
C3L++: Implementing a Description Logics System on Top of an Object-Oriented
Database System

T. Kessel and M. Schlick and
H.-M. Speiser

Equipe de Recherche en Ingenierie des
Connaissances (ERIC), Ecole Nationale

Superieure des Arts et Industries de
Strasbourg (ENSAIS), 24 Bd de la Victoire,

F-67084 Strasbourg CEDEX, France
fkessel—schlick—speiserg@eric.u-strasbg.fr

U. Brinkschulte and H. Vogelsang
Institute for Microcomputers and

Automation, University of Karlsruhe,
Haid-und-Neu-Str. 7,

D-76131 Karlsruhe, Germany
fbrinks—vogelsangg@ira.uka.de

Abstract. This paper describes the Description Logics system
C3L++ that is implemented on top of the object-oriented POET data
base. The benefits of such an integration are the management of
large size knowledge bases, an increased performance and data per-
sistency. Moreover, it is planned to integrate the relational database
MERLIN via an object-oriented access layer in C3L++ and test af-
terwards its performance.

1 INTRODUCTION
There are different approaches to integrate knowledge representation
systems (KRS) and data base management systems (DBMS). Hith-
erto, most research work was focused on the interfacing of KRS and
relational DBMS, e.g.[21], or providing persistent storage systems
for KRS, e.g.[15] and[14]. Although these projects rely on a very
tight coupling between KRS and DBMS, there are still two different
systems that have to be interfaced: the KRS and the DBMS. As a
consequence the objective for developing the new KRS C3L++ from
the scratch was to integrate a DBMS right from the start such that
it is completely transparent for the user who accesses only the KRS
front-end.

The knowledge representation system C3L++ is based on the
paradigm of Description Logics (DL)[33],[23]. The principal guide-
lines for building C3L++ are to provide a performant DL system that
can be employed in applications requiring large amount of data. This
is the case in knowledge extraction from texts and the Plinius project
[27] is one example for such applications that served as empirical test
base for performance tests of DL systems[26].

The C3L++ KRS will be used in the following applications within
the ERIC research lab:

1. A Knowledge extraction from texts supports the knowledge ac-
quisition process by extracting all relevant terms and relations
from large text corpora. Current applications focus on the study
of medical texts written in french[10], [11].

2. Conceptual Modeling of relational DBMS is based on a termi-
nological formalism to process and optimize queries written in
natural language. This approach will be employed for a Data
Warehouse application[25].

3. Configuration of a distributed electronic bus system aims at pro-
viding an interactive decision support for electronic engineers
designing CAN bus application in vehicles[2],[18],[17].

These projects have in common that they require high perfor-
mance, large size knowledge bases and data persistency. Although
the implementation of C3L++ is still in progress, its expressive power
will be rather small and therefore oriented at the one of CLASSIC
[5],[6]. The most distinguishing feature of C3L++ in comparison to
other KRS, i.e. CLASSIC, BACK++ is the full integration of the
object-oriented POET DBMS[24]. Roughly speaking, C3L++ tries
to combine the benefits of DL-based KRS with those of DBMS by
providing on the one hand the front end of DL and on the other hand
relying on the DBMS for handling large amount of data and ensur-
ing data persistency. As a matter of fact we hope to obtain very good
performance results, although there is still enough room for intelli-
gent caching and data storage strategies improving performance. An
alternative for employing the POET DBMS is to use MERLIN that
is a relational DBMS designed for high performance in the context
of automation. MERLIN provides access to its relational data base
schemes via an object-oriented layer hence simplifying the map-
ping from object-oriented representation formalisms. Although the
transformation from object-oriented to relational representation is
nowadays standard in industry, the implemented solution in MER-
LIN promises some benefits.

The remainder of the paper is structured as follows. The C3L++
KRS is briefly described. One major application, the configuration
of distributed electronic bus systems is presented motivating high
performance and data persistency. Some preliminary results of run
time performance tests are discussedand future research perspectives
are elaborated. A short introduction to the object oriented layer of the
relational DBMS MERLIN is given. Related work concerning the
integration of KRS and DBMS is referred to.

2 PRESENTATION OF C3L++
C3L++ is the successor of the C3L research prototype that integrates
DL and frames[16]. C3L is founded on a frame-based implemen-
tation and proposes in analogy to[22] a distributed concept and at-
tribute specific subsumption[2]. Another particularity of C3L is the
integration of procedural attachments, i.e. methods and demons, in
form of tasks[18]. This explicit declarative modeling of tasks is ori-
ented at SCARP[32] and LISA[13].

