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A superconductor in contact with a normal metal not only induces superconducting correlations,

known as proximity e�ect, but also modi�es the density of states at some distance from the interface.

These modi�cations can be resolved experimentally in microstructured systems. We, therefore, study
the local density of states N(E;x) of a superconductor - normal metal heterostructure. We �nd

a suppression of N(E;x) at small energies, which persists to large distances. If the normal metal

forms a thin layer of thickness Ln, a minigap in the density of states appears which is of the order of
the Thouless energy � �hD=L2

n. A magnetic �eld suppresses the features. We �nd good agreement

with recent experiments of Gu�eron et al.

I. INTRODUCTION

A normal metal in contact with a superconductor
acquires partially superconducting properties. Super-
conducting correlations, described by a �nite value of
the pair amplitude h #(x) "(x)i, penetrate some dis-
tance into the normal metal. This proximity e�ect

has been studied since the advent of BCS theory (see
Ref. 1 and references therein). Recently, progress in low-
temperature and microfabrication technology has rekin-
dled the interest in these properties2{6. Interference
e�ects in a dirty normal metal increase the Andreev
conductance7;8. The e�ect of the superconductor on
the level statistics of a small normal grain has been
investigated9.
Whereas the order parameter penetrates into the nor-

mal metal, the pair potential �(x) vanishes in the ideal
metal without attractive interaction. Since � yields the
gap in the single-particle spectrum of a bulk supercon-
ductor, the question arises how the spectrum of the nor-
mal metal is modi�ed by the proximity to the supercon-
ductor. Recently, this question has been investigated ex-
perimentally by Gu�eron et al.6. In their experiment, the
local density of states of a dirty normal metal in contact
with a superconductor was measured at di�erent posi-
tions and as a function of an applied magnetic �eld.
In this paper, we evaluate the local density of states

N (E; x) of a superconductor - normal metal heterostruc-
ture with impurity scattering in a variety of situations.
We generalize earlier theoretical work10{13 by applying
the quasiclassical Green's function formalism and by in-
cluding the e�ect of a magnetic �eld. We compare with
the experiment of Gu�eron et al.6 and �nd good qualita-
tive agreement with the experimental data both in the
cases with and without a magnetic �eld.

II. THE MODEL

In the following we will consider geometries as shown
in Fig. 1. The superconductor is characterized by a �nite
pairing interaction � and transition temperature Tc > 0.
In the normal metal we take � = Tc = 0. Here we restrict
ourselves to the dirty (di�usive) limit, � � lel, where

� = (D=2�)1=2 is the superconducting coherence length
at T = 0 and lel is the elastic mean free path. The latter
is related to the di�usion constant via D = 1

3
vF lel.

The density of states (DOS) of this inhomogeneous sys-
tem can be derived systematically within the quasiclassi-
cal real-time Green's functions formalism14. In the dirty
limit the equation of motion for the retarded Green's
functions GE , FE reads15

D

2

�
GE (~r� 2ie ~A)2FE � FE ~r2GE

�
= (1)

(�iE + �in)FE ��GE + 2�sfGE FE:

The diagonal and o�-diagonal parts of the matrix Green's
function, GE and FE , obey the normalization condition

G2
E + F 2

E = 1 ; (2)

which suggests to parameterize them by a function
�(E; x) via FE = sin(�) and GE = cos(�). Inelas-
tic scattering processes are accounted for by the rate
�in = 1=2�in, while scattering processes from param-
agnetic impurities are described by the spin-ip rate
�sf = 1=2�sf. At low temperatures the former is very
small (�in � 10�3�), and will be neglected in the follow-
ing.
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FIG. 1. Geometries considered in this article. (a) A strictly

one-dimensional geometry. (b) Amore realistic geometry sim-

ilar to experimental setup.

