to avoid every division
during the algorithm and to give up the claim of normalized polynomials and rewrite our
formulas for S-polynomials and M-reductions. We remark, that divisions by powers of the
basis of the oating-point system are an exception to this rule due to the fact that they
will not make harm to the mantissa. In our implementation, we use them to prevent the
coe�cients from overow or underow.

Further numerical di�culties arise, if the given input system contains coe�cients like
1

3
or just seemingly unsuspicious numbers like 0:1 which are not exactly representable
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on a binary oating-point system. In such cases, we may multiply the equations before
entering them to prevent the conversion error during input. But for coe�cients like

p
5

or
p
7, the multiplication will not help, rounding errors will occur anyway.

We developed an interval version of Buchberger's algorithm to control the rounding
errors. That is, we use an algorithm which computes a triangular system with interval
coe�cients. This interval triangular system is an enclosure of the exact triangular system.
So, when entering the system, the coe�cients of the polynomials are enclosed in intervals
of best possible accuracy, and all operations in our algorithm are performed in interval
arithmetic.

Remark: On a computer, a guaranteed and optimal enclosure of the real triangular form
of the polynomial system can be obtained by using an exact machine interval arithmetic
with optimal outwardly-directed rounding (see [10], [14], and [15] for details).

2.3.2 Interval Versions of S-polynomial Construction and M-reduction

Now we develop an interval version of Buchberger's algorithm in order to get a guaranteed
enclosure of the exact triangular system and later guaranteed enclosures of all zeros of the
system. We use the same approach and ideas that were employed when transforming the
Gaussian algorithm into an interval version (cf. [1], [16], and [17]). For an introduction
to the underlying interval arithmetic, see [1], [10], or [17].

Due to the fact that the expression [x]� [x] does not result in the value zero for an
interval [x] with positive diameter (e.g. [1; 2] � [1; 2] = [�1; 1]), the algorithm will not
produce the desired triangular form, if the original rules for construction of S-polynomials
and M-reductions are performed simply with interval coe�cient instead of real coe�cients.
The elimination of the principal monomial of the new polynomial would not take place in
general using interval arithmetic.

Thus, we explicitly set the coe�cient of the principal term of the new polynomial
to zero, if necessary. We are allowed to alter the algorithm in such a way for the same
reasons as in the Gaussian algorithm. The interval system is a set of real systems. Hence,
each polynomial in IIR represents a set of polynomials with real coe�cients. But every
construction of an S-polynomial and every M-reduction performed with two polynomials
within the sets, leads to a new polynomial, where the LCM of the two principal monomials
is eliminated. The inclusion isotonicity of interval arithmetic operations guarantees that
these polynomials are still enclosed in the resulting set after the elimination of the principal
term.

Now we use new rules for the construction of S-polynomials and for the M-reduction
as explained in the following.

S-polynomial construction in IIR: Let two polynomials

fi = [ai] � PMONi + : : : and fj = [aj] � PMONj + : : :

be given. We �rst compute

fS := A � LCM(PMONi;PMONj)

PMONi

� fi +B � LCM(PMONi;PMONj)

PMONj

� fj;
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with

A =

8><
>:

1 if [ai] = [aj]
1 if [ai] = �[aj]

[aj] otherwise

and

B =

8><
>:

�1 if [ai] = [aj]
1 if [ai] = �[aj]

� [ai] otherwise
;

where
fS = [aS] � PMONS + hS:

Then we set

S(fi; fj) :=

(
hS if PMONS = LCM(PMONi;PMONj)
fS otherwise

:

Example 2.8 Let the polynomials fi := [2; 3] �x21+x22 and fj := [1; 2] �x1 �x2+x3 be given

in the order x1 � x2. Then, we get LCM(PMONi;PMONj) = x21 � x2 Thus, we compute

fS := [1; 2] � x
2
1 � x2
x21

� ([2; 3] � x21 + x22)� [2; 3] � x
2
1 � x2

x1 � x2
� ([1; 2] � x1 � x2 + x3)