Although the design of C3L++ underwent certain changes due to
the necessary adaptation to C++, the C3L core architecture remains
preserved. It provides so far only a limited functionality, because
its implementation is still in progress. Now, the expressive power of

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197597378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


C3L++ is restricted to AND, ALL, ONE-OF, FILLS and CARD that
is a combination of the ATLEAST and ATMOST operators. Further
enhancements are planned, but not implemented yet. C3L++ is sup-
posed to serve as one of the major knowledge representation tools
within the ERIC lab for

1. knowledge extraction from texts

2. conceptual modeling of relational DBMS for Data Warehouse

3. configuration of distributed electronic bus systems in vehicles

It is widely accepted commons sense in the knowledge representa-
tion field that KRS and DBMS should be integrated to combine their
advantages. Unfortunately, very few implemented KRS do rely on or
are interfaced to DBMS, yet. As a matter of fact, the consequences
are a lack of performance for large amount of data and the absence of
data persistency. The major benefits of integrating an object-oriented
DBMS within C3L++ are

1. the persistency of concepts and instances,

2. the possible large size of knowledge bases and

3. the acceptable performance.

Another advantage of using an object-oriented DBMS is the sup-
port for retrieving concepts and instances, hence resulting in an in-
creased performance. Information retrieval is one the crucial tasks
of such KRS, therefore any improvement, e.g. with respect to per-
formance, can be significant for its success. Furthermore employing
DBMS like POET or the object-oriented variant of MERLIN offers
the facility of a very comfortable programming interface that they
provide. These are the major reasons why POET and MERLIN are
employed respectively studied for use in the C3L++ project.

Beyond measuring the performance of the POET DBMS for
C3L++ we would like to compare the performance of both DBMS
POET and MERLIN with respect to their use in C3L++. The re-
sults might guide other system designers whether to select a pure
object-oriented DBMS, e.g. POET, or to prefer a relational DBMS,
e.g. MERLIN, that has an object-oriented access layer.

C3L++ principal properties are as follows:

� it is built on top of the object-oriented POET DBMS

� it provides only a restricted expressive power

� it is designed for high performance

� it is implemented in C++ and runs under Windows 3.1 and
UNIX

POET is an object-oriented DBMS from POET Software Corpo-
ration. C++ classes are marked as persistent and in consequence all
their instances are handled as persistent objects. Note, that all classes
that are inherited by persistent classes are automatically persistent as
well. POET is in fact a pre-compiler that generates standard ANSI
C++ code. Therefore its output source code can be compiled by any
other C++ compiler. The advantage of using POET is that only small
modifications have to be made at the source code, i.e. marking of
classes as persistent. The shortcoming is that not all constructs and
features of C++, e.g. templates, are supported by the POET pre-
compiler. Hence it can be considered as a supplementary DBMS pro-
gramming tool for a C++ development environment.

3 CONFIGURATION AS AN APPLICATION
In modern vehicles electronic sensors, actors and control units are
connected via bus systems. The upcoming standardisation for these
buses is the CAN (controller area network)[12]. The configuration

of these buses has become rather complex. The engineer has to spec-
ify the functionality of the system, select the appropriate components
and position them in the vehicle. He has to connect them via buses
and specify the messages. Additionally he has to guarantee a max-
imum of safety of the system. Finally he has to find the cheapest
solution for the configuration problem.

It is necessary to support the engineer with an interactive configu-
rator. To build this configurator we use DL. That DL is useful to de-
velop a configurator has already been shown by the AT&T research
group in the framework of the PROSE project[31], but still it is not
clear how to deal with large amounts of data.

An essential problem for the configuration of the vehicle buses is
that large amounts of data have to be handled. E.g. about 300 objects
are necessary to model only the different previewed airbag function-
alities their components and their messages. It is obvious that this has
to be stored in a database.

A sufficient access to the data is important for the configuration
process. E.g. during the configuration the engineer has to find the
appropriate compartment for a component. It is necessary to check
whether the properties offered by a component match the demands
of the compartments[2]. Typical properties are for example temper-
ature, water resistance or electromagnetic compatibility conditions.
Two different approaches could be used to solve this problem. The
first is that the engineer proposes a compartment and the system
checks whether the properties match or not. If not the system refuses
the proposal. This would lead to a lot of refused configuration deci-
sions, hence the engineer would not accept at all the configurator. The
second possibility is to compute all possible matches between com-
partments and components and to ask the engineer to choose one of
these. This is only possible if the computation is not too expensive
otherwise the configurator will also be refused by the engineer. For
the estimation of the computation costs it is necessary to know more
about the performance of the system. Especially the combination be-
tween DL and an object-oriented DBMS is a promising approach, but
also the combination with a relational DBMS is important as well be-
cause this would enable us to use already existing DB, i.e. product
databases in companies.

