
On the Design of Reliable Libraries

Arne Frick
Universität Karlsruhe

Institut für Programmstrukturen
und Datenorganisation

Walter Zimmer
Forschungszentrum Informatik
Gruppe Programmstrukturen

Wolf Zimmermann
Universität Karlsruhe

Institut für Programmstrukturen
und Datenorganisation

Abstract
Software libraries are an important instrument for

achieving reuse of both designs and programs. This goal is
supported by several non-functional properties of libraries.
Specifically, a library should be flexible by allowing com-
ponents to be reused in different contexts with possibly
changing requirements. However, reuse must not introduce
new errors: the library components must remain correct
in unknown contexts (robustness). Most common object-
oriented libraries focus unilaterally on flexibility, neglect-
ing robustness requirements.

This paper investigates the trade-off between flexibility
and robustness. We show that the desire for both flexi-
ble reuse and robustness can be met. Design patterns is
identified as an important tool for structuring large object-
oriented class libraries.

The concepts discussed in this article have been realized
in KARLA, an object-oriented library of algorithms and data
structures, that currently contains more than 200 classes,
and that is continuously being developed.

Keywords: object-oriented class libraries, robustness,
flexibility, efficiency, design patterns

1 Introduction
Software components should be reusable in order to

improve development speed and reduce maintenance cost.
Most commonly, this is done using libraries of compo-
nents. The focus of this paper is object-oriented class
libraries [Meyer 88], supposedly providing the largest po-
tential for reuse.

The library designer should consider the functional cor-
rectness of its components as well as non-functional prop-
erties such as robustness, flexibility, and efficiency. These
terms will be defined in section 3. As the focus of this paper
is the construction of robust libraries, we propose methods
and techniques to achieve flexibility and efficiency while
maintaining the robustness property.

The remainder of this paper is organized as follows:
section 4 discusses several definitions of inheritance based
on the behavioral specification of classes with respect to
robustness. Section 5 considers instantiations of generic
classes. We show that for the constructions of libraries the
possible instantiations must be restricted in order to avoid
errors. The motivation for section 6 is the exchange of class
implementations and method implementations at run-time.
We show that this goal can be achieved by using and extend-
ing adequate design patterns. These are discussed from the
viewpoint of library users as well as library designers. In
section 7, other libraries are evaluated according to the re-
quirements of robustness, flexibility, and efficiency. We
conclude with our experience on using the techniques and
methods of this article for the construction of the library of
algorithms and data structures KARLA. The appendix con-
tains an example used throughout the paper. This example
is defined in the programming language SATHER-K, whose
most important features are also explained in the appendix.

2 Notation

An abstract class is a class that cannot be instantiated, be-
cause for at least one method, there exists only an interface
description. Every non-abstract class is called concrete.

A class B inherits from class A iff definitions of A
are visible in B. In this case, B is a subclass of A. By
polymorphism we mean that at a program point requiring
an object of type A, an object of any of its subclasses may
be used instead. Following the semantics of SATHER-K, we
identify the notion of class and the notion of type. SATHER-
K specific notation will be explained in the appendix.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by KITopen

https://core.ac.uk/display/197597186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 Robustness, Flexibility, and Efficiency

In this section, we define the notions of robustness, flex-
ibility and efficiency. We assume that a class is completely
specified by both an invariant and the pre- and postcondi-
tions for each of its methods. A class A is called locally
correct iff

(i) after creation of an object of class A, the invariant
InvA holds, and

(ii) after calling a method m of an object of class A,
the invariant InvA and the postcondition Postm�A

of m hold, provided that the invariant InvA and the
precondition Prem�A of m are satisfied when calling
m.

Any object of class A must satisfy InvA at any time
except possibly during execution of a method of A. The
local correctness is the only notion of correctness that can
be provided by library designers. We now extend the no-
tion of local correctness by the object-oriented concepts of
inheritance, polymorphism, and genericity.

A class library is correct iff each class is locally correct
– even if it is inherited by other classes, used polymorphi-
cally, or used as an instantiation of a generic parameter.�

These cases are discussed in sections 4 and 5, where we first
analyze different notions of inheritance according to their
robustness under polymorphism, and then discuss how ro-
bustness can be maintained when using generic parameters.

Even if the correctness of the library is proven, program-
mers might still use it in a wrong way. For example, they
might call a method before establishing its precondition, or
that the requirements introduced in sections 4 and 5 are not
satisfied. In this case, the worst thing that could happen is
that an error message points deeply in the calling hierarchy
of the library, or even that the running program is inter-
rupted without any error message. Instead, programmers
must be made aware of their mistake. Therefore, an error
message should contain information on the violated pre-
condition. Of course, this means that checks and balances
have to be built into the library to be able to identify the
cause of the misuse. A class library with these properties
is called robust. A library that is both robust and correct is
called reliable. Reliability is the most important property
of a library, because an unreliable library is simply not us-
able. The high reliability of FORTRAN libraries such as
LAPACK or BLAS may well have been the determining
factor for their success.

It should be possible for the programmer to exchange
implementations behind interfaces easily when the require-
ments (especially the non-functional ones) change.� This
should not cause a complete redesign. We analyze the con-
ditions under which this flexibility can be provided by a

�The question of correctness under overloading is not dis-
cussed here for the sake of brevity.

�Note that the FORTRAN libraries just mentioned are not
flexible in this sense, as a library routine can only be used for one
specific problem.

class library without violating its correctness and robust-
ness properties.

