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The magnetic response of a proximity-coupled superconductor-normal metal sandwich is studied

within the framework of the quasiclassical theory. The magnetization is evaluated for �nite values of

the applied magnetic �eld (linear and nonlinear response) at arbitrary temperatures and is used to
�t recent experimental low-temperature data. The hysteretic behavior predicted from a Ginzburg-

Landau approach and observed in experiments is obtained within the quasiclassical theory and

shown to exist also outside the Ginzburg-Landau region.
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I. INTRODUCTION

A superconductor in electric contact with a normal
metal induces superconducting correlations on the nor-
mal side. This proximity e�ect has been studied exten-
sively, both theoretically and experimentally (see Ref. 1
and references therein). The superconducting properties
of the normal metal show up, e.g., in the conductance
or the magnetization (Meissner e�ect). The vanishing of
the resistance of a normal wire in contact to supercon-
ducting islands has been observed. In recent experiments
(typically with wires consisting of a superconducting core
covered by a normal metal) by Oda and Nagano2, Mota
et al.3;4, and Bergmann et al.5 the magnetization was
measured. In each of these experiments, the magnetic
�eld was expelled from the normal-metal part (N) of the
sample by superconducting screening currents induced by
the presence of the superconductor (S).
In the present work, we study theoretically the proxim-

ity and Meissner e�ect in an NS sandwich using the qua-
siclassical Eilenberger formalism6;7. In materials with a
high concentration of impurities (dirty limit), the quasi-
classical theory can be reformulated leading to the Usadel
equation8. In both approaches the induced pair ampli-
tude in the normal metal, the density of states, the crit-
ical current, etc., have been calculated (see, e.g., Refs.
9{11). In general, for a realistic geometry the solution
of the Eilenberger or Usadel equation together with the
Maxwell equations can be performed only numerically.
We have solved the combined system of equations in a
wide range of parameters (temperature, external mag-
netic �eld, layer thickness). In addition we have paid
special attention to the non-linear response that shows
interesting hysteretic behavior at low temperatures.
In Section II we introduce the quasiclassical Green's

function formulation for the clean and dirty limit. The
geometry and the characteristic length scales are also
de�ned there. In Section III we evaluate the Meissner
screening current and present some results on the space
dependence of the various quantities. Finally, in Section
IV results for the susceptibility in a wide range of tem-
peratures and values of the magnetic �eld are presented
and discussed. Throughout the paper we use units with
�h = kB = c = 1.

II. THE MODEL: CLEAN AND DIRTY CASE

Our theoretical description is based on the quasiclas-
sical Green's function technique6;7. We will study two
limiting cases, the clean limit with complete absence of
impurities and the dirty limit with high concentration of
impurities such that the elastic scattering rate 1=�el is
large compared to the superconducting order parameter
� and the temperature T . We introduce two di�erent
coherence lengths for both the superconducting and the
normal side of the double-layer structure. In a supercon-
ducting material we have in the clean limit

�S
c =

vF

2�
;

and in the dirty case

�S
d =

r
D

2�
:

Here vF is the Fermi velocity, � the pair potential and
D = 1

3
vF lel = 1

3
v2
F
�el the di�usion constant. These

lengths are temperature-independent for T � Tc. In
a normal metal we de�ne the temperature-dependent co-
herence lengths in the clean limit

�N
c (T ) =

vF

2�T
;

and in the dirty limit

�Nd (T ) =

r
D

2�T
:

For de�niteness we �rst consider a one-dimensional ge-
ometry with a bulk superconductor in the region x < 0
and a normal metal layer in the region 0 � x � d in
perfect electric contact with the superconductor. (Later
we will also present some results for the cylinder geome-
try of the experiments.) Since we assume d � �S

c
, we

can neglect the spatial dependence of the pair poten-
tial in the superconductor. This has also been con�rmed
numerically12. Therefore, we assume the following form
for the pair potential

�(x) = ��(�x); Im� = 0 : (1)
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For the vector potential we use the Coulomb gauge. To-
gether with the boundary conditions it is written as

