
Visualization and Manipulation of
Structured Information

Uwe Brinkschulte, Marios Siormanolakis, Holger Vogelsang
Institute for Microcomputer and Automation, University of Karlsruhe, Haid-und-Neu-Str. 7,

76131 Karlsruhe, Germany
E-mail: fbrinksjsiorjvogelsangg@ira.uka.de

Abstract
In modern object oriented visual information systems the internal state of the entire
system consists of the internal states of many objects in different services, probably
distributed over a heterogeneous network of computers. Man machine interaction
in such an application is based on the visualization of states on one hand and the
modification of states on the other hand. A solution for this problem is the invention
of symbols as a graphical representation of structured information, held by objects.
The symbols are handled by a man machine service, which is constructed as a server.

1 Overview

The main task of any man machine service (MMS) is to inform a human user of a system’s
state and to enable modifications of this state. Due to the fact that man can perceive and handle
information fastest in a visual way, this is the best channel to inform about complex system
states. The optical channel is also a good choice to support human interaction. This is achieved
in feeding back the user’s actions. A MMS has to provide two services:

� the visualization of structured information
� and the supported modification of structured information

Based upon these services any communication between user and machine can be realized. This
paper presents the concept and an implementation of a man machine service, usable as a server
in a heterogeneous network of computers.

2 Symbols

A symbol is a graphical representation of a structured data type [2]. The user can define
symbols very flexible with a tool calledSymboleditor. The defined symbols are stored in a
configuration database for usage within the application. Symbols can be defined hierarchically,
i.e. a symbol can contain other symbols or base symbols. Changing a value of a data type
connected to a symbol leads to a different graphical representation. Changing the graphical
representation (e.g. the user moves a symbol interactive) leads to a different data type value.
The relations between data type values and the resulting images can be defined. This relation
is either continuous, where we provide linear or logarithmic functions, or discrete. Common
attributes to symbols and base symbols which can be modified are:

� Thepositionspecifies the location of a symbol or a part of it.
� Thescalespecifies the dimension of a symbol or a part of it.
� Theorientationallows to rotate a symbol or a part of it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197597402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


4000 ft
LH123

x-position
y-position

direction

flight nr

altitude

TEXT

INTEGER
INTEGER

INTEGER

FLOAT

ground speed

FLOAT

4000 ft
LH123

LH123 4000 ft

symbol
component

related symbol

affection

object

Fig. 1. Example of a complex symbol

� Thevisibility allows to show respectively hide a symbol or a part of it.

Base symbols have additional attributes likelinecolor, linetype, fillpattern, . . . which can be
modified. These attributes depend on the type of the base symbol, i.e. a line has two specific
points defining it, a polygon hasn characteristic points. One data type value can act on many
of these modifications simultaneously. Figure 1 shows an example of a complex symbol. The
structured information is the position, direction, speed, altitude and the flight number of an
airplane. This information plus its types is displayed on the left. The right side shows the
hierarchical structure of the airplane symbol. The dashed arrows represent the influence of the
information on the symbol. E.g. the direction influences the orientation of the airplane and the
speed vector. The length of the speed vector depends on the ground speed and the position of
the whole symbol is set according to the airplane position.

3 Planes — Windows

All symbols are arranged and positioned inplanes. Each plane defines a unit of measurement
respectively a scale. One symbol can only be assigned to one plane. A plane allows the grouping
of symbols.

The user can define rectangular areas on the screen. Referred to here aswindows. Windows
can superpose each other and the sequence in the window stack can be changed.

Planes with all their symbols can be displayed in windows. A window can hold multiple
planes simultaneously and a plane can be displayed with different scales in multiple windows.
Each window holds a stack of the assigned planes and their scales. The stack sequence is
changeable. Figure 2 shows an example — a roadmap — with two planes displayed in two
windows.



window1

Street

delete

attributes

insert

Street

delete

attributes

insert

planes

window2

Fig. 2. Planes and windows

4 Presentation objects

Normal symbols are used to visualize a big amount of user defined data types. Thepresen-
tation objectis introduced to offer the developer the facility to group symbols together and
to create images of complex data type with a special semantic. There are different types of
presentation objects predefined:

� A picture is a set of symbols as an image of a set of objects of the application. There are no
restrictions concerning the object types. The picture is the basis for all other presentation
objects.

� A menuis an image for a variable of an enumeration type, each button shows a selectable
value. Nearly any kind of symbol can be used as a button.

� A maskis an image for an object or a structure of an application: Modifiable components
of the object can be changed by the manipulation of the corresponding symbols (sliders,
buttons, textfields, . . . )

� A table is an image of an array of objects or structures.
Presentation objects can be build automatically by the service if the type of the corresponding

object is known at runtime. Because every presentation object is derived from the same common
class, they share the same (small) set of operations. The presentation objects themself are used
to build higher level objects like text editors, hierarchical graphs and help systems. These can
be interpreted as pictures with special semantics and a predefined behavior.