= [2; 6] � x21 � x2 + [1; 2] � x32 � [2; 6] � x21 � x2 � [2; 3] � x1 � x3
= [�4; 4] � x21 � x2 � [2; 3] � x1 � x3 + [1; 2] � x32;

and the principal term has to be eliminated. The result is

S(fi; fj) = �[2; 3] � x1 � x3 + [1; 2] � x32:

M-reduction in IIR: Let two polynomials

fi = [ai] � PMONi + : : : and fj = [aj] � PMONj + : : :

be given. We �rst set PMONold
i := PMONi and foldi := fi, and we compute

fi := A � foldi +B � PMONi

PMONj

� fj

with

A =

8><
>:

1 if [ai] = [aj]
1 if [ai] = �[aj]

[aj] else

and

B =

8><
>:

�1 if [ai] = [aj]
1 if [ai] = �[aj]

� [ai] else
;

where
fi = [ai] � PMONi + hi:

Then, if PMONold
i = PMONi, we set

fi := hi:
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Example 2.9 Let the polynomials fi := [�3;�3] �x1 �x2+x3 and fj := [1; 2] �x1+x22 be

given in the order x1 � x2. Then we compute

fi := [1; 2] � ([�3;�2] � x1 � x2 + x3)� [�3;�2] � x1 � x2
x1

� ([1; 2] � x1 + x22)

= [�6;�2] � x1 � x2 + [1; 2] � x3 � [�6;�2] � x1 � x2 � [�3;�2] � x32
= [�4; 4] � x1 � x2 + [�3;�2] � x32 + [1; 2] � x3;

and the principal term has to be eliminated. The result is

fi = [�3;�2] � x32 + [1; 2] � x3

The di�erences between the version of Buchberger's algorithm in IR and the interval
version are the constructions of the S-polynomials and the M-reductions. Moreover, the
additional criteria for the set of solutions must be modi�ed for the interval case. We cannot
use the �rst criterion directly, because we must distinguish between constant interval
polynomials which contain the value zero and constant interval polynomials which do not
contain zero.

The latter can be treated in the same way as before, but those constant polynomials
which contain zero, but are unequal to zero, do not lead to an elimination. We cannot
decide whether this polynomial is reduced to zero or not.

Example 2.10 Let the following system be given:

f1 =
p
7x1 �

p
5x2 = 0

f2 = �
p
5x2 �

p
3 = 0

f3 = � 3
p
5x2 � 3

p
3 = 0

This system has nearly triangular form. A construction of an S-polynomial for f2 and f3
and succeeding M-reductions assuming exact arithmetic deliver

S(f2; f3) = 0:

Furthermore, our algorithm removes f3 and the system has an exact solution with

x1 = �
p
3p
7

and x2 = �
p
3p
5
:

If we apply interval arithmetic with four signi�cant mantissa digits, we start with the

polynomials

f1 = [2:645; 2:646]x1 � [2:236; 2:237]x2
f2 = � [2:236; 2:237]x2 � [1:732; 1:733]
f3 = � 3[2:236; 2:237]x2 � 3[1:732; 1:733]:

A construction of the S-polynomial f4 = S(f2; f3) and succeeding M-reductions for f4
deliver

f4 = [�0:015; 0:015]:
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Keeping in mind that this interval (as a constant polynomial) encloses zero, the equation

0 = 0 is enclosed, and we get a solution with

x1 = �[0:653; 0:657] and x2 = �[0:774; 0:776]

enclosing the exact solution.

We have seen that there can be solvable systems, despite the validity of the �rst criterion
in its original form. Consequently, we

� stop our algorithm, if the constant polynomial does not contain zero, because the
system has no solution then, and we

� store the constant polynomial for later investigations if it contains zero, and we go
on with the constant polynomial set to zero.