Finally, implementations of classes should be as effi-
cient as possible with respect to time and space. We will
show that requiring maximal flexibility of a robust library
may allow only inefficient implementations for a class or
method.� Hence, the library should provide flexible, as
well as efficient, implementations for a class. The decision
of using the flexible or efficient implementation variant is
then left to the user.

4 Inheritance Relations

The notion of inheritance may be defined in several
ways. Using a formal class specification, there are four
different possibilities. This section explores how poly-
morphism, based on the different possibilities for defin-
ing the notion of subclass, affects the robustness require-
ment. There is only minimal related work [Liskov 94,
Schmidt 92], and they only consider conformance�.

The four possible inheritance relations are shown in fig-
ure 1. We discuss these in turn w.r.t. the criteria robustness,
encapsulation, flexibility, and practical use.

More formally, we say a class B conforms to a class A
iff the following implications hold (figure 1a):

(i) InvB � InvA

(ii) For each method m of A: Prem�A � Prem�B and
Postm�B � Postm�A.

A class B is more special than a class A iff the following
implications hold (figure 1b):

(i) InvB � InvA

(ii) For each method m of A: Prem�B � Prem�A and
Postm�A � Postm�B .

A class B is covariant to a class A iff the following impli-
cations hold (figure 1c):

(i) InvB � InvA

(ii) For each method m of A: Prem�B � Prem�A and
Postm�B � Postm�A.

The specialization in [Liskov 94] requires the equivalence
of the preconditions. Therefore, their notion is a special
case of both conformance and covariance.

A class B is contravariant to a class A iff the following
implications hold (figure 1d):

(i) InvB � InvA

�In the extreme case, this might go as far as to only allow for
exponential-time implementations of methods.

�[Liskov 94] additionally defines a “specialization”. Thor-
ough analysis reveals that this is but a special case of conformance.
Furthermore, their correctness proofs require the existence of ex-
ecution histories of objects, leading to rather complicated proofs.
This article waives this requirement.

InvB

InvB

InvB

InvB

InvA

InvA

InvA

InvA

�

�

�

�

Prem�B

Prem�B

Prem�B

Prem�B

Postm�B

Postm�B

Postm�B

Postm�B

Prem�A

Prem�A

Prem�A

Prem�A

Postm�A

Postm�A

Postm�A

Postm�A

�

�

�

�

�

�

�

�

a. conforms to b. more special than

c. covariant to d. contravariant to

�

�

�

�

�

�

�

�

Figure 1: Different Inheritance Relations

(ii) For each method m of A: Prem�A � Prem�B and
Postm�A � Postm�B .

The actual type of polymorphic objects may be deter-
mined as late as run-time, which might lead to violations
of robustness if the actual type does not match the de-
clared type. Robustness for polymorphic objects can only
be guaranteed if the definition of inheritance is based on
conformance, as the following argument shows. The def-
inition of conformance assures the correctness of poly-
morphic variable use, because pre- and postconditions fit
correctly. Assume that method m of a polymorphic object
of type A is called, and that the actual type of the object is
B. We need to assure that before the call, prem�B holds,
which is in fact the case, assuming that prem�A was true.
Therefore, we may safely assume that the call to m is le-
gal. After the call, we know that postm�B holds due to the
assumed correctness of the implementation of m in B. By
definition, this logically implies postm�A, which is what
we needed to show.

The remaining definitions of inheritance are not robust
against polymorphism. In order to ensure correctness, the
actual type of an object must be known. This naturally
leads to the question of whether the other definitions of
inheritance are irrelevant. It turns out that this is not the
case, because they potentially allow for the reuse of code.
We demonstrate this for the case of specialization.

Example 1: Consider the example in the appendix. The
robust modeling of directed graphs requires that directed
acyclic graphs (dags) be a specialization of directed graphs.
It is easy to see that not all edges which can be added to
a graph can also be added to a dag. Only such edges
are allowed which do not violate the acyclicity constraint.

Other examples are data structures (such as queues, lists,
stacks, etc.) of bounded size, which are more special than
their unbounded versions, because the insertion of items
may raise an overflow on the size. A third example comes
from relational databases. Integrity constraints and normal
forms of relations lead to specializations.

These examples show the usefulness of the specializa-
tion. A robust class library should therefore provide at least
conformance and specialization. From a library designer’s
viewpoint, specializations can be only considered in terms
of their potential for reuse, excluding polymorphism for
robustness reasons. However, the information on the in-
heritance relation between classes may help library users
to design their programs. As we already saw, only con-
formance leads to a robust notion of polymorphism. We
now discuss the remaining three inheritance relations from
a library user’s point of view.

The following scenario is assumed. The library user
designed a program where they use an object x of class A.
Suppose now that, during the design, they discover that x
would be better an object of class B instead (possibly due
to incomplete requirement specifications). In this case,
knowledge of the kind of inheritance relationship between
A and B can help to avoid a complete redesign.

1. A is more special than B. In this case, reuse is
possible if the correctness proof can be done with the
weaker invariant InvB .

2. B is more special thanA. It suffices to check whether
the correctness proof can be done with the stronger
preconditionsPrem�B and the weaker postconditions
Postm�B .

3. B is covariant to A. Reuse is only possible if the
correctness proof can be done with the stronger pre-
conditions Prem�B.

4. B is contravariant to A. Reuse is only possible if
the correctness proof can be done with the weaker
postconditionsPostm�B .

For the first case, all locations must be considered where
x is used. The remaining cases require only the considera-
tion of method calls on x. If the correctness proof cannot
be performed at some location, additional code has to be
inserted at that location in order to enable the proof to ob-
tain. This may include checks for illegal conditions. The
last two cases (A contravariant to B and A covariant to B)
require the analysis of locations where x is just used and
of locations where a method of x is called. This usually
leads to a complete redesign.