For the geometry shown in Fig. 1 the order parameter
can be taken real. On the other hand, in the vicinity
of an N-S boundary the absolute value of the order pa-
rameter is space dependent, and has to be determined
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self-consistently. The self-consistency condition is con-
veniently expressed in the imaginary-time formulation,
where

�(x) ln(
T

Tc(x)
) = 2�T

X
!�>0

Fi!�(x) �
�(x)

!�
: (3)

Here, !� = �T (2� + 1) are Matsubara frequencies. The
summation is cut o� at energies of the order of the Debye
energy. The coupling constant in S has been eliminated
in favor of Tc, while the coupling constant in N is taken
to be zero.
In the case where the interface between N and S has

no additional potential, the boundary conditions are16

FE(0�) = FE(0+) (4)

�s

GE(0�)

d

dx
FE(0�) =

�n

GE(0+)

d

dx
FE(0+) :

Here, �n(s) are the conductivities of the normal metal
and the superconductor, respectively. The complete self-
consistent problem requires a numerical solution. Start-
ing from a step-like model for the order parameter, self-
consistency was typically reached within 10 steps. Fi-
nally the DOS is obtained from N (E) = N0ReGE(x),
where N0 is the Fermi level DOS in the normal state.
We will present now results for three di�erent cases:

A. The DOS near the boundary of a semi-in�nite nor-
mal metal and superconductor.

B. The DOS in a thin normal �lm in contact with a
bulk superconductor.

C. The e�ect of a magnetic �eld on the DOS in an
experimentally realized N-S heterostructure.

In the following sections energies and scattering rates will
be measured in units of the bulk energy gap � and dis-
tances in units of the coherence length � = (D=2�)1=2.

III. RESULTS AND DISCUSSION

A. DOS in an In�nite System

We assume that the normal metal and the super-
conductor are much thicker than the coherence length
Ls; Ln � � and investigate how the DOS changes con-
tinuously from the BCS form NBCS(E)=N0 = jEj=(E2�
�2)1=2 deep inside the superconductor to the constant
value NN (E)=N0 = 1 in the normal metal.
In a �rst approximation, neglecting self-consistency

and paramagnetic impurities, we can solve Eq. 1 ana-
lytically, with the result

�(E; x) =

8>><
>>:

4atan[ tan(�0=4) exp(�
p
2!=Dn x) ] x > 0

�s + 4 atan[ tan((�0 � �s)=4)�
exp(

q
2
p
!2 +�2=Ds x) ] x < 0 :

(5)

Here

! = �iE + �in;

�s = atan(
�

�iE + �in
);

sin
�0 � �s

2
= 

(�iE + �in)
1=2

((�iE + �in)2 +�2)1=4
sin

�0

2
:

Several material parameters combine into the parameter

 = (�n�s=�s�n) ; (6)

measuring the mismatch in the conductivities and the co-
herence lengths of the two materials. Furthermore, �s(n)
is de�ned by (Ds(n)=2�)1=2, where Ds(n) is the di�usion
constant of the superconductor (normal metal).
The resulting DOS, N (E), in the normal metal at a

distance x = 1:5�n from the interface is shown in Fig. 2
for di�erent values of the parameter . It shows a sub-
gap structure with a peak below the superconducting gap
energy E < � and a strong suppression at zero energy.
The modi�cation of the DOS is most pronounced at small
values of  and at small distances. The smaller the en-
ergy, the larger is the distance where the modi�cations
are still visible. In particular at E = 0 the DOS vanishes
for all values of x. Pair-breaking e�ects lead to a �nite
zero-energy DOS, as will be shown later.
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FIG. 2. DOS in the normal metal at x = 1:5�n.

Next we solve the problem self-consistently and present
some numerical results for the case  = 1. We �rst con-
centrate on the superconducting side of the boundary.
As shown in Fig. 3 the peak in the DOS is strongly
suppressed, changing from a singularity to a cusp, but
it remains at the same position � as one approaches
the boundary. On the other hand, the density of states
with energies below � increases. The states with ener-
gies well below � decay over a characteristic length scaleq
Ds=(2

p
�2 � E2), see Eq. (5).

2



0.0 0.5 1.0 1.5
E/∆

0

1

2

3

4

N(E)/N0 bulk
x=-1.5ξ
x=-0.75ξ
x=0

-5 0 5
0.0

0.5

1.0

F(x)/Fbulk

x/ξ

FIG. 3. Density of states on the superconducting side of
the N-S boundary. The inset shows the self-consistent pair

amplitude.