A = (0; A(x); 0); A(0) = 0;
dA

dx

����
x=d

= H ; (2)

where H is the external applied �eld. We have neglected
the magnetic �eld on the superconducting side, i.e., we
assume that the penetration depth on the superconduct-
ing side is much smaller than the other relevant length
scales.
We �rst consider the clean limit de�ned by

�S
c
; �N
c
(T )� lel :

The Eilenberger equations for this system read�
(! + ievyA(x))�̂3 ���̂1 + vx

@

@x
; ĝ!(vx; vy; x)

�
= 0 ;

(3)

which is to be combined with the normalization condition
for the Green's functions

ĝ2
!
(vx; vy; x) = 1 : (4)

The Matsubara frequencies are ! = �T (2n + 1), �̂i are
the Pauli matrices and vx,vy are the x- and y-components
of the Fermi velocity. We assume ideal transmission, i.e.
there are no surface potentials at the N-S-boundary and
the Fermi velocities are equal on both sides. The bound-
ary condition reads ĝ!(vx; vy; 0�) = ĝ!(vx; vy; 0+). At
the interface to the vacuum we assume specular reec-
tion, ĝ!(vx; vy; d) = ĝ!(�vx; vy; d).
The current density in the y-direction is given by

j(x) = �ie2�N (0)T
X
!

< vyTr�̂3ĝ!(vx; vy; x) > ; (5)

where N (0) is the density of states at the Fermi level and
< � � � > denotes averaging over the Fermi surfaces that
are assumed to be spherical.
In systems with high concentration of nonmagnetic im-

purities, such that

�Sd ; �
N

d (T )� lel ;

the Eilenberger equation reduces to the Usadel equation
for the isotropic part of the Green's function, ĝ!(x) =
< ĝ!(vx; vy; x) >. For our geometry it can be written as

D
d

dx
ĝ!(x)

d

dx
ĝ!(x) = (6)�

!�̂3 ��(x)�̂1 +De2A(x)2�̂3ĝ!(x)�̂3 ; ĝ!(x)
�

We take the same boundary conditions as in the clean
case, i. e. we neglect the magnetic �eld on the supercon-
ducting side. In the dirty limit the current density is
given by the London-like expression

j(x) = �e2N (0)DT
X
!

Tr�̂3ĝ!(x) [�̂3 ; ĝ!(x)]A(x) ; (7)

which together with the Maxwell equation

d2

dx2
A(x) = 4�j(x) =

1

�2(x)
A(x) ; (8)

de�nes a local penetration depth �(x).

III. MEISSNER EFFECT

A. Clean Limit

In the clean limit an analytic solution of Eq. (3) for
the normal metal layer has been found by Zaikin10. It
turns out that the �̂3 component of the Green's function
in the normal metal layer is spatially constant. Conse-
quently the current density (5) in the normal metal layer
is spatially constant as well and can be expressed as

jn =
Kc

4�e�N
c
(Tc)3

T

Tc

X
!>0

Z �

2

0

d�

Z �

2

0

d' sin2 � cos' sin 2�

�

"�r
1 + (

!

�
)2 sinh� +

!

�
cosh �

�2

+ cos2 �

#
�1

: (9)

Here we have introduced a dimensionless constant

Kc = 32e2N (0)v2
F
�N
c
(Tc)

2 =
24

�

�
�Nc (Tc)

�N

�2

; (10)

where �N = (4�e2ne=m)�1=2 is the normal-metal pene-
tration depth, de�ned analogously to the London pene-
tration depth with the normal electron density ne replac-
ing the superuid density. Furthermore,

� =
2!d

vF cos �
(11)

is the length of a classical trajectory divided by the ther-
mal coherence length �Nc (T ) and

� = 2e tan � cos'

Z d

0

A(x)dx (12)

is the Aharonov-Bohm phase connected with this tra-
jectory. The last equation shows, that the relationship
between current and vector potential is completely non-
local. This phase factor leads to a shift in the energies of
the Andreev levels in normal metal layer9. The fact that
these bound states are extended over the whole thickness
of the N-layer and that the density of Andreev levels is
spatially constant, leads to a constant current density.
We can add, that in cylindrical geometries if the nor-
mal layer is not thin compared to the radius, this second
condition is not satis�ed. Hence, as was pointed out by
Nazarov13, the current density is not constant in space.
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To evaluate the Meissner e�ect, we have to solve the
Maxwell equations with the boundary condition given in
Eq. (2). The solution in the N-layer is

