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ABSTRACT 

Through genetic and epigenetic instabilities and phenotypic drift tumour cells 
alter their expression of surface molecules. Amongst other factors, these changes 
can give tumour cells the ability to escape from the primary tumour and invade and 
proliferate at other tissue sites to form metastases. Metastasisformation is directly 
connected with a poor clinical outcome for cancer patients. By characterising 
metastasis-associated cell surface molecules and understanding how they facilitate 
tumour progression one could perhaps later develop therapeutic approaches to 
inhibit their action. In this thesis I have used subtractive immunisation to 
immunologically select differences in expression of surface molecules between rat 
non-metastatic and metastatic tumours. Using celllines derived from the BSp73 rat 
pancreatic tumour system four monoclonal antiborlies were obtained by subtractive 
immunisation, The antiborlies recognise a group of proteins termed the 10-1 
antigen which are dramatically up-regulated on the metastasising 10AS cellline. I 
have characterised the properties of the 10-1 antigen and amongst other things 
demonstrate that it is actively secreted from the 10AS cell line in response to 
changes in growth conditions. This secretion partly explains the observation that 
the 10-1 antiborlies did not inhibit tumour growth and metastasis in spontaneaus 
metastasis assays. The 10-1 antigen is also expressed on a number of other rat 
tumour celllines. Purification and microsequencing of the N-terminus of the 10-1 
antigen, revealed an amino acid sequence that shares its identity with <X-casein 
proteins found in goat, sheep and bovine species. These data suggest that the 
protein(s) bearing the 10-1 antigen could be a new rat <X-casein protein or casein­
like protein. Altered expression of these proteins in rat pancreatic tumour 
progression and their presence in other neoplasims may be connected to the 
development of enhanced tumour cell invasion. 



Hochregulierung von Casein ähnlichen Proteinen während der 
Progression des Pankreas Karzinoms in der Ratte 

Zusammenfassung 

Tumorzellen verändern aufgrund genetischer und epigenetischer Instabilitäten und 
daraus resultierenden phänotypischen Abweichungen die Expression ihrer 
Oberflächenmoleküle. Neben anderen Faktoren können diese Veränderungen die 
Tumorzellen dazu befähigen, aus dem primären Tumor auszuwandern und in 
andere Gewebe einzudringen, um dort zu proliferieren und Metastasen zu bilden. 
Die Bildung von Metastasen korreliert direkt mit einer schlechten klinischen 
Prognose für den Krebspatienten. Durch die Charakterisierung Metastasen­
assoziierter Zelloberflächenproteine und durch das Verständnis ihrer Funktion 
während der Tumorprogression, könnte man eventuell diese Oberflächenproteine 
als Ziel für einen therapeutischen Ansatz verwenden. In dieser Doktorarbeit habe 
ich die Methode der subtraktiven Immunisierung benutzt, um die Unterschiede in 
der Expression von Oberflächenmolekülen zwischen nicht-metastasierenden und 
metastasierenden Rattentumoren mittels subtraktiver Immunisierung zu ermitteln. 
Subtraktive Immunisierung zwischen zwei Zelllinien, die aus dem BSp73 Ratten­
Bauchspeicheldrüsen-Tumormodell stammen, ergab vier monoklonale Antikörper. 
Diese Antikörper erkennen eine Gruppe von Proteinen, die 1 0-1-Antigene, welche 
in der metastasierenden 10AS-Zelllinie dramatisch hochreguliert sind. Ich habe die 
Eigenschaften des 10-1-Antigens charakterisiert und konnte zeigen, dass es von der 
10AS-Zelllinie aktiv als Antwort auf veränderte Wachstumsbedingungen sezerniert 
wird. Diese Sekretion des Antigens ist eine möglich Erklärung für die 
Beobachtung, dass die 10-1-Antikörper weder das Tumorwachstum noch die 
spontane Metastasierung in entsprechenden Metastasierungsassays inhibieren. 
Aufreinigung und Mikrosequenzierung des N-terminalen Endes des 10-1-Antigens 
ergaben eine Aminosäuresequenz, die mit den bekannten a-Casein-Proteinen aus 
Ziege, Schaf und Rind übereinstimmt. Diese Daten legen nahe, dass die Proteine, 
die das 10-1 Antigen tragen, das entprechende homologe Protein in der Ratte oder 
ein neues Casein-ähnliches Protein sein könnten. Veränderte Expression dieser 
Proteine während der Progression von Ratten-Bauchspeicheldrüsen-Tumoren und 
ihre Anwesenheit auch in anderen Tumormodellen könnten im Zusammenhang mit 
der Entwicklung verstärkter Tumorzellinvasion stehen. 
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INTRODUCTION 

At the present moment in the westem world a large proportion of 

clinical research is concerned with gaining a better understanding of cancer. 

Cancer is responsible for many early mortalities in our society, and as such has 

profound effects on the productive capacity of our communities. Thus, there 

are many vested interests ranging from govemments, health policy makers and 

pharmaceutical companies who are seeking a eure for this disease. lt is the 

formation of metastasis, by which malignant tumour cells leave their primary 

site and spread to distaut locations throughout the body, that makes cancer such 

a Iethai disease. 

I have utilised the experimental technique "subtractive immunisation" to 

identify and characterise new surface antigens that may have a role in 

metastasis. In this way monoclonal antibodies were produced that selectively 

bind to antigens expressed on metastatic cells of a rat pancreatic carctnoma 

model. These antigens are secreted or shed from the pancreatic carcmoma 

cells and are also present on other tumour celllines. As an introduction to this 

thesis, I would therefore like to introduce the current Iiterature about 

molecules that have been implicated to play a functional role in metastasis. 

Cancer and metastasis defined 

Cancer may be succinctly defined as the cellular loss of proliferative and 

spatial control (Schwarz et al., 1988). This definition specifies that tumour 

cells differ from non-transformed cells in their proliferative capacity, as weil 

as their ability to invade adjacent tissue compartments and metastasise. In 

order for a tumour to become metastatic, it is has to acquire a number of 

properties that allow it to detach from the primary tumour, migrate through 

the basement membrane and extracellular matrix, extravasate and travel in the 

circulatory system to a new site, intravasate through a vessel wall, and through 



proliferation and the induction of angiogenesis establish growth at a secondary 

site. The process of adhesion, proteolysis and migration constitutes invasion 

and has become to be known as the "metastatic cascade" (Table 1; Hart et al., 

1989). Failure of the tumour to initiate any of these events thwarts metastasis 

formation. 

Table 1. The metastatic cascade. 

Initial transforming event 

-1-
Growth of neoplastic cells 

-1-
Neovascularisation/angiogenesis of the tumour 

"' Detachment of neoplastic cells from primary tumour 

-1-
Local invasion of extracellular matrix by tumour cells 

-1-
Intravasation of tumour cells into lymphatics or vasculature 

-1-
Survival of tumour cells in circulation and 

avoidance of immunological attack 

-1-
Extravasation of tumour cells from vasculature 

into secondary organ tissue 

-1-
Survival and proliferation with organ parenchyma 

Taken from Ahmad and Hart, (1996). 
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Invasion 

For tumour cells to invade, the three steps of proteolysis, changes in 

adhesive properties and migration must be fulfilled. Proteolysis is needed to 

traverse ECM barriers in the interstitial stroma and basement membrane. 

Tumour cells perform this by producing and secreting proteases themselves, by 

stimulating surrounding cells to produce proteases, or by producing factors to 

activate existing local proteases. Changes in adhesive properties occur between 

tumour cells themselves, and between tumour cells and stromal cells, 

endothelial cells, and the interstitial stroma and basement membrane. These 

interactions are mediated by cell adhesion molecules in the tumour or 

metastatic site, and in the vasculature. Migration represents the forward 

motion of cells in the form of a pseudopodial protrusion followed by 

translocation and retraction of the trailing cell body (Price et al., 1997). 

Cancer cell migration is stimulated through paracrine and autocrine motility 

factors. lt is through the net balance of these three actions, proteolysis, 

changes in adhesive properties and migration in the cellular environment that 

the invasive process, either physiological or malignant, is driven. 

Cell adhesion molecules 

Adhesion molecules are intrinsically involved in the processes of 

metastasis. Metastasis cannot occur if the tumour cells are tightly bound by 

their adhesion molecules to other cells in the primary tumour (V an Roy et al., 

1992). Therefore in the early stages of metastasis there is an important change 

in the phenotype of some tumour cells from being stationary and tightly 

adhered, to losing adhesion properties (Jouanneau et al. 1991) and thereby 

gaining the potential to migrate to and bind the basement membrane of 

circulatory vessels. Once in the circulatory system, in order to form metastatic 

lesions the tumour cells must again possess different adhesive properties. 

These allow them to bind to and traverse the basement membrane of the 

3 



capillary endothelium, where they lodge and migrate further into the tissue 

regwn. These processes all involve adhesion molecules that have specific roles 

in the metastatic process. For example, through homotypic interactions 

cadherins stabilise normal tissue integrity, whereas loss of these cell surface 

molecules has been associated with increased metastatic potential (Behrens, 

1993). Heterotypic interactions occur between tumour cells and endothelial 

cells as they enter anrl: exit the vasculature. Migration and organisation of 

tumour cells may be regulated by interactions with ECM proteins through cell 

adhesion molecules such as the integrins (Hynes, 1992). The cell adhesion 

molecules involved in these interactions can be divided into the molecular 

families of cadherins, integrins, the immunoglobulin superfamily, laminin 

binding proteins, mucins and CD44 (Table 2). A short summary of the major 

characteristics of these molecules will now be given. 

Cadherins 

Cadherins are a family of cell surface molecules that mediate homophilic 

interactions between cells and are chiefly responsible for establishing and 

maintaining intercellular interactions (Takeichia, 1988). Structurally, the 

cadherins are composed of several distinct domains: an extracellular region 

composed of 4 repeat domains 110 amino acids in length that are important for 

calcium binding and cell-cell adhesion (Nose et al., 1990), a small 

transmembrane domain and a highly conserved cytoplasmic domain that is 

associated with accessory cytoplasmic proteins (a,ß,y-catenins, Ozawa et al., 

1989) needed for complete cell-cell adhesion (Takeichi, 1991). There are at 

least three subclasses of cadherin, E ( epithelial)-cadherin, P (placental)­

cadherin, and N (neural and muscular)-cadherin. E-cadherin is expressed in 

almost all epithelia and plays a pivotal role in the maintenance of epithelial 

structure, and as such has been studied extensively with regard to 

tumorigenesis and metastasis (Takeichia, 1991; Gumbiner et al., 1988; 

Grunwald, 1993). 
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Table 2. Cell 

Family 

Integrins 

lgG superfamily 

Cadherin 

Selectin 

CD44 

Laminin binding 
proteins 

adhesion molecules involved in 

Receptor 

Table 3 

ICAM-1 

ICAM-2 

ICAM-3 

PeCAM-1 

LFA-2 
LFA-3 
VCAM-1 

Ca2
+ independent 

CAMs 
N-CAM 
Ng-CAM 

N-cadherin 

E-cadherin 
P-cadherin 

L-selectin 
E-selectin 

P-selectin 

Ligand 

aLß2 

aLß2 

aLß2 

LFA-3 
LFA-2 

a4ßt 

Homophilie binding 

Neural and gial cells 
Homophilie and 
heterophilic binding 

Homophilie binding 

Homophilie binding 
Homophilie binding 

Carbohydrate 
Sialyl-Lewis X 

LewisX 

metastasis. 

Distribution on 
normal tissue 

Leukocytes 

Endothelial cells 

Leukocytes 

Most immune cells, 
platelets, monocytes, 
neutrophils, all 
vascular 
endothelial cells 
T-cells 
Widespread 
Activated endothelial 
cells 
Brain, muscle, heart, 
kidney 
? 
? 

Neural cells, brain, 
muscle, lens 
Epithelium 
Placenta, epithelium, 
mesothelium 

Lymphocytes 
Endothelial cells, 
neutrophils, tumour 
cells 
Platelets, neutrophils, 
monocytes, 
endothelial cells 

CD44 and variant Hyaluronic acid, Widespread 
isoforms laminin, collagens, 

fibronectin 
67LR Laminin Basement membranes 

Adapted from Streitet al. (1996). 
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The detachment of cancer cells from the primary tumour is the initial 

step in the tumour cascade and this is caused by the disruption of cell-cell 

connections (Van Roy et al., 1992). Consequently, a reduction in cadherin 

expression is necessary and can occur either by down regulation of expression 

or by loss of protein function. Various authors have shown that a decrease or 

absence of E-cadherin expression in epithelial tumour cells leads to an 

increased invasive potential and is associated with the progression of a variety 

of epithelial neoplasias (Frixen et al., 1991; Matsuura et al., 1992; Giroldi et 

al., 1994; Shiozaki et al., 1996). Transfeetion of E-cadherin into highly 

invasive epithelial tumour cells reduced their invasiveness, and treatment of 

these transfectants with anti-E-cadherin antibodies reintroduced the invasive 

phenotype (Vleminckx et al., 1991). In the same study, E-cadherin-specific 

antisense RNA was transfected into noninvasive ras-transformed epithelial 

cells; which made these cells invasive. A recent report by Perl et al. (1998) 

demonstrated in vivo that the loss of E-cadherin expression is a rate-limiting 

step in the progression of adenoma to carcinoma. These studies suggest that 

impairment of E-cadherin function could contribute to the escape of cancer 

cells from the primary tumour, and in as much be a trigger for invasion and 

metastasis (Shiozaki et al., 1996). 

In recent years, various studies have been performed to study E-cadherin 

expression in many different human cell lines. These studies found that cell 

lines with an epithelioid morphology were generally noninvasive and expressed 

E-cadherin, whereas cell lines with a fibroblastoid morphology were invasive 

and had often lost E-cadherin expression (Frixen et al., 1991). A number of 

investigators have observed a correlation between reduced E-cadherin 

expression and poor differentiation of human tumours (Birchmeier et al., 

1994), thus indicating a role for E-cadherin in the maintenance of a 

differentiated phenotype in carcinomas. A correlation between reduced E­

cadherin expression and poor clinical outcome has been observed in prostate 

and bladder cancer (Birchmeier et al., 1994; Umbas et al., 1994), suggesting 

that E-cadherin may be a marker of prognostic value. In renal-eeil cancer, 

6 



decreased E-cadherin expression has been associated with the occurrence of 

metastasis, giving a poor prognosis (Katagiri et al., 1995). These studies 

further support the notion that E-cadherin is an invasion-suppressor protein. 

The Iiterature conceming studies of P- and N-cadherins with metastasis 

is not so extensive. These cadherins have been identified on melanoma cells, 

but no mechanism for their involvement in metastasis has been described 

(Matsuyoshi et al., 1997). In certain invasive breast cancer cell lines 

upregulation of N-cadherin was observed, which promoted their interaction 

with stromal cells, suggesting that N-cadherin facilitates invasion and metastasis 

(Hazan et al., 1997). This is in contrary to observations conceming E-cadherin 

where downregulation is associated with a metastatic phenotype. Further 

studies will be required to determine what is the mechanism for the other 

cadherins involvement in metastasis. 

Integrins 

Integrins are transmembrane glycoproteins composed of a and ß 

subunits that are nonconvalently associated to form a heterodimeric complex 

(Hynes, 1992). At least 15 different a-chains and 9 different ß-chains have 

been identified, and these can associate in a variety of combinations to form 

many different heterodimers (Table 3). They are expressed at a high density 

on the cell surface and predominantly mediate cell-matrix interactions during 

cell migration (Albelda et al., 1990a), and to a lesser degree heterophilic cell­

cell adhesion (Springer, 1990). The combination of alpha and beta chains 

dictates to an extent their ligand specificity. Cells expressing the appropriately 

paired subunits can bind to a variety of extracellular protein ligands, such as 

fibronectin, laminin, tenascin, thrombospondin, vitronectin, and collagens 

(Hynes, 1992). Cells that express multiple integrin forms on their surface have 

the capacity to recognise multiple ECM components, providing positional 

information needed for anchorage, polarity, differentiation, and directed 

migration. This recognition system is utilised by leukocytes in extravasation at 
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Table 3. Association of a and ß integrins, and their ligands. 

Integrin ß- Integrin a-
subunit subunit 

ßl ai 
a2 
a3 
a4 
as 
a6 
a? 
as 
a9 
av 

ß2 aL 
~ 

ax 
ß3 am~ 

ß4 a6 
ßs av 
ß6 av 
ß7 a4 
ßs av 

Ligands 

Collagens, laminins 

Collagens, laminins, fibronectin, echovirus 1 

Fibronectin, collagen 1, epiligrin, invasin 

Fibronectin, epiligrin, VCAMs, invasin 

Fibronectin, RGD sequence, invasin 

Laminin, invasin 

Laminin 

? 
Tenascin, collagen, laminin 

Fibronectin, RGD sequence, vitronectin 

Fibrinogen, C3bi 

Fibrinogen, factor X, ICAMs 

Fibrinogen, C3bi 

Collagens, vitronectin, fibronectin, RGD sequence; 
fibrinogen, v. Willebrand factor, disintegrins 
thrombospondin, Borrelia burgdorferi 

Fibronectin, RGD sequence, vitronectin, fibrinogen, 
thrombospondin, osteopontin, cytoactin/tenascin, 
disintegrins, v. Willebrand factor, HIV Tat proteins 

Larninin 

Vitronectin, RGD sequence, HIV Tat proteins 

Fibronectin, cytoactin/tenascin 

Fibronectin, mucosal ACAM-1, VCAMs 

? 

Adapted from Ahmad and Hart, 1996; Streitet al. (1996); Gille and Swerlick, (1997). 
ACAM Addressin cell adhesion molecule-1; C3bi Complement factor C3. 

sites of inflammation and is probably used similarly by tumour cells in cancer 

cell extravasation (Heino, 1993; Herzberget al., 1996; Hynes 1992). 

It is through their interactions with ECM components that integrins were 

initially suspected to be involved in promoting tumour growth and metastasis. 

Numerous studies have revealed that differential integrin expresswn on 

tumours is associated with metastatic behaviour (Albelda, 1993b). For 

example, Danen et al. (1993a; 1993b) showed that upregulation of a 2ß1, a 3ß1 
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and a6ß1 in human melanomas correlates with metastatic potential and cell 

migration. Studies of integrin expression in normal colon, adenomas and 

carcmomas within the same patient showed that as cells progress from 

adenomas to carcinomas they loose expression of a 3ß1, (receptor for collagen 

and laminin) and a 5ß1 (receptor for fibronectin, Pignatelli et al., 1990; 

Stallmach et al., 1992). Benign tumours of the head, neck and skin down­

regulate a 6 integrin expression, whereas elevated levels are found on metastatic 

tumours (Friedrichs et al., 1995a). In addition, patient survival from these 

tumours correlates with loss of a 6 expression. These observations suggest that 

through their ECM ligand interactions, integrins can regulate tumour 

behaviour. 

Integrins bind to short peptide sequences on their ligands. Several 

recognise the tripeptide Arg-Gly-Asp (RGD) that is expressed in fibronectin, 

collagen, invasin, laminin and vitronectin (Gille and Swerlick; 1997; Varner 

and Cheresh, 1996). Studies interfering with integrin binding to this peptide 

sequence have provided strong evidence for the ability of integrins to regulate 

metastasis. For example, Humphries et al.(l986) used short peptides to block 

the RGD ligand binding site. In this model, coinoculation of the tumour cells 

and peptides into nude mice resulted in a reduction of murine melanoma lung 

metastases. Similarly, RGD peptides have been used to block in vitro invasion 

of basement membrane matrices (Gehlsen et al., 1988). Ruiz et al. (1993) 

blocked metastasis of B16 murine melanoma cells with antiborlies to a 6ß4• 

Treatment of metastatic cells with antiborlies against a6 , or suppression of a6 

expression by ribozyme treatment resulted in a reduction of adhesion, 

proteolysis and experimental metastasis (Blood and Zetter, 1993; Ruiz et al., 

1993). These studies demonstrate that interference with integrin binding is 

potentially a potent therapeutic strategy to combat metastasis. 

Brooks et al. (1996) have described an association between integrins and 

metalloproteinases (MMPs). They demonstrated that the proteolytically active 

form of the metalloproteinase MMP-2 can bind to integrin avß3, and can thus 

be localised on the surface of metastatic tumour cells. This localisation 
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provides migratory cells with the ability to coordinate matrix degradation and 

cellular motility, thereby facilitating tumour cell invasion. The integrins a 2ß1 

a5ß1 and a4ß1 have also been associated with the ligation of MMPs (Varner and 

Cheresh, 1996), suggesting that other family members may also have diverse 

roles of facilitating tumour cell adhesion, motility, and ECM proteolysis. 

Immunoglobulin supeifamily 

The immunoglobulin superfamily (IgSF) is composed of a large number 

of transmembrane-bound calcium-independent molecules that are capable of 

both heterophilic and homophilic interactions. Structurally they feature an 

extracellular domain of multiple immunoglobulin-like homology units (Ig) and 

fibronectin III repeats (FNIII, Springer, 1990). The Ig units are 70-110 amino 

acids long, organised into several ß-pleated sheets and each stabilised by a 

single disulfide bond. Both the Ig and FNIII motifs have been shown to be 

involved in cell-cell interactions. The family includes molecules such as major 

histocompatibility molecules (CD2, CD4, CD8 and the T-cell receptor), and 

those involved with leukocyte trafficking [intercellular adhesion molecule 

(ICAM-1), ICAM-2, ICAM-3 and vascular adhesion molecule (VCAM)], as 

weil neural crest adhesion molecule (N-CAM), platelet endothelial adhesion 

molecule PeCAM-1, epithelium-specific adhesion molecule (C-CAM), and 

carcinoembryonic antigen (CEA) (Pignatelli et al., 1994; Yeatman et al., 1993; 

Zetter, 1993). Cytokines can upregulate the expression of certain IgSFs on 

some cell types, and clearly there is an implication for this relationship in 

tumour-stroma interactions. 

Increased expression of ICAM-1 on human melanoma and Iymphoma is 

associated with increased metastatic spread, a high probability of remission 

after surgery (Johnson et al., 1989; Natali et al., 1990; Stauder et al., 1989), 

and poor prognosis for patients with haemopoietic and epithelial tumours 

(Johnson et al., 1989; Natali et al., 1990; Huang et al., 1995; Santorsa et al., 

1995). The interaction of tumour-expressed ICAM-1 with its endothelial 
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integrin Iigand aLß2 (LFA-1) is in some tumour models partly responsible for 

their metastatic properties. Antibodies to ICAM-1 or aLß2 have been shown to 

inhibit invasion and metastasis of murine and human Iymphomas (Haming et 

al., 1993; Rocha et al., 1996). Similar antibodies have also suppressed the 

growth of more advanced tumours (Huang et al., 1995). These observations 

suggest that the antibodies affect the interaction of ICAM-1 and aLß2, by 

interfering with the initial attachment of tumour cells to the endothelium, and 

in more advanced tumours by disrupting ICAM-1"s homophilic connections. 

These studies indicate that ICAM-1 can have the dual roles of mediating 

metastatic tumour-cell adhesion to the endothelium and invasion of anatomical 

sites. 

Other IgSFs have similar ligand-dependent metastatic-associations. 

VCAM-1 is expressed on endothelial cells stimulated by certain cytokines, and 

has been implicated in metastasis via the binding of its Iigand a 4ß1 integrin 

(VLA -4) present on tumours that have the propensity for haematogenous 

metastasis (melanoma, osteosarcoma and thyroid carcinoma; Albelda et al., 

1990b). N-CAM, an adhesion molecule expressed on neural crest derived­

cells, has been shown tobe a sensitive marker for tumour grade and prognosis 

in small cell lung cancer (Pujol et al., 1993; Michalides et al., ,1994). 

However, the mechanism for N-CAMs involvement in tumorigenesis has not 

been determined. 

The carcinoembryonic antigen (CEA) was discovered in 1965 and refers 

to a large and complex family of abundantly expressed adhesion molecules 

(Gold and Freedman, 1965). lt is 200 kDa glycoprotein containing about 60% 

carbohydrate and can either be membrane bound or associated with the plasma 

membranevia a glycosylphosphatidylinositol (GPI) anchor. Adhesion of CEA 

molecules is primarily by homophilic binding to molecules on adjacent cells. 

In the adult CEA-related cell surface molecules are primarily expressed in 

various epithelia, vessel endothelia, and haematopoietic cells. They are also 

expressed during development, and are for example observed in placental 
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trophoblasts, muscle development, and the development and eruption of teeth 

(reviewed in Öbrink, 1997). 

CEA is the most widely used tumour marker. Increased Ievels have been 

found in a number of human carcinomas, and it is particularly useful for 

monitoring patients diagnosed with colorectal cancer (Moertel et al., 1993). In 

normal colonic cells and differentiated colon carcinomas the distribution of 

CEA is apical, whereas in undifferentiated colonic tumours it is equally 

expressed over the entire cell membrane (Jessup and Thomas, 1989). Other 

studies have shown CEA to mediate homotypic aggregation of cancer cells and 

mediate homing of colorectal cancer cells to the liver (Johnson, 1991; Jothy et 

al., 1995), suggesting a direct role for it in tumorigenesis and metastasis. 