We give some further notes on the implementation of our interval version of Buch-
berger's algorithm at the end of the article.

2.4 Some Improvements

Practical experience and another criterion of Buchberger lead to further ideas for im-
provements of Algorithm II.

2.4.1 Change of Order

A great improvement in computing time can be achieved by using the optimal order
for the variables in the given system. Practical experience shows that it is favorable to
choose an order that puts variables with small powers and seldom appearance in front
and variables that appear in many polynomials or that have large powers in the back.

Example 2.11 For the order (x1 � x2 � x3), let the system

x1 + 4x2 + 3x3 = 0
�4x1x22 � x1 = 0

x31 = 0

be given. If we change the order to (x3 � x2 � x1), then we get the system

3x3 + 4x2 + x1 = 0
� 4x22x1 � x1 = 0

x31 = 0

For the �rst order, Algorithm II performs 7 S-polynomial constructions and 19 M-

reductions. For the second order, only 1 S-polynomial construction and 1 M-reduction

are necessary.
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For increasing dimensions and powers, the di�erences between the orders can be even
bigger. Our experiences led to some criteria for choosing the preferable order:

1. Number of polynomials which contain xi

2. Largest power of each variable in the whole system

3. Number of summands in the whole system that contain xi

4. Length of the largest polynomial containing xi.

This heuristic cannot guarantee an improvement of computing time, but practical ex-
periences show that it leads to a respectable improvement in many cases. The success
depends also on the inner structures of the system.

2.4.2 Special Way of Pivoting

A special strategy for changing the order in which the polynomials are treated in Algo-
rithm II, we call pivoting. There are two cases for the choice of polynomials during the
algorithm:

� in search of polynomials for the next construction of an S-polynomial and

� in search of the next polynomial for another M-reduction.

We give our special way of pivoting that accelerated our algorithm for a large number of
systems:

1. For S-polynomials, we prefer those combinations of polynomials which lead to the
least LCM.

2. For M-reductions, we prefer \short" polynomials.

Example 2.12 For the system

5x91 � 6x51x
2
2 + x1x

4
2 + 2x1x3 = 0

�2x61x2 + 2x21x
3
2 + 2x2x3 = 0

x21 + x22 � 0:265625 = 0

the following table shows some comparisons between the number of S-polynomials and

M-reductions performed when using di�erent orders and pivoting.

Order Number of S-polynomials Number of M-reductions

without pivoting with pivoting without pivoting with pivoting

(1,2,3) 108 30 566 133

(1,3,2) 14 10 49 27

(3,2,1) 25 14 144 106
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Again we cannot give a guarantee for an improvement. The success of this method
depends on the properties of the used polynomials. Additionally, we must modify our
pivoting strategy if we want to avoid special combinations of interval coe�cients resulting
in intervals containing zero which possibly lead to a termination of our method.

In the current version of our algorithm, the strategies mentioned above are imple-
mented. But those strategies are too static. To achieve a greater improvement, we should
be able to inuence the algorithm at the beginning and also during the computation.
Then the order and the pivoting should also �t to each new situation as for example high
powers or long polynomials upcoming. We are still working on further improvements.

3 Hansen's Algorithm for Nonlinear Equations in

One Variable

Now we turn to the second part of our combined method, Hansen's method for �nding all
zeros of a nonlinear continuously di�erentiable function f : IR! IR, which we will apply
to a polynomial with interval coe�cients. We combine this method with the theorem of
Gershgorin [18] in order to get an algorithm independent of a starting interval entered by
the user. Hansen's method is an extension of the interval Newton method which applies
extended interval operations (see [10] and [12] for details).