B(x) = H � 4�jn(d� x) : (13)

For the susceptibility of the N-layer we �nd

� = �
jnd

2H
: (14)

Since the solution of the problem may lead to 4�jnd > H
the magnetic �eld in the region 0 � x � d�H=4�jn may
change its sign relative to the applied �eld. This over-
screening e�ect was �rst found by Zaikin10. In Fig. 1 we
have plotted the current density and the magnetic �eld
in the N-layer for di�erent temperatures in the limit of
small magnetic �elds. Below T � 0:1Tc we �nd the over-
screening. Below this temperature the screening quickly
reaches its saturation value (solid curve) and a suscepti-
bility of 3=4 as compared to complete screening. Thus,
even at T = 0 the screening is incomplete.
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FIG. 1. Current density and magnetic �eld in the N-layer

(clean limit). Layer thickness d = 20�Nc (Tc), dimensionless

material constant Kc = 10.

Next we study the nonlinear response. For this purpose
we write the self-consistency equation for the integrated

dimensionless vector potential a = e
R d
0
A(x)dx

a = e
1

2
Hd2 �

4�

3
d3ejn(a) : (15)

Solving Eq. (15) for the applied �eld H we get, together
with Eq. (14), the magnetization curve �(H)

�(a) = �
jn(a) d

2H(a)
(16)

H(a) =
2a

ed2
+ 4�jn(a)

2d

3

parameterized by the integrated vector potential.

B. Dirty Limit

Here Eq. (6) cannot be solved analytically anymore. To
proceed numerically we reduce it to the scalar equation

2!F!(x)� 2�G! + 4De2A2(x)F!(x)G!(x) =

D

�
G!(x)

d2

dx2
F!(x)� F!(x)

d2

dx2
G!(x)

�
; (17)

where F!(x) =
1

2
Tr�̂1ĝ!(x) is the o�-diagonal part of the

Green's function and G!(x) = (1�F!(x)2)1=2 is �xed by
the normalization (4). The Maxwell equation is given by
Eq. (8) with the boundary conditions given in (2). We
write for the local penetration depth

1

�2(x)
=

Kd

�N
d
(Tc)2

T

Tc

X
!>0

F 2

!
(x) ; (18)

where we have de�ned an dimensionless constant Kd =
4(lel=��N )2=3.
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FIG. 2. Current density and magnetic �eld in the N-layer
(dirty limit). Layer thickness d = 50�Nd (Tc) and dimensionless

material constant Kd = 100.

We have solved this system of equations numerically
for a range of parameters. Some results are shown in
Fig. 2 for a layer thickness of 50�N

d
(Tc) and Kd = 100

in a weak magnetic �eld, where we neglect the term
� A2 in the Usadel equation. At the highest temper-
ature, T = 0:3Tc, the �eld penetrates through the whole
N-layer. Near the N-S-boundary, where the induced su-
perconductivity is strong, the �eld decays rapidly to zero.
At lower temperatures the �eld-free region increases, be-
cause the induced superconductivity extends to a region
of linear size � �N

d
(T ). At the lowest temperature shown

here, T = 0:001Tc, the �eld expulsion is London like and
the �eld as well as the current density fall o� exponen-
tially. The reason is that at this temperature the local
penetration depth near the N-Vacuum-boundary is prac-
tically constant. In the intermediate temperature regime
the current ows in a well de�ned region inside the N-
layer, and consequently the screening takes place in this
region.
To calculate the nonlinear response we have to solve

the complete Usadel equation Eq. (6) together with the
Maxwell equations including the local penetration depth
(18) numerically. From the solution of the Maxwell equa-
tions, we �nd the susceptibility of the normal-metal part

� = �
1

4�

�
A(d)

Hd
� 1

�
: (19)
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Results for the clean and the dirty case are discussed in
the next section.