However, despite the enormous amount of Iiterature that has described an 

association of CEA with malignancy, no clear picture of a functional role for 

it in metastasis has emerged. 

Se Ieetins 

Selectins are cell adhesion molecules of the immunoglobulin family that 

mediate interactions between leukocytes and vessel walls, for example, at sites 

of tissue injury and inflammation. Three selectin family members have been 

described with differential expression on leukocytes, (L-selectin), platelets, (P­

selectin) and vascular endothelium, (E-selectin; Springer and Lasky, 1991), 

each of which contain a lectin-like domain capable of binding to specific 

carbohydrate structures, such as the sialyl Lewisx (Lex), sialyl Lewisa (Lea) 

antigens, fucosylated molecules and heavily 0-glycosylated proteins known as 

mucins (Shimizu and Shaw, 1993). Physiologically, selectins encourage 

vascular adhesion by mediating neutrophil, monocyte and lymphocyte rolling, 

in recruiting lymphocytes to inflammation sites, in activating neutrophils and 

in lymphocyte homing (Crokett-Torabi and Fantone, 1995). Their importance 

in metastasis is due to their association with the binding of metastatic cells to 

the endothelium via tumour expressed carbohydrate antigens during the entry 

12 



and exit of tumour cells from the circulatory system. This will be presented in 

later sections. 

Laminin receptors 

Laminin isahigh molecular weight glycoprotein and a major component 

of basement membranes. It has several important biological properties, such as 

the stimulation of cellular attachment, differentiation, proliferation, migration, 

and neorite outgrowth (Beck et al., 1990). Furthermore, for tumour cells to 

enter and exit the circulatory system they need to bind to and penetrate through 

basement membranes. Not surprisingly, receptors for laminin such as 

members of the integrin family have been implicated in metastasis. A nurober 

of laminin-binding proteins have been isolated, including the high-affinity 67 

kDa receptor (67LR), members of the galectin family, and integrins. 67LR is 

the best described and has been shown to be associated with the invasive and 

metastatic phenotype of cancer cells (Sobel, 1994 and Castronovo, 1993), and 

poor prognosis (Martignone et al., 1993). On normal cells, 67LR is present on 

their basal surface in contact with the basement membrane. In contrast, on 

tumour cells it is increased in expression, disorganised in distribution, and 

unoccupied by ligand (Wewer et al., 1986). Observing this, several authors 

found a correlation between 67LR expression and the metastatic potential of 

colon, breast, ovarian and gastric cancer (Castronovo, 1993; Daidone et al., 

1991; Demeter et al., 1992; D'Errico et al., 1991; Sobel, 1994; Terranova et 

al., 1983). Cioce et al. (1991) observed a higher level of laminin receptor 

expression in colon cancer metastases than in the primary tumour lesion, 

suggesting that increased expression of the 67LR receptor is associated with a 

more invasive phenotype and a higher metastatic potential. Utilising a similar 

model, Aznavoorian et al. (1990) observed that subclones of a human colon 

carcinoma cellline which varied in their invasive and non-invasive properties 

differed mainly in their ability to interact with basement membrane protein 

laminin. The invasive subclone expressed higher levels of laminin receptors 
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and had more enhanced laminin-mediated adhesion, spreading and migration 

than the noninvasive clone. In vivo data supports a role for the laminin 

receptor in metastasis. Bersalier et al. (1995) inhibited liver colonisation of 

human colorectal cancer cells using a pentapeptide from the laminin-ß1 chain 

which blocked laminin binding to the 67LR receptor, whereas a peptide from 

the laminin-a1 chain promoted liver metastasis formation by stimulating 

homotypic cell aggregation into tumour emboli. These studies suggest that 

tumour cell adhesion and migration is enhanced by the binding of the 67LR 

receptor to laminin, and constitutes an important mechanism in metastasis 

formation. 

CD44 

CD44 is a widely expressed cell surface glycoprotein that is structurally 

related to several hyluronate binding proteins, and serves as an adhesion 

molecule in cell-substrate and cell-cell interactions (Underhill, 1992). The 

molecule has been shown to have a variety of functions, including binding to 

extracellular matrix hyaluronic acid (HA), fibronectin, laminin, collagen, 

chrondroitin sulphate-modified invariant chain, osteopontin and serglycin. 

Physiologically it has been implicated in lymphocyte rolling, homing and 

aggregation, lympho-haematopoiesis, T cell activation, limb outgrowth, and 

cell migration and tumour metastasis (Hua-Xin et al., 1998; Price et al., 1997; 

Sherman et al., 1998; Galluzzo et al., 1995; reviewed recently in Sherman, 

1996; Günthert, 1996; Zöller, 1996; Naor, 1997). 

The numerous functions and molecular partners of CD44 can be related 

to its complex structure. The diversity is partly created by the incorporation 

of amino acid stretches encoded by ten alternatively spliced exons that can be 

inserted into one single extracellular site located close to the transmembrane 

domain to create CD44 variants (CD44v, Jackson et al., 1992). To further 

increase the complexity of CD44v, the primary structure is modified with 

various glycans, such as N- and 0-linked glycosylations, chrondroitin and 
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heparan sulfate side chains (Günthert, 1996). These modifications can also be 

cell-type specific (Brown et al., 1991; Hofmann et al., 1993). The most 

common and widely expressed 85-kDa (CD44s) form does not include any 

variant exons. lt has a virtually ubiquitous expression pattem, while CD44v 

forms are only expressed in a select number of tissues and tumours (reviewed 

in Naor, 1997). 

CD44 binds to a wide range of ligands including ECM components, 

chemotactic cytokines such as osteopontin and growth factors. lt is not 

surprising therefore that there is much evidence to suggest that it plays a role 

in metastasis. I will firstly present those studies that have revealed interesting 

correlations with CD44 expression and metastatic progression, and thereafter 

consider the mechanisms by which CD44 could confer metastatic behaviour on 

tumour cells. 

CD44 has been studied in many different tumour types and I will Iimit 

my discussion to some of the most important examples. CD44 is involved in 

leukocyte development and activation (Zöller, 1996), and not surprisingly 

CD44 expression is implicated in the progression of non-Hodgkin"s Iymphomas 

(NHLs). Immunohistochemical studies revealed a poor prognosis for patients 

expressing elevated Ievels of CD44s and de novo expression of v3 and v6 

variants (Stauder et al., 1995). It has been speculated that NHLs share the 

properties of activated lymphocytes, specifically that they utilise v3 and v6 

variants to promote entry into andlor expansion into the lymphatic tissue 

(Herrlich et al., 1993). 

Dall et al. (1996) revealed by immunostaining that during the 

progression of uterine cervical carcinoma from low-grade squamous 

intraepithelial stage to high-grade squamous intraepithelial stage and invasive 

stage there was an increase in CD44v7 /8 expression. This expression pattern 

also equated with shorter survival (Kainz et al., 1995) and suggests that these 

variants could play a role in metastasis of cervical carcinoma. 

In studies considering colorectal and breast cancer initially conflicting 

data emerged. For colorectal cancer, Mulder et al. (1994) observed a 
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correlation of CD44 v6 presence with poor patient outcome, whereas Koretz et 

al. (1995) found no such correlation. Evaluation of CD44v6 in hreast revealed 

similar inconsistencies. Kaufmannet al. (1995) descrihed CD44v6 reactivity as 

an indicator for adverse prognosis, while Friederichs et al. (1995h; 1995c) 

found no correlation of v6 expression with survival. These discrepancies are 

related to technical differences or to patient selection criteria used for the 

studies. In a recent study hy Wielenga et al. (1998) a panel of different 

antihoclies against CD44v6 reconfirmed CD44v6 as a prognostic marker for 

colorectal cancer, and convincingly demonstrated that the affinities of the 

antihoclies used is critical. 

Studies of the central nervaus system have also suggested a role for 

CD44. For example, Sherman et al. (1995, 1997) showed hy histochemistry 

and R T-PCR that human schwannomas express high er total Ievels of CD44s 

and additional splice variants, suggesting that CD44 could be a marker for 

malignant transformation of schwann cells. In neurohlastomas CD44s is down 

regulated (Shtivelman and Bishop, 1991) and variant isoforms have not been 

detected at any stage of the disease (Terpe et al., 1995). Furthermore, CD44s 

expression and the absence of the neuroblastoma maker MYCN proto-oncogene 

correlates as a favourable prognostic factor (Combaret et al., 1995; 

Christiansen et al., 1995; Terpe et al., 1995). These findings suggest that the 

ahsence, rather than the presence of CD44 is associated with a poor outcome 

for neuroblastoma patients. 

These data suggest that CD44 protein expression can hoth positively and 

negatively influence metastatic progression, and that different altematively 

spliced exons may play roles in different tumours. Due to CD44s being the 

principle receptor for HA (Aruffo et al., 1990), most work on CD44 and its 

function in metastasis has focussed on this interaction. Very little attention has 

been paid to the other ligands to which CD44 binds. 

Thomas et al. (1992) showed that human melanoma cells expressing high 

levels of CD44s which had a high HA binding capacity had increased motility, 

homotypic aggregation and an increased invasive potential in vivo compared to 
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cells expressing low Ievels of CD44s (Birch et al., 1991). In support of this 

idea Guo et al. (1994), established two sublines of this human melanoma cell 

line, which differed in CD44s expression. The cell line generated from the 

invading lymph node which expressed CD44 and bound HA was able to form 

metastases. In comparison the other established from the primary tumour 

which did not express CD44 failed to generate metastases, suggesting but not 

proving, that CD44-HA interaction influence the invasion of human melanoma 

metastatic cells at secondary sites. 

There is a great deal of experimental evidence for the involvement of 

CD44 variants in metastasis. The work of Günthert et al. (1991) is perhaps the 

best confirmation of the malignant potential of CD44. They revealed that 

artificial overexpression of a splice variant v4-v7 isoform of CD44 promoted 

the metastatic spreading of a non-metastatic rat pancreatic carcinoma cellline. 

An antibody against CD44v6 blocked this process, suggesting that this CD44 

splice variant binds to some unknown Iigand and thereby potentiates the 

metastatic potential of these cells (Reber et al., 1990; Seiter et al., 1993). 

Corresponding overexpression of CD44s in the non-metastatic tumour cells did 

not induce metastasis (Rudy et al., 1993), suggesting that in this model CD44s 

is not involved in the dissemination process. lt was speculated that the 

metastatic cells exploit a normal physiological function that is dependent on 

CD44v expression (Arch et al., 1992; Mollet al., 1996). 

In the pancreatic carcinoma system utilised by Günthert et al. ( 1991) 

overexpression of CD44s did not induce metastasis formation. Sleeman et al. 

(1996) observed that CD44v4-v7 formed clusters and increased their HA 

binding capacity when transfected into these cells. They then considered 

whether CD44v4-v7-HA interactions were responsible for metastasis in this 

system. Transfectants expressing a hyaluronidase on their surface no Ionger 

bound HA, but they still formed tumours and metastasised (Sleeman et al., 

1996), confirming that CD44v-HA interactions in this system were not 

necessary for metastasis formation and that the action of CD44 variants was 

through some other unknown Iigand. 
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CD44 variants do not seem to promote metastasis in every system. F or 

example, melanoma cells transfected with CD44s had increased tumour growth 

in immunodeficient mice as compared with cells expressing CD44E (epithelial 

CD44, expressing variant exons v8-v10, Bartolazzi, et al., 1995). Similarly, 

Namalwa cells (Burkitt Iymphoma cells) transfected with CD44s exhibited 

strong tumour and metastasis formation, but had a reduced ability to develop 

tumours when transfected with CD44E or CD44v6-v10 (Sy et al., 1991; 

Bartolazzi, et al., 1995). lt was also observed that melanoma or Namalwa cells 

expressing CD44 variants, or CD44 mutants that do not bind HA, were unable 

to grow efficiently in immunodeficient mice, whereas cells expressing CD44s 

that bound HA developed tumours and metastasis (Sy et al., 1991; Bartolazzi, et 

al., 1994, 1995; Walter et al., 1995). These studies suggest that CD44 variants 

in these systems are not responsible for generating metastasis, rather that the 

tumour-metastasising promoting properties can be attributed to the ability of 

CD44s to mediate cellular adhesion via HA. In summary, expression of CD44s 

and CD44v has varied effects on metastatic proclivity in different systems, and 

their action through Iigand binding or associations with other molecules has not 

yet been fully elucidated. 

Proteolysis 

During the process of cancer invasion and metastasis, cancer cells have 

to degrade a nurober of natural tissue barriers. These include basement 

membranes and interstitial connective tissue. The basement membrane ts a 

highly specialised, semi-elastic and continuous extracellular structure that 

separates organ parenchyma from the surrounding stroma (taken from Ahmad 

and Hart, 1996). lt consists of a nurober of different proteins and 

glycoproteins that form a complex cross-linked structure. The most important 

protein is collagen IV. Other components include laminin, proteoglycans, 

entactin, and osteonectin (Tryggvason, 1987). The interstitial connective tissue 

consists of cells distributed in a mesh of collagen fibres (main forms being type 
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I, II, and III or interstitial collagen), glycoproteins, proteoglycans, and 

hyaluronic acid. 

During metastasis invasive cells traverse basement membranes at least 

three times (Duffy, 1992): Firstly, during their escape from the primary site 

through the extra cellular matrix (ECM), secondly, while gaining entry into 

vessels, and thirdly, while exiting from these vessels at secondary sites. These 

processes are in part mediated by specific proteolytic enzymes that are 

produced and released from tumour cells, stromal cells and infiltrating 

leukocytes. The proteases implicated in degradation of the ECM include serine 

proteinases, cathepsin B and L (cysteine proteinases), cathepsin D (aspartyl 

proteinases), and matrix metalloproteinases. 

Serine proteinases 

Members of this dass of endopeptides are characterised by a senne 

residue at the active site (Duffy, 1993). Some of the members of this group 

include trypsin, thrombin, plasmin, cathepsin G and plasminogen activators. 

Plasminogen activators are the best characterised of this group, and they 

catalyse the conversion of inactive plasminogen to the active plasmin. Plasmin 

is a broad-spectrum protease and it is responsible for degrading a wide-range 

of ECM components, such as fibrin, fibronectin, laminin, and certain 

procollagenases (Testa, 1990). It exists in two forms, tissue-type plasminogen 

activator (tPA) and urokinase plasminogen activator (uPA), both of which have 

different biological functions. tP A is thought to be closely connected with 

intravascular fibrinolysis, whereas uP A is primarily involved in cell-mediated 

proteolysis during macrophage invasion, wound healing, embryogenesis, 

invasion and metastasis (Price et al., 1997). 

uP A is a glycoprotein initially secreted as a single-chain pro-enzyme. 

Activation of the pro-enzyme is carried out by limited proteolysis, for 

example, by plasmin, kallekrein, trypsin, thermolysin, factor XIIa, and the 

cathepsins (Conese and Blasi, 1995) to produce active uPA. The active form is 
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a 54 kDa protein consisting of a 24 kDa light chain (amino terminus), and 30 

kDa heavy chain. The light chain possesses a uP A receptor binding domain and 

a single kringle region. The heavy chain contains the catalytic domain, which 

has homology with other serine proteases. Two catalytic active forms of uP A 

have been identified of 55 kDa and 33 kDa, the latter consisting of the heavy 

chain and 21 amino acids of the light chain. 

uP A has multiple actions that include converting plasminogen to plasmin, 

directly activating pro-collagenases, degrading fibrinogen and tissue inhibitors 

of metalloproteases (DeClerk and Laug, 1996), and is mitogenic to certain cell 

lines (Kirchheimer et al., 1989). With regard to mitogenesis, it has been 

shown that uPA can directly activate latent growth factors, such as HGF, and 

can indirectly activate TGF-ß via plasminogen activation (Naldini et al., 1992; 

Odekon et al., 1994). These activities suggest that uPA has two roles during 

metastasis, one in furthering ECM degradation, and the other in prornoting 

tumour cell migration and proliferation. 

Numerous reports have observed high levels of uP A in tumours and 

have associated it with an increased risk of tumour recurrence after surgery, 

for example in bladder cancer (Hasui et al., 1996) and breast cancer (Duffy et 

al., 1990). Evidence for uPA involvement in tumorigenesis has been shown by 

blocking uPA function with anticatalytic antihoclies and inhibitors. For 

example, Ossowski et al. (1991) demonstrated in nude mice that human 

squamous cell carcinoma invasion could be inhibited by anticatalytic antibodies. 

Retonic acid, an inhibitor of secreted uPA activity, also reduced in vitro the 

invasion of a prostrate carcinoma cell line (Waghray and Webber, 1995; 

Webher and Waghray, 1995). 

In vivo uP A activity is potentiated by binding to its membrane-bound 

receptor, urokinase plasminogen activator receptor (uPAR; Ellis et al., 1989). 

The uP AR is a 55-60 kDa highly glycosylated single-chain polypeptide, in 

which the amino-terminal is involved in uPA binding (Roldan et al., 1990), and 

is attached to the plasma membrane via a covalent linkage to a glycero­

phosphatidylinositol (GPI) moiety. The expression of uPAR is regulated by a 
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number of motility and growth factors, including TGF-ß, EGF and HGF/SF 

(Lund et al., 1991; Lund et al., 1995; Pepper et al., 1992). Receptor binding 

concentrates uPA at the cell surface (Moller,1993; Bilis et al., 1992) and 

accelerates the breakdown of plasminogen, allowing focal digestion of the 

surrounding matrix. In many experimental systems and human carcinomas it 

has been shown that increased levels of uP A and uP AR are expressed 

selectively at the invasive tumour-stroma interface (Skriver et al., 1984; 

Grondahl-Hansen et al., 1991; Pyke et al., 1991; Pedersen et al., 1994), and are 

associated with poor prognosis (Duffy et al.,1988; Grondahl-Hansen et al., 

1993). Thus, it is clear that the interactions of uPA and uPAR play an 

important role both directly and indirectly in degrading the ECM and thus 

promoting invasion and metastasis. 

Cathepsins 

Cathepsins B and L, characterised by a cysteine residue at their active 

site, have been increasingly implicated to play a role in cancer progression 

(Sloane, 1990). Cathepsin Bis a 23-28 kDa lysosomal acid hydrolase that has a 

broad range of endopeptidase activity against myosin, actin, proteoglycans, 

fibronectin, laminin, the non-helical portion of type IV collagen, certain 

MMPs, and inactive pro-uP A soluble and receptor-bound forms (Kobayashi et 

al., 1991). In malignant tissues cathepsin B has some differences, namely, a 

greater proportion of it is found in association with the plasma membrane and 

it appears to be more active at neutral and slightly alkaHne pH (Keren et al., 

1988; Sloane et al., 1990). These properties perhaps allow it to catalyse 

peptide-bond hydrolysis more efficiently and thus play a greater part in 

proteolysis during metastasis. 

Studies have been performed that suggest involvement of cathepsin B in 

cancer. lt was observed that in patients with advanced squamous cell 

carcinoma of the uterine cervix, advanced stage carcinoma of the ovary and 

endometrium, and papillary carcinoma of the thyroid, there was an association 
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with elevated levels of cathepsin B enzyme activity (Pietras et al., 1979; Shuja 

and Mumane 1996). Data has also been presented for colorectal carcinoma, 

where cathepsin B expression correlates with tumour progression and 

decreased patient longevity (Campo et al., 1994). 

Cathepsin L has a similar capacity, like cathepsin B, to efficiently 

degrade ECM proteins, such as collagen, laminin and elastin, and to strongly 

activate pro-uPA (Price, 1997). A recent report has shown its activity was 

strikingly elevated in papillary carcinoma (Shuja and Mumane, 1996). 

Cathepsin D, like cathepsins B and L, is also a lysosomal protease. 

However, unlike cathepsins B and L, it belongs to the aspartyl group of 

proteases. Initially it is synthesised as a 52 kDa protein and is then transported 

to the Iysosomes, where it is processed to a 48 kDa intermediate form, after 

which further processing generates two mature forms of 34 and 14 kDa 

(Rochefort, 1992). In neoplastic cells processing appears to be slower than in 

normal cells, and as such they accumulate greater amounts of the 52 and 48 

kDa forms (Rochefort, 1992). The same author also showed that cathepsin D 

has mitogenic activity in estrogen-depleted breast carcinoma cells (Rochefort, 

1987; Vignon et al., 1986). Recent reports have correlated cathepsin D with 

tumour aggressiveness in patients with early cervical squamous cell carcinoma 

(Kristensen et al., 1996). Examples have also been given where capthepsin D 

expression has a strong prognostic value for poor survival in endometrial 

cancer (Losch et al., 1996). There are also a nurober of reports correlating it 

with metastatic capacity. The most interesting isthat of Garcia et al. (1996), in 

which overexpression of transfected cathepsin D in rat embryo cells increased 

their malignant phenotype and metastatic potency. It has been postulated that 

cathepsin D may facilitate metastatic growth by inactivating growth factor 

inhibitors or by activating the interaction between growth factors and their 

receptors (Garcia et al., 1996; Jiang et al., 1994a). 
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Matrix metalloproteinases 

The matrix metalloproteinases (MMPs) represent a group of proteases 

that are involved in ECM degradation. Currently 16 family members have 

been identified (Table 4 ), and they share the following properties: 

1. A putative zinc-binding domain at the catalytic site. 

2. Secretion in an inactive proform (zymogen). 

3. Activation by other proteinases. 

4. ECM components are their natural substrates. 

5. MMP activity is naturally inhibited by tissue inhibitors of metalloproteinases 

(TIMPs). 

There are three major subgroups of MMPs, which are identified by their 

substrate preferences: collagenases degrade fibrillar collagen, Stromelysins 

degrade proteoglycans and glycoproteins, and gelatinases strongly degrade 

nonfibrillar and denatured collagens (gelatin). There are also others which do 

not conveniently fall into these categories. Extensive experimental evidence 

exists for the involvement of each MMP in tumour progression (reviewed in 

MacDougall and Matrisian., 1995; Brown, 1993; Ray et al., 1994), from which 

the following generalisations can be made: i) the number of detectable MMP 

members tends to increase with tumour progression, ii) the relative level of 

any expressed MMP tends to increase with increasing tumour stage, and iii) 

MMPs can be produced by either tumour cells and/or by stromal host cells 

under the influence of factors from neoplastic cells (Chambers, 1997). This 

expression pattem of MMPs strongly supports their role in tumour 

progression. However, one must remernher that such correlations between 

protease levels, tumour growth and metastasis are not universal (Duffy, 1987; 

Duffy, 1990). Although some studies have found that the transfection of MMP 

family members has had positive effects on in vitro invasion (Matrisian et al., 

1991), other studies showed no change in in vitro invasion, for example in 
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Table 4. Main members of the matrix metalloproteinase family. 

Group Enzyme name Main substrate 

Type IV collagenases MMP-2 (gelatinase A) Type IV collagen, gelatin collagen 

types V, VIll, X laminin 

Interstitial 

collagenases 

Stromelysins 

Elastases 

MMP-9 (gelatinase B) 

MMP-1 

(interstitial collagenase) 

MMP-8 

(neutrophil collagenase) 

MMP-13 

( collagenase 3) 

Stromelysin-1 (MMP-3) 

Type IV collagen, gelatin collagen 

types I, II, IV elastin 

collagen types I, II, III, VII, X; 

gelatins 

collagen types I, II, III 

collagen types I, II, III 

proteoglycan, fibronectin, laminin, 

collagen III, IV, V, IX; elastin, Pro­

interstitial coJlagenase 

Stromelysin-2 (MMP-10) as for Stromelysin-1 

Stromelysin-3 (MMP-11) a1-Antitrypsin; laminin and fibronectin 

(weakly) 

Matrilysin (MMP-7) 

Metalleelastase (MMP-12) 

MT1-MMP (MMP-14) 

MT2-MMP (MMP-15) 

MT3-MMP (MMP-16) 

MT4-MMP (MMP-17) 

MMP-18 

MMP-19 

proteoglycans, ECM glyco-proteins, 

collagen N, gelatins, elastin 

elastin 

gelatinase A , fibrillar collagens, 

proteoglycans, ECM glycoproteins 

not determined 

gelatinase A 

not determined 

not determined 

not determined 

Adapted from Chambers and Matrisian, (1997); Yu et al. (1997); Ahmad and Hart, (1996). 

MT= membrane type. 

loss-of-function studies using antisense strategies to downregulate expression of 

stromelysin (Witty et al., 1994) and matrilysin (Noel et al., 1996). These 

results raise the possibility that certain proteases are only relevant in a 

particular tumour model, show that MMP expression does not necessarily 
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reflect MMP activity, and perhaps indicate that some MMPs affect steps in the 

metastatic cascade other than extravasation (Chambers and Matrisian, 1997; 

Duffy, 1992). 

