KfK 4689 April 1990

Automatisierte Wasseranalyse zur Bestimmung von Calcium, Magnesium, Sulfat, Carbonat, Phosphat und Ammonium mit Hilfe potentiometrischer Titrationstechniken

N. Höfert Institut für Radiochemie

Kernforschungszentrum Karlsruhe

.

Kernforschungszentrum Karlsruhe

Institut für Radiochemie

KfK 4689

Automatisierte Wasseranalyse zur Bestimmung von Calcium, Magnesium, Sulfat, Carbonat, Phosphat und Ammonium mit Hilfe potentiometrischer Titrationstechniken

NORBERT HÖFERT

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Von der Fakultät für Chemie der Universität Karlsruhe angenommene Dissertation

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Zusammenfassung

Es wurde ein automatisiertes Verfahren entwickelt, mit dem die Konzentrationen der Konstituenten Carbonat, Phosphat, Ammonium, Calcium, Magnesium und Sulfat in wässriger Lösung durch potentiometrische Titrationstechniken bestimmt werden können.

Die Analysenapparatur besteht aus einem Titrator, der fünf Dosimaten (HCI, NaOH, Na₄EGTA, Na₄EDTA, BaCl₂ /Acetylaceton) und zwei Magnetventile steuert. Die Titrationsund Meßdaten werden mit einer pH-Elektrode, einer Calcium-selektiven Elektrode in Kombination mit einer Kalomel-Referenzelektrode, einer Leitfähigkeitsmeßzelle und einem Widerstandsthermometer aufgenommen. Die Apparatur ist über eine parallele Datenschnittstelle mit einem Rechner verbunden, der die Auswertung mit Hilfe eines BA-SIC-Programmes übernimmt.

Die Konzentrationen von Carbonat, Phosphat und Ammonium werden durch Säure-Base-Titrationen, in diesem Falle durch Endpunkttitrationen auf vorgegebene pH-Werte, ermittelt. Es wurde gezeigt, daß es grundsätzlich möglich ist, alle drei Konstituenten mit dieser Methode simultan zu bestimmen. Aus Gründen der Genauigkeit ist es aber sinnvoller, die Titrationen in der Weise zu trennen, daß zunächst die für die Carbonat-Bestimmung notwendigen Titrationspunkte aufgenommen werden und das Carbonat dann bei niedrigem pH-Wert als CO₂ aus der Lösung ausgetrieben wird. Anschließend werden die für die Bestimmung von Phosphat und Ammonium notwendigen Titrationspunkte durch alkalimetrische Titration aufgenommen. Bei Anwesenheit von Calcium- und Magnesium-Ionen muß der Lösung bei der alkalimetrischen Titration ein Komplexbildner zugesetzt werden, um das Ausfallen von Calcium- und Magnesium-Salzen bei höheren pH-Werten zu verhindern. Zu diesem Zwecke wurden EDTA und EGTA eingesetzt.

Die Verwendung von EDTA ist günstiger, denn damit läßt sich die Konzentrations-Bestimmung von Calcium und Magnesium kombinieren. Durch komplexometrische Titration mit EDTA kann die Summe der Konzentrationen von Calcium und Magnesium ermittelt werden. Die weitere Differenzierung gelingt durch die Verwendung eines zweiten Komplexbildners, mit dem eine zweite Probe der Lösung titriert wird: nach der Ausfällung von Sulfat mit einem Überschuß von Barium-Ionen und der Zugabe von Acetylaceton zur Maskierung der Magnesium-Ionen wird die komplexometrische Bestimmung von Calcium und Barium (und damit indirekt von Sulfat) mit EGTA durchgeführt. Als Ergebnis beider Titrationen erhält man die Konzentrationen von Calcium, Magnesium und Sulfat.

Der zur Auswertung der Säure-Base-Titrationen benötigte Wert der Ionenstärke wird aus der Leitfähigkeit der Lösung abgeleitet.

Für die separate Bestimmung von Sulfat durch eine potentiometrische Fällungstitration mit Barium-Ionen wurde als Indikator-Elektrode eine modifizierte Kalomel-Elektrode mit porösem Keramik-Diaphragma gefunden, die durch den Zusatz von FeCl₃ zum Innenelektrolyten als Sensor einsetzbar wird, wodurch sich eine potentialbeeinflussende Schicht am Diaphragma ausbildet, die sensitiv auf Sulfat reagiert. Eine direkte potentiometrische Messung von Sulfat ist mit dieser Elektrode aufgrund des Einflusses von Störionen nicht möglich. Bei der Sulfat-Fällungstitration müssen die störenden Ionen (im besonderen Calcium- und Phosphat-Ionen) zuvor entfernt werden. In wässriger Lösung liegt die Bestimmungsgrenze bei 0.5 mmol/I, in mit Isopropanol versetzter Lösung bei 0.01 mmol/I.

Mit dem Verfahren ließen sich die Konzentrationen eines Wassers an Calcium, Magnesium, Sulfat und Kohlensäure auf wenige Prozent genau ermitteln. Bei Phosphat und Ammonium waren die gefundenen Abweichungen zwischen den bekannten Konzentrationen der Testlösungen größer, jedoch noch akzeptabel für die laufende Überwachung eines Wasserstroms.

Für Phosphat und Ammonium lassen sich mit diesem Verfahren erst dann bessere Ergebnisse erzielen, wenn genauere Kenntnisse über die Protonierungs- und Komplexbildungskonstanten des Komplexbildners und besonders über deren Abhängigkeit von der lonenstärke vorliegen.