5 Events and bindings

Presentations objects itself are useful for the manipulation and visualization of objects. But
to allow interactively modifiable and dynamically changeable user interfaces, a powerful mech-
anism for event recognition and execution is created: thebinding. A binding is an operation,
defined on a presentation object. The execution of the operation is triggered by one or more
events on this object. The main ideas behind are:



� Several internal operations of the man machine service can be bound to events, so that
typical interactions can be created by the GUI-tool (see below) without writing any line of
code.

� Presentation objects can be bound together to create hierarchical menus, masks and tables.
� User defined operations can be bound to events to create callback functions. An application

is able to catch an event using this technique.
Presentation objects with a predefined behavior on events are implemented using bindings.

Objects of a higher level, which are using presentation objects like pictures, are supplying their
components with task-specific binding functions to have control over the event responding.

6 Graphical User Interface

The graphical user interface is a group of presentation objects and windows, which are needed
at the same time to solve a given task. It is placed in a database to separate the application from
the GUI. This allows the reuse of the entire GUI or parts of it in other applications and the
on-line modification of the GUI through the application itself.

Any number of GUI’s can be used at the same time simultaneously.

7 Interactive tools

The presented approach for a man machine interface requires tools to allow an interactive and
comfortable way to create symbols and GUI’s.

� The Symboleditoris an interactive tool, which enables the user to construct symbols as
an images of data types (together with the data types itself). Furthermore: It enables the
developer to describe the kind of relation between the image and the data type (proportional
display, text display of a value, range of values, . . . ).

� The GUI-editor is used to build graphical user interfaces as a set of presentation objects,
bindings and windows. A library management simplifies the reuse of prior constructed
objects.

8 Realization

MMS is written in C++ language for manipulating symbols, planes and windows. The plat-
form dependent parts of the MMS are based upon an uniform interface provided by a window
service. The functions of this service are grouped in two parts: window manipulations and
graphical drawing primitives in windows.

A set of Elementary Graphical Functions EGF [4] implemented on various platforms covers
the second part. The first part can either make use of the window functions of the beneath layer
(Xlib, Xwm, . . . ) or use the modulewindow managerto provide the same functionality. The
service is separated into a client and a server part. The server provides the functionality and the
client the access to it. This is implemented using distributed objects.

GUI’s are stored in a database, using persistent objects, to ensure reuseability in different
projects and to allow the unmodified use on other hardware platforms [5], [6], [1].

The application stores its internal states in a database using persistent objects to ensure the
survive of the objects states. The man machine service itself uses the same technique to hold
the symbol definition and the user interfaces together with the bindings between the application
and the graphical representation.

Figure 3 presents the internal structure of the service without the persistent object layer. Fig-
ure 4 shows the MMS basic service and realization for different hard- and software platforms



Man-Machine basic service

Symbol Window Plane Event

Presentation object

Menu Mask TableSymbol Picture

Bindings layer

Binding Event

High-level presentation object

Textdocument Graph

Helpsystem

Graphical user interface layer

Fig. 3. Internal MMS structure

in detail.

9 Conclusion

The resulting environment allows pleasant and comfortable development of user interfaces
for distributed systems. This has been verified in different applications e.g. a railway control
system, the control of a production cell [3], a traffic control system and a project management
tool. Free definable symbols have reduced the need for an additional software coded function-
ality. Bindings are a powerful mechanism to implement a user controlled behavior and reduces
the programming overhead.

The major features of this man machine service are:
� Portability
� Flexibility
� Complex graphical objects
� Tools and editor services
� Separation of GUI database and application
� Resolution independence
� Client/Server-Concept
� Recording and playing of sounds

10 Acknowledgment

This paper is based on research done at the Institute for Microcomputers and Automation —
Prof. Schweizer and Prof. Brinkschulte.

References

[1] Richard P. Gabriel,Persistence in a Programming Environment, Dr. Dobb’s Journal, 12/1992
[2] Gunnar Johannsen,Mensch-Maschine-Systeme, Springer, 1993
[3] C. Lewerentz, T. Lindner,Case Study ”Production Cell”. A Comparative Study in Formal Software Development,

Forschungszentrum Informatik, Karlsruhe, FZI-Publication 1/94



hardware

operating
system

graphics

window

MMS

workstation
VME

XGC90

UNIX

PC
OGS

PC
(S)VGA

DOS
Windows NT /
DOS + Win3.x

Xlib OGS-lib grx-lib Win GDI

Xwm
EGF

elementary graphical functions

window manager
Win
API

window service

plane service

symbol service

Man Machine basic service

Fig. 4. MMS basic service

[4] Kapp, K.-H. and Siormanolakis, M.:EGF – Elementary Graphical Functions, Institute for Microcomputers and Automa-
tion, Internal Report, University of Karlsruhe (1994)

[5] Al Stevens,Persistent Objects in C++, Dr. Dobb’s Journal, 12/1992
[6] Holger Vogelsang, Uwe Brinkschulte,Persistent Objects In A Relational Database, submitted paper to ECOOP’96,1995