MMP activity in vivo is regulated by endogenaus inhibitors known as 

TIMPs. To date four TIMPs have been cloned, TIMP-1, TIMP-2, TIMP-3 and 

TIMP-4, and their amino acid sequences derived (Greene, et al., 1996; Yu et 

al., 1997). TIMPs inhibit MMPs by forming tight stoichiometric, noncovalent 

bonds with either the proenzyme or activated enzyme, or by regulating their 

proteolytic activity (Ahmad and Hart, 1996). TIMPs have been used to 

provide further evidence that MMPs are required for tumour invasion and 

metastasis. lt has been described that TIMP-1 and TIMP-2 can inhibit ECM 

degradation by tumour cells and can inhibit the invasion of melanoma and 

sarcoma cells in vitro (Albini et al., 1991; De Clerck et al., 1991), and the lung 

colonising capacity of B 16 melanoma cells in vivo (Schultz et al., 1988), 

Similarly, overexpression of TIMP-1 and TIMP-2 caused a reduction in the 

frequency of metastasis and in some instances an inhibition in tumour growth 

in various cancer cell lines (Khokha et al., 1992; De Clerck et al., 1992; 

Khokha et al., 1994; Tsuchiya et al., 1993; Kawanata et al., 1995). However, it 

must be recognised that like MMPs, there are several examples where TIMPs 

have no effect on, or enhance tumour growth and/or metastasis (Solaway et al., 

1996; Sun et al., 1996). 

Migration 

Cell motility is central to the process of tumour metastasis. Local invasion, 

intravasation, and extravasation of tumour cells all require active cellular 

motility (Price et al., 1997). Tumour cell motility utilises the machinery of 

normal cellular motility but in an aberraut manner, allowing the migration of 

tumour cells to regions that constitute abnormal spread. It has been found that 

tumour cells respond in a motile fashion to a variety of substances, such as 

host-derived motility and growth factors, ECM components and tumour 
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secreted factors (Table 5; Kantor and Zetter, 1996; Levine et al., 1995). Cell 

motility is governed by the nature of the motile response and source of 

stimulation, and can be defined as: i) chemotactic: a directional cellular 

migration in response to a positive gradient of a soluble factor, e.g., ECM 

fragments or growth factors; ii) chemokinetic: a stimulation of directed 

motility, resulting in random cellular migration away from the original site, 

e.g., hepatocyte growth factor/scatter factor (HGF/SF, Weidner et al., 1993) 

and autocrine motility factor (AMF, Liotta et al., 1986; Silletti et al., 1991); 

and iii) haptotactic: directed cellular motility in response to a positive 

concentration gradient of immobilised attractant, e.g., immobilised attractants 

from the ECM (Brandley and Schnaar, 1989). Tumour cell motility results 

Table 5. Examples of molecules that control growth and motility. 

Motility stimulation and growth stimulation 

Motility stimulation and growth inhibition 

Motility inhibition and growth inhibition 

Motility 

Adapted from Duffy, (1996). 
ATX Autotaxin 
IGF insulin-like growth factor 
MSF migration-stimulating factor 
~ Stoker et al. (1991); Jiang et al. (1994b). 
*Negus et al. (1996). 
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PDGF-AA and BB 
TGF-beta 
EGFtrGF-alpha 
basic FGF 
acidic FGF 
IGF-1 
IGF-2 * 
PD-ECGF 
G-CSF/GM-CSF 

TGF-beta 
IL-1 + 

IL-3 + 

IL-6 
EGF 
TNF-alpha 

TGF-beta 
TNF-alpha 
INF-gamma 

AMF 
ATX 
SF/HGF 
MSF 



from these stimuli, which are derived from the local cellular environment and 

from from autocrine and paracrine secretions. I will consider some ofthebest 

described motility factors. 

AMF is a cytokine that can induce chemokinesis and chemotaxis in 

tumour cells (Liotta et al., 1986). It Ieads to the production of pseudopodia 

which are necessary for cellular locomotion (Guirguis et al., 1987). Its effects 

in normal tissues has been observed during such processes as wound healing 

and embryogenesis. There has been intense study into defining what role it 

may have in conferring invasive and metastatic capabilities on neoplastic cells. 

These studies postulate that AMF plays a role in tumour metastasis (V an Roy 

and Mareel, 1992). It has been shown that AMF is a marker of transitional cell 

carcinoma of the bladder when present in the urine of these patients (Guirguis 

et al., 1988). Expression of the AMF receptor gp78 correlates with a 

malignant potential in bladder cell lines (Silletti et al., 1993) and with 

metastatic potential in human bladder cancer specimens (Otto et al., 1994). 

HGF/SF is both an autocrine and paracrine growth factor that stimulates 

the motility of epithelial and endothelial cells (Stoker, 1989; Stoker and 

Gherardi, 1989; Stoker et al., 1989). It induces the scatter or chemokinetic 

locomotion of epithelial colonies, thus inducing an invasive phenotype. Its 

effects on the cell growth, morphology and motility in many normal cells and 

tumour cell lines have been extensively studied (Bhargava et al., 1993; 

Moriyama et al., 1996; Nusrat et al., 1994). HGF/SF-induced invasive growth 

is mediated by the Met receptor, a member of the tyrosine kinase receptor 

family (RTKs). In human tumours, mounting evidence from expression 

studies has suggested a role forMet in carcinomas derived from the follicular 

epithelium (Di Renzo et al., 1994; Di Renzo et al., 1992), in ovarian 

carcinomas and pancreatic cancers (Di Renzo et al., 1995) and in breast 

carcinoma (Jin et al., 1997). In these studies, protein over-expression was 

notably higher in the metastases of the primary carcinomas examined. In an 

experimental setting, NIH 3T3 cells endogenously producing HGF/SF were 

transfected with murine Met, causing the cells to become highly tumorigenic 
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and metastatic, due to the completion of an autocrine loop (Jin et al., 1996; 

Rong et al., 1992; Rong et al., 1994). These results suggest the combination of 

HGF/SF and its Met receptor play an important part in tumour progression by 

stimulating cancer cell growth and motility. 

Epidermal growth factor (EGF) is known to be a potent mitogen for 

normal cells and tumour cells. In addition to its proliferative effects, it has 

also been observed to induce motility in a number of tumour cells, for 

instance in primary gliomas (Engebraaten et al., 1993), squamous carcinoma 

cells (Shibata et al., 1996), and renal carcinoma cells (Price et al., 1996). EGF 

is the ligand for epidermal growth factor receptor (EGFR), a RTK. lt is 

believed that through their interaction motility is induced, for example by the 

formation of lamellipodia in metastatic mammary carcinoma (Segall et al., 

1996). Coexpression of both EGF and EGFR has been shown to be of 

prognostic significance and to play a possible role in the pathogenesis of a 

number of human cancers (Tateishi et al., 1990; Gorgoulis et al., 1992). For 

instance, it has been observed that over-expression of EGFR in bladder cancer 

(Neal et al., 1990), breast cancer (Nicholson et al., 1991; Klijn et al., 1992; 

Koenders et al., 1993), and glioblastoma multiforme (Hiesiger et al., 1993) 

coincides with a poor prognosis. 

lt has been found that another member of the RTKs, the proto-oncogenic 

receptor ErbB-2 is overexpressed and correlated with poor prognosis for 

breast carcinoma patients (Hynes and Stern, 1994). ErbB-2 is bound 

preferentially by other ligand-filled RTKs receptors such as EGFR to form 

heterodimers. These heterodimers are characterised by an extremely high 

signal potency, due to a reduced rate of ligand dissociation and efficient 

signalling of ErbB-2 through MAP-kinases, thus enhancing mitogenic activity 

(reviewed in Alroy and Yarden, 1997). The interaction of EGF and EGFR can 

induce motility in cancer cells, and perhaps further interaction with ErbB-2 

could provide enhanced motility and metastasis formation. Additionally, this 

interplay of factors with ErbB-2 passes on a selective advantage to tumour cells 
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by better utilising the EGF-like growth factors bound to other EGFR 

receptors. 

Insulin-like growth factors (IGFs) have been observed to stimulate 

chemotactic responses in tumour cells. These act through the type I IGF 

receptor. Stracke et al. (1988) showed that IGF-I stimulated motility in a 

human melanoma cellline. Similarly, Kohn et al. (1990) used IGF-I and II to 

stimulate melanoma cell motility in Boyden chamber assays. These factors 

could facilitate tumour cell invasion and growth at metastatic sites. 

The migration-stimulating factor (MSF) is not classified as a growth 

factor or cytokine. It is a 190 kDa secreted protein produced by human foetal 

fibroblasts (Schor, 1988). Schor et al. (1989; 1990) have shown that this 

factor can induce motility in fibroblasts, is detected in the sera from breast 

cancer patients and stimulates hyaluronic acid secretion. However the complete 

mechanism of its action with regard to motility is unclear, and as such requires 

further investigation. 

Chemotactic and chemokinetic properties have been described for TGF­

ß in different celllines (Wright et al., 1993). Its effects have been attributed 

to pseudopodia formation, membrane ruffling, and the regulation of 

fibronectin and hyaluronan production to promote cell locomotion. 

Furthermore its effects on tumour progression may also be through the 

stimulation of protease production that may activate other growth factors and 

ECM molecules (Stoker and Gherardi, 1991; Bilis and Schor, 1996; Turley et 

al., 1991; Agarwal et al., 1994; Samuel et al., 1992; Welch et al., 1990). 

Other cytokines of interest that have been shown to stimulate motility in 

endothelial and tumour cells are platelet-derived growth factor (PDGF; Pauly 

et al., 1977), fibroblast growth factors (FGFs; Gospodarowicz, 1990) and 

tumour necrosis factor a (TNF-a; Rosen et al., 1991). Apart from facilitating 

cellular motility these factors have the overlapping function of inducing 

endothelial cell migration, which is an important process of the formation of 

new blood vessels in tumours (Negus and Balkwill, 1996). 
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Tumours and angiogenesis 

Metastatic cancer cells utilise the processes of invasion, proteolysis and 

migration to colonise other tissue regions and organs. However, in order for 

further growth of these cells to occur at these metastatic sites, the metastatic 

cells must neovascularise. This occurs by angiogenesis, the development of 

new blood vessels, which is important in normal biological processes such as 

placental, embryonic, foetal and post-natal growth, wound healing and 

cyclically in the ovarian follicle, corpus luteum and post-menstrual 

endometrium (Folkman, 1971; Christensou et al., 1996; Modiich et al., 1996; 

Risau., 1995; Risau., 1996). Without angiogenesis, metastatic cells fail to form 

tumours beyond 2 mm diameter (Folkman, 1989; 1990; 1995). The initiation 

of angiogenesis is thought to be regulated by insufficient vascular supply, and 

the resulting hypoxia Ieads to a feedback response of neovascularisation (Stein 

et al., 1995). There is strong evidence to suggest that this feedback response is 

principally mediated by vascular endothelial growth factor/vascular 

permeability factor (VEGFNPF) (Aiello et al., 1994; Banai et al., 1994; 

Miller et al., 1994; Minchenko et al., 1994; Pe'er et al., 1995; Shweiki et al., 

1992). VEGFNPF is potent in inducing new blood vessel formation (Senger 

et al., 1993). In addition to its mitogenic activity VEGFNPF is a strong 

promoter of microvascular permeability (Senger, 1990), causing the 

extravasation of plasma proteins (Kondo et al., 1993). Recent studies have 

documented the expression of VEGFNPF in a correlation with vascularity, 

metastasis and proliferationinhuman and animal cancers (reviewed in Claffey 

and Robinson, 1996). In addition to these reports, experiments designed to 

inhibit VEGFNPF activity in vivo have demonstrated a reduction in tumour 

growth and angiogenesis (Kim et al., 1993; Millauer et al., 1994). Once new 

blood vessel growth is obtained, further angiogenic interactions occur between 

the host and tumour, that are mediated by other cytokines such as FGFs, PD­

ECGF and TNF-a leading to increased vascularisation, tumour size and 

metastatic growth (reviewed in Norrby, 1997). 
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The recent work of O'Reilly et al. (1993; 1994; 1996; 1997) highlights 

that there are other molecules produced by tumours that can dramatically 

influence angiogenesis in tumour growth and metastasis. They observed in 

certain tumour types that removal of the primary tumour results in rapid 

growth of the metastases, suggesting that the primary tumour is responsible for 

stimulating angiogenesis in its own vascular bed, and inhibiting angiogenesis in 

the vascular bed of its metastases (O'Reilly et al., 1993). They hypothesised 

that the primary tumour stimulates its angiogenesis by producing angiogenic 

stimulator(s) in excess of angiogenic inhibitor(s). However, the angiogenic 

inhibitors(s) due to their Ionger circulatory-half-life, reach the vascular bed of 

the metastases in excess of the angiogenic stimulator(s) produced by the 

primary tumour or the metastases themselves, resulting in the inhibition of 

metastatic growth (O"Reilly et al., 1994). Removal of the primary tumour 

thus results in the loss of angiogenic inhibitors and greater growth of the 

metastatic sites due to increased neovascularisation. They found two tumour 

models that satisfied this hypothesis, a variant of lewis lung carcinoma 

(O"Reilly et al., 1994) and murine haemangioendothelioma (O"Reilly et al., 

1997), and isolated the angiogenic inhibitors angiostatin and endostatin from 

these systems, respectively. The administration of these angiogenic inhibitors 

could potently block endothelial cell proliferation, and tumour and metastatic 

growth. Recently they also used angiostatin to induce and sustain dormancy of 

human primary tumours in mice (O"Reilly et al., 1996), suggesting that this 

molecule and other inhibitors produced by tumours could have a potent role in 

treating cancer. Clinical trials with these agents is currently underway. From 

these observations it can be concluded that tumour cell proliferation at primary 

and metastatic sites is angiogenesis-dependent. 
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Other tumour and metastasis associated antigens 

Aberrant glycosylation 

Specific glycosphingolipids (GSLs) have been shown to be associated 

with oncogenic transformation (Hakomoro et al., 1968; Mora et al., 1969). On 

some tumours they are more highly expressed than on normal tissues, causing a 

humoral response, thus allowing them to be described as tumour-associated 

antigens. A number of "typical tumour-associated GSL antigens" have been 

described, including Globo series (Gb3, Globo H and Disialosylgalactosyl­

globoside), Ganglio series (GM3, GD3, GD2 and Fucosyl-GM1), and the Lacto 

series (LeX, Lex-LeX, LeY-LeX, Lea-Lea, SleX, Slex-Lex and Slea; Hakomori et al., 

1997). 

Nearly all cancers show great differences in their GSL composition and 

metabolism compared to parental normal cells (Hakomari et al., 1997). It is 

believed that GSL clusters enhance tumour cell motility and invasiveness 

through interactions with some unknown ligand(s), GSLs on other cells, the 

indirect modulation of other adhesion molecules, and the triggering of 

transmembrane signaHing (Hakomori, 1997). Only a few cases of such 

interactions have been described. For example, the GSL GM3 is upregulated 

on the most invasive and metastatic variant cell line of the mouse melanoma 

B 16. Here it can act as an adhesion molecule for two other GSLs, Gg3Cer and 

LacCer that are expressed on non-activated vascular endothelial cells (Kojima 

et al., 1992). Metastasis in this model was blocked by antibodies to GM3 or 

Gg3, or by the administration of Iiposomes containing GM3 or Gg3 (Otsuji et 

al., 1995). In another system it was shown that the GSL disialosyl­

galactosylgloboside is upregulated in human renal cell carcinoma (Saito et al., 

1997) that extensively metastasises to the lung. In celllines derived from the 

carcinoma, the expression pattem remained, and the binding of these cells to 

perialveolar lung tissue sections was inhibited by an antibody directed against 

disialosylgalactosylgloboside (Satoh et al., 1996), suggesting the presence of an 
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undetermined Iigand for disialosylgalactosylgloboside that may mediate 

metastasis. 

Lewis antigen-selectin interactions 

Changes in N-linked and 0-linked glycosylation of glycoproteins have 

been observed to be involved in the metastatic process. Studies have shown the 

existence of a correlation between abnormal glycosylation of human cancers 

and the invasive/metastatic properties of certain tumours (Hakomori, 1996). 

For example, it has been shown that carcinoma cells highly express the 

carbohydrate sialyl Lea (Magnani et al., 1982) and that carcinoma and leukemic 

cells express sialyl Lex (Fukushima et al., 1984). It has also been observed that 

colon carcinoma patients presenting with upregulated sialyl Le structures on 

their tumour cells have a poorer prognosis than those presenting with lower 

expression of sialyl Le (Nakamori et al., 1993). 

One way in which changed glycosylation pattems can contribute to 

metastasis is during intravasation and extravasation as sialyl Lea and sialyl Lex, 

as both are ligands for selectins which are present on endothelial cells (Berg et 

al., 1991; Takada et al., 1991; Renkonen et al., 1997). For example, some 

tumour cells express increased Ievels of Le and Lea, and highly metastatic 

colonic carcinoma cells expressing such increased Ievels bind more readily to 

E-selectin on activated human endothelial cells than do related cell lines of 

lower metastatic potential (Fukuda, 1996). It has been shown that antibodies to 

E-selectin or synthetic Lex inhibited tumour cell attachment to activated 

endothelial cells, signifying that in metastasis formation, the interaction of 

endothelial-expressed E-selectin with tumour cells expressing Lex could be a 

critica1 factor in some cancers (Iwai et al., 1993). P-selectin is also expressed 

on the endothelium, and has been implicated in tumour cell arrest in 

microvessels by mediating the binding of platelets to specific tumour cells, and 

the formation of tumour cell clumps and aggregates in the circulation (Stone 

and Wagner, 1993). These studies and others provide evidence that selectin-
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Iigand interactions could be responsible for the adhesion of metastatic cells to 

the endothelium, and are as such important in the initial events leading to 

tumour cell intravasation and ultimately metastasis formation. 

Mucins 

During malignant transformation of epithelial cells, membrane 

expression of high molecule weight proteins known as mucins often changes. 

In normal physiological states they are produced by various secretory epithelial 

cells such as the mammary gland, salivary glands, digestive tract, respiratory 

tract, kidney, prostate, urinary bladder, uterus and rete testis (Zotter et al., 

1988). Structurally they are glycoproteins containing negatively charged 0-

link:ed oligosaccharides, which accounts for more that two-thirds of the · 

proteins molecular weight, and provides an extraordinary degree of 

microheterogeneity (Shimamoto et al., 1989). Malignant cells upregulate 

mucin production, resulting in large amounts of the protein being shed o r 

secreted, and change the glycosylation of the protein backbone which generates 

new epitopes or exposes the polypeptide core (Devine and Mckenzie, 1992). 

These alterations in protein expression contribute to changes in cancer cell 

proliferation, immune recognition, and cellular adhesion, which have been 

shown to influence the invasive and metastatic properties of malignant cells (Ho 

et al., 1995). A number of studies of cancers of the lung (Yu et al., 1996), 

stomach (Ho et al., 1995a), colon (Schwartz et al., 1992) and pancreas (Ho et 

al., 1995b) have identified changes in mucin expression that are associated with 

cancer progression and metastasis formation. The best described is that of 

colon cancer. 

It had been observed that patients presenting with mucinous colon cancer 

often had advanced disease and a poor prognosis (Schwartz et al., 1992). 

Bresalier et al. (1991) demonstrated that increased mucin production by colon 

carcinoma cells correlated with their metastatic potential. They found that 

high mucin producing (HMP) colon cancer cells adhered better to a 
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reconstituted basement-membrane gel (matrigel) than a low mucin producing 

(LMP) colon cancer cell line. The addition of purified colon cancer mucin to 

LMP parental cell line enhanced the adhesion of these cells to laminin and 

matrigel. This supports the hypothesis that colon cancer cell mucins play a 

role in heterotypic interactions between tumour cells and the ECM. Schwartz 

et al. (1992) used benzyl-a-N-acetylgalactosamine to inhibit the production of 

fully glycosylated mucin from HMP cells. These authors observed that treated 

HMP colon cancer cells had reduced invasive ability as compared to non­

treated cells. These studies provide evidence that mucin-type glycoproteins 

affect various stages of colon-cancer metastasis. However, the nature of 

mucin-ECM interactions remains tobe elucidated. 

Mucins are modified by a number of carbohydrate antigens, including 

Lea and Lex, and mucin core region antigens, such as T and Tn (Matsushita et 

al., 1991; Yamori et al., 1989; Itzkowitz et al., 1988). Yoon et aL (1996) have 

shown that E-selectin binds to Lea and Lex expressed on mucins from HM7 

human colon cancer cells. They observed that cells treated in vitro with 

benzyl-a-N-acetylgalactosamine exhibited reduced expression of surface Lea 

and Lex and binding to E-selectin, suggesting that surface mucin on colon 

cancer cells is critical for their attachment to the endothelium and the 

generation of metastasis. 

5T4 antigen 

Comparisons between the growth and invasive properties of embryonie 

tissues and tumour cells have stimulated the search to find functional 

similarities in cell surface molecules (Myers et al., 1994). A tissue that has 

been considered is the trophoblast, the foetal tissue of the placenta. lt exhibits 

regulated invasion of the uterus while avoiding the matemal immune system. 

Thus antigens present on the trophoblast may function to facilitate the growth 

and survival of the foetus as a semi-allograft in utero, and similarly function to 

promote tumour invasion (Myers et al., 1994). 
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The 5T4 oncofoetal antigen was determined by the 5T4 monoclonal 

antibody, raised against human placental trophoblast (Hole and Stern, 1988). 

Structurally, the antigen is a 72 kDa transmembrane glycoprotein, consisting of 

a 310 amino acid extracellular domain that is heavily glycosylated (Hole and 

Stern, 1990) and contains leueine-rich repeats, and a 44 amino acid cytoplasmic 

domain (Myers et al., 1994). Immunohistochemical studies revealed that the 

antigen is strongly expressed on foetal trophoblast membranes but is absent 

from most normal non-pregnant tissue, with only a few specialised epithelia 

being weakly positive. In contrast, it is expressed by a variety of transformed 

embryonie and carcinoma-derived cell lines and by many human carcinomas 

(Southall et al., 1990; Hole and Stern, 1988). Studies of this type have also 

revealed a strong correlation between 5T4 histochemical staining in ovarian, 

colorectal and gastric carcinomas and metastasis (Starzynska et al., 1992; 

Wrigley et al., 1995), suggesting a strong connection between 5T4 expression 

by tumours, disease progression, metastasis and patient survival. Recent work 

by Carsberg et al. (1996) has supported this correlation. In this study the 

authors found that transfection of full-length 5T4 cDNA into epithelial cells 

alters cell-cell contacts and cell motility. In transfected CL-SI murine 

mammary cells, 5T4 expression was associated with dendritic morphology, a 

reduction in actin/cadherin-containing contacts and increased motility. 

Transfeetion with a 5T4 truncated-cytoplasmic-tail mutant form resulted in 

transfectants with a reduction in actin-cadherin-containing contacts but motility 

was unchanged. These observations suggest that 5T4 can influence cellular 

characteristics through both its intracellular and extracellular domains, 

reflecting a role for 5T4 in the invasion process (Carsberg et al., 1996). 

Conclusion 

I have presented here an overview of the major groups of molecules 

involved with metastasis formation. Many more of these molecules are certain 

to be added to the growing Iist. Tumour cells take advantage of the normal 
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physiological properties of these molecules, and due to differences m 

quantitative andlor qualitative properties in these molecules, are able to 

metastasise and proliferate at other tissue sites. These molecules can function in 

multiple ways in metastasis during the different steps of proteolysis, adhesion 

and migration. For example, integrins primarily mediate cell-ECM adhesion 

indicating that they are involved in tumour-cell adhesion and migration. They 

can also bind MMPs and localise MMP activity during cellular migration at the 

tumours perimeter, signifying that integrins can also be important m 

proteolysis. Active uP A plays a direct role in degrading the ECM. In 

addition, it has been shown to activate directly HGF/SF and indirectly TGF-ß 

(Naldini et al., 1992; Odekon et al., 1994). These activities of uPA suggests 

that it not only modulates ECM degradation, but also tumour cell migration 

and proliferation. It is through this plethora of molecules and their varied 

activities that tumour cells coroplete the metastatic cascade. 

Aims and experimental system 

The realisation that many molecules expressed on tumour cells are 

involved in multiple steps during the formation of metastases has advanced our 

understanding of the cellular and molecular mechanisms of cancer. Thus, 

further research into molecules specifically expressed or lost on metastatic 

tumour cells can only lead in the end to a better clinical outcome for patients 

and ultimately disease prevention. 

Many surface molecules associated with cancer have been identified by 

immunological procedures to generate monoclonal antibodies specific for 

tumour cells (Brooks et al., 1993). The traditional approach is to directly 

immunise mice with the intact metastatic tumour cell. However, this procedure 

can prove to be inefficient, for tumour cells present an array of molecules that 

can be immunodominant and perhaps play no functional role in metastasis. To 

overcome these inefficiencies an experimental technique known as subtractive 

immunisation (Byrne and Cox, 1986; Williams, 1992) has been successfully 
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used to enrich the tmmune response against antigens that are involved in 

metastasis (Brooks et al., 1993; Sleeman et al., 1998). lt reduces the 

immunodominancy of non-metastasis-associated molecules by an immuno­

depressive procedure, and thus achieves a stronger immunological response 

against metastasis-associated-antigens. My aim was to utilise this procedure to 

isolate, identify and characterise metastasis-specific surface antigens expressed 

on clones from the BSp73AS pancreatic carcinoma cell system which have 

defined metastatic properties (Matzku et al., 1983). 
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MATERIALSAND METHODS 

MATERIALS 

Chemicals. All general chemieals were purchased from Carl Roth GmbH + 

Co., Karlsruhe, Merck, Darmstadtor Sigma Chemie GmbH, Deisenhofen, and 

were of the highest quality. Radiochemieals were obtained from Amersham. 