Summarizing the results of this section, we observed
that the conformance relation is the only notion of inher-
itance which is robust under polymorphism. The other
three possible inheritance relations allow for the reuse of
program code and design. A robust class library should
therefore support each of the four inheritance relations to
exploit the full potential of reuse. In practice, however, we
have only observed conformance and specialization rela-
tionships.

5 Generic Classes

Genericity is mainly used for the construction of con-
tainer classes C�T �. When instantiating a container class,
the type parameter T is replaced by an arbitrary type (un-
bounded genericity). The definition of C�T � is indepen-
dent of T . Under robustness requirements, neither the defi-
nition ofC�T � nor any implementation ofC�T � is allowed
to make any assumptions on the structure of T . Otherwise,
the programmer might instantiate T with a type violating
the assumptions of the library designer. This faulty instan-
tiation leads to compile-time or run-time errors, a situation
to be avoided.

Requiring robust unbounded genericity restricts reuse
potential. For example, it is impossible to sort lists unless
it is assumed that any instance of the type parameter T has
a relation� which totally orders the objects of T . A robust
library should therefore in addition offer such restricted
instantiations (bounded genericity).

Example 2: The parameter EDGE in the generic class
of graphs is restricted to instantiations which conform to
EDGETYPE.

A restriction on the instantiationsof a generic parameter
T of a container class C�T � is defined by a type bound B.
The definition of C�T � and any implementation of C�T �
is allowed to make use of the properties specified in B.
T can only be instantiated with types having at least the
properties of B. From the discussion in the last section we
get an elegant way to express type bounds. The restriction
B must contain minimum properties to be satisfied by any

instance of T and must provide some methods including
pre- and postconditions. The most easy way to do this is
to define the type bound B itself as a class and restrict the
possible instances of T to classes which conform to B.
We denote this restriction by C�T � B�. The correctness
proof of an implementation of C�T � B� can then use
InvB , Prem�B, and Postm�B for any method m of B.

6 Design Patterns

An object-oriented design pattern typically consists of sev-
eral collaborating classes which represent a reusable, well-
proven solution scheme to a recurring object-oriented de-
sign problem. The first significant collection of object-
oriented design patterns has recently been published
[Gamma 94].

This section investigates how some of the object-
oriented design patterns defined in [Gamma 94] may be
used to address the different issues of reliability, flexibil-
ity, and efficiency. As there are trade-offs between these
requirements, and as [Gamma 94] focuses just on flexibil-
ity, the design patterns are extended such that library users
can make their own choice between flexible and efficient
implementations. These extensions and their usage are
exemplified for the design pattern bridge.

6.1 Strategy

According to [Gamma 94], a strategy defines a family of
algorithms solving the same problem and makes them in-
terchangeable. This can be achieved by defining an abstract
class P for the problem solved by the different algorithms
and by defining for each algorithma its own class A which
must be a conformant subclass of P . If one has now a poly-
morphic algorithm object x of type P , then an algorithm
can be exchanged by creating an object of the desired algo-
rithm class and assigning it to x. If these algorithm classes
are generic parameters of a data structure, then we obtain a
static variant of a strategy. As we combine strategies with
bridges, we refer to the next subsection for more concrete
examples.

6.2 Bridge

The design pattern bridge separates the interface of a
class from its implementation. A bridge for an abstract
class A allows the dynamic exchange of the implementa-
tion.

Example 3: Consider the example in the appendix. A
bridge for the class D GRAPH �VERTEX �EDGE � al-
lows the replacement of a set implementation of an object
x � $D GRAPH �VERTEX �EDGE � by an implementa-
tion based on adjacency lists or adjacency matrices.

A bridge for A can be realized by a concrete class Ab,
which must be a conformant subclass ofA. Ab contains an
attribute repr � $Awhich refers to the current implementa-
tion. Method calls m on objects of class Ab are delegated
to repr . Replacing the current representation by a new
implementation Ai of A is just an assignment of the Ai

object to repr . In order to maintain the abstract state of

A-objects, a method change repr is provided, which per-
forms a consistent representation change not visible to the
user of Ab.

Observe that this representation change exchanges a
class – including all its methods. For library users this
may not be sufficient. A more flexible policy would allow
to exchange not only implementations of abstract classes
as a whole, but also particular methods of abstract classes.
The dynamic exchange of algorithms can be realized by
combining the design pattern bridge with Strategy into a
so-called dynamic bridge. Dynamic Bridges have, in addi-
tion to the attribute repr , an algorithm attributema � $Ma

for each methodm ofA. Any call ofm is delegated toma.
The class Ma defines an arbitrary algorithm implementing
m, e.g. Ma might delegate to the method m in the current
implementation of repr .

This solution is very general. In fact, in order to con-
struct robust libraries it is even too general, as demonstrated
by the following example:

Example 4: In our example in the appendix, methods such
as are connected and is acyclic can be implemented in the
abstract class D GRAPH �VERTEX �EDGE �. We call
this kindof method derived. According to the definitions of
section 2 this is not possible for each method of an abstract
class, otherwise it would not be abstract. Examples are
the methods init, V , E, addvertex, addedge, delvertex, and
deledge. These methods are connected to the concrete im-
plementations of D GRAPH �VERTEX �EDGE �, such
that they cannot be implemented there. We call such meth-
ods kernel methods.

Since abstract implementations of methods cannot make
use of the concrete representations of objects, they are
usually inefficient. Hence, changing the implementation
of such methods at run-time is important, especially under
efficiency criteria. This is possible with dynamic bridges.