Automated Water Analysis for the Determination of Calcium, Magnesium, Sulfate, Carbonate, Phosphate and Ammonia by Potentiometric Titration Techniques

Summary

An automated process was developed, which allows the determination of the concentrations of calcium, magnesium, sulfate, carbonate, phosphate and ammonia in aqueous solutions by potentiometric titration techniques. The apparatus consists of a titrator, which controls five automatic burettes (HCI, NaOH, Na₄EGTA, Na₄EDTA, BaCl₂/acetylacetone) and two magnetic valves. The titration data and additional data are read by a pH-electrode, a calcium-selective electrode in combination with a calomel referenceelectrode, a conductivity cell and a resistance thermometer. A parallel interface connects the titrator to a computer, which processes the data by means of a BASIC-programme.

The concentrations of carbonate, phosphate and ammonia are determined by acid-base titrations, in this case by end-point titrations to predetermined pH-values. It was shown that by this method it is possible in principle to determine the three constituents simultaneously. For reasons of precision it is advantageous to separate the titrations in such a way that the titration-points necessary for the determination of carbonate are firstly determined. Then the carbonate is removed as CO_2 by reducing the pH and bubbling Argon through the solution. Secondly the titration-points necessary for the determination of calcium and magnesium ions a complexing agent has to be added before the titration is carried out, in order to prevent the precipitation of calcium and magnesium salts at higher pH-values. EDTA and EGTA were used for this purpose.

The use of EDTA is more convenient as ist can also be employed in the determination of calcium and magnesium. The combined concentration of calcium and magnesium can be determined by EDTA titration. The differentiation between calcium and magnesium is achieved by the use of a second complexing agent, which is used to titrate a second sample of the solution, which is treated as follows: after the precipitation of sulfate with an excess of barium ions and the addition of acetylacetone as a masking agent for magnesium, the determination of of calcium and barium (and consequently of sulfate) is carried out with EGTA. The evaluation of the two titrations gives the concentrations of calcium, magnesium and sulfate.

The value of the ionic strength, which is necessary for the evaluation of the acid-base titrations, is derived from the electrolytic conductivity of the solution.

Sulfate can be determined separately on the basis of a precipitation titration with a $BaCl_2$ -solution. For this process a modified calomel-electrode with a porous ceramic diaphragm was used as indicator electrode. This electrode functions as a sensor, when $FeCl_3$ is added to the inner electrolyte, which brings about a layer on the diaphragm, which is sensitive to sulfate. A direct potentiometric measurement of sulfate using this electrode is not possible because of the interferences caused by foreign ions. The interfering ions (especially calcium and phosphate) must be removed before the precipitation

titration is carried out. The limit of determination in aqueous solution is about 0.5 mmol/l and about 0.01 mmol/l in 50% isopropanole solution.

The concentrations of calcium, magnesium, sulfate and carbonate can be determined with a deviation of a few percent by this process. The deviations of the calculated concentrations of phosphate and ammonia from the given concentrations can be greater, but are still acceptable for the continuous monitoring of a flow of water.

Better results for phosphate and ammonia will be possible when there is more knowledge about the protonation and complex-formation constants of the complexing agents and especially their dependance on the ionic strength.

Inhaltsverzeichnis

1. Einleitung und Aufgabenstellung	1
2. Simultane Bestimmung mehrerer saurer und basischer Konstituenten durch poten- tiometrische Säure-Base-Titration	3
	2
	ა ი
	3
2.1.2 Auswertung der Litrationen mit einfachen rechnerischen Methoden	4
2.1.3 Auswertung der Titrationskurven über nichtlineare Regression	5
2.2 Test des erweiterten Titrationsverfahrens aus WASAN	7
2.2.1 Simultane Bestimmung von Carbonat, Phosphat und Ammonium	8
2.2.1.1 Ein Rechenbeispiel	8
2.2.1.2 Ein praktisches Beispiel	10
2.2.2 Getrennte Bestimmung von Carbonat und Phosphat/Ammonium	13
2.2.3 Säure-Base-Titrationen bei Anwesenheit von Calcium und Magnesium	15
2.2.4 Säure-Base-Titrationen bei Anwesenheit von EDTA zur Komplexierung von	
Calcium und Magnesium	16
2.2.5 Experimentelle Durchführung der Titrationen	17
2.2.6 Ermittlung der Ionenstärke	19
2.2.7 Säure-Base-Titrationen bei Anwesenheit von EGTA zur Komplexierung von	
Calcium und Magnesium	22
2271 Simultane Titration von Phosphat und Ammonium	24
2.2.7.2 Getrephte Titration von Carbonat und Phosphat/Ammonium	28
2.2.7.2 Certennie Hiradon von Carbonat und Hospital/Anmonium	20
2.2.7.5 Experimentene Durchannung der Hitationen	<u>ເ</u> ລ
	29
	30
3. Bestimmung von Calcium und Magnesium	32
	32
3.2 Experimentelle Calcium/Magnesium-Bestimmungen	35
3.2.1 Direkte Calcium-Bestimmung	35
3.2.2 Komplexometrische Bestimmung von Calcium und Magnesium	36
3.3 Konsekutive komplexometrische Titration von Calcium, Magnesium und Barium	40
3.3.1 Verwendung von EGTA als Komplexbildner	40
3.3.2 Versuche, drei deutliche Wendepunkte in der Titrationskurve zu erreichen . 4	42
3.3.2.1 Absenken der Magnesium-Aktivität	42
3.3.2.2 Absenken der Aktivitäten durch Verdünnung oder KCI-Zusatz	44
3.3.2.3 Temperatureinfluß	44
3.4 Komplexometrische Titration nach Sulfat-Fällung	45
3.5 Aufspaltung der Calcium-, Magnesium- und Sulfat-Bestimmung in zwei Titratio-	10
nen	47
3.5.1 Verwendung von EDTA/EGTA	48
3.5.2 Verwendung von DCTA/EGTA	19
	-