Antibodies. All antibodies other than those made by myself were obtained 

from Jonathan Sleeman. 

Cell culture and manipulation 

Cell culture. All cells were maintained in a 37°C incubator (Forma Scientific, 

Labotect GmbH, Göttingen) with 6% C02• Tissue culture media was made 

from powder obtained from Gibco and reconstituted according to the 

manufacture's instructions. All medium was supplemented with lOOU/ml 

penicillin and 1 OO~g/ml streptomycin. Trypsin was obtained from Difco 

Laboratories (Detroit, USA) and was diluted to 0.25% in 15mM sodium 

citrate, 134mM potassium chloride. Culture conditions, passaging procedures 

and harvesting were by established methods (e.g. Freshney, 1986). 

Cell lines and medium The derivatives of the Bsp73 pancreatic tumour cell 

lines (BSp73ASML [ASML], and BSp73AS clones OAS, lAS, 3AS, 7 AS, lOAS 

[Matzku et al., 1983]) were maintained in RPMI 1640 medium containing 10% 

FCS. The AS transfectants ASpSV14 (transfected with CD44v4-v7 [Günthert 

et al., 1991]) were maintained in RPMI 1640 medium containing 10% FCS, 

supplemented with 300~g/ml 0418. AT-1, AT-2.1, AT-3.1, AT-6.1, 

MatLyLusu, G and MatLu cell lines were cultured in RPMI 1640 medium 

containing 10% FCS and 250nM dexamethasone (Isaacs et al., 1978; Isaacs et 

al., 1986; Ichikawa et al., 1992; Ichikawa et al., 1991). CREF, CREF-T24, 
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MT450, MTPa, MTC, MTLN2, MTLN3, MTLy and BDX2 cells were 

maintained in Dulbecco "s modified Eagle" s medium containing 10% FCS 

(Hofmann et al., 1993; Dunnington et al., 1984; Lichtner et al., 1987; Neri et 

al., 1981; Sleeman et al., 1996). SP2/0 cells were cultured in RPMI with 10% 

FCS (Köhler and Milstein, 1976). In experiments in which tunicamycin was 

used, tunicamycin was added to the medium of growing cells to a final 

concentration of 7 .5/-lg/ml for the indicated time. 

Frazen stocks. Cell stocks were maintained in liquid nitrogen. 

Logarithmically growing cells were trypsinised, centrifuged at 250xg and 

resuspended in 1ml freezing mix (90% FCS and 10% DMSO, Fluka Chemie 

AG, Buchs, Switzerland). The freezing vials containing the cells were placed 

in a rack, after which a towel was wrapped around the rack and they were 

placed in a -80°C freezer. They were then transferred to liquid nitrogen the 

next day. Toreturn the cells to culture, the vials were thawed at 37°C, pipetted 

into 1 Oml medium, centrifuged at 250xg and plated out in fresh medium. 

METHODS 

Protein methods 

Cell Lysates. Cells were grown to confluency and then removed from the petri 

dish by physical scraping using a rubber policeman, or by incubation with 

PBS (Mg2
+ and Ca2

+ free) containing 5mM EDTA. The cells were counted 

with a Coulter counter and resuspended to a final concentration of 1 x 107 

cells/ml in sample buffer (125mM Tris.HCI pH 6.8, 2% SDS) containing 10% 

glycerol for non-reducing, and 10% ß-mercaptoethanol or 1 OOmM 

dithiothreitol (DTT) for reducing sample buffer. Sampies were boiled for five 

minutes and then sonicated for 15 to 20s to breakdown chromosomal DNA. 5 

x 105 equivalent cell volumes were loaded into each gel slot. 

40 



SDS-PAGE. Proteins were separated electrophoretically on the basis of size 

using the methods of Laemmli (1970). The resolving gel contained 10% 

acrylamide, unless otherwise stated. Sampies were run into the stacking gel at 

50V, and then run at 30V ovemight, or 125V during the day. Gels which 

were Coomassie stained were incubated with Coomassie (0.25% Coomassie 

brilliant blue, R-250, 50% methanol and 10% acetic acid) for 4-24h. Gels 

were destained in 10% acetic acid, 10% methanol for 24hr or more. 

Immunoprecipitations. For immunoprecipitations of cell lysates, cells were 

grown to 80-100% confluency, washed with cold PBS, counted by a Coulter 

Counter and resuspended at 1 x 107 cell/ml in ice cold RIPA buffer (150mM 

NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50mM Tris, pH 7.5) 

containing 2mM PMSF. The DNA was sheared by passing the lysate through a 

needle a few times, and the non-soluble material pelleted in a 4°C bench 

microfuge at 14,000 RPM. To reduce the background, the supernatant was 

taken and incubated with a final concentration of 1% globulin free BSA and 

also precleared with a 1/10 volume of protein-G agarose beads. The mixture 

was then rotated end over end for 1-2 hours at 4 °C, after which the beads were 

spun out and the supematant used for immunoprecipitations. For immuno­

precipitations of conditioned tissue culture medium, cells were grown 

ovemight in a minimal volume of medium. The conditioned medium was 

collected, centrifuged to remove cell debri and extensively dialysed against 

PBS. 

Aliquots of the prepared lysates corresponding to 5 x 105 cells were 

incubated with 5~g of monoclonal antibody (spun in a microfuge to remove 

any precipitate) and 50~1 50% RIPA slurry of protein G agarose at 4°C for 2-

24 hours. The protein G beads were pelleted by a 30 second spin m a 

microfuge, the supematant was discarded and 1ml of RIP A was added. The 

beads were resuspended, then spun out as before and the supematant was 

aspirated off. The beads were washed this way in RIP A buffer four times. 

After the final wash, the beads were spun down briefly in a microfuge, and a 
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Rarnilton syringe used to remove all of the remaining RIP A from the beads. 

The beads were resuspended in 50Jll sample buffer, boiled, and the supematant 

subjected to SDS-PAGE and westem blotting. 

Western blotting. Proteins separated by SDS-PAGE were electrically 

transferred to nitrocellulose (Schleicher and Schuell, Dassel, Germany) by the 

method of Towbin et al. (1979). Blots to be cut into strips were made from 

gels with large loading slots, with 5 x 105 cell equivalents of protein 

electrophoresed per cm of slot. Filters were washed in TBS (25 mM Tris.HCl, 

pH 8.1, 150 mM NaCl) for 10 minutes, then used or stored frozen at -20 °C. 

Blots were blocked in milk buffer (4% milk powder and 0.5% Tween 20 in 

TBS) for 30 minutes, then probed with the first antibody in milk buffer for 1-

2 hours. After washing three times in milk buffer for two minutes each wash, 

the blot was incubated in milk buffer for one hour with an appropriate 

antibody coupled to horse radish peroxidase to allow Enhanced Chemi­

Luminescence (ECL, Amersham) detection. The blot was washed three times 

for two minutes each wash, and once for 10 minutes in milk buffer, then 4 

times for 2 minutes each wash in TBS. ECL detection was performed 

according to the manufacturer" s instructions. 

Glycosylation Studies by enzyme digestion of immunoprecipitates. Enzyme 

digestions were completed while the antigen was attached to protein G beads 

after immunoprecipitation, and a final wash into phosphate buffer pH 7.0. For 

N-glycosidase F and 0-glycosidase digestion, 5 Jll 1% SDS/20m.M phosphate 

pH 7.0 was added to the final washed immunoprecipitates. After boiling for 5 

minutes, and cooling on ice for 2 minutes, 45Jll of 20m.M phosphate pH 7.0 

containing 0.5U of N-glycosidase F (Boehringer Mannheim) or 2.5mU O­

g1ycosidase (Boehringer Mannheim) was added to the immunoprecipitates. 

For neuraminidase digestion, the immunoprecipitate was mixed with 50Jll 

50m.M sodium acetate pH 5.5, 4m.M CaC12, 0.1mg/ml BSA and 5mU 

neuraminidase (Boehringer Mannheim). The enzyme digestions were 
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incubated at 37°C for 3 hours, then the supematant was analysed by SDS­

p AGE and westem blot. 

Antibody production and purification 

Cell ELISA. Target cells were harvested usmg PBS/5mM EDTA and 

resuspended at 2 x 106/ml in RPMI/10% FCS. 50jll of test antibody solutions 

were pipetted into wells of U form 96 well plates, and 50jll aliquots of cells 

were added as appropriate. The cell/antibody mix was incubated for 3 hours at 

37°C, then washed three times with 200jll aliquots of PBS. Bound primary 

antibody was detected with rat-anti-mouse antibody coupled to horse radish 

peroxidase, followed by ABTS [2, 2" azino-di-(3-ethyl-benzthiazolin­

sulphonate)] treatment (Harlow and Lane, 1988). 

Subtractive immunisation. Tumours were surgically removed and dissociated 

by physical force through a cell dissociation sieve. The tumour dissociate was 

applied to a 40jlM cell sieve (Falcon), and the isolated tumour cells washed 

three times in PBS. Tissue culture cells were harvested with PBS/5mM EDTA, 

then washed three times in PBS. Pre-bleeds were taken and male balbC/BL6 

F1 hybrid mice were injected intradermally with 2 x 106 cells (the tolerogen). 

After 24 and 48 hours, 200mg/kg cyclophosphamide was injected 

intraperitoneal (i.p.) into each mouse (King et al., 1988; Many et al., 1970; 

Prigozhiuna et al., 1980; Sensenbrenner et al., 1979; Williams et al., 1992) .. 

Three weeks later, the mice were similarly injected with tolerogen cells and 

cyclophosphamide. Ten days later, test bleeds were taken. Three weeks after 

the last injection with tolerogen cells, 2 x 106 immuogen cells were injected 

i.p.. Immunogen cells were injected twice more, with three week intervals 

between each injection. Ten days after the last immunisation, test bleeds were 

taken. The pre-bleeds were compared together with test-bleeds in cell ELISAs 

using tolerogen and immunogen cells as targets to identify mice in which the 

immune response to tolerogen cells was maximally destroyed and in which the 
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immune response to immunogen cells was maximally enhanced. These mice 

were selected for hybridoma production and were allowed to rest for 4 weeks 

before fusions were performed. 

Monoclonal antibodies. Murine hybridomas were made using the 30% PEG 

spinning method (Harlow and Lane, 1988). SP2/0 myeloma cells were fused to 

immune spieen cells from two mice immunised by subtractive immunisation 

and boosted 5 days before the fusion by injection with 2 x 106 immunogen 

cells i.p .. Hybridomas were screened by using tolerogen and immunogen cells 

as targets in cell ELISA assays. Hybridomas recognising only the immunogen 

cells were grown up into 1 Oml cultures and frozen in liquid nitrogen. Selected 

hybridomas were thawed, and cloned by limiting dilution (Harlow and Lane, 

1988) over several rounds until all the wells containing single colanies were 

positive for specific antibody production. The monoclonal antibodies were 

isotyped by ELISA using ISOStrip TM obtained from Boehringer Mannheim. 

Purification of immunoglobulins using Protein G. Supematant from 

hybridomas was collected and centrifuged at 4-5 K for 10 minutes to remove 

cellular debri. Antibodies were precipitated by the addition of ammonium 

sulphate to a final concentration of 50%. The solutionwas incubated overnight 

at 4°C with gentle stirring. The precipitate was pelleted by centrigugation at 5-

6 K for 15 minutes. The pellet was resuspended in 10-20ml 150mM NaCl, 

20mM phosphate pH 7.0 and dialysed for several hours against the same 

buffer. After dialysis, the protein solution was centrifuged at 10 K for 10 

minutes and the resulting supernatant added to 2ml of a 50% slurry of Protein 

G plus agarase (Dianova) for each 50ml of supematant. The mixture was 

incubated for 2 hours or over-night at 4°C with rotation. After incubation, the 

beads were centrifuged at 3 K for 10 minutes and the supematant discarded. 

The beads were then washed 4 times with 20mM phosphate pH 7.0, 150 mM 

N aCl. After the final wash, the beads were taken up in 1 Oml of wash buffer 

and transfered to an Econopak column and the excess fluid allowed to drain 
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off. The antibodies were eluted with lOOmM glycine pH 2.5 and ten 0.5ml 

fractions collected. Bach aliquot was neutralised by adding 50~1 1M Tris pH 

9.6. A further 8 fractions was collected using 0.5ml aliquots of lOOmM 

sodium bicarbonate pH 10.8. Bach aliquot was neutralised by the addition of 

87~11M sodium citrate pH 5.0. Protein concentration was estimated from the 

0.0.280 (Harlow and Lane, 1988), and the fractions containing significant 

amounts of antibodies were pooled and dialysed against PBS. The purified 

antibodies were stored in aliquots at -20°C. 

lmmunological methods 

Preparation of Protein G-Antibody affinity columns-direct coupling. 2 mg of 

antibodies in PBS were mixed with 1 ml of protein G beads by gentle rocking 

for 1 hour at room temperature. The beads were then washed twice with 10 

volumes of 0.2M sodium borate pH 9.0. The beads were then resuspended in 

10 volumes of 0.2M sodium borate pH 9.0 containing Dimethylpimelimidate 

(Pierce) at a final concentration of 20mM and mixed on a rocker for 30 min. 

The reaction was stopped by washing the beads once in 0.2M ethanolamine pH 

8.0. The beads were then incubated for 2 hours at room temperature in 0.2 M 

ethanolamine pH 8.0 with gentle mixing. After the final wash the beads were 

resuspended in PBS containing 0.01% merthiolate. To check the efficiency of 

coupling of the antibodies to the beads, 1 0~1 equivalents of beads were 

removed before and after the addition of dimethylpimelimidate and boiled in 

reducing sample buffer. The samples were run out on a 10% SDS-PAGB gel 

and stained with Coomassie blue. Good coupling was indicated by the presence 

of heavy-chain bands (55 KDa) in the "before" but not in the "after" lanes. 

Immunohistochemistry. Rats were subcutaneously injected with lAS, lOAS 

and ASpSV14 tumour celllines. After 3 to 4 weeks the animals were killed 

and the tumours removed. For paraffin sections the tumours were fixed in 4% 

paraformaldehyde and then embeded in paraffin wax. Sections (7~m) were de-
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waxed by two 5 minute incubations in Xylene and then rehydrated through 

reducing 100, 95, 90, 80, 70 and 50% concentrations of ethanol. After 

washing in PBS for 10 minutes, the sections were pre-incubated with normal 

goat serum (10% in PBS). For frozen sections, the tumours were removed, 

cut into 1cm3 cubes and frozen on dry ice in a pre-cast metal mould immersed 

in Freezing gel (Jung, Tissue Freezing medium). The sections were cut (7J..tm), 

fixed in ice-cold methanol (5 min) followed by ice-cold acetone (1 min), 

washed in PBS and pre-incubated with normal goat serum (10% in PBS). Both 

paraffin and frozen sections were then treated as follows. After washing 3 

times with PBS, sections were incubated for 1 hour with primary antibody (5-

10flg/ml, in PBS/10% FCS). Endogenous peroxidase activity was then blocked 

by incubating the sections in 0.3% H20 2 in methanol for 15 min. Secondary 

biotinylated antibody (anti-mouse F(ab")2, DAKO, Santa Barbara, CA) was 

subsequently added for 30 min, followed by horseradish-peroxidase coupled to 

biotin as a streptavidin-biotin-peroxidase-complex (DAKO) for another 30 

rnin. The immune complex was visualised colorimetrically by incubation with 

3,3-amino-9-ethyl carbazole (SIGMA) for 10 min. Colour development was 

then stopped in H20. Cell nuclei were counter-stained with hematoxylin and the 

sections mounted with glycerine-gelatin and viewed by microscopy. 

For immunofluorescence studies, adherent cells were grown on 8 weil 

chamber slides (Nunc) and suspension cultures were affixed to silane treated 

slides using a Cytospin centrifuge (Shandon Southem). In both cases, cells on 

slides were washed 3 times with PBS, fixed in 4% paraformaldehyde, then 

incubated for 30 minutes in PBS/10% FCS (FPBS). Antibody solution was 

then added in FPBS and incubation continued for 2 hours. The cells were 

washed 3 times with PBS, then incubated for 1 hour with Rhodamine­

conjugated affinipure goat anti-mouse lg (Jackson laboratories) diluted in 

FPBS. After 2 washes in PBS, the stained cells on the chamber slides were 

mounted. 
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Flow Cytometry. Cells were harvested with PBS/5mM EDTA and resuspended 

in PBS, 10% FCS. Primary antibodies were applied at 5 ~g/ml. After 

incubation for 30 min, the cells were washed with PBS and incubated for a 

further 30 min with fluorescently Iabelied secondary antibody. The cells were 

washed with PBS, then analyzed using a Becton-Dickinson FACStar Plus Flow 

Cytometer. For negative control samples, secondary reagent alone was 

routinely added, although no difference in staining was observed if nonspecific 

control antibodies were additionally used as primary antibodies in these 

controls. The data were analysed on a Hewlett Packard Consort 330 computer 

using Becton Diekinsou F ACStar Plus and L YSYS software. 

Spontaneaus metastasis assays. Male and female BDX rats 8-12 weeks old were 

given subcutaneous injections of 5 x 105 cells in PBS. Animals were regularly 

monitored until their tumours grew to the German legal Iimit or until they 

became moribund, at which time they were killed and an autopsy performed. 

In antibody therapy experiments, the tumour cells were injected into the rats 

together with 200 ~g/ml antibody. Thereafter the animals received 200 ~g/ml 

antibody subcutaneously at the site of the tumour cell injection twice weekly 

for 4 weeks. 

Proliferation assay. The effect of antibodies on the proliferation of tumour 

cells in vitro was assessed by 3H-thymidine incorporation. 1x 105 cells were 

pipetted into 96 flat-bottomed microtiter plates together with antibody as 

appropriate in a final volume of 1 00~1 RPMI/1 0% FCS and incubated for 2 

days at 37°C, then 3H-thymidine was added to 10 ~Ci/ml. After a further 12 

hours incubation, the cells were harvested onto glass fiber filters with a 

Skatron Corni Cell Harvester and 3H-thymidine uptake was assayed with a LKB 

Wallac liquid Scintillation Counter. 
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Shedding and secretion experiments 

Analysis of conditioned medium. Cells were grown to confluency. The 

medium was removed and the cells washed once with sterile PBS which was 

then replaced with 5ml RPMI/10% FCS and incubated for 24 hours. The 

medium was harvested and pooled for each cell type. Cells and debris were 

centrifuged out and the medium filtered through a 0.2J..Lm filter. The 

supematant was dialysed against water. A control of 10ml RPMI/10% FCS 

was also dialysed. In each case the dialysate was centrifuged and lyophilised in 

1ml aliquots and stored at -20°C. For examination of antigen expression, 

aliquots were boiled in either non-reducing or reducing sample buffer, and 

subjected to SDS-P AGE and western blotting. 

Analysis of shedding/secretion. Cells were harvested using PBS/5mM EDT A 

and washed 3 times in ice cold PBS. 5 x 105 cells were resuspended in 200 J..Ll 

RPMI/10% FCS containing either Nocodazole (1J..Lg/m), 1,10-phenanthroline 

(5mM), TLCK (N=-p-tosyl-L-lysine chloromethyl ketone; 200J..Lg/ml), 3,4-

dichloroisocoumarin (lOO!lM), EDTA (5mM) or 1-2 U phospholipase C. Cells 

were incubated at 37 °C for various times. Incubations were terminated by 

centrifugation at 4000 rpm in a mierefuge and the supematant removed and 

lyophilised as previously described. The cell pellet and lyophilised supematant 

were individually taken up in sample buffer and subjected to SDS-PAGE and 

westem blotting. In separate experiments, cells were treated in the same 

manner, but the cell pellet was resuspended in ice-cold PBS and FACs analysis 

was performed by the previously described procedure. 

Antigen purification 

Affinity purification. 10AS cells were grown to confluency in 14cm petri 

dishes, the medium removed and replaced with 5ml RPMI 10% FCS. The 

plates were incubated ovemight and the medium harvested. Dead cells were 
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centrifuged out and the medium filtered through a 0,2~m filter. The 

supemantaut was then extensively dialysed at 4°C against PBS. The dialysed 

mediawas subsequently processed for further purification or stored at -80°C. 

Antibodies crosslinked to Protein G (as described above) were incubated with 

the dialysed media ovemight at 4°C. The beads were washed 4 times with 10 

volumes of PBS. Elution of bound proteins was achieved with PBS containing 

1% SDS unless otherwise stated. For experiments using FPLC, elution was 

achieved with 50mM Tris, pH 9.0 containing 1 %SDS to allow effective 

removal of detergent from the solution. 

Eluate processing. Detergent was removed from column eluates following the 

instructions supplied with an Extracti-Gel® D Detergent Removing Gel 

purchased from PIERCE. After detergent removal the eluate was dialysed 

ovemight in the appropiate chromatography buffer. For Mono Q and S 

chromatography columns (Pharmacia) the dialysis and column binding buffers 

were 20mM Tris, pH 7.5 and 50mM Phosphate Buffer, pH 7 .0, respectively. 

Prior to FPLC, the eluate was incubated for at least 2 hours with protein G 

beads to remove any immunoglobulins that may have leached from the affinity 

column. 

FPLC purification of the 10-1 antigen. A Pharmacia FPLC chromatography 

system was utilised with Mono Q and S columns. Column equilibration was 

performed before purification with dummy runs of the binding and eluting 

buffers. The eluting buffers were 20mM Tris, 1M NaCl, pH 7.5 (for Mono Q) 

and 50mM Phosphate Buffer, 1M NaCl, pH 7.0 (for Mono S). Once UV 

absorbence of zero in the column flow through was achieved after 

equilibration, (measured by a Pharmacia Monitor UV-M at 280nm), 

chromatography was performed at a flow rate of 1mllmin. For purification, 

the sample was injected onto the column in the respective dialysis/binding 

buffer at 3 min and at 5 min the eluting buffer was applied to the column in the 

form of a linear gradient, with its concentration increasing from 0% to 100% 
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over 20 minutes. 1ml fractions/minute were collected which were analysed 

continuously for UV absorbence. Fractions corresponding to peaks of UV 

absorbing material on the printed chromatogram were further analysed. 

Detection of antigen. The chosen fractions were concentrated down to 80~1 by 

Amicon centrifugal concentrators and a small portion of the products loaded 

onto a 10% PAGE gel in non-reducing sample buffer. Western blot was 

performed with anti-antigen antibodies and secondary antibody alone to 

distinguish the antigen from any interfering immunoglobulins or other 

contaminants. The remaining purified antigen was loaded onto a 10% PAGE 

gel 30cm in length. The proteins were transferred to PVDF membrane by 

westem blot and the membrane was stained with coomassie blue according to 

the manufacture' s instructions to visualise the antigen. 

vii) N-terminal sequencing. Sampies for N-terminal sequencing were analysed 

at the Biotechnology Resource Laboratory, Protein Sequencing and Peptide 

Synthesis Facility, Medical University of South Carolina. They were analysed 

by Edman chemistry using a PE/ Applied Proeise 494 Sequenator (Edman and 

Begg, 1967). 

Nucleic acid methods 

RNA preparation and Northern blots. Tissue culture cells were harvested, 

washed in PBS, pelleted, then snap frozen. Polyadenylated RNA was prepared 

from snap frozen cells and tissues (Rahmsdorf et al., 1987). Northem blots 

using 1% agarose-formaldehyde gels and 5~g polyadenylated RNA were 

performedas previously described (Hofmann et al., 1998). Blots were probed 

with the rat a-casein probe at low stringency (42°C) and high stringency 

(65°C). After each probing, the blots were stripped in 0.1% SDS at 100°C, 

then exposed to film to ensure complete removal of the probe. To demonstrate 

equivalence of RNA loading the blots were probed with GAPDH. 

50 



Generation of rat a-casein DNA probe. 0.5Jlg of polyadenylated rat mammary 

. gland RNA was reverse transcribed using Superscript Reverse Transcriptase 

(Life technologies) and one tenth of the reaction used for PCR. A 855 bp 

probe representative of all sequences coding between the N- and C-terminal 

ends of rat-a-casein was amplified from the cDNA by RT-PCR (30 cycles: 1 

minute 94 °C; 1 minute 59 oc and 90 seconds 72 oc; a final 5 minute extension at 

72 oc was performed). The primers used in this reaction for the amplification 

have the following sequences: 

rat a-casein 62-86s: 5"-ATGAAACTTCTTATCCTCACCTGCC-3" 

rat <X-casein 893-917 as: 5 "-TCACCACACATTGGTGTTTTCAGC-3" 

The positions refer to the rat-a-casein sequence as published by Hobbs and 

Rosen, 1982. The PCR product was gel purified and used for Northern blot 

analysis. 
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RESULTS 

Subtractive immunisations using MTW9 tumour lines 

A series of rat mamary tumour cell lines ansmg out of a common 

primary tumour callerl MTW9 have been rleveloperl by Professor Untae Kim. 