Figure 2 realizes such a bridge for an abstract class A.
It shows the treatment of a kernel method k � SAME and
a derived method m � T . Furthermore, the most general
strategy Ma for m is shown there. Suppose now that the
current implementation ofm has to be replaced at run-time
by a new algorithm implementingm. This algorithm must
be defined in a subclass N of Ma. The replacement can
then be realized by the assignment ma �� �N , which
assigns a new object of class N to ma. Observe that
the initialization init of an object of Ab just chooses an
arbitrary implementation of A and the algorithm for m in
that implementation. If m has parameters, they are added
in the definition of m in Ma. If A has generic parameters,
then Ab and Ma have the same parameters (including type
bounds).

For robustness reasons, in a dynamic bridge not all pos-
sible algorithms implementing m can be used.

Example 5: An algorithm for finding all shortest paths
of a graph is based on successively squaring its adjacency
matrix [Cormen 89, Chapter 26.1]. This algorithm must
not be used if the current implementation of graphs is based
on the set implementation in the appendix, because the

(1) class Ab is
(2) subtype of A
(3) private repr � $A
(4) ma � $Ma;
(5) � � �
(6) init � SAME is
(7) repr �� �Ai�init;
(8) ma �� �Ma;
(9) � � �
(10) res �� self �
(11) end;
(12) � � �
(13) k � SAME is
(14) repr �� repr �k;
(15) end;
(16) � � �
(17) m � T is
(18) res ��ma�m�repr�;
(19) end;
(20) � � �
(21) end;
(22)
(23) class Ma is
(24) m�repr � $A� � T is
(25) res �� repr �m�
(26) end;
(27) end;

Figure 2: Realization of a Dynamic Bridge of Class A

algorithm relies on the adjacency matrix implementation
of graphs.

We therefore distinguish representation-dependent from
representation-independent algorithms. In general,
representation-dependent algorithms must not be used if
the current representation is the wrong one. As the library
designer cannot predict anything about the current repre-
sentation of an abstract class in a dynamic bridge (it is
possible to change the representation at any time), we al-
low only use of representation-independent algorithms. In
figure 2 this is achieved by the fact that only representation-
independent algorithms can be defined by algorithm classes
which are subtypes of Ma.

Unfortunately, the most efficient algorithms implement-
ing a method are often representation-dependent. In order
to use these algorithms, the concrete representation must
be known statically. We define therefore a static bridge. In
contrast to the dynamic bridge, the representation now be-
comes a generic parameter of the bridge. It is also a generic
parameter of the class Ma. Lines (1)–(11) in figure 2 are
therefore replaced by

(1) class Ab�REPR � A� is
(2) subtype of A
(3) private repr � REPR
(4) ma � $Ma�REPR;
(5) � � �
(6) init � SAME is
(7) repr �� �REPR�init;
(8) ma �� �Ma�REPR�;
(9) � � �
(10) res �� self �
(11) end;

A static bridge differs from a dynamic bridge only in
the class definition, in the definition of the bridge related
attributes, and in the initialization.

If an algorithm for m is based on a specific implemen-
tation Ai of A, then the corresponding algorithm class is
defined as a subtype of Ma�Ai�. We demonstrate this by
continuing the example of the shortest paths:

Example 6:
A static bridge for D GRAPH (VERTEX , EDGE � de-
fines an attribute

s path � $S PATH �VERTEX �EDGE �REPR��

The call of s path for the computation of all shortest path
is delegated to the method s path in this object, which
might be representation-dependent. If for example the rep-
resentation is based on adjacency matrices, then the above
implementation for computing all shortest paths must be a
subclass of

S PATH(VERTEX, EDGE,
REPR<D GRAPH AM(VERTEX,EDGE))

where D GRAPH AM �VERTEX �EDGE � is the im-
plementation class of D GRAPH �VERTEX �EDGE �
based on adjacency matrices.

To summarize the observations of this subsection, dy-
namic bridges for a class A allow the dynamic exchange of
implementations of A as well as algorithms implementing
particular methods. These algorithms, however have to be
representation-independent. In contrast, a static bridge for
A also allows representation-dependent algorithms. This
however is payed for by the non-interchangeability of the
implementation of A.

6.3 Decorator

The design pattern Decorator can be used to dynami-
cally extend the functionality or properties of an object.

Technically, these goals are achieved by “decorator ob-
jects” (class D) which enclose an object (class O) in order
to extend its properties. The decorator object delegates
requests to the original object and may perform its own
functions before or after delegation. Thereby, the decora-
tor class D and the class O are subclasses of a common
abstraction (class C). As in [Gamma 94] shown, the in-
terfaces of D and O must conform to that of C. But

concerning reliability and flexibility, there are more points
to take into account.

Conformance between classes O, D, and C on the se-
mantic level (conformance as defined in section 4), i.e. not
only at the interface level, is essential, as illustrated by the
following example.

Example 7: A bounded graph is a graph with a bound
on the number of vertices. A decorator for this exten-
sion is the class BOUNDED , which must be a sub-
class of D GRAPH . It decorates any implementation
of D GRAPH . The interface does not change at all.
According to [Gamma 94] this should be a valid deco-
ration. However, bounded graphs are specializations of
unbounded graphs. This can be seen for example at the
method addvertex . The precondition is strengthened, be-
cause if the bounded graph already has the maximum num-
ber of vertices an overflow may occur. A decorated object
cannot always be used in place of an undecorated object.