3.1 Theoretical Background

We address the problem of �nding all solutions of the one-dimensional equation

f(x) = 0

for a continuously di�erentiable function f : IR ! IR and x 2 [x]. The interval Newton
method for solving this equation can easily be derived from the mean value form

f(m([x]))� f(x�) = f 0(�) � (m([x])� x�);

where x�; � 2 [x] and m([x]) denotes the midpoint of [x]. If we assume x� to be a zero of
f , we get

x� = m([x])� f(m([x]))

f 0(�)
2 m([x])� f(m([x]))

f 0([x])| {z }
=: N([x])

:

Hence, every zero of f in [x] also lies in N([x]), and therefore in N([x]) \ [x]. Using
standard interval arithmetic, the interval Newton method starts with an interval [x](0)

satisfying 0 62 f 0([x](0)) and iterates according to

[x](k+1) := [x](k) \ N([x](k)); k = 0; 1; 2; : : :

The method cannot diverge due to the intersection. If the intersection is empty, we know
that there is no root of f in [x](k).
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Using extended interval arithmetic, as de�ned in [10] and [12], we are able to treat
the case 0 2 f 0([x](0)) that occurs, for example, if there are several zeros in the start-
ing interval [x](0). In this case, N([x](k)) is given by one or two extended intervals
resulting from the interval division. Even though N([x](k)) is in�nite, the intersection
[x](k+1) = N([x](k)) \ [x](k) is �nite and may be a single interval, the union of two inter-
vals, or the empty set. Then, the next step of the interval Newton iteration must be
applied to each of the resulting intervals. In this way it is possible to enclose all zeros of
f in the starting interval [x](0).

The following theorem summarizes the most important properties of the interval New-
ton method.

Theorem 3.1 Let f : D � IR ! IR be a continuously di�erentiable function, and let

[x] 2 IIR, [x] � D be an interval. Then

N([x]) := m([x])� f(m([x]))

f 0([x])

has the following properties:

1. Every zero x� 2 [x] of f satis�es x� 2 N([x]).

2. If N([x]) \ [x] = ;, then there exists no zero of f in [x].

3. If N([x]) � [x], then there exists a unique zero of f in [x] and hence in N([x]).

The proofs appear in [12], [16], and [17].

3.2 Algorithmic Description

In the following, we give a simpli�ed version of our Hansen-like algorithm. We use the
following notations:

f nonlinear function of one variable

[x] starting interval for the search

" desired relative diameter for the �nal intervals

[y] vector (list) of intervals that still have to be examined

[z1] vector (pair) of two possibly in�nite intervals

[zp] vector (pair) of two �nite intervals

[Zero] �nal vector (list) of all enclosures for zeros

N �nal number of enclosures
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Algorithm III:

input function f , starting interval [x], desired accuracy "

N := 0; i := 1; [y]1 := [x]; f Initializations g
repeat

if 0 62 f([y]i) then
i := i� 1

else

c := m([y]i);
[z1] := c� f(c)=f 0([y]i); f Extended interval Newton step g
[zp] := [y]i \ [z1]; f Intersection [y]i \ [z1] = [zp]1 [ [zp]2 g
if [zp]1 = [y]i then
[zp]1 := [y; c]; [zp]2 := [c; y]; f Bisection g

i := i� 1;
for k := 1 to 2 do
begin

if [zp]k = ; then nextk;
if drel([zp]k) < " then f Store enclosure of zero g
begin

if 0 2 f([zp]k) then
N := N + 1; [Zero]N := [zp]k;

end

else

begin f Store [zp]k in [y] g
i := i+ 1; [y]i := [zp]k;

end;
end;

until i = 0
Sort all intervals in list [Zero];
Eliminate multiple intervals enclosing the same unique zero;

output the vector of enclosures of all zeros [Zero] and the number of zeros N

The input for Algorithm III is a one-dimensional function, a starting interval, and
a desired relative accuracy. The given starting interval is split into smaller intervals by
the Newton step or by bisection. These intervals [y]i are stored as components of the
interval [y] if 0 2 f([y]i) (so they may contain a zero) and if the relative diameter of [y]i is
greater than the desired accuracy ". Otherwise, if the relative diameter is small enough,
the interval is stored in the list of candidates for zeros, named [Zero]. If 0 62 f([y]i), then
[y]i is discarded.