These rliffer in their metastatic proclivity ( Kim anrl Depowski, 1975; Kim, U., 

1986; Rurllanrl et al., 1989). In orrler to irlentify metastasis-specific antigens 

expresserl in these tumours, I performed subractive immunisations using total 

tumour material as the tolerogen anrl immunogen antigens, as not all of the 

MTW9 tumour lines harl been establisherl in tissue culture ( rluring the course 

of the subtraction the MT-W9B cell line was establisherl). In subtractive 

immunisation, B cells which proliferate in reponse to immunisation with one 

cell type (the tolerogen) are killed by cyclophosphamide. Subsequent 

immunisation with the other cell type (the immunogen) results in a humoral 

response rlirecterl against antigens founrl only on the immunogen. 

Immunisations of tumour material from the rat mammary tumour cell lines of 

MT -450 (immunogen) minus MT-W9B ( tolerogen) were performerl. 

Prebleerls anrl test bleerls were taken after the tolerisation anrl immunisation 

steps. Cell ELISA with tumour cells isolaterl from MT-W9B anrl MT450 

tumours anrl these bleerls was performerl to rletermine which mice harl 

rleveloperl an enhancerl immune reactivity to the immunogen. Five mice 

(numbers 3, 6, 7, 8 anrl 9) exhibiterl such an enhancerl immune response (Table 

6). 

Fusions were marle from spleens of subtractively immuniserl mice anrl 

hybrirlomas were selecterl by the preferential binrling of antiborlies they 

prorlucerl to the immunogen in cell ELISA assays. In total, sixty hybrirlomas 

were testerl anrl eight selecterl, of which three specifically recogniserl tumour 

cells isolaterl from MT-W9B tumours anrl five from MT450 tumours. The 

finrling that antiborlies from three hybrirlomas reacterl only with the tolerogen 

suggesterl that the subtractive immunisation was not optimal. Nevertheless, 
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Table 6. Differential immune reactivity of tolerogen 
suppressed mice after inoculation of the immunogen. 

Mouse MT450ELISA MTW9BELISA ELISA-ratio 

number OOA405 OOA4o5 (MT450/MTW9B) 

3 3.127 0.504 6.20 

6 1.606 0.493 3.26 

7 0.458 0.232 1.97 

8 0.889 0.247 3.60 

9 0.684 0.397 1.72 

10 0.648 0.606 1.07 

Mice were injected with tolerogen, cyclophosphamide and immunogen 
as described in Methods. Serum prebleeds and test bleeds were diluted 
1:100, 1:200, 1:400 and 1:800 with PBS and tested in whole cell 
ELISA with lAS and lOAS cells. ELISA values here represent 00405 
values at 1:800 dilution from single experiments corrected by 
subtracting 00 resulting from binding of preimmune sera. Ratio of the 
00405 values for MT450/MTW9B was calculated. 10 mice were used 
for each subtractive immunisation and those mice that survived 
cyclophosphamide treatment are described here. 

tissue culture supematants from the eight hybridomas were screened for 

reactivity with MT-W9B and MT450 tumour cell lines by westem blot, 

immunoprecipitation, immunofluorescence, and immunohistochemistry of 

sections from paraffin embedded MT-W9B and MT-450 tumours. No 

reactivity was observed against either tumour cell line by antibodies secreted 

by the hybridomas in westem blots or immunoprecipitations. In 

immunofluorescence studies some of the eight antibodies, despite being initially 

chosen by cell ELISA to recognise only tumour cells isolated from one 

tumour, displayed non-differential reactivity by recognising the opposing 

tumour cell line, or both tumour cell lines, or exhibited no reactivity at all. 

Immunohistochemistry of sections from paraffin embedded MT-W9B and MT-

450 tumours showed that antibodies specific for the immunogen recognised 

stromal regions of the tumour sections rather than tumour cells. When 

sections of tumours from other rat models of metastatic cancer were 

immunostained, for example the metastasising mammary carcinoma SMT-2A 

(Kim, 1986) and non-metastatic mammary carcinoma NM-081 (Ghosh et al., 
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1983), staining was also observed in the stroma of both tumour types, 

demonstrating that epitopes recognised by these antibodies were not restricted 

to metastasising tumours. 

The injection of tumour material consists of tumour cells, immune cells, 

endothelial cells, stromal cells and extracellular matrix components, and this 

complexity perhaps decreases the probability of obtaining an enhanced immune 

response against metastasis-specific antigens. To overcome this problem, I 

investigated whether tissue culture cells established at this time from the non­

metastasizing MT-W9B cell (Jonathan Sleeman, unpublished results) could be 

used as a non-metastatic partner for MT450 cells in subtractive immunisation. 

Compared to the original tumour Iine, tumours derived from the W9B tissue 

cultured cell lines exhibited different morphology in paraffin sections, with 

marked cellularity, anaplasia, aneuploidy and giant cells. I checked the 

metastatic properties of this cellline to ensure that the cells were suitable non­

metastatic candidates for use in a subtractive immunisation tagether with 

metastatic MT -450 cells. Syngenic spontaneaus metastasis assays with various 

clones of the MT-W9B cell Iines were performed (data not shown). From 

these experiments it became evident that the MT-W9B cells established in tissue 

culture had metastatic potential. As such, to use this cell Iine in a subtraction 

immunisation tagether with the metastasising MT -450 cells would be unlikely 

to yield antibodies against metastasis-associated antigens. 
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Subtractive immunisation using BSp73ASML tumour lines 

To increase the chances of attaining an efficient subtraction, I decided to 

find another metastasis model with tissue culture cell lines having better 

distinguished metastasising and non-metastasizing properties. The BSp73AS 

pancreatic carcinoma system consists of a number of cell lines with different 

non-metastasising and metastasising properties (Matzku et al., 1983). In 

preliminary experiments, two clones from this system called lAS and lOAS 

had been identified as having non-metastasising, and metastasising properties, 

respectively (Jonathan Sleeman, unpublished observation). I performed 

syngenic spontaneaus metastasis assays with these cells and found that the lAS 

cells did not metastasise, while the lOAS cells formed metastases in the lymph 

nodes and/or lungs of BDX rats (Table 7). These results demonstrated that 

these two related cell lines have clear and distinguishable metastasising 

properties, suggesting that they would be suitable candidates for a subtractive 

immunisation. 

Table 7. Metastatic properties of lOAS and lAS celllines. 

Cellline Growth in Rat 

lOAS 8/8 
lAS 8/8 

Lymphnode 

7/8 
0/8 

Lung 

118 
0/8 

BDX rats (for syngenic spontaneous metastasis assays) were 
injected subcutaneously with 5 x 105 tumour cells in PB S. 
Animals were regularly monitored until their tumours grew to the 
German legal limit or they became moribund, at which time they 
were killed and an autopsy performed. 

Mice were subtractively immunised with non-metastatic lAS cells as the 

tolerogen followed by the metastatic 1 OAS cells as the immunogen. Prebleeds 

and test bleeds were taken after the tolerisation and immunisation steps. To 

determine which mice had developed differential immune reactivity towards 

the immunogen, cell ELISA was performed with the prebleeds and test bleeds 

using lAS and 1 OAS cells as targets. Mouse 9 had the highest 1 OAS/lAS 

ELISA ratio of 2.36, indicating that cyclophosphamide had suppressed the 
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immune response to non-metastasising lAS cells and permitted an enhanced 

differential response to metastasising lOAS cells (Table 8). Mouse 5 had a 

slightly elevated immune response and was also chosen to increase the number 

of total splenocytes in the fusion reaction and thus increase the efficiency of 

generating hybridomas. 

Hybridomas were produced by fusing immune splenocytes from mouse 5 

and 9 with SP2/0 mouse myeloma cells, and the supematants were tested by 

cell ELISA to see if they contained antibodies which bound to lAS and lOAS 

cells. It was observed that none of the hybridomas recognised lAS cells 

(tolerogen) alone, demonstrating the effectiveness of the subtractive 

immunisation. In total, 39 hybridomas were tested and four of them 3A7, 4F3, 

3El2 and 3Fl2 secreted antibodies which recognised only the lOAS metastatic 

cells (Fig. 1). Thesehybridomas were used for further analyses. 

Table 8. Differential immune reactivity of tolerogen 
suppressed mice after inoculation of immunogen cells. 

Mouse lOASELISA lASELISA ELISA ratio 

number OD A4os OD A4os (lOAS/lAS) 

2 2.947 2.935 1.00 

3 2.493 2.778 0.90 

4 2.664 3.017 0.88 

5 2.951 2.872 1.03 

8 2.733 3.332 0.82 

9 2.298 0.975 2.36 

Mice were injected with tolerogen, cyclophosphamide and immunogen 
as described in methods. Serum prebleeds and test bleeds were diluted 
1:100, 1:200, 1:400 and 1:800 with PBS and tested in whole cell 
ELISA with lAS and lOAS cells. ELISA values here represent OD 405 
values at 1:800 dilution from single experiments corrected by 
subtracting OD resulting from binding of preimmune sera. Ratio of the 
OD405 values for lOAS/lAS was calculated. 10 mice were used for 
each subtractive immunisation and those mice that survived 
cyclophosphamide treatment are described here. 
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1AS Cells 10AS Cells 

Figure 1. ELISA plate of final 
hybridorna supernatants frorn subtractive 
irnrnunisation. Hybridoma supernatants 
in wells A 7, C7, D7 and E7 represent 
hybridornas 3A7, 3El2, 3Fl2 and 4F3 
respectively, and exclusively recognised 
1 OAS cells in cornparison to lAS cells in 
wells Al, Cl, Dl and El. 

Characterisation of the lOAS-specific antiborlies 

The monoclonal antiboilies 3A7, 4F3, 3E12 and 3F12 bind to lOAS cells, 

but not lAS cells, suggesting that the antigen they bind to may be specific for 

metastasising cells. To characterise the antigens recognised by the antibodies 

present in the hybridoma supernatants, I checked the reactivity of these 

antibodies in various assays. lOAS and lAS whole cell lysates were 

electrophoresed in reducing SDS-PAGE gels and probed by western blot with 

supernatants from the four hybridomas. The antibodies produced by the 

hybridomas all recognised a group of antigens migrating at 65-80 kDa which 

are present only in lOAS cells (Fig. 2). FACS analysis showed that the Mabs 

produced by these hybridomas bound strongly to antigens present on 1 OAS 

cells, whereas only slight binding was observed with lAS cells (Fig. 3). Cell 

staining studies of lOAS and lAS cells revealed that each hybridoma secreted 

antibodies which reacted strongly and exclusively with the metastatic lOAS 

cells (Fig. 4). On the basis of their differential reactivity for antigens present 

on 1 OAS cells these hybridomas were chosen for further studies. They were 

put into mass culture and the secreted antibodies purified by affinity binding to 

protein G. The purified antibodies 3A 7 and 3El2 were immunotyped as IgG1 

A, while 4F3 and 3Fl2 were found to have IgG3 K subclass (Fig. 5). 
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10AS 1AS 10AS 1AS 10AS 1AS 10AS 1AS 

120 

85 

47 

10AS 

10AS 

3A7 Mab 4F3 Mab 3E12 Mab 3F12 Mab 

Figure 2. Western blot analysis of immunodeterminants present on lOAS 
and lAS cells. Lysates from 1 x 105 cells were loaded under reducing 
conditions into each lane of an 8% PAGE SOS gel. The blots were 
probed with supernatants from hybridomas 3A7, 4F3, 3E12 and 3Fl2, 
and showed differential antigen expression by lOAS cells. 

A B 
10AS 

1AS + 3E12 1AS+3A7 
Figure 3. FACS analysis of 
differential surface expression 
of immunodeterminants present 
on lOAS cells recognised by 
supernatants from 3A7, 4F3, 
3E12 and 3F12 hybridomas. 
Plots of fluorescence intensity 
(absicssa, log scale) against cell 
number (ordinate , linear scale) 

c 10AS D are shown. 

' 1AS + 3F12 
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Figure 4. Phase cantrast (A and C) and immunofluorescence (B and D) images of 
lOAS (A and B) and lAS cells (C and D) stained with the 3A7 antibody. Cells were 
cultured in 2% FCS RPMI and treated with PFA and 1% NP40 prior to staining. Only 
lOAS cell stain with the 3A 7 antibody 
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Figure S. Isotypes of 
monoclonal antihoclies 3E12, 
3A7, 4F3 and 3F12. An 
ISOStrip™ monoclonal anti-body 
isotype kit from Boehringer 
Mannheim was used according to 
the manufacturer's instructions. 
Isotypes tested were IgG,, IgG2a, 
IgG2b, IgG3, IgM and kappa and 
lamba light chains. 3E12 and 
3A7 were isotyped as IgG, A, and 
4F3 and 3F12 as IgG3 K 
subclasses. 



The monoclonal antibodies 3A 7, 4F3, 3E12 and 3F12 bind to a 

common antigen 

In initial experiments to test the reactivity of the hybridoma supematants 

on western blots, I detected a group of antigens with varied expression over a 

65-80 KDa range (Fig. 1). I repeated these experiments and probed the 

westem blots with the purified antibodies. I observed that there was little 

difference in the recognition by each antibody of antigens expressed by lOAS 

cells migrating at 65-70 kDa, implying that the four antibodies bind the same 

antigen (Fig. 6A, B, C and D). To confirm this, I peformed 

immunoprecipitations with each of the Mabs, loaded the products on a SDS 

PAGE gel, blotted and probed for antigen expression with each monoclonal 

antibody. I observed that each Mab recognised the same migrating protein, 

indicating that they bind to the same antigen (data not shown). It must also be 

said that each of the four antibodies had different affinities in 

immunoprecipitations, suggesting that they recognise different epitopes and are 

not alike. Hereafter, these antibodies are referred to as the 10-1 antibodies and 

the antigen to which they bind is called the 10-1 antigen. 

In initial experiments with hybridoma supematants no 

immunodeterminants were recognised in lAS celllysates. With purified 10-1 

antibodies I detected minor components not seen with hybridoma supematants 

(Fig. 6E) consistent with the slight staining of lAS cells observed in FACs 

staining. These minor protein components migrate as a doublet of 65-75 kDa 

and represent only a small component of the total 10-1 antigen in lOAS cells. 

This doublet was recognised by all four 10-1 antibodies (data not shown). 
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Figure 6A to D. 10-1 antibodies recognise the sarne antigen. 10AS 
lysates were separated on 6% SDS PAGE gels, blotted and probed with 
the indicated antibody. E. Recognition of a 65-75 kDa doublet by 10-1 
antibodies in lAS cell Iysates. Lysates were separated on a 10% SDS 
PAGE gel, blotted and probed with antibody 3A7. 

Localisation of the 10-1 antigen on 10AS cells 

Initial experiments showed that the 10-1 antigen was expressed by 

metastatic 1 OAS cells. To get some clues as to where this antigen functions in 

cells, confocal microscopy was perfomed (Open lab Scientific Imaging System) 

to visualise where the 10-1 antigen is localised on I OAS cells. Examination of 

antibody staining with this technique suggested two interesting features, namely 

the staining localised to what appeared to be filopodia and round structures on 

the cell membrane (Fig. 7). Filopodia are a common feature of animal cells, 

especially when they are moving or changing shape. For example they are 

utilised by metastatic cells to invade other tissue sites and travel throughout the 

ECM. The round structures are reminiscent of secretory vesicles, suggesting 

they may be sites of 10-1 release at cell membrane and thus that the 10-1 

antigen may be secreted. Metastatic tumour cells release a plethora of 

molecules that facilitate, for example, the breakdown of ECM components. 

These observations preliminarily suggested but did not prove that the 10-1 

antigen may be involved in facilitating cell migration and/or invasion. 
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Figure 7. Confoc:al 
immunotluorescence images 
of lOAS cclls staincd with 
Mab 3A 7. Cclls wcrc 
cultured in 2% FCS RPMI 
and treated with PFA and l% 
NP40 prior to staining. A . 
Basolatcral vicw. Staining is 
localiscd to filopodia B . 
Medial view. Staining is 
localised to round structures 
which is suggestive of 
sccrctory vcsiclcs. C . 
Apical view. Localiscd 
staining to filopodia 



Biochemical characterisation of the 10-1 antigen 

To begin to elucidate a function for the I 0-1 antigen on IOAS cells I 

began to further biochemically characterise the antigen. In different 

experiments with apparently similarly prepared I OAS cell lysates I sometimes 

observed different migration patterns of the 10-1 antigen. For example, 

Figures 8A, 8B and 8C show the migration of the I 0-1 antigen from three 

separate cell lysate preparations. Each westem blot was probed with the 

antibody 4F3, and protein bands were observed migrating at 60-70 kDa, 50-58 

kDa and 40-80 kDa, respectively. The same differences in antigen migration 

were visualised by each of the 10-1 antiborlies (data not shown). To determine 

exactly how many 10-1 antigen isoforms are present in 1 OAS cells, cell lysates 

were separated on a 5-20% SDS PAGE gel and the western blot probed with 

the 3A 7 antibody. It was observed that a group of proteins which migrated 

over a wide range of 28-80 kDa were recognised by the antibody (Fig. 9). 

One of several explanations for thesemultiple forms could be that the antigen 

is subjected to some form of proteolytic processing. Events of this nature are 

often associated with the formation of secretory vesicles (Neurath, 1991). 

These observations combined with evidence from cell staining studies 

suggesting the 10-1 antigen may be present in secretory vesicles on the surface 

A B c 
10AS 10AS 10AS Figure 8A to C. 10-1 

Antigen is expressed 
120 

120 
in different forms. In 

120 a series of independent 

84 84 experiments 1 OAS cell 
lysates were separated 

84 on 6% SDS PAGE 
gels, blotted and 
probed with antibody 
4F3. 

47 47 47 

4F3 4F3 3 
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of 10AS cells, adds weight to the hypothesis that an active secretory system 

could be responsible for transporting the 10-1 antigen to and releasing it from 

the cell surface. The aspect of 10-1 antigen secretion will be considered in 

later sections. 

10AS 

-

82 

48 
r- 33 

28 

Figure 9. Multiplicity of 
10-1 antigen forms. lOAS 
lysate was separated on a 5-
20% SDS PAGE gel, blotted 
and probed with antibody 
3A7. 

To determine whether disulphide-bridges or glycosylation contribute to 

the different protein isoforms of 10-1 antigen, lOAS cells were treated with 

dithiothreitol (DTT), tunicamycin, 0-glycosidase and neuraminidase. DTT 

breaks the disulphide bonds that hold the protein subunits of multi-subunit 

molecules together. It had no effect on the migration of the 10-1 antigen from 

lOAS cell lysates and supematants on SDS PAGE gels, indicating that the 

antigen is composed of single polypeptide chains (Figs. lOB and lOC). 

Tunicamycin inhibits N-glycosylation by blocking the first step in the 

biosynthesis of the lipid-linked oligosaccharide precusor (the synthesis of 

dolichol pyrophosphate N-acetylglucosamine). Treatment of lOAS cells with 

tunicamycin did not alter the migration pattern of the 10-1 antigen, 

demonstrating that the antigen is not modified by N-linked sugars (Fig. 10). 

Furthermore, experiments with 0-glycosidase and neuraminidase did not 

provide any evidence of other sugar modifications on the 10-1 antigen (data 

not shown). These data indicate that the multiple forms of the 10-1 antigen do 

not represent disulphide-linked multimers or differentially glycosylated 

products. 
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Figure lOA. The antigen is not modified by N-linked sugars. Lysates of lOAS cells 
cultivated in the presence (+Tun) or absence (-Tun) of tunicamycin, separated on a 
10% SDS PAGE gel, blotted, and probed with Mab 3A7. Band C. The 10-1 antigen 
is composed of a single polypeptide chain. Supernatants (S/N) from lOAS cells 
(lOAS) grown in 10% FCS/RPMI, and controls of RPMI and 10% FCS/RPMI, were 
dialysed against water and lyophilised. 5J..Ll equivalents were loaded into each lane of a 
reducing (Fig. lOB) or non-reducing (Fig. lOC) 8% SDS PAGE gel, electrophoresed, 
blotted and probed with Mab 3A 7. 

The 10-1 antigen is down-regulated in vivo 

The 10-1 antiborlies were produced on the basis of their ability to bind to 

a metastasising but not to a non-metastasising pancreatic carcinoma cell line. 

In order to determine whether differential expression is exhibted in vivo, I 

performed immunohistochemistry using 1 OAS primary tumours, 1 OAS lymph 

nodes containing metastatic 1 OAS cells, and lAS primary tumours. 

I initially attempted to stain paraffin sections with the 10-1 antibodies. 

The best observed staining was a possible weak signal in the tumour stroma 
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regions but this was associated with an elevated background staining. To attain 

cleaner staining, I altered the standard procedure by using more effective 

blocking agents, such as 1% immunoglobulin free BSA and CAS BLOCK™ 

(ZYMED). I also reduced endogenous peroxidase activity by pretreating the 

sections with 0.1% phenylhydrazine or stronger concentrations of hydrogen 

peroxide, and blocked endogenous biotin activity (Biotin Blocking System, 

DAKO). A high background with these method alterations persisted. I 

therefore changed the detection system to alkaline phosphatase (DAKO AP AAP 

KIT™) and encountered similar background problems. I thus again changed 

the detection system to ß-galactosidase and encountered very weak positive 

control staining by the Mab 5G8 for CD44 in both 1 OAS and lAS sections 

(which was strong in the other methods), but obtained no staining by the 10-1 

antibodies. The poor control staining made this detection system inappropriate 

for further histochemical investigation. These methodology problems may 

suggest that the 10-1 antibodies do not work on paraffin sections. 

Altematively, 10-1 antigen expresion in vitro may be a tissue culture 

phenomenon andin vivo 10-1 antigen expression is perhaps down regulated. 

The 10-1 antigen may also be actively released from the cells in vivo as 

suggested by the confocal studies and therefore not be detectable as it is rapidly 

cleared from the tumours. I investigated these issues further. 

To determine whether the 10-1 antibodies do not work on paraffin 

sections, I performed histochemistry using frozen sections. Similar problems 

of elevated background in peroxidase and alkaHne phosphatase procedures and 

poor control staining in the ß-galactosidase method were encounted. I tried to 

overcome these inconsistencies by using the above described method variations, 

however this proved to be unsuccessful. 

Finding that histochemistry optimization was difficult and knowing that 

the 10-1 antibodies worked weil on westem blots, I checked for 10-1 antigen 

expression in westem blots using lysates of 1 OAS tumour material, 

metastasising lymph nodes, and in vivo passaged tumour cells in tissue culture 

from the primary tumour and lymph nodes with metastases (Fig. 11). lt was 
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observed in vivo that the 10-1 antigen was down-regulated in tumours and 

metastasising lymph nodes. The tumours and lymph nodes were removed, 

returned to tissue culture and checked for 10-1 antigen expression. I found 

that in comparison to long-term tissue culture of 10AS cells, 10-1 antigen 

expression in freshly repassaged 1 OAS tumour cells was down regulated. lt 

must also be said that the 10-1 antigen present in the 1 OAS tumour, 1 OAS 

lymph node and passaged tumour cells, migrated differently as a single band of 

60-65 kDa compared to 1 OAS cell lysate, suggesting that there is a different 

form of 10-1 antigen in vivo. These results argue that 10-1 antigen expression 

and is down regulated in vivo as compared to in vitro expression. This could 

at least partly explain for the poor 10-1 antibody staining on paraffin and 

frozen sections. 

A B C D E F 

120 

85 

47 

Figure 11. Antigen expression is down 
regulated in vivo. Western blot of 10-1 antigen 
detection in (A) lxl05 lOAS cells, (B) 200Jlg 
lOAS tumour tissue, (C) 200Jlg lOAS lymph 
node tissue, (D) 200Jlg lAS tumour tissue, (E) 
lxl05 lOAS passaged tumour cells, and (F) 
lxl05 lOAS passaged lymph node cells (equal 
loading was checked by staining the bottom 
portion of the gel with Coomassie (data not 
shown). Electrophoresis was performed on a 
6% SDS PAGE gel under reducing conditions 
and the blot probed with Mab 3A 7. 

10-1 antigen expression is regulated by growth conditions 

Cells in tumours experience different growth conditions as compared to 

those grown in tissue culture. Tissue cu1ture medium contains foetal calf 

serum (FCS), so there is a plentiful supply of growth factors and nutrients. In 

a tumour, the supp1y of nutrients is limited by a restricted vascular system. To 

investigate whether this would exp1ain why the 10-1 antigen is down-regulated 

in vivo I replicated restrictive growth conditions in vitro by culturing 10AS 

cells in medium containing 1ower FCS concentrations. Cell lysates were 
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prepared from these cells, subjected to SDS-PAGE and western b1ot, and 

probed with the Mab 3A 7. Surprising1y in 1ow serum (0-2% FCS/RPMI) the 

cells exhibited high 10-1 antigen expression and in high serum ( 10% 

FCS/RPMI) comparative1y litt1e 10-1 antigen expression was seen (Fig. 12). 