A static version of decorators can be realized with in-
heritance. The disadvantage is an explosion of classes with
less flexibility but high reliability. Currently we are inves-
tigating for KARLA an automatic generation of decorated
classes. A configuration management system should help
the user of class libraries to find the appropriate classes.
Therefore, disadvantages such as the class explosion could
be removed.

6.4 Adapter

Adapter is a design pattern for adapting a given inter-
face I� to another interface I�. Adapters can be used for
integrating class libraries: the interface of one library is
adapted to interfaces of abstract classes of another library.
This allows the use and a common view of many complex
algorithms and data structures of other libraries.

Furthermore, adapters can be used for the implementa-
tion of bridges. A specific implementation can be used in
different bridges, if the interface of this implementation is
adapted to the interface of the abstract class of the bridge.
For example, a list implementation can be used for abstract
data structures such as List, Mapping, Set, Bag, etc. If the
implementation variants conform to the abstract class then
this combination of adapters and bridges is reliable.

6.5 Summary and Evaluation

A flexible library should provide mechanisms for com-
bining its classes. An important prerequisite for this is the
provision well-defined interfaces for the abstract classes.
If the subclasses conform to the abstract classes, then they
may be combined in the same way that the abstract classes
can be combined. This principle is applied in many design
patterns.

It is difficult to find such standard interfaces for the
abstract classes. Sometimes, concrete classes support the
interface of the abstract class, but they can not provide
the functionality behind each method interface, or the be-
havior is implemented but it does not conform to the pre-
and postcondition given in the abstract class. In this case,

the conformance relationship between a concrete class and
an abstract class is violated and interchangeability is no
longer given. But this means that the prerequisite for com-
bining these concrete classes is not satisfied and that the
combination of components may cause errors, i.e. the stan-
dardization process has been performed too rigorously, thus
breaking reliability in support of flexibility.

This trade-off between flexibility and few standardized
interfaces on the one side, and reliability on the other side,
should be always considered when designing a library. The
priority (flexibility or reliability) depends on the type of
application, how often it is reused, how much flexibility or
reliability is needed, and so on.

The static variants of design patterns introduced in this
paper allow algorithms to exploit representation features
in order to gain efficiency, while retaining reliability. The
flexibility of the combination of classes at run-time, for
example, is partially lost, but it is possible to regain large
parts of this flexibility by an appropriate combination of
static and dynamic bridges.

The design patterns in [Gamma 94] focus on flexibility,
losing some of the reliability. KARLA was designed with
much more attention on reliability.

7 Other Class Libraries

This section investigates existing object-oriented li-
braries with regard to the following questions:

� How are the often conflicting issues – reliability vs.
flexibility vs. efficiency – addressed? What concepts
and techniques are provided to support the different
aspects?

� What role does inheritance play in the structure of the
library? What purposes is it used for and what are the
consequences of this use?

Eiffel

The Eiffel language [Meyer 92a, Meyer 92 b] supports reli-
ability by allowing for pre- and post-conditionsof methods
and for class invariants.

As Casais [Casais 92a] points out, (multiple) inheritance
is used for a variety of purposes throughout the Eiffel li-
brary: equality and extension (both are very closely related
to subtyping), restriction and code sharing (close to spe-
cialization), and a mix of these inheritance relationships.

For this reason, there is no clear separation between
interface and implementation, and the exchange of the im-
plementation of a data structure or algorithm is not easy.
The resulting library structure is quite complex, so that the
advantages of standardizing interfaces seem to be lost to a
great degree.

The goal of the refactoring operations (decomposing
and factorization) performed in [Casais 92a] was to use
inheritance only for specialization and refinement relation-
ships. Similar to the discussion in section 4, specialization

and refinement are considered as the two main applica-
tions of inheritance (in Eiffel they cannot be distinguished
explicitly).

LEDA

LEDA [Näher 92, Mehlhorn 95] is short for Library of Ef-
ficient Data Structures and Algorithms. It is implemented
in C++ and focuses on data structures (basic data types,
dictionaries, priority queues, graphs, computational geom-
etry) and efficient algorithms.

Efficiency is addressed by the fact that all data types
are implemented by the asymptotically most efficient im-
plementation known. The parameterization of a data type
(interface) with an implementation variant is possible, but
only at compile-time, because the parameterization is per-
formed by multiple inheritance, a static relationship (static
bridge). LEDA supports the so-called item-concept, i.e. it
provides the user with a safe abstraction of a position in a
data structure to gain efficient access to such a position.

LEDA’s inheritance structure is flat, as inheritance is not
used to internally structure the library. Therefore, reuse
by derived features cannot be achieved. Furthermore,
the comprehensibility is affected. When parameterizing
data types such as dictionaries with key and information
types, there are no restrictions on these types (e.g. KARLA

achieves this by bounded genericity), thus violating robust-
ness of the library structure.

Althoughpre- and postconditionsare used for documen-
tation purposes, they are not checked at run-time, another
violation of robustness. The latest version of LEDA pro-
vides several implementation variants for some of its data
types, but the needed implementation variant can only be
chosen at compile-time (static bridge), not at run-time.

Overall, LEDA provides implementations for the most
efficient data types currently known, but it lacks reliability
and flexibility in several points.

Smalltalk

As Smalltalk [Goldberg 83] is a dynamically-typed lan-
guage, it naturally supports flexibility, but there is a loss in
efficiency and especially in reliability. In [Cook 92], the
Smalltalk-80 collection class library was analyzed, and a
clean hierarchy of interfaces was developed from the inher-
itance structure. Several weaknesses of the original library
were revealed as a result of this analysis.