4 PERFORMANCE TESTS
Although the implementation of C3L++ is not finished yet, how-
ever some preliminary performance tests allowed to validate the cur-
rent state of its TBox. The tests consist essentially of generating
thousands of concepts that are independent, that means they are not
linked to each other. Note that the objects constituting concepts are
nested. The very first performance tests measured only the efforts
to create and to store concepts in the main memory respectively in
the database. Afterwards, the dependencies between data loading
(”caching”) strategies and inferences, e.g. subsumption, classifica-
tion, are studied. Until now, these tests were only done by means of
POET, but we hope to integrate as soon as possible the relational
MERLIN DBMS via its object-oriented layer. Detailed results of
these tests can be found in[19]. By the way, the measurements were
run on a Pentium PC with 100 MHz and 32 MB main memory. In the
following, some results of the above mentioned tests are listed.

No. of concepts Main memory POET DBMS
10 0,01 1,04

100 0,16 11,48
1000 1,76 112,48

10000 27,47 1289,89

Employing an object-oriented DBMS engenders a considerable
overhead — in comparison to the main memory — for the creation

2



of concepts. On the one hand, the concept generation is essentially
slowed down, for instance creating10:000 concepts takes only 27
seconds in the main memory in comparison to 1289 seconds in the
DBMS. Surprisingly it does not make a difference whether concepts
are stored separately or in clusters. This fact seems to indicate that
performance gains are possible thanks to better caching strategies.

Obviously, the hard disk access time limits severely the perfor-
mance that means storing an object in the main memory is approxi-
mately hundred times faster than storing it as a persistent object. On
the other hand, it was impossible to create more than15:000 con-
cepts in the main memory due to a systematic breakdown of the
memory system. Although it remains still feasible for the object-
oriented DBMS version. Furthermore, the performance for creating
many thousands concepts directly in the main memory increased in
a non-linear way, whereas the DBMS performance evolved linearly.
We are curious to compare these results with the ones made by MER-
LIN in a similar test.

However the gain of security thanks to data persistence cannot be
expressed in quantitative terms, but hit as to be taken intoaccount
as well. Note that the effects observed so far are only valid for large
knowledge bases consisting of many thousands of concepts.

A more sophisticated knowledge base test generator is currently in
study. It promises to engender nested concepts with varying degrees
of complexity. Moreover, knowledge bases will be reasoned about
by means of different inferences, e.g. subsumption, classification, in
analogy to the tests done by[1] and[26]. But this time the topic is
focus is performance behaviour for large knowledge bases thanks to
the integrated data base. The work will be oriented at the approach
of Karp in [15] and[14]. However the work is still at its early stages.
Nevertheless we are very interested in the real performance of usual
DL inferences on average knowledge bases in order to estimate the
practical value of implemented DL systems, i.e. in the context of
knowledge acquisition and of configuration systems[18].

5 OBJECT-ORIENTED DATABASE
INTERFACE

This interface for the existing relational database ”MERLIN”
[7],[8],[9] brings together the needs for object persistence and high
speed database access. It was created as a component in the construc-
tion of system using the ECBS-process[28],[30]. Later it has been
found out that this is an ideal solution for C3L++ too. The interface
offers persistence as a property of an object through which its exis-
tence transcends time[3]. This is realised using one or more database
servers simultaneously, even on distributed hardware platforms.

Persistent objects are realised by declaring the corresponding
classes as persistent. This is done by deriving these classes from the
internal class ”Persistent” on the applications side. On the systems
internal side every persistent object is connected with one (of sev-
eral possible) database objects. These acts as stubs for the real local
or remote database server in a heterogeneous net of computers. The
connection to a stub is dynamically changeable so that an object’s
content can be loaded from or stored to different databases. The ad-
vantage of this design is that a persistent object is placeable anywhere
on a net. No object has to know its own storage place, only the refer-
ence to the local stub is kept.