3.5.3	Bemerkung zu den Wendepunkten	50
3.5.4	Durchführung der komplexometrischen Titrationen	51
3.5.5	Zusammenfassung Kapitel 3	52
4. Sulfat-	-Bestimmung	53
4.1 Lite	eraturübersicht	53
4.2 Unte	ersuchungen zur Sulfat-Bestimmung durch potentiometrische Titration 5	56
4.2.1	Fällungstitration unter Verwendung der Calcium-selektiven Elektrode als	
Меве	elektrode	6
4.2.2	Ein interessantes Phänomen5	59
4.2.3	Untersuchungen mit der in ihren Eigenschaften veränderten Kalomel-Elek-	
trode	· · · · · · · · · · · · · · · · · · ·	51
4.2.3	3.1 Titration von Isopropanol/Wasser-Lösungen	51
4.2.3	3.2 Titration von wäßrigen Lösungen 6	63
4.2.4	Weitere Charakterisierung der veränderten Kalomel-Elektrode 6	3
4.2.5	Versuche, eine Kalomelelektrode in eine Sulfat-selektive Elektrode zu modi-	
fiziere	en	5
4.3 Unte	ersuchungen mit der modifizierten Kalomelelektrode	5
4.3.1	Allgemeines	5
4.3.2	Abhängigkeit des Elektrodenpotentials von der Sulfat-Konzentration 6	6
4.3.3	Anwendungsbereich	7
4.3.3	8.1 in wäßrigen Lösungen6	7
4.3.3	3.2 in Isopropanol/Wasser-Lösungen7	0
4.4 Stör	rungen	2
4.4.1	Calcium	2
4.4.2	Carbonat	2
4.4.3	pH-Wert	2
4.4.4	Hohe Fremdelektrolytkonzentrationen7	3
4.4.5	Phosphat	3
4.4.5	5.1 Möglichkeiten zur Beseitigung der Störungen	3
4.4.5	6.2 Experimentelle Untersuchungen zur Beseitigung der Störungen7	3
4.5 Eine	e andere Anwendungsmöglichkeit der modifizierten Referenzelektrode 7	6
4.6 Zusa	ammenfassung Kapitel 4	7
5. Experi	mentelle Realisierung des automatisierten Verfahrens	9
5.1 App	aratur und praktische Durchführung7	9
5.2 Bew	vertung des Verfahrens	5
	Ŭ	
6. Titratic	onsprozeß und Auswerteprogramm	6
6.1 Titra	ationsprozeß	6
6.2 Das	Rechenprogramm	1
6.2.1	Grundlagen der Auswertung der Säure-Base-Titrationen	1
6.2.2	Programmauflistung9	3
7 itorati	urverzeichnis 10	۵
,, Enclud		•

Abkürzungsverzeichnis

Rechenprogramme

- WASA2T BASIC-Programm zur Berechnung des pH-Wertes eines Wassers sowie der Kohlensäuregleichgewichte unter Berücksichtigung der Komplexierung von Calcium, Magnesium und Sulfat sowie der Anwesenheit von Phosphat, Ammonium und Borsäure
- WASAN FORTRAN-Version von WASA2T, mit Erweiterungen bezüglich der Auswertung von Titrationsergebnissen

Komplexbildner

DCTA	1,2-Cyclohexylendinitrilotetraessigsäure
EDTA	Ethylendinitrilotetraessigsäure
EGTA	Ethylenglykol-bis-(2-aminoethyl)-tetraessigsäure
NTA	Nitrilotriessigsäure
TCTA	1,4,7,10-Tetraazacyclododecan-N,N',N'',N'''-tetraessigsäure

Sonstiges

рН	negativer Zehnerlogarithmus der Wasserstoffionen-Aktivität
рΧ	negativer Zehnerlogarithmus der Aktivität der Spezies X
рK	negativer Zehnerlogarithmus der Gleichgewichtskonstante K
Ε	EMK der Meßkette
E₀	Standardelektrodenpotential
E′₀	praktisches Standardelektrodenpotential
Er	Referenzelektrodenpotential
Ej	Diffusionspotential
Ei	EMK der Meßkette am Titrationspunkt i
S	Elektrodensteilheit
V	Volumen
Ve	Titrantvolumen am Äquivalenzpunkt
Vi	Titrantvolumen am Titrationspunkt i
Vo	Lösungsvolumen der titrierten Lösung
I	lonenstärke
Ci	Konzentration der Spezies i
Zi	Ladungszahl der Spezies i
[tX]	Gesamtkonzentration der Konstituente X
А, В	Koeffizienten der Debye-Hückel-Gleichung
ai	"ion-size parameter" der Spezies i in der Debye-Hückel-Gleichung
β_i	Koeffizient der Spezies i in der erweiterten Debye-Hückel-Gleichung
γi	Aktivitätskoeffizient der Spezies i

- ε Dielektrizitätskonstante
- LF_T Leitfähigkeit bei der Temperatur T
- FX Ladungsbilanzfaktoren
- f_{TPi} Verdünnungsfaktor durch das Titrantinkrement i

1. Einleitung und Aufgabenstellung

Ein wichtiges Beispiel für die Anwendung der Titrimetrie in der Wasseranalytik ist die Bestimmung der Gesamtkonzentration der Kohlensäure, d. h. der Summe des Gehalts an gelöstem CO2, Hydrogencarbonat- und Carbonat-Ionen. Im einfachsten Fall - bei Abwesenheit anderer schwacher Säuren oder schwacher Basen - läßt sich dieser Wert über die Säure- und Basenkapazität der Lösung, d. h. den Verbrauch an Säure bzw. Base bei der Titration bis zu den pH-Werten 4.3 bzw. 8.2, berechnen (1). Der erste pH-Wert entspricht in guter Näherung dem einer reinen CO₂-Lösung, der zweite dem ersten Äquivalenzpunkt der Kohlensäure-Titrationskurve. Die Titration bis zu diesen Titrationspunkten erfaßt also eine Dissoziationsstufe der Kohlensäure und damit deren Konzentration. Angewendet auf Wässer, deren Konstituenten unbekannt sind, kann diese Methode zu einem fehlerhaften Ergebnis führen: zum einen wird es bei Anwesenheit anderer schwacher Säuren oder Basen verfälscht, denn diese werden bei den Titrationen miterfaßt, zum anderen bleibt die Komplexbildung zwischen den Erdalkali-Ionen und in der Lösung vorliegenden Anionen, etwa den Carbonat-Spezies oder den Sulfat-Ionen, unberücksichtigt. Diese Komplex-Gleichgewichte beeinflussen - wenn auch nicht sehr stark - den pH-Wert der Lösung und damit auch den Säure- bzw. Baseverbrauch bei den Titrationen.