Therefore down-regu1ation of the 10-1 antigen in the tumour is not due to 

poor nutrient conditions. This result, combined with the weak in vivo 

expression demonstrated by western b1ot, cou1d suggest that growth conditions 

regu1ate expression of the 10-1 antigen. A1ternative1y growth conditions cou1d 

determine whether the 10-1 antigen remains in the cell or is shed or secreted. 

%FCS in medium 
0 2 4 6 8 10 

The 10-1 Antigen is secreted 

Figure 12. Antigen expression 
120 in vitro is regulated by growth 

conditions. Western blot of 
lOAS cells grown to 80-90% 

86 confluency for 48 hours in 0-
10% FCS/RPMI. Lysates from 
1 x 105 cells were loaded in each 
lane of a 6% gel, electrophoresed, 
blotted and probed with Mab 
3A7. 

47 

Protein shedding can occur by enzymatic cleavage of the protein 

backhone or g1ycosy1phosphatidylinosito1 (GPI) linkages. I investigated 

whether or not re1ease of the 10-1 antigen from 1 OAS cells was due to these 

processes. I found that chemica1 inhibition of enzymatic cleavage or the 

addition of phospholipase C to break GPI linkages had no effect on 10-1 

antigen retention or re1ease (data not shown), suggesting that the 10-1 antigen 

is not shed from 1 OAS cells. 

Secretion of proteins can occur immediate1y after synthesis and 

packaging of proteins into secretory vesicles (constitutive exocytosis) or, 
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following variable periods of storage in secretory vesicles or granules, in 

response to cell activation (regulated exocytosis; Burgess and Kelly, 1987). 

Several pieces of experimental data presented so far, such as the confocal 

study, the observation of multiple forms of the 10-1 antigen and the effect of 

FCS concentration suggested that the 10-1 antigen may be secreted. To 

investigate this point, I performed the same experiment as shown in Figure 12 

in which cells were grown in different FCS concentrations and in addition 

collected the conditioned media. After 48 hours the cells in 0-2% FCS/RPMI 

expressed a high Ievel of the 1 0-1 antigen, while cells in 1 0% FCS/RPMI 

reduced expression was observed ( data not shown), confirming the previous 

result. The cell supernatant in comparison, showed low Ievels of 10-1 antigen 

expresswn in 0-2% FCS/RPMI, and high Ievels of 10-1 antigen expression in 
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Figure 13A and B. 10-1 antigen secretion is regulated by growth conditions. 
Supematants from lOAS cells grown in 0-10% FCS/RPMI, and controls of 
RPMI and 10% FCS/RPMI, were dialysed against water and lyophilised. 5J..Ll 
equivalents were loaded into each lane of a reducing (Fig. 12A) or non­
reducing (Fig. 12B) SDS PAGE 8% gel, electrophoresed, blotted and probed 
with Mab 3A7. 
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10% FCS/RPMI (Fig. 13). These data suggest that in restrictive growth 

conditions the 10-1 antigen remains surface bound or intracellular and in more 

optimal conditions the 10-1 antigen is secreted by some active process. 

There are also no differences in the molecular weight of the 10-1 antigen 

in cell lysates and media supematant, adding weight to the argument that an 

active secretory process for 10-1 antigen release is in play (Fig. 13). If 

enzymatic cleavage was responsible for releasing the 10-1 antigen one would 

expect a smaller form to be present in the media supematant. 

The 10-1 antigen is located in the cytoplasm and near the cell 

membrane. 

To confirm that the 10-1 antigen is indeed present in the cell membrane 

and cytoplasm, differential detergent experiments were performed. I used the 

detergents Tween 20, NP40 and SDS which have particular solubilizing 

properties for proteins present in cell membranes (Neugebauer, 1994). Tween 

20, a non-ionic detergent, is the mildest of these detergents and its action is to 

remove phospholipids from the cell membrane and solubilise membrane bound 

proteins. NP40 is a non-ionic triton detergent which solubilises protein present 

in the cell membrane and cytoplasm. SDS, a strong anionic detergent, readily 

solubilises nearly all proteins, and breaks down the nuclear membrane. Cell 

lysates were made with each detergent and incubated on ice for various times 

to observe if greater solubilisation or degradation of the 10-1 antigen occurred 

over time. Lysates were subjected to SDS PAGE and westem blot and probed 

with Mab 3A7 (Fig 14A and B). After Tween 20 solubilisation, lysates 

exhibited two 10-1 antigen bands migrating at 45 and 60 kDa. NP40 treatment 

solubilised much more antigen than Tween 20 indicating that the majority of 

the 10-1 antigen (some 90% ), is present in the cytoplasm, whereas only about 

10% of the 10-1 antigen is present at or near the cell membrane, as indicated 

by Tween 20 treatment. SDS detergent treatment visualised total 10-1 cellular 

71 



A 

B 

1%NP40 
Time (hours) 
0 1 2 4 6 

1% Tween 20 
Time (hours) 

0 1 2 4 6 10AS 

~---------------------------------.77 

2%SDS 
Time (hours) 

0 1 2 4 6 

0.2% SOS 
Time (hours) 

0 1 2 4 6 

",. 

• 48 

a 34 

10AS 

Figure 14A and B. Membrane association of 10-1 antigen. Cells were 
incubated with the respective detergent on ice for the indicated time. The 
resulting lysates were loaded onto 10% SDS PAGE gels, blotted and 
probed with antibody 3A7. Control of lOAS cells lysed in non-reducing 
sample buffer is present in the far right lane of each figure. 

antigen whose molecular weight ranged from 30-60 kDa. There are no 

differences between the amount of I 0-1 antigen solubilised by NP40 or SDS, 

which indicates that the 10-1 antigen is present in the cytoplasm and cell 

membrane and not in the cell nucleus. 

To visualise any changes in localisation of the 10-1 antigen in reponse to 

growth conditions, cell staining experiments were performed. Cells were 

grown in either 2% FCS/RPMI or 10% FCS/RPMI, and subjected to fixation 

alone to observe membrane-associated 10-1 antigen, or to fixation followed by 
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permeabilisation with 1% NP40 to visualise intemalised 10-1 antigen (Fig. 15). 

In experiments with fixation alone, cells grown in reduced serum had more 10-

1 antigen localised to the cell membrane and intracellular compartments than 

cells grown in non-restrictive growth conditions, demonstrating that factors 

within the FCS have an effect on 10-1 antigen localisation and secretion. 

These results support the earlier microscopy data that the 10-1 antigen is 

localised to vesicle-like structures and is consistent with the biochemical 

evidence of its intracellular localisation. Furthermore, it also suggests that 

changes in growth conditions can instigate the release of the 10-1 antigen by 

some mechanism. As such, if tumours predominantly secrete the 10-1 antigen, 

little 10-1 antigen may be present in histological sections to be stained by the 

10-1 antibodies. 
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Figure 15. Differences in antigen localisation in response to growth conditions. 
Cells were grown in 2% or 10% FCS RPMI and treated with PFA alone, or PFA 
plus 1% NP40 and stained with antibody 3A 7. Cells grown in 2% FCS RPMI have 
more antigen Iocalised on their cell membranes and in thelr cytoplasm as 
compared to those grown in 10% FCS RPMI. 
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10-1 antigen expression in other members of the BSp73AS family 

The BSp73 pancreatic carcinoma cell system consists of clones with 

different metastatic potentials. OAS, 3AS, 7 AS, lOAS and ASML have all been 

observed to metastasize, while lAS is non-metastatic (Sleeman, unpublished 

Observations). I checked this cell family for a correlation between 10-1 

antigen expression and release, and their metastatic potential. I found that the 

10-1 antibodies all recognised the minor doublet of proteins migrating at 65-7 5 

kDa in lysates from OAS, 3AS and 7AS celllines, which had·previously been 

observed in lAS cells (Fig. 16A). However, the major 10-1 antigen forms 

expressed in lOAS cells were not observed in lysates from OAS, 3AS or 7AS 

cells. The binding of the 10-1 antibodies to the 65-75 kDa doublet was not due 

to cross-reactivity from the secondary-HRP-labeled antibody with proteins in 

lAS celllysates (Fig. 16B). 

These results demoostrate that the 10-1 antigen is upregulated and 

present in a variety of different forms in lOAS cells (Fig. 8), whereas in the 

other BSp73AS family members only a minor doublet is weakly expressed. 

Furthermore, upregulated expression of the 10-1 antigen is not obligatory for 

the metastatic properties of BSp73 family members. 

The 10-1 antigen is expressed by other rat carcinomas 

The 10-1 antigen was identified using antibodies made by subtractive 

immunisation to identify differences between metastasising (lOAS) and non­

metastasising (lAS) cells. To determine to what extent expression of the 10-1 

antigen is correlated with metastasis, rat tumour cell lines with different 

metastatic potentials were tested for antigen expression by westem blot. I 

cultivated these celllines in 2% FCS/RPMI and 10% FCS/RPMI to see if there 

was a similar regulation of antigen expression by nutrient conditions in vivo. 

It was observed that there was no strict correlation of antigen expression with 

metastatic potential. For example, non-metastasising CREF and NM081 cells 
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Figure 16A. Western blots of antigen expression from BSp73ASML 
pancreatic carcinoma cell clones. The indicated cell line was cultivated in 
2% or 10% FCS/RP:MI, cells lysed, 1 x 105 cell equivalents loaded on a 
10% SDS PAGE gel, blotted and probed with Mab 3A7. B. Checking 
cross-reactivity of secondary-HRP-labeled antibody on 10AS and lAS 
cells. 10AS and lAS cells were cultivated in 2% or 10% FCS/RPMI, cells 
lysed, 1 x 105 cell equivalents loaded on a 10% SDS PAGE gel, blotted 
and probed with Mab 3A 7 and the secondary antibody alone. 
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expressed 10-1 antigen, while metastasising MTLN3 and MTLy cells did not, 

suggesting that 10-1 antigen is not ob Iigatory for tumour growth and metastasis 

in rat pancreatic, mammary or prostate carcinoma cells (Table 9; Figs. 17 A, B 

and C). 

The 10-1 antigen migrated differently in all celllines examined. The 10-

1 antigen in 1 OAS cells is expressed as a number of bands migrating between 

34-70 kDa, whereas in the celllines tested a single broad band or duplet as in 

MTC, MatLyLu and AT3.1 cells of 60-65 kDa is observed. Some cells 

expressing the 10-1 antigen, such as MTC, AT -1, A T2-1, and MatLu, exhibited 

differences in antigen levels in different growth conditions. For these celllines 

more antigen is expressed at 10% FCS/RPMI and less at 2% FCS/RPMI, 

suggesting that growth conditions have similar regulatory effects on 10-1 

antigen expression as which was earlier observed in lOAS cells (Fig. 12). 

Antigen secretion from these ceUs was not tested. 

Table 9. Rat tumour celllines that express the 10-1 antigen. 

Cell line Metastatic 10-1 Antigen 
grading expression 

lOAS +++ Yes 
lAS Yes 
OAS@ +++ Yes 
3AS@ +++ Yes 
7AS@ +++ Yes 
ASML +++ No 
AT-1 ++ Yes 
AT-2.1 ++ Yes 
AT-3.1 +++ Yes 
AT-6.1 +++ Yes 
CREF Yes 
CREFT24 +++ Yes 
MT450 +++ Yes 
MT Pa No 
MTC + Yes 
MTLN2 ++ Yes 
MTLN3 +++ No 
MTLy +++ No 
MTLu +++ Yes 
Mat LyLu +++ Yes 
BDX#2 No 
NM081 Yes 

Expression of 10-1 antigen on various rat tumour cell lines grown for 48 hours in 10% 
FCS/RPMI. Metastasis is graded according to spontaneaus metastasis assays as follows: - is no 
metastases; + is <25% of the animals with metastases; ++ is 25-75% of the animals with metastases; 
+++ is >75% of the animals with metastases (adapted from Sleeman et al., 1996; @ Sleeman 
unpublished observations). 
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Figure 17. Western blots of antigen expression in rat carcinoma cell lines 
grown in 2% or 10% FCS/RPMI. A. Cell lysates 1 x 105 cells, were 
loaded on a 8% SDS PAGE gel, blotted and probed with Mab 4F3. 
Antigen presence in M1Ly 2% is due to spillage from MTC 10%. B. 
Cell lysates 1 x 105 cells, loaded on a 10% SDS PAGE gel, blotted and 
probed with 3A7. C. Celllysates 1 x 105 cells, were loaded on a 8% SDS 
PAGE gel, blotted and probed with Mab 4F3. 

78 



Role of 10-1 antigen in tumour growth and metastasis 

Although 10-1 antigen expression on other rat carcinoma cell lines does 

not strictly correlate with metastasis, this fact alone does not mean that the 

antigen may not have a role in tumorigenesis. Tumour cells may acquire a 

number of properties which arenot sufficient alone to trigger metastasis. For 

example, those non-metastatic cells lines that did express the 10-1 antigen 

perhaps had not yet acquired enough properties to become metastatic. On the 

other hand, metastatic cells which don "t express the 10-1 antigen may have 

acquired other properties which obviate their need for 10-1 antigen expression. 

I therefore used the 10-1 antibodies in in vitro and in vivo experiments to 

determine their effect on the growth and metastatic spread of 10AS tumours. 

I initially performed in vitro assays to consider the effect of the 10-1 

antibodies on the proliferation rate of 10AS cells as measured by thymidine 

incorporation. Experiments were performed using both 2% and 10% FCS 

growth conditions. 10AS cells were cultivated in 2% and 10% FCS/RPMI 

tagether with either 508 (an antibody against CD44 that had been previously 

shown to have no anti-growth effects (Sleeman et al., 1996)), or with each of 

the 10-1 antibodies. After 48 hours incubation, 3H-thymidine was added to 

1 O~Ci/ml. After a further 12 hour incubation the cells were transferred to 

filters using a Skatron cell harvester and the amount of incorporated thymidine 

measured by scintillation counting. Over the course of both experiment there 

was no dose-dependent effect on proliferation by the 10-1 antibodies. Even at 

the highest antibody concentrations no effect on proliferation of 10AS cells by 

the 10-1 antibodies was observed for cells grown in either 2% or 10% 

FCS/RPMI (Fig. 18 and Fig 19). These results show that the 10-1 antibodies in 

this tumour system have no direct effects in vitro on 1 OAS cell proliferation. 

To test the effect of 10-1 antibodies on the growth of 10AS tumours in 

spontaneaus metastasis assays, 10AS cells were injected subcutaneously into 

male and female BDX rats. The animals were treated over a period of 4 weeks 

with 508 and each of the 10-1 antibodies, as described in Materials and 
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Figure 18. The effect of antibodies on the proliferation of IOAS tumour 
cells in vitro. I x 105 cells were cultivated with the appropriate antibody in 
a final volume of lOO!Jl 2% FCS/RPMI and incubated for 2 days at 37"C, 
then 3H-thymidine was added to 10 !JCilml. After a further 12 hours 
incubation, the cells were harvested onto !!lass fiber 11lters with a Skatron 
Comi Cell Harvester and 1H-thymidine u~ptake was assayed wilh a LKB 
Wallac liquid Scintillation Counter. Data is the average of quadruplicate 
experiments. 
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Figure 19. The eff~ct of antibodies on the proliferation of IOAS tumour 
cells in vitro. lx 10° cells were cultivated with the appropriate antibody in 
a tlnal volume of 100111 !Oe~ FCS/RPMI and incubated for 2 days at 37°C, 
then 3H-thymidine was added to 10 11Cihnl. After a further 12 hours 
incubation, the cells were harvested onto !!lass fiber filters with a Skatron 
Comi Cell Harvester and 3H -thymidine u~ptake was assayed with a LKB 
Wallac liquid Scintillation Counter. Data is the average of quadruplicate 
experiments. 
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Methods. In each set of experiments, groups of 7 or 8 animals were treated 

with either 5G8 or the 10-1 antibodies. The 10-1 antibodies had a non­

inhibitory effects on tumour growth or metastasis (Figure 20; Table 10). In all 

instances the treated animals died from growth of the injected tumour cells. 

There was a slight reduction in the nurober of animals having lymph node 

metastasis, but this was not statistically significant. These data demonstrate that 

the 10-1 antibodies do not inhibit tumour growth or metastasis. 

At first sight, the Observations from the in vivo experiments argue 

against the 10-1 antigen having a direct role in the tumour growth and 

metastasis of 10AS cells. However, there are arguments to suggest the 

contrary. Perhaps the 10-1 antibodies do bind the 10-1 antigen in in vitro and 

in vivo assays but have no inhibitory effect on the function of the 10-1 

antigen. That is, they may recognise some structural feature of the 10-1 

antigen that is only immunogenic in nature but has no direct functional role. 

Furthermore, I have also presented evidence that the 10-1 antigen is actively 

secreted by 10AS cells in vitro. Thus, any inhibitory effects of the antibodies 

may be nullified due to the antibodies binding to excess free antigen, for 

example. These arguments and the fact that the antigen is expressed by other 

rat carcinoma celllines suggest that it could be associated with tumour growth 

and metastasis, but in a non-obligatory way which is alone insufficient. Thus 

the results of the functional assays with the 10-1 antigen are inconclusive. I 

therefore proceeded to purify the 10-1 antigen in order to microsequence it 

and thus determine its nature, with the hope of relating this to a function in 

metastasis. 

Antigen purification 

My attempts to identify a role for the 10-1 antigen in metastasis and 

tumour progression proved to be inconclusive. Thus to define a role and 

perhaps a function for this antigen, I needed to elucidate its identity. One 

approach could be to make a cDNA library from 10AS cells and make an 
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Table 10. Results of tumour inhibition experiments. 

BDX rats were injected subcutaneously with 5 x 105 tumour cells in PBS. 
Thereaftcr, every 3 to 4 days 200!Jg monoclonal antihoclies 3A 7, 4F3, 
3E 12 or 3F 12 were injected at the tumour site. Anima1s were regular1y 
monitored unlil their tumours grew to the German legal Iimit or they 
became moribund, at which time they were killed and an autopsy 
performecl. 

Tumour +/- Mab Tumour Metastasis Lymph node Lung 
metastasis metastasis 

IOAS 8/8 8/8 8/8 1/8 
IOAS+3A7 8/8 8/8 3/8 5/8 
IOAS + 4F3 7/7 7/7 7/7 217 
IOAS + 3EI2 8/8 7/8 6/7 1/7 
IOAS + 3FI2 7/7 7/7 5/7 4/7 
lOAS + 5G8 8/8 6/8 6/6 3/6 

15000 
Spontaneous metastasis assays 
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D ot,s 
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Days after injection of tumour cells 

Figure 20. Primm·y tumour size of BDX rats subcutaneously injected 
with 5 x 101 lOAS cells and treated with 5G8 contro1 or 10-1 antibodies 
(see text for details of animals used). Tumour cells were injected in 100 
!Jl PBS containing 200!J.g antibody. The rats were then treated with 
200!Jg antibody each twice weekly for 4 weeks. Rats were killed when 
moribund or when the size of the primary tumour exceeded the German 
legal Iimit. Only rats in which tumours grew were included in the 
calculation of the average size of the primary tumour, to avoid 
introducting bias due to differences in the numbers of non-tumour 
bearing animals. 
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expression library. The 10-1 antibodies could then be used to probe for 

cDNAs encoding the 10-1 antigen. However, there are several problems with 

this approach. Firstly, the 10-1 antigen has multiple forms and it is not clear 

how these are related. Secondly, some of these forms are also weakly 

expressed in lAS cells, meaning that cDNA clones purified out of such an 

expression library screen may not be those which are specific for 1 OAS cells. I 

therefore considered that the best biochemical approach for achieving this 

objective would be to purify the 10-1 antigen, using immobilised 10-1 

antibodies to fish for the 10-1 antigen from cell lysates or conditioned media. 

The antibody-antigen bonds are then broken, allowing the antigen to be isolated 

and subjected to further treatment to reach sufficient concentration and purity 

for N-terminal sequencing tobe performed. The derived N-terminal sequence 

can then be compared to protein sequences from a variety of data bases to find 

its identity, or can be used to make oligonucleotide probes to make cDNA 

libraries. 

Preparation of a 10-1 antigen affinity column 

I set out to use immunoaffinity purification to purify the 10-1 antigen 

from lOAS cell lysate, or conditioned medium. Antibodies were bound to 

protein G agarose beads (Dianova) and cross-linked to the beads with 

dimethylpimelimidate (DMP; protein G-DMP-Mab), as described in Materials 

and Methods. Protein G beads were used because they have a greater affinity 

for IgG 1 and IgG3 antibodies than protein A beads (Harlow and Lane, 1988). 

The crosslinking of the antibodies to the profein G beads was checked by 

boiling the beads in reducing sample buffer, subjecting the supematants to 

electrophoresis and staining the gel with coomassie blue to checkthat DMP had 

efficiently bound all Mabs to the protein G beads (Fig. 21). 
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Figure 21. Checking of crosslinked protein G-D:MP-Mab columns. 
Columns were prepared as described in Materials and Methods. Beads 
were taken before and after the D:MP reaction boiled in reducing sample 
buffer, eluateloaded on a 10% SDS PAGE gel, electrophoresis performed 
and the gel coomassie stained. Mab control shows migrating heavy ( 4 7-
50 kDa) and light (28-30 kDa) chains. Note that in the After D:MP 
reaction no Mabs are present. 

14entification of conditions for eluting the 10-1 antigen 

Cell lysates and dialysed conditioned media (DCM) were prepared as 

described in Materialsand Methods and precleared with protein G beads for 4 

hours or overnight at 4°C, after which the DCM was incubated overnight at 

4oc with protein G-DMP-3E12 beads. In initial experiments small scale 

preparations were performed to optimise antigen e1ution conditions. Protein 

G-antibody-antigen complexes were washed in PBS and then incubated with 

one of following reagents: low pH (lOOmM glycine pH 2.S), high pH (lOOmM 

HC03), high salt (SM LiCl), low pH high salt (lOOmM glycine pH 2.S, SM 

LiCl), high pH high salt (lOOmM HC03 pH 11.S, SM NaCl), 1% SDS, 2M urea, 

8M urea, 2M guanidine HCl, 3M thiocyanate or 10% dioxane, to test for their 

ability to elute the 10-1 antigen. The eluates (E) and the treated beads (B) 

were subjected to SDS PAGE electrophoresis, blotted and probed with the 10-1 

antibodies (Fig. 22A and B). The effectiveness of each reagent was judged by 

comparing E and B for 10-1 antigen retention. Protein G-DMP-Mab beads 
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with or without bound antigen where used as controls. In these experiments 

3M thiocyanate caused complete elution and 1% SDS caused minimal release of 

the antigen from protein G-DMP-Mab beads. None of the other reagents 

eluted any 10-1 antigen. Studies with 3M thiocyanate were not pursued further 

because the protein G-DMP-Mab agarose beads were completely destroyed 

during elution and it became difficult to effectively remove the eluate (Fig. 

22B). Elution with 1% SDS resulted in only partial elution with the majority 

of the antigen remaining bound toprotein G-DMP-Mab columns (Fig. 22B). 

A 

B 

77 

48 

34 -

::t: 
Q. 
.c 
.!2> 
.c 

E B E B 

•• ·­• 

E 

-c; 
t/1 
.c 
.!2> 
.c 

B E B E B 

., . ' 

." - ' 

-EBEBEBEB EBEB 

Figure 22A and B. Establishment of elution conditions. Protein G precleared 1 OAS 
dialysed conditioned medium was incubated overnight with protein G-DMP-3E12 
beads. The beads were washed in PBS and treated with low pH (100mM glycine pH 
2.5), high pH (100mM HC03), high salt (5M LiCI), low pH high salt (lOOmM glycine 
pH 2.5, 5M Li Cl), high pH high salt (100mM HC03 pH 11.5, 5M NaCI), 1% SDS, 2M 
urea, 8M urea, 2M guanidine HCI, 3M thiocyanate or 10% dioxane. The eluates (E) 
and the treated beads (B) were boiled in non-reducing sample buffer, subjected to 
SDS PAGE electrophoreses, blotted and probed with the 10-1 antibodies. 
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Purification of the 10-1 antigen from cell lysates 

In order to optimise the elution by SDS, I decided to boil the beads for 5 

min in 1% SDS to try to break the antigen-antibody bonds more effectively. 

After boiling, the eluate was removed. The beads were then boiled again in 

non-reducing sample buffer, to check for the efficiency of elution. The boiled 

SDS eluate was also subjected to various further treatments to improve the 

purity and concentration of the eluted 10-1 antigen (Fig. 23). Thus the eluate 

was concentrated by two centrifugal concentration steps through AMICON 

Centricon concentrators. The eluate was firstly applied to a Centricon-100 

concentrator to remove all proteins above 100 kDa, and the flow through 

containing the 10-1 antigen then concentrated to a minimal volume by a 

Centricon-30 concentrator (30 kDa cut-off) for electrophoretic analysis. At 

each stage of the purification process samples were taken and subjected to SDS 

PAGE electrophoresis and westem blotting. To consider if antibodies had 

leached from protein G-DMP-Mab beads, the gels were blotted and probed 

separately with either the 10-1 antibodies and secondary HRP antibody, or the 

secondary HRP antibody alone. The majority of the purified eluate was 

applied to aseparate lane on the same SDS PAGE gel. After blotting, the lane 

corresponding to this sample was cut from the PVDF membrane and stained 

with coomassie blue to visualise if there was sufficient puried protein for N­

terminal sequencing analysis. 