IV. SUSCEPTIBILITY

A. Linear Response

First we study the case of linear response. In the clean
limit we linearize Eq. (9) with respect to the Aharonov-
Bohm phase �. The resulting expression has been ana-
lyzed analytically by Zaikin in some limits10 and numer-
ically by Higashitani and Nagai12. We have performed
the remaining integration over � numerically for all tem-
peratures. In Fig. 3 some results for di�erent layer thick-
nesses are shown. The temperature at which screening
sets in, as well as the slope of the temperature depen-
dence, changes drastically when the layer thickness in-
creases. At T = 0 the integrals can be solved analyti-
cally. For d � �N , the saturation value is equal to 3=4
of a perfect diamagnet, independent of the thickness10.
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FIG. 3. Linear susceptibility (clean case) for Kc = 10.

Here we should mention that the temperature depen-
dence of the susceptibility cannot be �tted to a power law
� / T�� in any temperature range, in contrast to ear-
lier theoretical predictions14 which suggest powers in the
range 1=2 � � � 1 depending on the impurity concen-
tration. Rather it satis�es an exponential law. This ex-
plains qualitatively some experimental results3{5, where
exponents � with values up to 2 had been found.
In the dirty limit, we neglect the term � A2 in Eq. (6)

and solve the resulting di�erential equation numerically.
In Fig. 4 some results of our calculation are shown. In
comparison with the clean case, the screening sets in at
higher temperatures and the saturation values can be
larger (depending on Kd). The temperature dependence
is well described by

� � (T�1=2 � const) (20)

in the intermediate temperature regime well below Tc
and above the saturation temperature. Our results agree
with previous works in the applicable limits. In ear-
lier work14, a generalized Ginzburg-Landau approach was
used. Narikiyo and Fukuyama15 linearized Eq. (6) with
respect to F and solved the system of equations for an
in�nite system numerically. However, our calculation is
free of the limitations of the Ginzburg-Landau theory and
is valid at any temperature. Furthermore, we have taken
into account the nonlinearity of the Usadel equation and
�nite-size e�ects.
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FIG. 4. Linear susceptibility (dirty limit) for Kd = 100.

The behavior shown in Fig. 4 has also been observed
experimentally in very dirty samples2;5. In these ex-
periments, a temperature dependence described by � �
(T�1=2 � const) was found and saturation values of the
susceptibility of 90� 95% of a perfect diamagnet.
In Fig. 5 we show a comparison between theory and

experiment. The experimental data16 are measured on
a cylindrical geometry with a superconducting core sur-
rounded by a normal metal layer of thickness d. The
theory has been generalized to this kind of geometry and
also been solved numerically. The parameters for the the-
ory were calculated from experimental values for d and lel
and from theoretical values for vF and �N . No �tting pa-
rameter was used. The agreement is quite remarkable at

low temperatures. At higher temperatures (T
>
� 0:1Tc)

the dirty limit theory cannot be applied anymore and this
explains the disagreement in this temperature regime.

4



0.001 0.01 0.1 1
T/Tc

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

4π
χ

Experimental data
Theoretical curve

FIG. 5. Comparison between experiment (AgNb)16 and

dirty limit theory. Experimental parameters: Radius of the
S-core= 35�m, d = 14:5�m, and lel = 2:0�m. In the theory

we have used d = 41:5�Nd (Tc) and Kd = 10000.

B. Nonlinear Response

We will now turn to the nonlinear response. In Fig. 6
some numerical results for the clean case are shown. At
the highest temperature shown here, the susceptibility
drops to zero around h � 0:02. At lower temperatures
the solution is not unique anymore. There is one solu-
tion with the maximal �eld expulsion, the value of which
depends on temperature (lower thick lines), and one so-
lution, for which the �eld completely penetrates in the
N-layer and there is no screening (upper thick lines).
The third solution with the negative derivative is un-
stable (thin lines). The region in which the solution is
non-unique grows, as the temperature is lowered, but the
lower boundary of this region stays at the same value of
the �eld. Since only one solution can be stable, there
must be a jump in the susceptibility at a certain point.
In principle we could determine this point by comparing
the free energies of the N-layer for the two di�erent solu-
tions. Unfortunately the free-energy functional proposed
by Eilenberger6 cannot be applied for � = 0 (normal
region).
In experiments the situation is often quite di�erent.