An other requirement of C3L++ is the persistence of relations be-
tween objects, which are expressed in object oriented programming
languages by pointers. To keep the relations between persistent ob-
jects after a program termination alive the smart pointer class ”Persis-
tentPtr” is introduced. In addition to the memory mapped reference
to the destination object it contains the objects unique identification.
This class either allows the automatic reloading of the destination ob-
ject during its own creation or a program controlled recreation. This
two mechanisms enable either a total rebuild of the entire data struc-
ture only by reloading the base object or a partial loading of huge
structures at a given point of time.

6 RELATED WORK AND REMARKS
On the contrary to many previous attempts to interface KRS with
DBMS by means of a loose coupling, e.g.[4], [20] we do not suppose
a loose coupling, but a transparent and tight integration. Contrasting
with the work of interfacing KRS and relational DBMS, e.g.[21],
or providing persistent storage systems for KRS, e.g.[15], [14], the
DBMS is integrated by means of a pre-compiler, hence resulting in a
full, closed integration. Furthermore we are interested to compare the
performances of the object-oriented DBMS POET and the relational
DBMS MERLIN with respect to the same KRS: C3L++.

Therefore the DBMS is completely hidden within the KRS. Fur-
thermore, the object-oriented KRS implementation structures are di-
rectly mapped to adequate data structures provided by the object-
oriented DBMS. Therefore, complicated transformation operations
between object-oriented and relational representations are avoided.

The following remarks are some kind of disclaimers that should
help to better understand the research work. First, combining KRS,
i.e. DL systems, and DBMS rises always the question how both se-
mantics, namely the open world semantics of DL and the closed
world semantics of DBMS are conciliated. The answer is rather sim-
ple, because the DL frond end provides the open world semantics for
the user, whereas the underlying DBMS is only employed for stor-
ing and loading persistent objects. Retrieval results of the DBMS are
especially processed to respect the open world semantics of DL.

Second, the current implementation state of C3L++ does no op-
timise the mapping from he DL front end to the underlying object-
oriented POET DBMS, although this is foreseen in the future. The
transition from the formalism of DL to DBMS is completely trans-

3



parent for the user, hence the user does only see the DL front end.
Third, the overall objective of the C3L++ project is to build a per-

formant DL system by fully integrating an object-oriented DBMS.
Therefore the focus is on performance and reliability for large knowl-
edge bases, although these goals risk to be perceived as engineering
instead of research issues, they seem to be indispensable to us in or-
der to satisfy the requirements of our applications.

ACKNOWLEDGMENTS. The described joint research work
was done within the framework of the french-german Institute for
Automation and Robotics (I.A.R.). We would like to thank in par-
ticular Prof. Schweitzer and Prof. Keith for establishing this fruitful
cooperation between both institutes.

References
[1] F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, et al.An Em-

pirical Analysis of Optimisation Techniques for Terminological
Representation Systems.Principles of Knowledge Representa-
tion and Reasoning (KR-92) (San Mateo, CA, 1992) pp.270-
281.

[2] T. Berger, T. Kessel, F. Rousselot, M. Schlick.C3L: A Sys-
tem Integrating Description Logics and Frames.(ERIC, 1996),
Technical Report.

[3] G. Booch. Object oriented design with applications.The
Benjamin-Cummings Publishing Company, 1991.

[4] A. Borgida, R.J. Brachman.Loading Data in Description Rea-
soners.ACM SIGMOD Intern. Conference on Management of
Data (Washington, D.C., USA, 1993) pp.217-226.

[5] R.J. Brachman.’Reducing’ CLASSIC to Practice: Knowledge
Representation Theory Meets Reality.Principles of Knowledge
Representation and Reasoning (KR-92) (Cambridge, Mass.,
1992) pp.247-258.

[6] R.J. Brachman, D.L. McGuinness, P.F. Patel-Schneider, L.A.
Resnick, et al.Living with Classic : When and how to use a
KL-ONE-Like Language.In: Principles of Semantic Networks
(Morgan Kaufmann, San Mateo, California, 1991) pp.401-456.

[7] U. Brinkschulte.MERLIN — Ein Prozeßdatenhaltungssystem
für Echtzeitanwendungen.Echtzeit 93, Karlsruhe, Germany,
1993.

[8] U. Brinkschulte.Architektur eines Datenhaltungsdienstes.39.
Wissenschaftliches Kolloqium TU Illmenau, Illmenau, Ger-
many, September 1994.

[9] U. Brinkschulte. Database Services.Knowledge Engineer-
ing and Object-Oriented Automation Workshop, Strasbourg,
France, May 1995.