Die Fehler lassen sich vermeiden, wenn die Auswertung der Titrationsergebnisse mit Hilfe von Rechenprogrammen erfolgt, die diese Einflüsse berücksichtigen. So wurde beispielsweise die Säurekapazität und die Gesamtkonzentration der Kohlensäure in Meerwasser im Rahmen der GEOSECS-Untersuchungen (2) durch potentiometrische Titration bestimmt. Die Auswertung dieser Titrationen erfolgte über modifizierte Gran-Funktionen, die die Anwesenheit von Borsäure sowie die Protonierung der Sulfat- und Fluorid-Ionen berücksichtigen; die sich bei Anwesenheit von Phosphat ergebenden Fehler werden erwähnt, können mit dem verwendeten Rechenprogramm aber nicht direkt eliminiert werden.

Mit dem BASIC-Programm WASA2T (3) wird sowohl die Anwesenheit anderer Säuren und Basen (Phosphorsäure, Ammonium, Borsäure und Kieselsäure) als auch die Komplexbildung berücksichtigt. Für die Auswertung müssen die Konzentrationen dieser Säuren und Basen sowie die der komplexbildenden Konstituenten natürlich bekannt sein.

Bei WASA2T ist es nicht unbedingt notwendig, die "klassischen" pH-Werte 4.3 und 8.2 zu verwenden; es genügen zwei beliebige Titrationspunkte, wobei es vorteilhaft ist, diese so zu wählen, daß sie in den Bereichen geringer Pufferungsintensität der Lösung liegen. Des weiteren ist es möglich - ebenfalls mittels zweier Titrationspunkte -, eine der beiden Konstituenten Phosphat oder Ammonium zu bestimmen, wenn die übrigen sauren und basischen Konstituenten bekannt sind. Das Rechenverfahren basiert auf der mathematischen Verknüpfung der Stoffbilanzen mit der Ladungsbilanz unter Berücksichtigung der Gleichgewichtsbeziehungen des Systems.

Das Prinzip, die Konzentration einer Konstituenten mit Hilfe zweier Titrationspunkte berechnen zu können, wurde von Rieger mit dem FORTRAN-Programm WASAN (4) erweitert: es bietet die rechnerische Lösung des Problems, mit mindestens N+1 Titrationspunkten N saure und basische Konstituenten *simultan* zu bestimmen. In dem Programm werden Carbonat, Phosphat und Ammonium berücksichtigt, wobei sich diese Methode auf beliebige andere saure oder basische Konstituenten erweitern läßt, sofern nur die Bildungskonstanten der Spezies bekannt sind, die dann zusätzlich in Lösung vorhanden sind.

Diese Erweiterung des Titrationsprinzips führte zur Aufgabenstellung:

- Zunächst soll die praktische Anwendbarkeit dieser Methode bei der simultanen Bestimmung der Konzentrationen von Carbonat, Phosphat und Ammonium überprüft werden.
- Da die Auswertung der Säure-Base-Titrationen unter Berücksichtigung der Komplexbildung die Kenntnis der Konzentrationen von Calcium, Magnesium und Sulfat voraussetzt, ist es ein weiteres Ziel, für deren Bestimmung ebenfalls potentiometrische Titrationsverfahren zu finden, die sich in geeigneter Weise mit den Säure-Base-Titrationen kombinieren lassen.
- Die einzelnen Verfahren sollen optimiert und so aufeinander abgestimmt werden, daß der gesamte Prozeß automatisiert ablaufen kann. Die Auswertung der Titrationsergebnisse soll über einen an die Titrationsapparatur gekoppelten Rechner erfolgen, für den das notwendige Rechenprogramm zu schreiben ist.

2. Simultane Bestimmung mehrerer saurer und basischer Konstituenten durch potentiometrische Säure-Base-Titration

2.1 Literaturübersicht

2.1.1 Allgemeines

Potentiometrische Titrationen werden i. a. so durchgeführt, daß komplette Titrationskurven, d. h. eine Vielzahl von Wertepaaren Potential/Titrantvolumen [mV/ml] bzw. [pH/ml] aufgenommen werden. Zur Auswertung dieser Titrationskurven steht eine Reihe von Methoden zur Verfügung, die vom einfachen graphischen Verfahren bis zur komplizierten rechnerischen Kurvenanpassung reicht; Stur et al. (5) stellen eine chronologische Übersicht vor, die den Zeitraum von 1926 - 1982 überspannt. Anfält und Jagner (6) gehen genauer auf die gebräuchlichsten Methoden ein und beurteilen deren Genauigkeit anhand eines Beispiels. Sie unterscheiden drei Arten der Auswertung:

1. Methoden, die auf der S-Form der Titrationskurve beruhen

Hier wird der Punkt maximaler Steigung der Titrationskurve auf graphischem Wege ermittelt. Diese Methoden sind nicht so genau wie rechnerische Methoden, liefern aber schnell eine gute Näherung des Ergebnisses.