On lowering or raising the �eld, the jump in the suscep-
tibility would not occur at the value predicted theoret-
ically, but e�ects like \superheating" or \supercooling"
are likely to occur. These e�ects were observed in very
clean samples4. When the �eld is increased, the suscepti-
bility will remain on the lower branch up to a certain �eld
value and then will jump to the upper branch. On the
other hand, when the �eld is decreased, the system will
stay on the upper branch with complete �eld penetration.
At a certain value of the �eld, the �eld will suddenly be
expelled and the system will jump to the lower branch.
These jump �elds do not necessarily coincide with the

boundaries of the instability zone.
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FIG. 6. Nonlinear susceptibility (clean case) of an N-layer

of thickness 20�Nc (Tc) and Kc = 10 as a function of the ap-

plied �eld for various temperatures. The dimensionless �eld
is de�ned by h = H��Nc (Tc)

2=�0.

The boundaries of the hysteretic regions are shown in
Fig. 7 for di�erent layer thicknesses. The superheating
�eld depends exponentially on temperature, whereas the
supercooling �eld depends not very strongly on temper-
ature. At low temperatures the superheating �eld tends
to saturate at a certain value, which is independent of
the layer thickness. Further calculations show that the
saturation value is proportional to the material constant
Kc.
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FIG. 7. Limits of the instability region: supercooling �eld

hsc (thin lines) and superheating �eld hsh (thick lines) for

Kc = 10. h is de�ned as in the previous �gure.
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FIG. 8. Nonlinear susceptibility (dirty case) of an N-layer

of thickness 10�Nd (Tc) and Kd = 100 as a function of the
applied �eld for various temperatures. The dimensionless �eld

is de�ned by h = H��Nd (Tc)
2=�0.
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FIG. 9. Limits of the instability region (dirty case): super-

cooling �eld hsc (open symbols) and superheating �eld hsh
(�lled symbols) for Kd = 10. h is de�ned as in the previous

�gure.

In the dirty limit there is also a temperature-dependent
hysteretic e�ect, as shown in Fig. 8. Above temperatures
of about 0:03Tc the magnetization curve is unique. Below
these temperatures there is a region with constant lower
boundary and increasing upper boundary as in the clean
case. The absolute values of the susceptibility are dras-
tically di�erent. The saturation value at low �elds and
low temperatures can reach complete �eld expulsion for
appropriately chosen values of Kd. On the other hand
the jump in the susceptibility is less than in the clean
case. On increasing the �eld the susceptibility is reduced
only by � 50% at the jump and reaches slowly zero, if
the �eld is increased further. On lowering the �eld, the
jump is a slightly smaller. This hysteretic behavior was

observed5.
In Fig. 9 the limits of the region with hysteretic be-

havior for di�erent layer thicknesses in the dirty limit
are shown. As in the clean case the superheating �eld
depends exponentially on the temperature, but not as
strongly. Also, the supercooling �eld tends to become a
constant at low temperatures and does not very strongly
depend on temperature. In contrast to the clean case
the saturation values of both �elds at low temperatures
depend strongly on the layer thickness.
Finally, we would like to comment on some of our as-

sumptions. We have assumed ideal interfaces between
normal metal and superconductor, specular reection at
the interface between normal metal and vacuum, and
spherical Fermi surfaces in both materials. The formal-
ism presented in this paper can be modi�ed to describe
more general physical situations. Including e.g. non-ideal
interfaces will weaken the proximity e�ect and diminish
the diamagnetic response of the normal metal. In this
paper, we have concentrated on presenting a model cal-
culation in which the main aspects of the diamagnetic
response of NS sandwiches can be studied. Despite our
simplifying assumptions, the calculation was shown to be
in reasonable agreement with experiment, see Fig. 5. Fur-
ther calculations will be necessary to describe the high-
temperature behaviour correctly and to study arbitrary
concentrations of impurities, i.e., cases that are neither
clean nor dirty.
In conclusion, we have applied the quasiclassical

(Eilenberger or Usadel) theory to calculate the Meiss-
ner e�ect in a proximity sandwich. We have evaluated
the full non-linear magnetic response at all temperatures
and for various thicknesses of the normal layer. We have
shown that both in the clean and in the dirty limit a hys-
teretic behavior of the magnetization of a normal metal
layer in proximity with a superconductor is possible, as
has been observed experimentally in both limits.
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