In particular, inheritance is used for reuse of interfaces,
of code, or a mix of both. Methods are often deleted by
subclasses, or methods of subclasses violate the invariants
given by superclasses. The need for specifications and in-
terfaces when designing libraries was clearly demonstrated
by Cook. Furthermore, he proposed that inheritance should
be used only for conformance (refinement) and other tech-
niques (e.g. multiple inheritance) should be provided to
reuse code.

The flexibility of Smalltalk often leads to an undisci-
plined use of mechanisms such as inheritance, which also

affects the reliability of applications. Efficiency is still a
problem for time-critical applications.

Coherent Design

[Rüping 93] discusses how the different requirements of
extensibility, comprehensibility, and efficiency can be rec-
onciled. That paper develops a data structure catalogue
and applies the design principles separation of design and
implementation, imitation relationships between classes
(close to conformance), and conceptual abstraction to sup-
port these requirements.

Thus, the clean design principles, especially the disci-
plined usage of inheritance for imitation, and techniques
such as kernel/derived features, items (see the discussion
of LEDA), pre- and postconditions and class invariants lead
to a high rate of internal and external reuse and to good
comprehensibility.

The concept of imitation employed by the authors is a
weaker form of compatibility than conformance. Imitation
allows for the substitution of all occurences of B by C in
a class definitionA iffC imitatesB. The Coherent Design
methodology has no notion of specialization, and it is not
possible to substitute only selected occurences of B. As
we have shown in this paper, both are important concepts to
achieve a high degree of flexibilityand reuse. Our work can
therefore be viewed as an extension of Coherent Design.

If the user does not comply with this guideline then
type errors can occur, implying that the reliability criterion
is violated. The massive use of multiple inheritance af-
fects the flexibility of a library (no flexible bridges) and is
considered as a major weakness by many.

OBST

The object-oriented database system OBST [Casais 92b]
comes with a small, but useful library of data structures
such as sets, bags, mappings, and the like. The clear
separation between interface and implementation allows
for the interchange of implementation variants.

By introducing the bridge design pattern, the two im-
plementation variants List and Hashtable of the data type
Mapping can be interchanged at run-time, either automat-
ically (controlled by the data type itself) or under user
control. The flexibility of choosing appropriate implemen-
tation variants for different applications resulted in a gain
of efficiency in time and space. Of course, some efficiency
is lost by having an additional indirection inside method
calls on a container object.

Karla

During the design of KARLA, the Karlsruhe Library of
Algorithms and Data Structures, written in SATHER-K, ma-
jor effort was put into the support of reliability. To this
end, both conformance and specialization relationships are
supported by the library.

As the programming language does not provide both
relations, user support is given by means of a configura-

tion and information tool called skit, that allows for the
automatic generation of static and dynamic bridges, given
an arbitrary abstract class. In addition, property classes
are used as type bounds for the element type of container
classes, effectively supporting compile-time checks on the
validity of the element type.

Summary

Summarizing the discussion, we find that each of the above
libraries has a characteristic way of supporting the design
goals of reliability, flexibility, and efficiency.

LEDA focuses on very efficient components; Smalltalk
offers great flexibility; the OBST data structure library is
small, but flexible; the Eiffel libraries offer a large function-
ality; the data structure catalogue, built according to design
principles of coherent design, strongly supports reuse and
extensibility. For KARLA, the reliability of its components
is very important.

Unfortunately, most libraries neglect the reliability re-
quirement for the most part. With the growing number of
safety-critical software, the significance of this aspect will
steadily increase, thus requiring more effort to address it.
By continuing to develop KARLA, we hope to contribute to
this effort.

8 Conclusions

We discussed several techniques for the construction of
reliable class libraries. To this end, we first distinguished
between abstract and concrete classes, leading to a sepa-
ration of interface and implementation. We showed that
besides the use-relation, at least two kinds of relationship
between classes are necessary to achieve both flexibility
and efficiency. We defined these relationships – confor-
mance and specialization – formally in terms of class in-
variants and pre- and postconditions. Conformance allows
for maximal flexibility in the use of classes (i.e. any class
conforming to a class A can be used at any time instead of
A). Specialization allows for the reuse of code and opens
up possibilities for efficiency gains by using representation-
dependent algorithms. We showed that in existing class
libraries, these relations are either mixed up, or only one
of them is supported. One of the major contributions of
this paper is that these libraries are inherently unreliable, or
they single-sidedly support either flexibility or efficiency.

The tradeoff between flexibility and efficiency was ex-
amined in order to come up with conditions for the reliable,
yet flexible and efficient use of a library. The goal was to
enable the exchange of the representation of an abstract
class A as well as the change of any algorithm imple-
menting features of A, even at run-time. To this end, we
extended the dynamic bridge pattern by combining it with
Adapter and Strategy. We showed that a reliable use of
dynamic bridges requires that only algorithms can be used
which do not rely on a particular representation. On the
other hand, efficient algorithms often rely on a certain rep-
resentation be used. This is supported by the static version

of Bridge, in which representation-dependent algorithms
may be used. The existence of both bridge types gives the
library user the choice between flexibility and efficiency,
depending on the type of bridge he uses.

This paper builds on our experience with building
KARLA, the KARlsruhe Library of Algorithms and data
structures. The first version of KARLA provided only for
conformance between classes. Consequently, program-
mers started to use conformance to reuse code. With the
lack of specialization, this led to an incomprehensible and
unnecessarily complicated library structure. After realiz-
ing this situation, we had to rebuild large parts of KARLA.
The good news is that large-scale reorganization has not
been necessary since we introduced specialization relation-
ships. KARLA currently contains over 200 classes. Among
them there are approximately 80 abstract classes that are
related by specialization and conformance. Decorators al-
low for the addition of properties to objects of a class. In
container types, these additional properties may also be
properties of the element type, being expressed as type
bounds using so-called property classes. We observed for
KARLA that, until now, the former leads to specialization,
the latter to conformance relationships.