The DOS on the normal side at di�erent distances from
the NS-boundary is shown in Fig. 4. The pronounced
sub-gap structure found in the approximate solution is
still present in the self-consistent treatment. The �g-
ure shows how the peak height and position change with
the distance. In the absence of pair-breaking e�ects the
DOS vanishes at the Fermi level for all distances (dotted
curves). Inclusion of a pair-breaking mechanism (solid
curves) regularizes the DOS at the Fermi level, and also
the peak height is suppressed. The curves are in qualita-
tive agreement with experimental data shown in Ref. 6.
The self-consistent calculation presented here leads to a
slightly better �t than the theoretical curves shown in
Ref. 6 where a constant pair potential was used in the
solution of the Usadel equation. In particular, the low-
energy behavior of the experimental curves is reproduced
correctly.
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FIG. 4. Density of states on the normal side of an N-S

boundary for two spin-ip scattering rates: �sf = 0 (dotted
lines) and �sf = 0:015� (solid lines).

At �nite temperatures (but T � Tc) we expect no
qualitative changes in the behavior described above ex-
cept that the structures in the DOS will be smeared out
by inelastic scattering processes. Hence for an experi-
mental veri�cation temperatures as low as possible would

be most favorable.

B. DOS in thin N-layers

Next we consider a thin normal layer in contact with
a bulk superconductor, Ls � Ln ' �. The boundary
condition at x = Ln is chosen to be d�(E; x)=dx = 0,
i.e., the normal metal is bounded by an insulator. In this
case the DOS on the N side develops a minigap at the
Fermi energy, which is smaller than the superconducting
gap. If the thickness of the normal layer is increased, the
size of this minigap decreases. Results obtained from the
self-consistent treatment are shown in Fig. 5. Details of
the shape of the DOS depend on the location in the N-
layer17. However, the magnitude of the minigap is space-
independent, as shown in the inset of Fig. 5. The magni-
tude of the gap is expected to be related to the Thouless
energy D=L2

n, which is the only relevant quantity which
has the correct dimension. Of course the relation has to
be modi�ed in the limit Ln ! 0. Indeed as shown in
Fig. 5 a relation of the form Eg � (const � + Ln)

�2 �ts
quite well. The sum of the lengths may be interpreted as
an e�ective thickness of the N-layer since the quasiparti-
cle states penetrate into the superconductor to distances
of the order of �. The e�ect of spin-ip scattering in the
normal metal on the minigap structure is also shown in
the inset of Fig. 5. The minigap is suppressed as �sf is in-
creased until a gapless situation is reached at �sf � 0:4�.
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FIG. 5. Minigap Eg as a function of the normal-layer thick-

ness. Inset: local DOS of an N-layer of thickness Ln = 1:1�

in proximity with an bulk superconductor.

We would like to mention that a similar feature had
been found before by McMillan10 within a tunneling
model ignoring the spatial dependence of the pair am-
plitude. We have considered here the opposite limit,
assuming perfect transparency of the interface but ac-
counting for the spatial dependence of the Green's func-
tions. For �sf = 0 our results for the structure of the
DOS agree further with previous �ndings of Golubov and
Kupriyanov11 and Golubov et al.12. Recently, a minigap
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in a two-dimensional electron gas in contact to a super-
conductor has also been studied18.

C. Density of states in a magnetic �eld

An applied magnetic �eld suppresses the superconduc-
tivity in both superconductor and normal metal. To
study the e�ect of the magnetic �eld on our system we
consider the geometry shown in Fig. 1b. Because in the
experimental setup the thickness of the �lms is much
smaller than the London penetration depth, we can ne-
glect the magnetic �eld produced by screening currents.
Therefore it is reasonable to assume a constant magnetic
�eld, which is present in both S and N. The vector po-
tential is then chosen to be

~A = A(y)~ex ; A(y) = Hy : (7)

Eq. (1) can be considerably simpli�ed in the case that
the size of the system in y-direction is smaller or of the
order of �. The system is limited to �W=2 < y < W=2,
where W ' �. Therefore the Green's functions do not
depend on y and the equation can be averaged over the
width W . The equation reduces to the e�ective one-
dimensional equation