[10] P. Frath, R.Oueslati, F. Rousselot, T.Barthelemy.Sémantique
et traitement automatique des langues: R´eflexion et applica-
tion pratique.TALN’96, Troisiéme conférence annuelle sur Le
Traitement Automatique du Langage Naturel, Marseille, 22 -
24 Mai 1996.

[11] P. Frath, R. Oueslati, F. Rousselot.Identification de relations
sémantiques par rep´erage et analyse de cooccurencesde signes
linguistiques.JAVA 95, Grenoble, avril 95, 1995.

[12] ISO 11898 and ISO 11519-2

[13] I. Jacob-Delouis, J.-P. Krivine.LISA: un langage r´eflexif pour
opérationnaliser les modules d’expertise.Revue d’intelligence
artificielle, Vol.9, ,1995 pp.53-88.

[14] P. Karp, S.M. Paley, I. Greenberg.A storage system for scal-
able knowledge representation.Conference on Information and
Knowledge Management (CIKM-94) (1994).

[15] P.D. Karp, S.M. Paley. Knowledge Representation in the
Large. International Joint Conference on Artificial Intelligence
(IJCAI-95), Montreal, Canada, 1995, pp.751-758.

[16] T. Kessel, O. Stern, F. Rousselot.From Frames to Concepts :
Building a Concept Language within a Frame-Based System.
Int. Workshop on Description Logics (DL-95), Rome, Italy,
1995, pp.140-142.

[17] T. Kessel, M. Schlick, O. Stern.Accessing Configuration-Da-
tabases by means of Description Logics.KRDB-95, Bielefeld,
Germany, 1995.

[18] T. Kessel, M. Schlick, O. Stern.Modelling for Configuration
employing hybrid Knowledge Representation.Engineering of
Computer-based Systems (ECBS-96), Friedrichshafen, 1996,
pp.118-124.

[19] T. Kessel, H.-M. Speiser.Run Time Performance Measures of
C3L++. ERIC, 1996, Technical Report.

[20] C. Kindermann, P. Randi.Object Recognition and Retrieval in
the BACK system.International Working Conference on Coop-
erating Knowledge Based Systems (CKBS’90), 1991, pp.311-
325.

[21] E. Mays, S. Lanka, B. Dionne, R. Weida.A persistent store for
large shared knowledge bases.IEEE Transactions on Knowl-
edge and Data Engineering Vol.3, no. 1, 1991, pp.33-41.

[22] A. Napoli, C. Laurenco, R. Ducournau.An Object-Based Rep-
resentation System for Organic Synthesis Planning.Interna-
tional Journal of Human-Computer Studies Vol.41, no. 1/2,
1994, pp.5-32.

[23] B. Nebel.Reasoning and Revisioning in Hybrid Representation
Systems.Springer, 1990.

[24] POET. POET 3.0 Reference Guide.POET Software Corpora-
tion, 1995, Technical Report.

[25] D. Rudloff. Terminological Reasoning and Conceptual Model-
ing for DataWarheouse.KRDB-96, Budapest.

[26] P.-H. Speel. Selecting Knowledge Representation Systems.
University of Twente, Enschede, the Netherlands, 1995. The-
sis.

[27] P.E.v.d. Vet, H.d. Jong, N.J.J. Mars, P.-H. Speel, et al.Plinius
Intermediate Report.Department of Computer Science, Uni-
versity of Twente, Enschede, the Netherlands, 1994, Technical
Report UT-KBS-94-10.

[28] H. Vogelsang, U. Brinkschulte, M. Siormanolakis.Archiving
System States by Persistent Objects.Engineering of Computer-
based Systems (ECBS-96), Friedrichshafen, 1996

[29] Holger Vogelsang, Uwe Brinkschulte.Persistent Objects in a
relational Database.In: Proceedings of WOON’96, St. Peters-
burg, Russia, 1996

[30] M. Voss. System Theories for an Engineering Discipline of
Computer-Based Systems.EMCSR96/Session C

[31] J.Wright, E. Weixelbaum, et al.A knowledge-based configu-
rator that supports sales, engineering and manufacturing at
AT&T Network Systems”.Proceedings of the Innovative Ap-
plications of Artificial Intelligence Conference,1993

4



[32] J. Williamowski, F. Chevenet, F. Jean-Marie.A development
shell for cooperative problem-solving environments.Math-
ematics and computers in simulation Vol.36, no. 4-6, 1994,
pp.361-379.

[33] W. Woods, J. Schmolze.The KL-ONE family.In: Semantic Net-
works in Artificial Intelligence, Pergamon Press,1992, pp.133-
177.

5