Our experiments with KARLA started a year ago, when
we let students use and enhance the library. We found that
the students were quickly able to determine conformance
and specialization relationships between classes. Further-
more, they use this information to find the library classes
they need, and to construct bridges using the skit configu-
ration tool. This shows that the concepts of conformance
and specialization are quite natural and useful.

Our experience showed the usefulness of the concepts
proposed in this paper. An important open question is
whether purely covariant or contravariant relationships of
section 4 arise in practice.

Acknowledgements

The authors thank Gerhard Goos for the inspiration to
this work and the anonymous referees for their helpful com-
ments. Richard Walker and Achim Weisbrod proof-read
previous versions of this paper. Of course, all remaining
errors our purely ours.

References

[Casais 92a] Eduardo Casais. An incremental class reor-
ganization approach. In O. Lehrmann Madsen, editor,
Proceedings of ECOOP ’92, LNCS 615, pages 114–
132, Utrecht, The Netherlands, July 1992. Springer-
Verlag.

[Casais 92b] Eduardo Casais, Michael Ranft, Bernhard
Schiefer, Dietmar Theobald, and Walter Zim-
mer. OBST - An Overview. Technical re-
port, Forschungszentrum Informatik (FZI), Karl-
sruhe, Germany, June 1992. FZI.039.1.

[Cook 92] William R. Cook. Interfaces and Specifications
for the Smalltalk-80 Collection Classes. In Proceed-
ings of OOPSLA ’92, ACM SIGPLAN Notices, pages
1–15, October 1992. Published as Proceedings of
OOPSLA ’92, ACM SIGPLAN Notices, volume 27,
number 10.

[Cormen 89] Thomas H. Cormen, Charles E. Leiserson,
and Ronald L. Rivest. Introduction to Algorithms.
MIT Press, 1989.

[Gamma 94] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides. Design Patterns: Elements
of Reusable Software Components. Addison-Wesley,
1994.

[Goldberg 83] A. Goldberg and David Robson. Smalltalk
80: the Language and its Implementation. Addison-
Wesley, May 1983.

[Näher 92] S. Näher and K. Mehlhorn. Algorithms, Soft-
ware, Architectures, Information Processing 92, vol-
ume 1, chapter Algorithm Design and Software Li-
braries: Recent Developments in the LEDA Project.
Elsevier Science Publishers B.V., 1992.

[Liskov 94] Barbara H. Liskov and Jeannette M. Wing. A
behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–
1841, 1994.

[Mehlhorn 95] Kurt Mehlhorn and Stefan Näher. LEDA –
A Platform for Combinatorial and Geometric Com-
puting. Communications of the ACM, 38(1):96–102,
January 1995.

[Meyer 88] Bertrand Meyer. Object-oriented Software
Construction. Prentice Hall, 1988.

[Meyer 92a] Bertrand Meyer. Applying “Design by Con-
tract”. IEEE Computer (Special Issue on Inheritance
& Classification), 25(10):40–52, October 1992.

[Meyer 92 b] Bertrand Meyer. Eiffel: The Language.
Prentice Hall, 1992.

[Rüping 93] Andreas Rüping, Franz Weber, and Walter
Zimmer. Demonstrating coherent design: A data
structure catalogue. In Raimund Ege, Madhu Singh,
and Bertrand Meyer, editors, Proceedings of the 11th
TOOLS Conference, pages 363–377. Prentice Hall,
1993.

[Schmidt 92] Heinz W. Schmidt and Richard Walker.
TOF: An efficient type system for objects and func-
tions. Technical Report TR-CS-92-17. Department
of Computer Science, The Australian National Uni-
versity, November 1992.

A An Example: Graphs

This appendix contains the graph example we use
throughout this paper. It illustrates our ideas and con-
cepts. Although the example is written in the imperative
object-oriented programming language SATHER-K, it suf-
fices to know that it is an EIFFEL-like language. The main
difference between EIFFEL and SATHER-K is the separation
of polymorphic and monomorphic types, denoted by a ‘$’
prefix for polymorphic types in SATHER-K. The subtype
of keyword denotes conformant subtyping, and polymor-
phism is only possible for subclasses. The specialization
of keyword denotes a specialization relationship.� SATHER-
K has type bounds. Class definitions beginning with the
keyword abstract are abstract in the sense of section 2 and
serve solely as interface descriptions. The class invariant
has to hold after object creation and calling a special init
method which every class has to support.

We assume that a class SET �T � is given, which con-
tains the usual methods for set creation, element insertion,
deletion, and membership (�). In addition, we assume that
there are methods for set intersection (�), union (�), and
difference (n). The state of an object after the call of a
method is denoted by the suffix �’. Edges are assumed to
have two attributes from and to to characterize their in-
cident vertices. This gives the following type-bound for
edges, implying that any edge type has to define at least
these two attributes.

(1) class EDGETYPE (VERTEX) is
(2) from� to � VERTEX �
(3) end

Equality of edges is defined as the equality of the inci-
dent vertices. Instead of e�from and e�to, we write e� and
e� for simplicity.