Figure 24 is the result of an experiment using this protocol with 9.0 x 

107 cells. It demonstrates that elution of the 10-1 antigen from protein G­

DMP-3E12 beads by 1% SDS is much more efficient after boiling. From this 

experiment with celllysate a number of conclusions can be made. The form of 

10-1 antigen which was eluted from the protein G-DMP-3E12 beads migrates 

as a major band of 55-60 kDa and a minor band of 34-36 kDa (Fig. 24, lane 

C). These bands correspond to those recognised by the 10-1 antibodies in 

10AS celllysate (Fig. 24, Lane G). There is non-specific protein binding to 
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Figure 23. F1ow diagram of 10-1 antigen purification. The eluates were either 
concentrated or further processed for FPLC analysis, prior to being subjected to 
electrophoresis and western blotting to examine 10-1 antigen content. 
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protein G beads rnigrating at 40 kDa and 55 kDa, which is probably 

immunoglobulin heavy chain recognised by the secondary antibody (Fig. 24, 

Lane C). The 10-1 antigen is not present in the flow through of the Centricon 

100 concentrator in both experiments (Fig. 24, lane D), suggesting the 10-1 

antigen either binds to the membrane of the concentrator or is still bound to 

leached 3E12 antibody leading to a total molecular weight of over 100 kDa, 

and is therefore not perrnitted to pass through the concentrator' s membrane. 

The protein G-DMP-3E12 beads after elution have residual 10-1 antigen 

attached, suggesting the 1% SDS elution conditions are not totally effective, 

resulting in a reduced yield of purified antigen. These data suggested that 

elution with 1% SDS is not complete and that the majority of the eluted antigen 

remains attached to antibodies that leached from the protein G-DMP-3E12 
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Figure 24. Purifications trial with lOAS celllysate. 9.0 x 107 cells were lysed in 1% 
NP40 PBS containing 2mM PMSF. The lysate was precleared with protein G and then 
incubated overnight with protein G-OMP 3E12 beads. Elution of 10-1 antigen was 
performed with the addition of 1% SOS PBS and incubated at 1 00°C for 5 min. The 
eluatewas dialysed in 50mM Tris pH 9.0, the detergent removed, concentrated by an 
AMICON Centricon 100-concentrator and the flow through collected and 
concentrated by an AMICON Centricon-30 concentrator. An aliquot from each 
purifcation step was loaded onto a SOS PAGE gel in the following order: A, protein 
G-OMP 3E12 beads; B, elution; C, supernatant from Centricon-100 concentrator D, 
flow through from Centricon-100 concentrator; E, supernatant Centricon-30 
concentrator; F, flow through from Centricon-30 concentrator; G, lOAS RIPA cell 
lysate; H, protein G-OMP 3E12 beads after elution, electrophoresed, blotted and 
probed with the 3A7 Mab and secondary HRP antibody, and secondary HRP antibody 
alone. 
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beads. These data also demonstrate the high affinity of the 10-1 antibodies for 

the 10-1 antigen, as boiling in 1% SDS is an extremely harsh elution. 

Attempts to increase 10-1 antigen elution 

To attempt to improve the release, quantity and purity of the 10-1 

antigen from protein G-DMP-3E12 beads, elutions were performed with 2% 

SDS with and without reduction. The eluate was concentrated only once with 

an AMICON Centricon-1 0 concentrator to Iimit loss of the 10-1 antigen during 

the concentration steps. As a prelude to purifications performed with FPLC 

where the efficiency of certain chromatography procedures are effected by 

detergents, a detergent removal step was added to test how much 10-1 antigen 

yield would be affected. Antigen purification was tracked by taking equivalent 

aliquots at each purification step and subjecting them to electrophoresis under 

non-reducing and reducing conditions. Electrophoresis was performed on a 

30cm long SDS PAGE gel to allow better separation of the proteins and thus 

potentially attain a cleaner signal for N-terminal sequence analysis. 

Figures 25 and 26 show the results of 10-1 antigen purification with 2% 

SDS with boiling under non-reducing and reducing electrophoretic conditions, 

respectively. To remove non-specific binding proteins from the purification 

process, the cells lysates were first incubated for a minimum of two hours with 

protein G beads. An amount of the 10-1 antigen present in the cell lysates 

bound non-specifically to the protein-G beads. This can be visualised by 

comparing lanes B and C, of Fig. 25A and Fig. 26A. In both experiments the 

protein G-DMP-3E12 beads had a high affinity for the 10-1 antigen, removing 

the majority of it from the celllysate (compare lanes C and D, Fig. 25A and 

26A). However, again the efficiency of elution with 2% SDS was poor, 

resulting in a large amount of 10-1 antigen remaining attached to the protein 

G-DMP-3E12 beads (compare lanes Fand H, Fig. 25A; and lanes Hand J, Fig. 

26A). Thus it appears that despite changing the elution conditions to 2% SDS 

the release of the 10-1 antigen by the 10-1 antibodies is unaffected. Therefore 
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the major deficiency in 10-1 antigen purification is the initial breakage of the 

antigen-antibody bonds. 

Detergent removal was tested only for the purification under reducing 

conditions (Fig. 26). It was found that removal of SDS detergent had little 

effect on 10-1 antigen yield (Fig 26A, compare lanes F and G). Concentration 

of the eluate by Amicon Centricon-1 0 concentrators resulted in a reduction of 

antigen yield. In Fig. 25A, lanes Fand E are of similar intensity, and for Fig. 

26A lane His 3 to 4 times more intense than lane G, whereas the process 
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Figure 25A and B. SOS PAGE gel of 10-1 antigen purification by 2% SOS 
performed under non-reducing conditions. 2.0 x 109 cells were lysed in 1% NP40 
PBS containing 2mM PMSF. The lysate was precleared with protein G and then 
incubated overnight with protein G-OMP-3E12 beads. Elution of 10-1 antigen was 
performed with the addition of 2% SOS PBS and incubated at 100°C for 5 min. The 
eluatewas dialysed in 50mM Tris pH 9.0, the detergent removed and concentrated by 
a Centricon 10 concentrator. An aliquot from each purification step was loaded onto 
a SOS PAGE gel in the following order: A, 10AS cell lysate; B, NP40 10AS cell 
lysate; C, after pre-clear with protein G; D, after incubation with protein G-OMP-3E12 
beads; E, elution; F, supernatant from Centricon-10 concentrator; G, flow through 
from Centricon-10 concentrator; H, protein G beads after elution, electrophoresed on 
a 30 cm long gel, blotted and probed with the 3A7 Mab and secondary HRP antibody 
(Fig. 25A) and secondary HRP antibody alone (Fig. 25B). The arrow corresponds to 
the migration of the 10-1 antigen. 
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should have resulted in a 10-fold concentration, demonstrating that a large 

quantity of the 10-1 antigen has been lost during the concentration process. 

Blots made from gels identical to those in Figures 25A and 26A were 

probed with the secondary antibody alone to detect any antiboilies that may 

have had leached from the protein G-DMP-3E12 beads (Fig. 25B and 26B). 

As a control, 2jlg 3A 7 Mab was loaded on the reducing gel (Fig. 26B, lane K) 

and was recognised by the secondary-HRP-labeled antibody as heavy chain 48 

kDa and light chain 34 kDa components. Also detected by the secondary HRP 

antibody were non-specific proteins and light chain molecules migrating 

between 28-36 kDa. Lanes G and Hof Fig. 26B have more intense bands in 
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Figure 26A and B. SDS PAGE gel of 10-1 antigen purification by 2% SDS under 
reducing conditions. 2.0 x 109 cells were lysed in 1% NP40 PBS containing 2mM 
PMSF. The lysate was precleared with protein G and then incubated overnight with 
protein G-DMP-3E12 beads. Elution of 10-1 antigen was performed with the 
addition of 2% SDS PBS and incubated at 100°C for 5 min. The eluate was dialysed 
in 50mM Tris pH 9.0, the detergent removed and concentrated by a Centricon 10 
concentrator. An aliquot from each purification step was loaded onto a SDS PAGE 
gel in the following order: A, lOAS celllysate; B, NP40 lOAS celllysate; C, after pre­
clear with protein G; D, after incubation with protein G-DMP-3E12 beads; E, elution; 
F, after detergent column; G, after pre-clear with protein G; H, supernatant from 
Centricon-10 concentrator; I, flow through from Centricon-10 concentrator; J, protein 
G beads after elution; K, 2J.Lg 3A7 Mab; and electrophoresed on a 30 cm long gel, 
blotted and probed with the 3A 7 Mab (Fig. 26A) and secondary HRP antibody and 
secondary HRP antibody alone (Fig. 26B). The arrow corresponds to the migration of 
the 10-1 antigen. 
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this molecular weight range than lanes E and F of Fig. 25 B, which is probably 

due to more light chains being cleaved from antibody molecules by the action 

of DTT present in the reducing sample buffer. The remaining concentrated 

10-1 antigen was also applied to the same gel in each experiment and blotted. 

This lane was separated from remaining PVDF membrane used for westem 

blot analysis, and stained with coomassie blue according to the manufacture's 

instructions. In both experiments a proteinband migrating in the range of 55-

65 kDa corressponding to the 10-1 antigen was not visible. These results 

demonstrate that this elution and purification protocol does not efficiently 

remove the 10-1 antigen from the protein G-DMP-antibody beads and what 

antigen is removed is contaminated by non-specific-binding proteins and 

antibody components. 

To attempt to improve elution of the 10-1 antigen 1% SDS 100mM DTT 

with boiling was used to break 10-1 antigen antibody bonds and a similar 

purification process as described above was used (data not shown). This 

methods gave the best yield of eluted 10-1 antigen as evident by bands on 

westem blots and on the PVDF coomassie stained membrane. However, 

several other proteins migrated within the same region as the 10-1 antigen, 

resulting in a noisy signal when subjected to N-terminal sequencing. No 

distinct amino acid sequence was obtainable. 

FPLC purification of 10-1 antigen eluates 

Having observed from the above results that several proteins were 

purified along with the 10-1 antigen, I decided to use a Pharmacia FPLC 

chromatography system to isolate the 10-1 antigen from affinity purified 

eluates. The antigen was eluted by boilirtg with 1% SDS containing 100mM 

DTT. The eluate was dialysed against 50mM Tris, pH 9. 0 and the detergent 

removed by Extracti-Gel® D Detergent Removing Gel. The eluatewas then 

dialysed against the respective chromatography buffer and incubated for 
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Figure 28 
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Figures 27 and 28. FPLC purification of 10-1 antigen. 8.6 x 108 cells/experiment were lysed in 
1% NP40, precleared with protein G, incubated overnight with protein G-DMP-3E12 beads, eluted 
with 1% SDS lOOmM DIT, dialysed against 50mM Tris, pH 9.0, the detergent removed with 
Extracti-Gel® D Detergent Removing Gel, and dialysed against the respective FPLC buffer. A 
Pharmacia FPLC chromatography system was utilised with Mono Q (Fig. 27 A) and Mono S (Fig. 
28A) columns. The eluting buffers were 20mM Tris, 1M NaCl, pH 7.5 (for Mono Q) and 50mM 
Phosphate Buffer, 1M NaCl, pH 7.0 (for Mono S). Chromatography was performed at a flow rate 
of 1mllrnin. For analysis, the sample was injected onto the column in the respective 
dialysislbinding buffer at 3 rnin and at 5 rnin the eluting buffer was applied to the column in the 
form of a linear gradient, with its concentration increasing from 0% to 100% over 20 rninutes. 
Two 0.5ml fractions/minute were collected and analysed continuously for UV absorbance. 
Fractions corresponding to peaks of UV absorbing material on the printed chromatogram were 
subjected to SDS PAGE electrophoresis, blotted and probed with 3A7 Mab and secondary HRP 
antibody (Fig. 27B and 28B) and secondary HRP antibody alone (Fig. 27C and 28B). 
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two hours with protein G beads to remove any immunoglobulins that may have 

leached from the affinity column. The final product was applied to either a 

Mono Q or Mono S chromatograpy column and chromatography performed as 

described in Materials and Methods. The fractions corresponding to peaks of 

UV absorbing material on the chromatogram were further analysed for the 

presence of the 10-1 antigen. The large peaks in Fig. 27, fractions 10-14 and 

Fig. 28, fractions 6-10, correspond to detergent absorbance, due to the 

aromatic ring present in NP40. Analyses by westem blot showed that the 10-1 

antigen was indeed purified (Figs. 27 and 28). Mono Q (anion exchanger) 

gave the best purification (Fig. 27), separating the 10-1 antigen from proteins 

recognised by the secondary antibody alone. The 10-1 antigen migrated at 60-

65 kDa and was present in highest quantities in fractions 18 and 19 and also in 

low quantities in fractions 34 to 36. Purifications with Mono S (cation 

exchaüger, Fig. 28) resulted in the antigen passing directly through the column 

and being grouped with eluted detergent and molecules recognised by the 

secondary HRP antibody. These data suggest that at pH 7.0 the protein has a 

net negative charge and as such only binds to the anion exchange column, 

Mono Q. Fractions from both chromatography columns which had the highest 

quantity of the 10-1 antigen, namely, fractions 18 and 19 from Mono Q and 

fractions 9 and 10 from Mono S, were concentrated and subjected to SDS 

PAGE electrophoresis and the gel silver stain~d (data not shown). No protein 

corresponding to to the molecular weight of the 10-1 antigen could be seen 

after silver staining, suggesting that the chromatography procedure had the 

detrimental effect of further reducing the end yield. As I had used a 

substantial quantity of cells for this purification procedure (8.6 x 108 cells), it 

seemed unlikely that increasing the quantity of starting material could result in 

an yield improvement. . I therefore abandoned this approach and chose to 

concentrate on another procedure. 
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Purifications of 10-1 antigen from conditioned media 

Conditioned medium contains a lower complexity of protein material 

than celllysate and therefore purifications from it should contain less proteins 

capable of non-specifically binding to the affinity columns. Knowing that the 

10-1 antigen is secreted from 1 OAS cells I decided to attempt 10-1 antigen 

purifcation utilising conditioned media from 10AS cells. 

40 ml of conditioned media was prepared as described in Materials and 

Methods, precleared ovemight with protein G and further incubated overnight 

with protein G-DMP-3E12 beads. The antigen was eluted with 1% SDS by 

boiling for 5 minutes and the eluate applied to a AMICON Centricon-1 00 

concentrator to remove unwanted and non-specific proteins above 100 kDa. 

The flow through from the Centricon-1 00 concentrator was further 

concentrated by application to a A1vHCON Centricon-30 concentrator. An 

aliquot from elution, supematants and flow throughs from each concentration 

step were loaded onto a SDS PAGE gel, blotted and probed with the 10-1 

antiborlies and secondary HRP antibody for antigen detection, and the 

secondary HRP antibody alone for antiborlies that may have leached from the 

protein G-DMP-3E12 beads (Fig. 29). To take into consideration any non­

specific binding, controls were run of protein G-DMP-3E12 beads incubated 

with RPMI and RPMI plus 10% FCS. 

The most obvious feature of this experiment was the reduced non­

specific protein-binding in the elution (Fig. 29A, lane D) and concentrated 

fractions (Fig. 29B, lane E and G). The observed non-specific protein binding 

toprotein G-DMP-3E12 beads was due to material present in the FCS and is 

visualised as a broad smear from 47-85 kDa (Fig. 29, lanes B and C). Non­

specific protein-binding was also present in the concentrated supematants and 

migrated in the range 20-34 kDa and as a single band of 40 kDa which 

appeared after concentration (Fig. 29, lanes E, Fand G). The majority of non­

specific binding-proteins migrating from 47-85 kDa were removed after the 

washing of the protein G-pMP-3E12 beads before elution. Only the antigen 
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Figure 29A and B. Purification trial with 10AS conditioned media. 
40ml conditioned media was precleared with protein G and the 
supernatant incubated with protein G-DMP-3E12 beads overnight. 
Elution of 10-1 antigen was performed with the addition of 1% SDS PBS 
and 5 min incubation at 100°C. The eluate was passed through a 
Centricon 100 concentrator and the flow through concentrated b y 
application to a AMICON Centricon-30 concentrator. An aliquot from 
each elution step was loaded onto a non-reducing SDS PAGE gel in the 
following order: A, RPMI; B, RPMI + 10% FCS; C, DCM; D, elution; E, 
supernatant Centricon-100 concentrator; F, flow through Centricon-100 
concentrator; G, supernatant Centricon-30 concentrator; H, flow through 
Centricon-30 concentrator; I, 10AS celllysate; J, protein G beads after 
elution; electrophoresed, blotted and probed with the 3A 7 Mab and 
secondary HRP antibody (Fig. 29A) and secondary HRP antibody alone 
(Fig. 29B). 
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and non-specific binding-proteins of 20-34 kDa and 40 kDa remained after the 

elution and concentration steps. 

This experiment was performed m conjunction with the initial 

purifications performed with cell lysates (Fig. 24). I thus employed the same 

eluate concentration process of Amicon Centricon-100 and -30 columns. 

Therefore, I encountered the same problems of 10-1 antigen loss, due to it 

binding to the concentrators membrane or being unable to pass through the 

membrane because it is still bound to an antibody molecule ( compare lanes E 

and F, and G and H, Fig. 29A). I tried to overcome the latter problern by 

supplementing the elution with 1 OOmM DTT to break 10-1 antigen-antibody 

complexes, allowing the 10-1 antigen to be concentrated (data not shown). 

However in these experiments the 10-1 antigen remained largely in the 

supernatant of the concentrators, suggesting that some other chemical property, 

such as binding of the 10-1 antigen to the concentrators membrane had reduced 

the end yield. In light of these observations, for future experiments I reduced 

yield loss by dialysing the eluate against water and performing lyophilisation 

and taking the lyophilised 10-1 antigen product up in a smaller volume of 

buffer. It should be noted that I employed this approach for elutions with cell 

lysates and attained a greater end yield as seen on westem blots, but increased 

non-specific protein-binding was also observed which interfered with N­

terminal sequencing attempts ( data not shown). 

Large scale purification of 10-1 antigen from conditioned media 

After considering the results of the experimental approaches that I had 

used, I decided that the best method to purify the 10-1 antigen would be to 

perform a large scale purification of 400ml conditioned medium. In this 

experiment the 10-1 antigen was eluted with 1% SDS, the eluate was then 

dialysed against 50 mM Tris, pH 9.0, and the detergent removed. The 

processed eluate was then dialysed against water, lyophilised, dissolved in non­

reducing sample buffer, subjected to SDS PAGE electrophoresis on a 30cm gel 

99 



and blotted. The PVDF membrane was cut in two and one-half probed with 

the 3A7 Mab and the other used for N-terminal sequencing analysis. Western 

blotting revealed that as with cell lysate the elution was not totally effective, 

because quantities of the 10-1 antigen still remained attached to the protein G­

DMP-3El2 beads (Fig. 30, compare 10-1 antigen migration at 55-60 kDa, 

lanes C and E). However, significant amounts of the 10-1 antigen had been 

purified using this procedure and was seen as a broad band migrating at 

approximately 55-60 kDa on both the westem blot (Fig. 30, lane E) and 

commassie stained PVDF membrane (Fig. 30, lanes G, ) which corresponds to 

a similar band recognised on cell lysate (Fig. 30, lane A). There was non­

specific binding of proteins of 20-34 kDa and 40 kDa in size similar to that 

observed in Figure 29, and also of proteins 70-100 kDa in size which perhaps 

reflects the greater volume of conditioned media used. The remaining elution 

material in lanes G was prepared for N-terminal sequence analysis at the 

Biotechnology Resource Laboratory, Protein Sequencing and Peptide Synthesis 

Facility, Medical University of South Carolina. N-terminal sequencing 

revealed a six amino acid sequence R-P-K-H-PN-1 which via a Protein 

Database Search corresponded to the following proteins: 

1. Human adenomatous polyposis coli protein (APC Protein) 

2. Bovin alpha-S 1 casein precursor 

3. Alpha-SI casein precursor (ALPHA-Sl-CN)(Variants A, B, C, D, E and F) 

4. Sheep alpha-S 1 casein precursor. 

Further purifications with different method variations and greater 

quantities of conditioned medium were performed, but a Ionger amino acid 

sequence was not obtained. 
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Figure 30. Purification ofthe 10-1 antigen. 10-1 antigenwas eluted with 1% 
SDS, the eluate was then dialysed against 50 mM Tris, pH 9.0, the detergent 
removed, dialysed against water, lyophilised, dissolved in non-reducing sample 
buffer and subjected to SDS PAGE electrophoresis on a 30cm gel. The gel was 
blotted and one half probed with the 3A 7 Mab and the other used for N­
terminal sequencing. The strong band of 55-60 kDa was chosen for N-terminal 
sequencing. The lanes represent A, lOAS cell lysate; B, lOAS conditioned 
medium; C, protein G-DMP-3E12 beads after elution; D, protein G-DMP-3E12 
beads only; E, aliquot of final elution material; F, molecular weight markers; 
and G, final elution material. The gel distortion in lane B is due to albumin 
present in the conditioned medium, and lanes F to G due to stretching of the gel 
during the westem blot procedure. The arrows refer to purified 10-1 antigen 
visualised on the westem blot and coomassie stained membrane. 
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Identification of the 10-1 antigen 

Adenomatons polyposis coli protein (APC, Shoemaker et al., 1997) has 

been inarguably linked to the genetic progression of colon cancers. However, 

two pieces of information speak against it being candidate for the 10-1 antigen. 

Firstly, the predicted size of full-length APC is around 300 kDa (Smith et al., 

1992) and APC mutant proteins present in cancers smaller than 80 kDa have 

not been detected (Polakis, 1997). Secondly, APC binds to and regulates ß­

catenin function and is as such located in a cell's cytoplasm (Shoemaker et al., 

1997) and thirdly, there is no evidence to show that it is secreted or shed from 

cells. These data speak against the 10-1 antigen being APC. 

The R-P-K-H-PN-I sequence found by N-terminal sequencmg 

corresponds to amino acids 16 to 21 in the goat sequences, sheep and bovine a­

casein sequences, and occurs immediately after the 15-amino acid long signal 

peptide which is homologous to all species (Fig. 31). Thus, the N-terminal 

sequence obtained for the 10-1 antigen corresponds exactly to the mature N­

terminus of these a-casein proteins. 

Bovine alpha-S 1 casein precursor, alpha-S 1 casein precursor (ALPHA­

S1-CN)(Variants A, B, C, D, E and F, also bovine family) and sheep alpha-S1 

casein precursor are members of the casein superfamily. The casein gene 

family encodes the most abundant group of milk proteins. They are 

synthesised in the mammary gland as large precursors, split by proteases and 

secreted by both the constitutive and regulated pathways (Fiat and Jolles, 1989; 

Turner et al., 1992). In most species they are present in three forms alpha (a­

casein), beta (ß-casein), and kappa (K-casein), and have the apparent molecular 

weights of 42 kDa, 25 kDa, and 22 kDa, respectively (Rosen et al., 1975). In 

the rat there is a fourth casein, gamma (y-casein) which has a calculated 

molecular weight of 18 kDa (Nakhasi et al., 1984). Acknowledging the 

characteristics of the alpha-caseins and the properties of the 10-1 antigen it 

seemed that the identity of the 10-1 antigen could be best fitted with this 

protein group. 
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Only one mRN A species for rat a-casein has been described (Richards et 

al., 1981). This mRNA does not encode the R-P-K-H-PN-I sequence after the 

signal peptide. However, two species of rat a-casein proteins a 1 and ~-casein 

have been reported at the protein level through detection with monoclonal 

antibodies againstrat a-casein (Blum et al., 1987; Kaetzel and Ray, 1984). As 

such, this sequence data particular to the a-casein proteins could suggest that in 

the rat there are multiple forms of a-casein. Therefore, the 10-1 antigen could 

be a new casein protein not yet characterised, or that this sequence belongs to a 

casein-like protein, or a completely new and novel protein. 

peptide cleavage point 

1 ~ 50 
Rat MKLLILTCLV AAALALPRAH RRNAVSSQTQ QEN .. SSSEE QEIVKQPKYL 
Mouse MKLLILTCLV AAAFAMPRLH SRNAVSSQTQ QQH .. SSSE. .EIFKQPKYL 
Goat MKLLILTCLV AVALARPKHP INHQ ...... .G ...... LS PEVLNE.NLL 
Goat MKLLILTCLV AVALARPKHP INHQ ...... .G ...... LS PEVPNE.NLL 
Sheep MKLLILTCLV AVALARPKHP IKHQ ...... .G ...... LS PEVLNE.NLL 
Bovine MKLLILTCLV AVALARPKHP IKHQ ...... .G ...... LP QEVLNE.NLL 
Pig MKLLIFICLA AVALARPKPP LRHQEHLQNE PD ...... SR EELFKERKFL 
Guinea pig MKLLILTCLV ASAVAMPKFP FRHTELFQTQ RGGSSSSSSS EERLKEENIF 
Rabbit MKLLILTCLV ATALARHKFH LGHLKLTQEQ PE ..... SSE QEILKERKLL 

Figure 31. The first 50 amino acid sequence of cx.-casein frorn rat, rnouse, goat (2 
sequences exist for goat), sheep, bovine, pig, guinea pig and rabbit species. The 
sequences were attained frorn the Munich Information Centre for Protein Sequences. 