2. Differentielle Methoden

Dabei ist zu unterscheiden zwischen Methoden, die durch die Differenzierung $\Delta E/\Delta V$ den Wendepunkt der Titrationskurve aufsuchen (E ist die EMK der Meßkette, V das Titrantvolumen), wie sie z. B. von Fortuin (7) oder Christiansen et al. (8) beschrieben werden, und solchen, die auf der Differenzierung $\Delta V/\Delta E$ beruhen, was im Idealfall eine Linearisierung der Titrationskurve in zwei sich im Äquivalenzpunkt schneidende Geraden zur Folge hat. Ein Beispiel hierfür ist das erste Gran-Verfahren (9). Bei der ersten Art der Differenzierung wird das Ergebnis durch Interpolation, bei der zweiten durch Extrapolation gefunden, wobei letztere auch graphisch möglich ist.

3. Methoden, die auf den Massenbilanzen und den Gleichgewichtsbeziehungen beruhen

Zu diesen Methoden gehören z. B. das zweite Gran-Verfahren (10), oder dessen Erweiterung durch Ingman und Still (11). Hier erfolgt wiederum eine Linearisierung der Titrationskurve. Das Ergebnis kann sowohl graphisch als auch rechnerisch ermittelt werden, wobei die rechnerische Lösung über die Methode der linearen Regression genauer ist. Die Kurvenanpassung durch nichtlineare Regression ("multiparameter curve-fitting") ist die "modernste" Methode der Titrationskurven-Auswertung; sie erzielt die genauesten Ergebnisse, ist aber mit dem größten Rechenaufwand verbunden.

Ein grundlegender Unterschied bei diesen Methoden besteht darin, daß mit den graphischen und differentiellen Verfahren der Wendepunkt der Titrationskurve aufgesucht wird, während mit den unter Punkt 3 genannten Methoden durch Einbeziehung der Ladungsund Massenbilanzen sowie der Gleichgewichtsbeziehungen explizit der Äquivalenzpunkt bestimmt wird. Dies ist deshalb von Bedeutung, weil der Wendepunkt außer im Falle einer idealen symmetrischen Titrationskurve nicht mit dem Äquivalenzpunkt übereinstimmt, wobei der Unterschied für praktische Belange aber meistens vernachlässigbar ist.

Die einfachen Methoden, die graphisch oder rechnerisch die Wendepunkte aufsuchen, können bei der simultanen Bestimmung mehrerer Konstituenten i. a. nicht eingesetzt werden, denn das Vorhandensein eindeutiger und unterscheidbarer Wendepunkte setzt eine hinreichend große Differenz der pK-Werte der entsprechenden Säuren bzw. Basen voraus, die bei \geq 4 liegen sollte. Damit wird ihre Anwendbarkeit auf die Bestimmung einer schwachen Säure oder Base neben einer starken Säure oder Base beschränkt. Für kompliziertere Probleme liegen verschiedene Lösungsansätze vor.

2.1.2 Auswertung der Titrationen mit einfachen rechnerischen Methoden

Ivaska (12) stellt eine Methode vor, die unter Verwendung von mindestens 2 Titrationspunkten zur Analyse binärer Gemische schwacher Säuren mit Differenzen der pK-Werte bis herab zu 0.5 geeignet ist, wobei die pK-Werte bekannt sein müssen. Das Ergebnis läßt sich sowohl rechnerisch als auch graphisch ermitteln. Vom gleichen Autor stammt eine Methode (13), bei der binäre Mischungen von Säuren analysiert werden, von denen nur eine bekannt sein muß. Auch hier ist keine komplette Titrationskurve nötig, es genügt die Titration bis zu drei vorgegebenen Titrationspunkten. Pehrsson et al. (14) beschreiben die theoretischen Grundlagen einer allgemeinen Methode zur Lösung "binärer Probleme". Behandelt werden hier die Titration einer zweibasigen Säure, einer Säure in Gegenwart ihrer konjugierten Base, eines Ampholyten sowie der Mischung von zwei Säuren. Midgley und McCallum (15) stellen eine Methode zur Auswertung der Titration einer schwachen zweibasigen Säure vor, die auf der Linearisierung der Titrationskurve beruht und vergleichen sie mit dem Grah-Verfahren. Diese Technik wird erweitert zur Bestimmung einer ein- oder zweibasigen Säure neben einer starken Säure (16) und zur Titration von Mischungen zweier mehrbasiger schwacher Säuren (17). Die Grenzen dieser Methode sind erreicht bei der simultanen Titration von drei einbasigen Säuren (18). Hier treten bei niedrigen Konzentrationen (= 1 mmol/l) Fehler bis zu 10% auf, im besonderen dann, wenn die pK-Werte der beteiligten Säuren dicht beieinander liegen.

Seymour et al. (19) verwenden modifizierte Gran-Funktionen, um Mischungen aus HSO₄, H₂CO₃ und NH‡ in geringen Konzentrationen zu analysieren. In der Praxis wurde dieses Verfahren an "atmosphärischen Kondensaten" und an Regenwasser getestet (20); dabei wurden nicht nur die Konzentrationen, sondern auch die pK-Werte der gefundenen Säuren ermittelt, die zur Identifizierung der titrierten Substanzen herangezogen werden können. Auf diese Weise wurden eine "starke Säure", sowie HCO₃, NH[‡] und CO³- in den untersuchten Lösungen gefunden. Es muß aber mit großen Fehlern gerechnet werden, da die Konzentrationen relativ gering sind; bei den angegebenen Beispielen lag deren Summe bei etwa 0.1 mmol/I.

Glover und Webb (21) wandten bei der Titration von norwegischen Oberflächenwässern (z. B. Flußwässern) das Gran-Verfahren an; damit konnte aber nur zwischen starken und schwachen Säuren unterschieden werden: bei den starken Säuren ($\simeq 0.01 \text{ mmol/I}$) handelte es sich um H₂SO₄ und HNO₃ aus atmosphärischen Einträgen, bei den schwachen ($\simeq 0.1 \text{ mmol/I}$) um ein Gemisch aus organischen (Humin- und Fulvin-Säuren) und anorganischen Säuren (hydratisierte Fe-, Al- und Si-Spezies). Bei dieser Vielzahl von Säuren ist eine weitergehende Speziation alleine mit Hilfe der Säure-Base-Titration nicht möglich.