The process terminates when the list of intervals [y] is empty, i.e. all subintervals [y]i
could either be discarded due to the condition 0 62 f([y]i) or because their relative diameter
is less than " and they are stored in the list of zeros [Zero]. For further descriptions see
[10] and [11].
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4 The Combined Method

Now we combine Buchberger's algorithm and Hansen's algorithm.

Algorithm IV:

input functions f1; : : : ; fm representing a polynomial system of equations G

step A Apply Algorithm II on G resulting in triangular system F

check �nite solvability of the System F = (f1; : : : ; fn) and exit if necessary

step B Set k := n and call RecursiveHansen(k) de�ned by

Compute starting interval for fk in Algorithm III

Apply Algorithm III on fk(xk) to compute enclosures [yk]1; [yk]2; : : : ; [yk]Nk

if k = 1 then
return

else

for i := 1 to Nk do

Replace xk by [yk]i in polynomials f1; : : : ; fk�1;
Call RecursiveHansen(k � 1);

output a list of enclosures for all zeros of the given system

Algorithm IV has some advantages profounded in the theory of the Gr�obner bases and
in the fact that the multi-dimensional problem is reduced to a sequence of one-dimensional
problems. Between parts A and B of the algorithm, the criteria for the solvability can
be applied. Thus, we are able to decide whether the system is not solvable at all and
whether the system has an in�nite number of solutions. In both cases, it makes no sense
to start Algorithm III, and the computing can be terminated.

Moreover, we do not need to enter starting intervals for the computations. In fact, we
use the theorem of Gershgorin [18] to compute an interval that contains all zeros of the
polynomial in one variable (to be treated by Algorithm III).

5 Implementation

We developed a portable implementation of Algorithm IV in PASCAL{XSC [14]. The
software package is divided in three independent parts:

1. Arithmetical operators, functions, and procedures to handle the nonlinear polynomi-

als and systems.

In this part, we implemented an arithmetic for nonlinear polynomials including ad-
dition, subtraction, multiplication, and division of polynomials (also with mixed
operands, terms, and monomials). Due to the fact that nonlinear polynomials
are not limited in their length, we made great e�orts to control the storage space
(garbage collection).
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2. Interval version of Buchberger's algorithm.

Algorithm II was implemented in its interval version including the improvements in
ordering and pivoting.

3. Special triangular version of Hansen's algorithm with a controlling environment.

The environment program prepares all the data necessary for the recursive calls of
Hansen's algorithm in one variable (e.g. computing the starting intervals).

Each of these parts can also be applied on its own to an appropriate problem.

6 Numerical Examples

Now we give some examples to demonstrate the performance of our combined method.
The listed computing times are those from a HP 9000/720 equipped with PASCAL{XSC
Version 2.03. The times for Algorithm IV include the time for order changing and pivoting,
the time for computing all starting intervals for Algorithm III, and the time for producing
a �le with the results. All results are given for a desired relative accuracy of " = 10�12.

We give the results of three di�erent algorithms for comparison:

1. Our combined method (BB+NLTSS: BB = Buchberger's algorithm + NLTSS =
Nonlinear Triangular System Solver)

2. The Hansen-like algorithm which is a part of the PXSCDEMO program of the
PASCAL{XSC system (NLSSDEMO).

3. The nonlinear system solver as described in [10] (TBNLSS).

The starting intervals necessary for input in NLSSDEMO and TBNLSS are those com-
puted by BB+NLTSS.