Examination of rat a-casein expression. 

To deduce if rat a-casein 1s transcribed by BSp73AS pancreatic 

carcinoma cells a DNA probe of rat a-casein was made from mRNA purified 

from rat mammary g1ands and PCR performed with primers corresponding to 

the N- and C-terminal portions of rat a-casein (Fig. 32A). The celllines were 

cultured in 2% FCS RPMI and 10% FCS RPMI, mRNA made, electrophoresed 

on a 1% agarose-formaldehyde gel and a Northern blot performed (Fig. 32B). 

The blots were probed under high and low stringency conditions. No binding 

of the rat a-casein probe was seen for any of the cell lines under either 

hybridisation condition, demonstrating that rat a-casein is not transcribed by 
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these cells. It is clear then that the R-P-K-H-PN-I sequence is associated with 

another protein, a protein whose mRNA has low homology with the presently 

cloned rat a-casein mRNA. It could thus be a new member of the casein 

protein family or a novel protein. 

A 

8 

High stringency 
Rat alpha casein 
- -

Low stringency 
Rat alpha casein 

GAPDH 

100 
bp a b c d e f g h 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Figure 32A and B. A. Generation of rat a-casein probe. PCR was performed as 
described in Materials and Methods. The lanes correspond to the 100 base pair ladder 
(lOObp), different magnesium concentrations of: a (OJ.LM), b (125J.LM), c (250J.LM), d 
(375J.LM), e (500J.LM), f (625J.LM), g (750J.LM) and h (water control). B. Northerns of 
BSp73AS pancreatic carcinoma cell system. Northerns were probed with the rat-alpha 
casein probe under high and low stringency conditions, and with GAPDH. Clones 
from BSp73AS pancreatic carcinoma cell system were grown in 2%FCS RPMI (2%) 
or 10%FCS RPMI (10%). The lanes correspond to mRNA from: 1 (rat mamary 
glands), 2 (OAS, 2%), 3 (OAS, 10%), 4 (lAS, 2%), 5 (lAS, 10%), 6 (3AS, 2%), 7 
(3AS, 10%), 8 (7AS, 2%), 9 (7AS, 10%), 10 (10AS, 2%), 11 (10AS, 10%), 12 (ASML, 
2%) and 13 (ASML, 10%). 
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DISCUSSION 

Reasoning that there are cell surface molecules expressed on tumour cells 

which are functionally associated with the generation of a metastatic phenotype, 

I set out to find and characterise such molecules and understand how they 

facilitate tumour cells to become metastatic. I have utilised subtractive 

immunisation to exploit the differences between non-metastasising and 

metastasising tumours to increase the chances of attaining monoclonal 

antibodies that specifically recognise metastasis-associated molecules. Two 

immunosubtractions have been performed with rat mammary tumours and rat 

pancreatic carcinoma cell lines of different metastatic potential. The first 

immunosubtraction with rat mammary tumour material was found to be 

optimal but not complete. The second subtractive immunisation used celllines 

from BSp73 rat pancreatic tumours and it produced four antibodies, the 10-1 

antibodies, that recognise a group of proteins termed the 10-1 antigen which 

are differentially expressed by the metastasising cell line. The 10-1 antigen is 

also expressed on other rat carcinoma cell lines of differing metastatic 

potential. lt is actively secreted from the metastasising cellline in response to 

changes in growth conditions, and appears to be localised to filopodia, 

suggesting a role in tumour cell invasion. The secretion in part explains why 

the 10-1 antibodies did not inhibit tumour growth and metastasis in 

spontaneous metastasis assays. Purification and microsequencing of the 10-1 

antigen revealed that it may be carried by a a-casein or casein-like protein. 

These data suggest that a-casein proteins apart from having roles in normal 

physiological processes may also play a part in abnormal pathological processes 

such as tumorigenesis. 

The traditional approach to find new cell surface molecules involved 

with metastasis has been to inject metastatic tumour cell lines or tumour 

material into mice, and thereby generate monoclonal antibodies against cell 

surface antigens on tumour cells. The hope then is to screen the antibodies and 
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find one that recognises a molecule associated with metastasis. For example the 

metastatic 10AS cells could be simply used to immunise mice. However, the 

problern with such an approach is that during an immune response antibodies 

in the main are produced only against immunodominant epitopes (Golumbeski 

and Dimond, 1986). Thus in a pool of molecules where immunodominant and 

less-immunodominant molecules are present, antibodies are seldom produced 

against the less abundant or less-immunodominant molecules (Williams et al., 

1992). The surface of tumour cells like 10AS cells will exhibit a plethora of 

immunodominant molecules and less-immunodominant molecules, and it is 

likely that sub-dominant epitopes are those important for contributing to the 

metastatic phenotype (Brooks et al., 1993). Therefore using the traditional 

approach with 10AS cells would greatly reduce the chances of attaining 

antibodies against rare and less-immunodominant molecules that are 

functionally involved with metastasis. 

I therefore considered another method, subtractive immunisation, which 

focuses the immune reponse against epitopes which are different between two 

groups of antigens. This method also takes into consideration the variability in 

metastatic properties of cell subpopulations isolated from a tumour, which has 

important implications for the analysis of tumour cell surface molecules and 

their relationship to metastasis. In such analyses one must utilise cells that are 

highly metastatic and compare them with non-metastatic or poorly metastatic 

tumorigenic Subpopulations isolated from the same primary tumour (Nicolson, 

1984). This procedure is based on the ability of cyclophosphamide to kill 

proliferating B lymphocytes (Razzaque Ahmed and Hombal, 1984). It 

suppresses the immune system to immunodominant molecules and increases the 

likelihood of obtaining a humoral response against rare and less­

immundominant molecules in a second round of immunisation. Previous 

authors have utilised subtractive immunisation to find cell surface molecules 

which are functionally associated with metastasis (Brooks et al., 1993; Sleeman 

et al., 1998). Similar stratigies have also been employed to find rare antigens 

in the frog egg (Denegre et al., 1997) and molecules involved with neurite 
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outgrowth (Matthew and Sandrock, 1987; Carnahan and Patterson, 1991). In 

subtractive immunisation the aim is to remove the immune response against 

antigens common to both the non-metastasising and metastasising tumours o r 

tumour cell lines. This was performed by immunisations of non-metastatic 

variant cells (tolerogen; MTW9B for MTW9 tumours; lAS for BSp73ASML 

cells) and the resulting humoral response was suppressed by cyclophophamide, 

after which related metastatic cells (immunogen; MT450 for MTW9 tumours; 

lOAS for BSp73ASML cells) were injected and an immune response was 

generated against epitopes present only on the immunogen. 

In the initial subtraction that I performed using MT-W9B and MT450 

tumour material, it was not clear whether such an immunosubtractive scheme 

could be sucessfully applied to tumour material, because of the complexity of 

cell types and tissue epitopes within the tumour. It was thus important to 

derive an estimate of the effectiveness of this immunosubtraction. My results 

indicate that the subtraction was effective, with the majority of the animals 

giving a differential humoral response to the metastasising MT450 tumour 

material. However, it was not complete, for initial hybridoma screening 

performed using tumour cells isolated from MTW9B and MT450 tumours 

found three of the eight Mabs were not specific for MT450 tumours. Later 

screenings (westem blots, immunoprecipitations and immunofluorescence) 

with the MT450 tissue culture cell line and newly isolated MTW9B tissue 

culture cell line revealed further deficiencies in the specificity of these 

antibodies. For example, in immunofluorescence studies it was found that the 

antibodies had non-differential specificity. 

The analyses performed with MTW9B tissue culture cell lines may have 

not been optimal, for after this data was obtained it was found that the MTW9B 

cell line metastasised, as such it did not reflect the phentoype of MTW9B 

tumours. Thus, using tissue culture celllines as targets in these assays while 

having initially used tumour material as the tolerogen and immunogen for 
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immunisation may have given misleading information about the specificity of 

the subtractive antibodies. It may have been more appropriate to use tumour 

material in these experiments. 

N evertheless, histochemical studies confirmed earlier observations from 

cell ELISA using tumour cells isolatecl from tumours as targets, that the 

subtractive immunisation was not complete. The staining of the antihoclies on 

paraffin sections from MTW9B and MT450 tumours was localisecl to the 

stromal regions of tumour sections from both tumours, clemonstrating that they 

recognised immunocleterminants not associatecl with a metastatic phenotype. 

This observation in itself may be interesting for a variety of molecules that are 

connectecl with metastasis are localisecl to stromal regions of tumours, for 

example MMPs (Sako et al., 1994). However, after observing that the stromal 

staining with these antihoclies was not specific to metastatic tumours in the 

MTW9 tumour family ancl other unrelatecl tumour moclels, further stuclies 

were not undertaken. 

In cantrast to the subtractive immunisation using tumour material, the 

subtractive immunisation using the lAS ancl lOAS cells which provecl to have 

stable metastasising properties was effective ancl complete, since none of the 

hybridomas recognisecl lAS cells alone (tolerogen) and the four Mabs 

examined in detail were specific to the lOAS cells (immunogen). These data 

also indicate that a minimum of 10.3% (4/39) of the hybridomas generated 

through immunosubtraction are genuine proclucts of subtraction. This is a high 

success rate which supports the use of this strategy to identify less­

immunoclominant molecules. Two different subclasses of antihoclies were 

generated ancl they bouncl epitopes of the same antigen, the 10-1 antigen, which 

strongly suggests that the 10-1 antigen is greatly up-regulated on the lOAS cells 

in comparison to lAS cells. 
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It must be said that 39 hybridomas from two mouse spleens is 

demonstrative of a low number of fusions between splenocytes and mouse 

myeloma cells. This can be explained by the use of a two-round injection 

procedure of cyclophosphamide (Sleeman et al., 1998), which kills more 

splenocytes than the once-only cyclophosphamide protocol (Brooks et al., 

1993), thus reducing the number of viable B cells for fusion with the mouse 

myeloma cells. However, studies using the once only cyclophosphamide 

injection gave rise to a greater number of hybridomas, but a smaller 

percentage are genuine products of the subtraction (Denegre et al., 1997). In 

order to suppress the anticipated larger number of immunodominant epitopes 

present in tumour material and to increase the chances of attaining more 

antibodies specific to the immunogen, a two-step cyclophosphamide injection 

procedure was used in this thesis. In effect, my results suggest that in 

subtractive immunisation the specificity of the immune response against 

epitopes expressed specifically on the immunogen is inversely proportional to 

the number of hybridomas generated. Cyclophosphamide treatment can be 

varied to affect this relationship. Recent studies using the two-round injection 

procedure have achieved success (Sleeman et al., 1998). 

The 10-1 antigen presents in different molecular weight forms. They 

could be the result of differential post-translation modifications that occur in 

the Golgi by the addition of N- and/or 0-linked glycosylation, or alternative 

splicing of pre-messenger RNA, or be the products of some form of 

proteolytic processing. Studies were performed to test if the 10-1 antigen was 

modified by glycosylation, none were found. As the 10-1 antigen could be an 

a-casein or casein-like protein, it would be interesting to consider if 

differential splicing is a characteristic of these proteins. Indeed, it has been 

observed that the synthesis of multiple protein variants exists for the a-caseins 

in bovine, caprine and ovine milks (Bouniol et al., 1993; Ferranti et al., 1997; 

Boisnard et al., 1991). This is not only restricted to the a-caseins, exon 

skipping has also been recorded for human ß-caseins (Menon et al., 1992). 
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When further studies firmly link the identity of the 10-1 antigen to that of an 

<X-casein or casein-like protein, investigations may be performed to consider if 

differential splicing is responsible for the many forms of the 10-1 antigen. 

Another possible explanation for the multiple forms of the 10-1 antigen 

1s proteolytic processing, for in confocal microscopy experiments it was 

localised to vesicle-like structures. Many proteins secreted by the regulated 

branch of the secretory system are proteolytically processed and activated in 

secretory granules. Processing can involve the removal of an N-terminal 

propeptide (Fritz et al., 1986; Pratt et al., 1986) or short spacer peptides from 

polyprotein precursors (Comb et al., 1982). In the latter case cells in different 

tissues can process the precursors to give different "mature" forms. An 

example of such a protein is prosomatostatin, which is processed to a 28 

amino-acid form by cells in the gut and a 14 amino-acid from by the brain and 

pancreatic cells (Noe et al., 1986). In fish pancreatic islet tissue there are two 

proteases which process prosomatostatin to give products of different lengths 

(Mackin and Noe, 1987). The many forms of the 10-1 antigen could be an 

example of such a proteolytic process. 

The 10-1 antiborlies recognise epitopes showing strong localisation to 

filopodia and secretory vesicle-like structures within cells. Investigations 

found that the 10-1 antigen was secreted from 10AS cells, and that growth 

conditions affected secretion Ievels, demonstrating perhaps that a regulated 

secretion system is in operation, and that the secretory vesicle-like structures 

may carry the 10-1 antigen to the surface of 1 OAS cells for release. This is an 

important finding for it is a long standing belief that the release of cell surface 

components or molecules in vivo may be important in assisting the survival of 

neoplastic cells. Indeed, many highly metastatic cells often shed/secrete more 

tumour cell antigens than that from their low metastatic counterparts 

(Alexander, 1974; Kim et al., 1975). Antigens shed by malignant cells are 

normal, but often incomplete, blood group substances, foetal antigens, and 
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tissue specific antigens (Nicolson, 1982, 1988; Black, 1980). It must also be 

said that the release of material from a cell can also just be a normal cellular 

process that is not strictly associated with malignancy (Nicolson, 1984). 

A similar feature of the 10-1 antigen and alpha casein proteins is that 

they are secreted. In mammary epithelial cells caseins are believed to be 

secreted by both the consititutive and regulated pathways (Turner et al., 1992). 

Previous work on casein protein secretion found that nocodazole, a anti­

microtubule drug could partially inhibit their secretion (Rennison et al., 1992). 

Nocodazole had no effect on the secretion of the 10-1 antigen (data not shown), 

suggesting that the 10-1 antigen is secreted by a non-conventional secretory 

process. There are a number of proteins secreted by such mechanisms, for 

example RAS-like GTP binding proteins such as SEC4 (Salminen and Novick, 

1987) and RAS2 (Deschenes and Broach, 1987), FGF-1 (Shi et al., 1997) and 

Interleukin-1 (Hazuda et al., 1991). Therefore, considering the differences in 

the secretory mechanisms of the 10-1 antigen and casein proteins, this may 

suggest that the N-terminal sequence obtained for the 10-1 antigen belongs to a 

genera of proteins other than caseins. However, it has been speculated that 

casein vesicles cannot necessarily be regarded as being similar to regulated 

secretory vesicles (Turner et al., 1992), for the effects of nocodazole are not 

complete. Thus, caseins could also be released by another unique secretory 

pathway. Another point of contention is that the effects of nocodazole on 

protein secretion have not been seen in all cell types (Schroer and Sheetz, 

1991) and as such these observations would require further investigation with 

other secretory inhibitors. 

The identification and characterisation of the proteins bearing the 10-1 

antigen in lOAS cells is critical to understand any role they might play in 

tumorigenesis and metastasis. Because of the multiple forms of the 10-1 

antigen and having no understanding of how they are related, and that some of 

these forms are expressed on lAS cells, an affinity purification procedure was 
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chosen ahead of the construction and screenmg of a cDNA library. 

Purification of the 10-1 antigen was made difficult by the very high affinity of 

the 10-1 antihoclies for the 10-1 antigen. I therefore had to use harsh elution 

conditions to elute the 10-1 antigen, which resulted in considerable leaching of 

antihoclies and the release of other non-specifically bound proteins from the 

protein G-DMP-Mab colums. Despite the ensuring difficulties experienced 

with the affinity purifcation, a limited N-terminal sequence was obtained for 

one of the 10-1 antigen proteins (R-P-K-H-PN-1) that corresponds to the N­

terminal residues of certain a-casein proteins. This sequence occurs 

immediately after a 15 amino-acid long signal peptide which is homologous to 

a-casein proteins found in all species, suggesting that the 10-1 antigen is a new 

a-casein protein or a casein-like protein. 

The complete sequence of rat a~casein has been determined and encodes 

a 15-amino acid long signal peptide and mature protein of 269 residues (Hobbs 

and Rosen, 1982). However, the N-terminal sequence for the 10-1 antigen 

protein is not contained in this sequence. Nevertheless, multiple subtypes of a­

casein have been identified in other species. These have not yet been cloned in 

the rat. Investigations to ascertain whether the mRNA for the cloned rat a­

casein is expressed in 1 OAS cells clearly showed that none is present. However 

in many casein species only three regions of the casein mRNAs are conserved: 

i) the 5" non-coding region; ii) the signal peptide coding region; and iii) the 

region encoding the phosphorylation sites. These regions correspond to the 

functional role of caseins, namely: i) to be secreted; ii) to form proteins 

aggregates termed micelles; and iii) tobe phosphorylated to allow Ca2
+ binding 

and transport. Analysis of rat, bovine and guinea pig cDNA sequences have 

demonstrated considerable divergence among the individual members of the 

casein gene family (Jones et al., 1985). They have in fact been grouped among 

some the most divergent of protein families studied. Thus if the protein 

bearing the 10-1 antigen was a new rat a-casein or casein-like protein present 

in 1 OAS cells and had undergone a senes of deletion/insertion or splicing 
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events, then a DNA probe for rat a-casein which has only homology with these 

three conserved regions may not hybridise to the mRNA encoding the protein. 

An approach to find if other casein or casein-like proteins exist in 1 OAS cells 

would be to design primers for these three homology areas and perform PCR 

to see any DNA products can be attained. If this is the case then one could go 

about cloning these new casein protein species. Such a study is currently 

underway. 

There is the possibility that the 10-1 antigen is not carried by a casein o r 

casein-like protein. No other proteins apart from APC and a-caseins were 

found to contain the sameN-terminal sequence. An important observation in 

initial studies with the 10-1 antibodies was that the 10-1 antigen is localised to 

filopodia of 10AS cells. There are a number of known molecules that are 

localised in this manner and are associated with tumour cell invasion, such as 

urokinase plasminogen activator and cathepsin D. However, they do not have 

similar biochemical properties as the proteins recognised by the 10-1 

antibodies, and do not contain the N-terminal sequence obtained for the 10-1 

antigen. The proteins of best fit are the caseins. Thus, future work will 

concentrate on genetic approaches, for example the screening of a bacterial 

expression library with the 10-1 antibodies to isolate cDNAs encoding the 10-1 

antigen protein. This will confirm whether or not it is a casein or casein-like 

protein that expresses the 10-1 antigen. 

In studies performed here there is up-regulation of an antigen, the 10-1 

antigen, containing a N-terminal epitope that probably belongs to a-casein 

proteins, on neoplastic cells originating from the rat pancreas. In vivo 

functional studies were performed with the 10-1 antibodies to see if they could 

inhibit the action of protein(s) bearing 10-1 antigen epitopes. No effect by the 

10-1 antibodies on tumour growth or metastasis was observed. This result is 

contrary to previous immunosubtractions which have generated antibodies that 

suppress metastasis (Brooks et al., 1993; Sleeman et al., 1998). However, this 

113 



is likely tobe a consequence of the 10-1 antigen being secreted, or because the 

10-1 antibodies bind to a non-functional domain of proteins barbonring the 10-

1 antigen. 

Studies to consider the expression of the 10-1 antigen in 1 OAS tumours 

and their metastases found that it was down regulated and expressed in a lower 

molecular weight form than that seen in the 10AS cell line. The most likely 

reason for this altered expression is that cells in tumours experience different 

growth conditions as compared to those grown in tissue culture. In tissue 

culture there is a continuous source of oxygen, and a plentiful supply of 

growth factors and nutrients provided by FCS. In a tumour, the growth 

conditions are not so nutritious, for example the environment is hypoxic and 

there is a different supply of stimulatory factors. Cells in tumours are affected 

by these differences and alter their expression of proteins and receptors, 

accordingly. The down regulation of the 10-1 antigen in vivo could be an 

example of such processes. 

Is the in vivo 10-1 antigen expression related to metastasis? It was found 

that the 10-1 antibodies had no effect on tumorigenesis, so one could simply 

say the 10-1 antigen is not associated with metastasis. However, investigations 

to consider if the 10-1 antigen is correlated with metastasis found that it was 

expressed by the majority of rat mammary and prostate carcinoma cell lines 

considered. Admittedly, there was not a strict correlation between its 

expression and a metastatic phenotype, however these observations still suggest 

that the 10-1 antigen may be connected with tumour growth and metastasis but 

in a non-obligatory way. Thus, from this work no direct functional association 

of the 10-1 antigen with metastasis can be made, however, it cannot be ruled 

out. It is only through further ongoing work to deduce the identity of 

protein(s) bearing the 10-1 antigen epitope(s) can conclusive information about 

its involvement in metastasis be found. 
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Previous studies have provided evidence of casein or casein-like protein 

expression in several tissues and neoplasms. Expression of these proteins have 

been observed in the pancreas and other tissues rather than just the mammary 

gland (Onoda and Inano, 1997; Barash et al., 1995; Pich et al., 1976). Studies 

have noted the up-regulation of casein or casein-like material in mammary 

carcinoma (Herbert et al., 1978; Bussolati et al., 1975; Medina et al., 1987; 

Smith et al., 1984; Cohen et al., 1987; Rudland et al., 1993), extramammary 

Pager· s disease and carcinoma of the lung, the endometrium and the 

gastrointestinal tract (Cohen et al., 1993; Suzuki et al., 1998). 

Acknowledeging that there is a large body of evidence showing that 

casein or casein-like proteins are present in neoplasms, one must ask how could 

they be functionally involved in driving or facilitating carcinogenesis? There 

are observations from their effects on lymphocytes that could link casein o r 

casein-like proteins with carcinogenesis. They have been shown to be 

responsible for inducing neutrophil chemotaxis (Wilkinson, 1972; Van Epps, 

1977; Wilkinson, 1988), neutrophil migration into the peritoneal cavity 

(Balcom, 1985), affecting lymphocyte proliferation (Coste, 1992), and 

influencing phagocytic function (Russell, 1975). A mode by which casein or 

casein-like proteins could cause these responses in lymphocytes is through 

interactions with integrins. Casein proteins have been shown to be bound by 

aMßz (Mac-1), axß2 (p150,95) and a4ß1 integrins (Davis, 1992; Davis et al., 

1997). The expression of aMß2 and axß2 integrins is restricted to monocytes, 

macrophages, and granulocytes (Relman et al., 1990), and they are imporant 

for leukocyte transmigration from blood vessels (Springer, 1990). a 4ß1 

integrin is expressed on lymphocytes and has been shown to be involved in 

mediating their adhesion to the ECM and to other cells such as endothelial cells 

and leukocytes (Lobb and Hemler, 1994; Kilger and Holzmann, 1995; Hynes, 

1992; Hemler et al., 1987; Guan and Hynes, 1990; Komoriya et al., 1991; 

Pulido et al., 1991). 

U sing these cell adhesion molecules leukocytes are able to invade organs 

and tissues in response to chemotactic signals that occur as a result of tissue 
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injury or infection. It is believed that lymphocytes are recruited to tumours by 

similar exogenous signals or tumour-secreted cytokines (Melani et al., 1995). 

In the tumour lymphocytes can either recognise and kill neoplastic cells and/or 

elicit positive influences on tumour growth and vascularisation (Mantovani et 

al., 1991). These actions are regulated by the balance of inhibitory and 

stimulatory signals produced by both malignant and infiltrating cells. Thus, 

seeing that casein or casein-like proteins cause chemotaxis in leukocytes and 

that they are bound by aMß2, axß2 and a4ß1 integrins, they could play a role in 

carcinogenesis by recruiting leukocytes to tumours. These leukocytes may then 

through the net balance of tumour-host interactions influence tumorigenesis. 

In conclusion, I have successfully used subtractive immunisation to find 

antigens specifically expressed on metastasising cells. Four antibodies were 

found that recognised the same group of proteins, encoding the 10-1 antigen, 

and these antigens are greatly up-regulated on the metastasising 10AS cellline 

used in the immunisation. Characterisation of the 10-1 antigen revealed that it 

has interesting biochemical properties which are consistent with a role for it in 

neoplasia. Interestingly, the N-terminal microsequence of a purified protein 

bearing the 10-1 antigen suggested that proteins encoding the 10-1 antigen may 

be related to the casein protein family. As caseins interact with integrins 

expressed on leukocytes whose presence in tumours may effect tumour cell 

proliferation and metastasis, it is fascinating to speculate that the expression of 

the proteins containing the 10-1 antigen may positively influence tumour 

growth. Studies are currently underway to completely deduce the identity of 

proteins bearing the 10-1 antigen to confirm their nature and function. 
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