Ein Beispiel für die Anwendung eines modifizierten Gran-Verfahrens auf natürliche Wässer wird von Bradshaw et al. (2) bei der Ermittlung der Gesamtkonzentration der Kohlensäure sowie der "alkalinity" (Säurekapazität) von Meerwasser im Rahmen der GEO-SECS-Untersuchungen vorgestellt.

2.1.3 Auswertung der Titrationskurven über nichtlineare Regression

Ein anderer mathematischer Ansatz führt zur wohl genauesten Methode der Auswertung von Titrationskurven. Dabei handelt es sich um die Kurvenanpassung mit Hilfe der nichtlinearen Regression. Auf der Grundlage der Massen- und Ladungsbilanzen sowie des Massenwirkungsgesetzes kann jede beliebige Titrationskurve berechnet werden. Parameter in der Berechnungsgleichung sind u. a. die Konzentrationen der Konstituenten, die pK-Werte und die Aktivitätskoeffizienten. Mit mathematischen Operationen läßt sich dann eine praktisch ermittelte Titrationskurve über die Optimierung dieser Parameter mit Hilfe der nichtlinearen Regression an die theoretische Kurve anpassen. Gans (22) und Meites (23) beschreiben die Grundlagen hierzu. Diese moderne Methode hat inzwischen weite Verbreitung gefunden, dementsprechend groß ist die Anzahl dafür angelegter Rechenprogramme. Im folgenden ist eine kleine Auswahl davon zusammengestellt, wobei es sich aber nicht um eine vollständige Übersicht handeln soll.

Meites und Meites (24) beschreiben ein allgemein anwendbares Kurvenanpassungsprogramm, von dem sich eine Anwendung in (25) findet: dabei handelt es sich um die alkalimetrische Titration einer schwachen Säure, die in Konzentrationen herab bis zu 65 μ mol/l vorliegt. Bei solch geringen Konzentrationen ist über die Wendepunktsmethoden keine Auswertung mehr möglich, während mit Hilfe der Kurvenanpassung noch ein genaues Ergebnis gefunden wird. Ein schwierigeres Problem wird von Ingman et al. (26) bei der simultanen Titration binärer Gemische von Säuren, deren Differenz der pK-Werte bei etwa 1 liegt, behandelt. Ein Beispiel, das die Möglichkeiten dieser Methode unterstreicht, ist die Titration eines Gemisches von Essig- und Propionsäure, deren pK-Werte sich nur um etwa 0.2 unterscheiden. Gemische mit Konzentrationen von 0.2 bzw. 0.8 mmol/l können analysiert werden, wobei der Fehler in günstigen Fällen lediglich 2% ausmacht. Johansson und Johansson (27) stellen das zur Lösung dieses Problems eingesetzte Programm TITRA vor: damit lassen sich des weiteren so einfache Probleme wie die Titration eines Ampholyten als auch so schwierige Fälle wie die Titration einer fünfbasigen Säure oder ternärer Mischungen von Säuren behandeln. Eine der Grundlagen der Berechnung besteht darin, eine N-basige Säure als ein Gemisch von N einbasigen Säuren mit jeweils der Konzentration der N-basigen Säure zu betrachten - eine vereinfachende Voraussetzung, die bei all diesen Programmen gemacht wird. Sie geht auf die Überlegungen von Simms (28) zur Titration einer mehrbasigen Säure zurück.

Arena et al. (29) entwickelten das Programm ACBA, das zur Auswertung der Titrationen von Gemischen mehrerer Säuren und Basen geeignet ist. Als Beispiel dazu wird die Titration eines Gemisches von 3 zweibasigen und einer einbasigen Säure (Malonsäure, Bernsteinsäure, Phtalsäure und Perchlorsäure) in Konzentrationen zwischen 0.5 und 1.5 mmol/l angeführt. Folgende Parameter können angepaßt werden: die Ausgangskonzentrationen, die Titrantkonzentration, die Dissoziationskonstanten des Wassers und der Säuren, das Standardpotential der Meßelektrode, die Elektrodensteilheit und das Diffusionspotential.

Die bisher erwähnten Beispiele setzen voraus, daß die Anzahl und die Wertigkeit der vorliegenden Säuren und Basen bekannt ist. Gordon (30) beschreibt die Grundlagen für ein Kurvenanpassungsprogramm zur Bestimmung mehrerer saurer und basischer Konstituenten in einer Lösung unbekannter Zusammensetzung. Die Grenzen der "Berechenbarkeit" sind dann erreicht, wenn die pK-Werte der beteiligten Konstituenten sehr geringe Differenzen aufweisen. Der Autor gibt als Grenzwert $\Delta pK \simeq 0.2$ an. In (31) wird eine praktische Anwendung dieses Programmes vorgestellt: in einer bekannten Lösung aus 9 "monoprotischen" Konstituenten, von denen zwei vorgegeben sind, können die sieben anderen bestimmt werden, "with acceptable levels of accuracy and precision". Dabei lagen die Konstituenten in relativ hohen (6 mmol/l) und gleichen Konzentrationen vor. Titriert wurde eine Mischung aus Phosphorsäure, Citronensäure, Hydrazin, Phenol und Piperidin. Diese Technik wurde für eine unbekannte Lösung bei der Titration von "Burgundy-type" Weinen angewendet. Sieben acide "monoprotische" Konstituenten konnten nachgewiesen werden, ohne diese genauer spezifizieren zu können. Die ermittelten pK-Werte dienten aber als Anhaltspunkte zur Identifizierung der beteiligten Säuren. Die Methode ließ sich besser anwenden bei einfachen Problemen, etwa der Bestimmung von Essigsäure neben Citronensäure, wobei letztere bekannt war, oder der Bestimmung von Carbonat in Natronlauge.