Example 6.1 Compute the intersection points of two circles:

x21 � 20x1 + x22 � 2x2 + 100 = 0
x21 � 22x1 + x22 � 2x2 + 121 = 0:

The numerical results are

Zero No. 1 :

x[1] = [ 1.050000000000000E+001, 1.050000000000000E+001]

x[2] = [ 1.866025403784438E+000, 1.866025403784439E+000]

Zero No. 2 :

x[1] = [ 1.050000000000000E+001, 1.050000000000000E+001]

x[2] = [ 1.339745962155613E-001, 1.339745962155614E-001]

Statistic for Buchberger's algorithm:

Number of S-polynomials : 2

Number of M-reductions : 1
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If we compare the computing times for the three di�erent methods we get

Method Time

BB+NLTSS 0:00:00,020

NLSSDEMO 0:00:02,580

TBNLSS 0:00:00,270

Example 6.2 Compute the intersection of three spheres:

x21 � 2x1 + x22 + x23 = 0
x21 + x22 + x23 � 2x3 = 0
x21 + x22 + x23 � 1 = 0:

The numerical results are

Zero No. 1 :

x[1] = [ 5.000000000000000E-001, 5.000000000000000E-001]

x[2] = [ 7.071067811865474E-001, 7.071067811865476E-001]

x[3] = [ 5.000000000000000E-001, 5.000000000000000E-001]

Zero No. 2 :

x[1] = [ 5.000000000000000E-001, 5.000000000000000E-001]

x[2] = [ -7.071067811865476E-001, -7.071067811865474E-001]

x[3] = [ 5.000000000000000E-001, 5.000000000000000E-001]

Statistic for Buchberger's algorithm:

Number of S-polynomials : 2

Number of M-reductions : 0

If we compare the computing times for the three di�erent methods we get

Method Time

BB+NLTSS 0:00:00,020

NLSSDEMO 0:00:05,110

TBNLSS 0:00:00:880

Example 6.3 Brown's almost linear system (5-dimensional) is given by

2x1 + x2 + x3 + x4 + x5 � 6 = 0
x1 + 2x2 + x3 + x4 + x5 � 6 = 0
x1 + x2 + 2x3 + x4 + x5 � 6 = 0
x1 + x2 + x3 + 2x4 + x5 � 6 = 0
x1 � x2 � x3 � x4 � x5 � 1 = 0:

The numerical results are
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Zero No. 1 :

x[1] = [ -5.790430884942E-001, -5.790430884940E-001]

x[2] = [ -5.79043088494121E-001, -5.79043088494113E-001]

x[3] = [ -5.79043088494121E-001, -5.79043088494113E-001]

x[4] = [ -5.79043088494121E-001, -5.79043088494113E-001]

x[5] = [ 8.89521544247056E+000, 8.89521544247061E+000]

Zero No. 2 :

x[1] = [ 9.1635458253384E-001, 9.1635458253386E-001]

x[2] = [ 9.16354582533848E-001, 9.16354582533851E-001]

x[3] = [ 9.16354582533848E-001, 9.16354582533851E-001]

x[4] = [ 9.16354582533848E-001, 9.16354582533851E-001]

x[5] = [ 1.41822708733075E+000, 1.41822708733076E+000]

Zero No. 3 :

x[1] = [ 9.99999999999997E-001, 1.00000000000001E+000]

x[2] = [ 9.999999999999997E-001, 1.000000000000001E+000]

x[3] = [ 9.999999999999997E-001, 1.000000000000001E+000]

x[4] = [ 9.999999999999997E-001, 1.000000000000001E+000]

x[5] = [ 9.999999999999995E-001, 1.000000000000001E+000]

Statistic for Buchberger's algorithm:

Number of S-polynomials : 4

Number of M-reductions : 24

If we compare the computing times for the three di�erent methods we get

Method Time

BB+NLTSS 0:00:00,150

NLSSDEMO > 1:00:00,000

TBNLSS > 1:00:00,000

Example 6.4 A polynomial system of higher degree is:

5x91 � 6x51x
2
2 + x1x

4
2 + 2x1x3 = 0

�2x61x2 + 2x21x
3
2 + 2x2x3 = 0

x21 + x22 � 0:265625 = 0:

We skip the numerical results for the 12 solutions and list the statistics:

Statistic for Buchberger's algorithm:

Number of S-polynomials : 14

Number of M-reductions : 106

If we compare the computing times for the three di�erent methods we get
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Method Time

BB+NLTSS 0:00:00,390

NLSSDEMO 0:03:19,210

TBNLSS 0:00:07,490

Example 6.5 Feigenbaum example (3-dimensional) is:

�3:84x21 + 3:84x1 � x2 = 0
�3:84x22 + 3:84x2 � x3 = 0
�3:84x23 + 3:84x3 � x1 = 0:

We skip the numerical results for the 8 solutions and list the statistics:

Statistic for Buchberger's algorithm:

Number of S-polynomials : 2

Number of M-reductions : 8

If we compare the computing times for the three di�erent methods we get

Method Time

BB+NLTSS 0:00:01,110

NLSSDEMO 0:00:11,450

TBNLSS 0:00:02,820

Example 6.6 A variant of Powell's singular function:

x1 + 10x2 = 0p
10x3 �

p
10x4 = 0

x22 � 4x2x3 + x23 = 0p
10x21 � 2

p
10x1x4 +

p
10x24 = 0

The numerical results are

Zero No. 1 :

x[1] = [ 0.000000000000000E+000, 0.000000000000000E+000]

x[2] = [ 0.000000000000000E+000, 0.000000000000000E+000]

x[3] = [ 0.000000000000000E+000, 0.000000000000000E+000]

x[4] = [ 0.000000000000000E+000, 0.000000000000000E+000]

Statistic for Buchberger's algorithm:

Number of S-polynomial : 5

Number of M-reductions : 21

If we compare the computing times for the three di�erent methods we get

Method Time

BB+NLTSS 0:00:00,050

NLSSDEMO 0:08:33,370

TBNLSS 0:00:53,580
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7 Summary and Future Work

In general, the problem of solving a system of polynomial equations is NP-hard (cf. [9]),
and therefore, there is no chance to get a fast algorithm that would always �nd all the
solutions. For unbounded systems, the situation is even worse: there exists an example
(x1 = 2, x2 = x21, . . . , xn+1 = x2n) of a system whose only solution is hyperexponential and
therefore, not computable in any reasonable time because simply to produce the result
digit after digit will take too long.

We have been studying a combined method for �nding interval enclosures of all zeros
of a nonlinear system of polynomial equations. Signi�cant improvement can be obtained
in interval Newton methods if this method is used instead of a usual interval Newton
method. The reason for this is that the preprocessing step based on an interval version
of Buchberger's Algorithm reduces the original problem to a sequence of simpler prob-
lems, i.e. to a special triangular system of polynomial equations which can be solved by
recursively calling a special Hansen-like one-dimensional solver. We have shown with our
examples, that our method is in many cases much faster than the application of Hansen's
multi-dimensional algorithm (or similar methods) to the original nonlinear systems of
polynomial equations. Even for the hyperexponential example above for dimensions up
to n = 10, our solver is able to compute the solution in less than one second.

There are, of course, examples where the combinedmethod fails because the degrees of
the polynomials generated by Algorithm II are too high and demand to much storage ca-
pacity for executing Algorithm III. Additionally, there are cases where coe�cients of some
monomials cannot be eliminated in interval arithmetic (due to ination e�ects described
in Section 2.3.2) although they would be zero assuming in�nite precision arithmetic. Here,
we have to deal with similar problems as in the interval Gauss algorithm.

Possible future work will investigate the application of special subtraction techniques
(cf. [13]) for handling \equal" coe�cients. Signi�cant work can also be done to develop a
strategy for deciding when to use the combined method and when to use a usual method.
Furthermore, future research should include application of the combined method to the
speci�c problems of computer graphics (e.g. ray tracing).
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