D

2

�
GE @

2
xFE � FE @2xGE

�
= (8)

(�iE + �in)FE ��GE + 2�e�GE FE :

Here, �e� = �sf+De
2H2W 2=12 acts as an e�ective pair-

breaking rate, which depends on the transverse dimen-
sion and the applied magnetic �eld.
If we approximate the Green's functions in the super-

conductor by their bulk values, the DOS in the normal
metal at zero energy can be calculated analytically:

N (0)

N0
=

(
tanh(2

p
�e�=D x) 2�e� < �

(1� �2)=(1 + �2) 2�e� > �
; (9)

where

� =
�exp(�2

p
�e�=D x)

2�e� +
p
4�2e� ��2

: (10)

In Fig. 6 the dependence of the DOS on �e� at x =
1:5� is shown for two di�erent spin-ip scattering rates
(equal rates for normal metal and superconductor). At
�e� = 0:5� the �eld dependence of the DOS shows a
kink. This kink arises because above this value of �e�
the zero-energy DOS in the superconductor is nonzero
(gapless behavior), which leads to an even stronger sup-
pression of the proximity e�ect.
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FIG. 6. Zero-energy DOS in the normal metal at x = 1:5�

as a function of �e�.

Figure 7 shows a quantitative comparison of these re-
sults with experimental data taken by the Saclay group19.
In this experiment6, the di�erential conductance of three
tunnel junctions attached to the normal metal part of
the system was used to probe the DOS at di�erent dis-
tances from the superconductor. Accordingly, we have
calculated the self-consistent DOS in the presence of a
magnetic �eld throughout the system for all energies
and determined the di�erential conductance20. We used
x = 1:8�, consistent with an estimate from a SEM-
photograph, and used a spin-ip scattering rate of �sf =
0:015� in the normal metal as a �t parameter. This is
necessary in the framework of our approach to explain
the �nite zero-bias conductance at zero �eld. We, fur-
thermore, assumed ideal boundary conditions at the NS
interface, i.e.,  = 1, the motivation being that great care
was used in the experiment to produce a good metallic
junction, and signi�cant Fermi velocity mismatches are
not to be expected.
At low and high voltages the agreement with the ex-

perimental data is good for all three �eld values. On the
other hand, the maximum in the DOS is not reproduced
well by our calculation. Including the e�ect of a non-
ideal boundary, i.e.,  < 1 leads to an increase of the
peak in the DOS but to a less satisfactory �t at low volt-
ages. We cannot resolve this discrepancy, but we would
like to point out that our theory is comparatively sim-
ple and does not include all the geometric details of the
experiment (e.g., the geometry of the overlap junction
is not really one-dimensional and would be di�cult to
treat realistically). Our intention is to show that the-
oretical treatment described here contains the physical
ingredients to explain the basic features of the experi-
mental data. The overall agreement between theory and
experiment demonstrated in Fig. 7 shows this to be the
case.
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FIG. 7. Quantitative comparison of experiment19 (dot-
ted lines) and theory (solid lines). The experimen-

tal magnetic �elds are H = 0, 400, and 800G;

h = HeW (D=12�)1=2. The theoretical curves have been nor-
malized by Ri � dI=dVexp(eV=� = 1:5).

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have given a theoretical answer to the
question asked in the introduction, viz., what is { beyond
the proximity e�ect { the e�ect of a superconductor on
the spectrum of a normal metal coupled to it. Using the
(real-time) Usadel equations, we have calculated the lo-
cal density of states in the vicinity of an N-S boundary in
both �nite and in�nite geometries. It shows an interest-
ing sub-gap structure: if the normal metal is in�nite, the
density of states is suppressed close to the Fermi energy,
but there is no gap in the spectrum. This is the behavior
found in a recent experiment6. In thin normal metals we
�nd a mini-gap in the density of states which is of the
order of the Thouless energy. We have also investigated
the suppression of these e�ects by an applied magnetic
�eld and �nd good agreement with experiment.
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