Johansson und Wedborg (32) untersuchten die Anwendbarkeit der nichtlinearen Regression für die Meerwasseruntersuchung bei der Bestimmung der Gesamtkonzentration der Kohlensäure und der Säurekapazität.

Einige weitere Programme, die sich dieser Methode bedienen, wurden in erster Linie dafür konzipiert, Gleichgewichtskonstanten zu bestimmen, so z. B. die Programme SCOGS von Sayce (33) und LETAGROP von Sillén, - das letztgenannte wurde erweitert

zur Bestimmung analytischer Konzentrationen (34) -, sowie MINIQUAD von Sabatini et al. (35) und TITFIT von Zuberbühler und Kaden (36).

2.2 Test des erweiterten Titrationsverfahrens aus WASAN

Bei den meisten der erwähnten Methoden zur Auswertung von Titrationskurven, etwa dem Gran-Verfahren, der Methode der nichtlinearen Regression oder auch der einfachen Wendepunktsuche, wird das Vorhandensein vieler Titrationspunkte vorausgesetzt. Das hier untersuchte Verfahren geht von einem anderen Ansatz aus: Grundlage ist auch die Kombination der Massenbilanzen der einzelnen Konstituenten mit der Ladungsbilanz der Elektrolyte sowie den Gleichgewichtsbeziehungen zwischen den Spezies des betrachteten Systems. Im Unterschied zu den anderen Methoden sind dabei nur sehr wenige Titrationspunkte nötig, theoretisch genügen für N zu bestimmende Konstituenten N+1 Werte, wobei auch der pH-Wert der Ausgangslösung als Titrationspunkt mit einem Titrantverbrauch von Null betrachtet werden kann, so daß bei dessen Kenntnis N weitere Punkte ausreichen. Zur Auswertung dieser Daten müssen folgende Größen bekannt sein, die den pH-Wert der Lösung beeinflussen:

- die Konzentrationen der sauren bzw. basischen Konstituenten, die nicht bestimmt werden sollen
- die Konzentrationen von Calcium und Magnesium, da diese Konstituenten Komplexe mit Carbonat, Phosphat, Sulfat sowie den Hydroxid-Ionen bilden
- die Konzentration von Sulfat, das mit Calcium und Magnesium Komplexe bildet
- die lonenstärke, die die Aktivitätskoeffizienten und damit die Lage der Gleichgewichte beeinflußt
- die Temperatur

Bei den in WASAN für diese Art der titrimetrischen Bestimmung berücksichtigten sauren und basischen Konstituenten handelt es sich um Carbonat, Phosphat und Ammonium. Bei einer Trinkwasser-Analyse kann die Bestimmung auf Carbonat beschränkt werden; die ergänzende Bestimmung von Phosphat und Ammonium ist bei einer Abwasser-Analyse von Bedeutung. Die Untersuchungen über die praktische Anwendbarkeit der Methode beschränkten sich dann auch auf diese drei Konstituenten. Andere saure oder basische Verbindungen, die in Abwässern und natürlichen Wässern enthalten sein können, wie etwa die Spezies der Borsäure und Kieselsäure oder organische Verbindungen, wurden ausgeklammert, um die Methode nicht von vorne herein zu komplex zu gestalten.

Die Säure-Base-Titrationen wurden mit Modellwässern durchgeführt, die sich hinsichtlich der Konzentrationen der für die Untersuchung wichtigen Konstituenten (Carbonat, Phosphat, Ammonium, Calcium, Magnesium und Sulfat) an einem künstlichen Abwasser orientierten, dessen Zusammensetzung (3) entnommen wurde und in Tabelle 1 aufgeführt ist.

 Tabelle 1: Konstituentenkonzentrationen eines künstlichen Abwassers. Die Ladungszahlen bei den Konstituenten sind der Übersichtlichkeit wegen weggelassen.

Konstituente	CO3	SO4	CI	NO_3	Na + K	Ca	Mg	PO ₄	$\rm NH_4$
Konz. [mmol/l]	3.5	1.0	2.5	0.5	4.25	1.0	0.5	0.5	2.0

2.2.1 Simultane Bestimmung von Carbonat, Phosphat und Ammonium

2.2.1.1 Ein Rechenbeispiel

Um zu prüfen, ob sich "optimale" Titrationspunkte bei der simultanen Bestimmung von Carbonat, Phosphat und Ammonium finden lassen, wurde das Auswerteverfahren zunächst mit den mit WASAN berechneten Daten für die Titration einer Lösung mit den Konzentrationen [tCO_3] = 3.5 mmol/l, [tNH_4] = 2 mmol/l und [tPO_4] = 0.5 mmol/l getestet. Abbildung 1 zeigt die berechnete Titrationskurve; für die simultane Titration einer dreibasigen (H_3PO_4), einer zweibasigen (H_2CO_3) und einer einbasigen Säure (NH[‡]) ergeben sich lediglich zwei Wendepunkte.

Abbildung 1. Berechnete Titrationskurve: Titration einer Lösung der Zusammensetzung 0.5 mmol/I KH₂PO₄, 2 mmol/I NH₄HCO₃, 1.5 mmol/I NaHCO₃ und 8 mmol/I KCI, die zunächst auf pH = 3 angesäuert und dann alkalimetrisch titriert wurde. Die Daten gelten für 25°C. Die Quadrate markieren die Wendepunkte bei pH 4.4 und 8.

In Tabelle 2 ist das Ergebnis der Auswertung für einige Kombinationen von Titrationspunkten zusammengestellt.