(1) abstract class D GRAPH �
(2) VERTEX �

(3) EDGE � EDGETYPE�VERTEX �� is
(4) – – defines directed graphs;
(5) – – Invariant: �e � E � e�� e� � V ;
(6)
(7) V � $SET �VERTEX � is deferred;
(8) – – returns the set of vertices
(9)
(10) E � $SET �EDGE� is deferred;
(11) – – returns the set of edges
(12)
(13) init � SAME is deferred
(14) – – returns an empty graph;
(15) – – Precondition: true
(16) – – Postcondition: res�V�empty � res�E�empty
(17)
(18) addvertex�v � VERTEX � � SAME is deferred
(19) – – inserts a vertex;
(20) – – Precondition: true

�The current version of SATHER-K does not yet have this
keyword. Instead, there is an include clause, by means of which
only source code can be reused.

(21) – – Postcondition: res�V � V�ins�v�� res�E � E

(22)
(23) addedge�e � EDGE� � SAME is deferred
(24) – – inserts an edge;
(25) – – Precondition: e� � V � e� � V

(26) – – Postcondition: res�V � V � res�E � E�ins�e�
(27)
(28) delvertex �v � VERTEX � � SAME is deferred
(29) – – deletes a vertex together with its incident edges;
(30) – – Precondition: true
(31) – – Postcondition: res�V � V�del�v��
(32) – – res�E � E n fe � E � e� � v � e� � vg
(33)
(34) deledge�e � EDGE� � SAME is deferred
(35) – – deletes an edge;
(36) – – Precondition: true
(37) – – Postcondition: res�V � V � res�E � E�del�e�
(38)
(39) are connected�v�w � VERTEX � � BOOL is
(40) – – result is true iff there is a path from v to w;
(41) – – Short: v

�

� w

(42) – – Precondition: v � V �w � V

(43) – – Postcondition: res � true � w � v�

(44) – – �e � E � e� � v � e�
�

� w

(45) � � �
(46) end;
(47)
(48) is acyclic � BOOL is
(49) – – result is true iff self is acyclic;
(50) – – Precondition: true
(51) – – Postcondition: res � true 	

(52) – –
 �v� w � V � v
� w � v
�

� w �w
�

� v

(53) � � �
(54) end;
(55)
(56) � � �;
(57) end;

The ‘� � �’ in line (56) stands for arbitrarily many further
methods, e.g. the computation of shortest paths, strongly
connected components, etc. All methods except those
marked deferred are derived and may therefore be imple-
mented without knowing the actual representation. Any
actual implementation must provide at least the deferred
methods. The following piece of code gives a simple im-
plementation based on the set definition of a graph.

(1) class D GRAPH SET �
(2) VERTEX �

(3) EDGE � EDGETYPE�VERTEX �� is
(4) – – implements directed graphs directly by sets
(5) – – Invariant: �e � EE � e�� e� � V V ;
(6)
(7) subtype of D GRAPH �VERTEX �EDGE�;
(8)
(9) V V � $SET �VERTEX �;
(10) EE � $SET �EDGE�;
(11)
(12) V � $SET �VERTEX � is ;
(13) – – returns the set of vertices
(14) res �� V V �
(15) end;
(16)

(17) E � $SET �EDGE� is;
(18) – – returns the set of edges
(19) res �� EE;
(20) end;
(21)
(22) init � SAME is
(23) – – returns an empty graph;
(24) – – Precondition: true
(25) – – Postcondition: res�V V�empty � res�EE�empty
(26) – – �self � � res

(27) V V �� �SET LIST �VERTEX ��init ;
(28) EE �� �SET LIST �EDGE��init ;
(29) res �� self �
(30) end;
(31)
(32) addvertex�v � VERTEX � � SAME is
(33) – – inserts a vertex;
(34) – – Precondition: true
(35) – – Postcondition: res�V V � V V�ins�v� � res�EE � E

(36) – – �self � � res

(37) � � �;
(38) end;
(39)
(40) addedge�e � EDGE� � SAME is
(41) – – inserts an edge;
(42) – – Precondition: e� � V � e� � V

(43) – – Postcondition: res�V V � V V � res�EE � EE�ins�e�
(44) – – �self � � res

(45) � � �;
(46) end;
(47)
(48) delvertex �v � VERTEX � � SAME is
(49) – – deletes a vertex together with its incident edges;
(50) – – Precondition: true
(51) – – Postcondition: res�V � V�del�v��
(52) – – res�E � E n fe � E � e� � v � e� � vg � self � � res

(53) � � �;
(54) end;
(55)
(56) deledge�e � EDGE� � SAME is
(57) – – deletes an edge;
(58) – – Precondition: true
(59) – – Postcondition: res�V � V � res�E � E�del�e�
(60) – – �self � � res

(61) � � �;
(62) end;
(63)
(64) end;

The notation �A means that an object of type A is
created. Finally, we define a type for directed acyclic
graphs.

(1) abstract class DAG�
(2) VERTEX �

(3) EDGE � EDGETYPE�VERTEX �� is
(4) – – defines directed acyclic graphs;
(5) – – Invariant: �e � E � e�� e� � V � is acyclic;
(6)
(7) specialization of D GRAPH �VERTEX �EDGE�;
(8)
(9) addedge�e � EDGE� � SAME is deferred

(10) – – inserts an edge;
(11) – – Precondition: e� � V � e� � V � �e�

�

� e�

(12) – – Postcondition: res�V � V � res�E � E�ins�e�
(13)
(14) topsort � $LIST �VERTEX is
(15) – – sorts self topologically;
(16) � � �;
(17) end;
(18)
(19) end;

Observe that the definition of a method topsort to com-
pute a topological order on the vertices exists only for dags.