Tabelle 2: Berechnete Titration einer einfachen Lösung: Bestimmung der drei Konstitu-
enten Carbonat, Phosphat und Ammonium mit Hilfe von 4 Titrationspunkten
aus der berechneten Titrationskurve (vgl. Abbildung 1). Die zugehörigen Ti-
trantkonzentrationen sind nicht mit aufgeführt. In Beispiel 3 wird die Ionen-
stärke (I) variiert; der für die Lösung mit WASAN berechnete Wert liegt bei
12.30 mmol/I.

Lösungszusammensetzung [mmol/l]:										
8.0	8.0 KCI									
0.5	KH ₂ PO ₄									
2.0	NH ₄ HCO ₃									
1.5	NaHCO ₃									
Aus	Auswertung									
	Titrationspunkte (pH-Werte)	[tCO₃] [mmol/I]	[tPO₄] [mmol/I]	[tNH₄] [mmol/I]						
1.) 2.) 3.)	5.886 / 7.276 / 8.907 / 10.101 3.067 / 7.276 / 9.334 / 10.439 4.411 / 7.276 / 7.998 / 10.016	3.503 3.504	0.498 0.496	2.000 2.000						
a) b) c) 4.)	$I = 10^{\circ} \text{ mmol/l}$ I = 12.3 mmol/l $I = 15^{\circ} \text{ mmol/l}$ 7.063 / 7.276 / 7.569 / 9.841	3.500 3.472 3.598	0.472 0.500 0.429 0.454	2.000 1.989 1.968						

Es zeigte sich, daß das erwartete Ergebnis immer dann erzielt wird, wenn die Titrationspunkte weit genug über die Titrationskurve gestreut liegen (vgl. Beispiele 1 und 2). Dabei fördert die Verwendung von Titrationspunkten aus den steilen Bereichen der Titrationskurve, also den Bereichen geringer Pufferungsintensität, die Genauigkeit: so wird das beste Ergebnis im Beispiel 3b erreicht. Hier entsprechen der erste und dritte Titrationspunkt den berechneten Wendepunkten der Titrationskurve (s. Abbildung 1). Aber selbst bei einer so ungünstigen Auswahl der pH-Werte wie im Beispiel 4, wo alle sehr dicht beieinander liegen und der pH-Bereich < 7 unberücksichtigt bleibt, ist das Ergebnis für die in relativ hoher Konzentration vorliegenden Konstituenten Carbonat und Ammonium mit Abweichungen von +2.8% bzw. -1.6% noch gut; die Abweichung für das in niedriger Konzentration vorliegende Phosphat ist mit -9.2% dagegen sehr hoch.

Eine entscheidende Größe bei der Auswertung ist die Vorgabe der Ionenstärke der titrierten Lösung. Dieser Einfluß wird am Beispiel 3 verdeutlicht: das genaue Ergebnis läßt sich nur mit der "richtigen" Ionenstärke berechnen (Beispiel 3b). Abweichungen von ca. 20% (Beispiele 3a und 3c) verschlechtern das Ergebnis deutlich: während der dadurch gemachte Fehler für die berechnete NH₄-Konzentration nicht sehr groß ist, nimmt er doch beträchtliche Werte für Carbonat und Phosphat an, die in dem Beispiel bis zu 0.7 mmol/l reichen. Die errechnete Summe beider Konstituenten bleibt zwar nahezu gleich, wird aber auf die einzelnen Konstituenten unterschiedlich "verteilt". Ein Mehr bei der einen bedeutet eine Abnahme bei der anderen und umgekehrt. Da dieser Einfluß sich bereits bei dem *Rechenbeispiel* so deutlich bemerkbar macht, ist zu befürchten, daß er *in der Praxis* noch größer sein kann. Hier kommen zusätzlich zu der mit einem Fehler von bis zu 20% behafteten Berechnung der Ionenstärke (vgl. Kap. 2.2.6) noch die Ungenauigkeiten hinzu, die mit der pH-Messung verbunden sind. In dem Rechenbeispiel werden pH-Werte mit drei Nachkommastellen verwendet, eine Genauigkeit, die unter praktischen Bedingungen nicht zu erreichen ist.

Vorbemerkung zur pH-Messung: Die für die pH-Messung eingesetzte pH-Elektrode wurde mit DIN-Puffern (37) geeicht (vgl. Kap 2.2.5), deren pH-Werte auf drei Nachkommastellen angegeben sind. Die Werte der Puffer sind mit einer Meßkette ohne Überführung bestimmt worden, bei der keine Diffusionspotentiale auftreten. Die Unsicherheit der Werte wird im Temperaturbereich zwischen 0 und 60°C mit \pm 0.005 angegeben. Bei der in der Praxis verwendeten Elektrode handelt es sich um eine Einstabmeßkette mit Keramikdiaphragma zwischen Innenelekrolyt (gesättigte KCI-Lösung) und Meßlösung, also um eine Meßkette mit Überführung, bei der Diffusionspotentiale am Diaphragma das Elektrodenpotential beeinflussen. Bei Elektroden dieses Typs steigt die Unsicherheit in der pH-Messung nach den DIN-Angaben auf \pm 0.012. Bates (38) beziffert die möglichen Abweichungen sogar mit bis zu 0.02 pH-Einheiten.

Es kommt hinzu, daß die Ionenstärke der Puffer mit der Ionenstärke der titrierten Lösung, die sich zudem im Laufe der Titration ändert, nicht übereinstimmt, was ebenfalls die Genauigkeit der Messung herabsetzt. Die Ergebnisse der pH-Messung wurden dennoch mit drei Nachkommastellen zur Auswertung verwendet und sind auch in den Tabellen in dieser Darstellung aufgeführt, ihre Genauigkeit muß aber unter den genannten Einschränkungen betrachtet werden.

2.2.1.2 Ein praktisches Beispiel

Zunächst wurde die Methode an einfachen Lösungen getestet, die nur die Salze KH₂PO₄, NaHCO₃ und NH₄HCO₃, sowie KCI zur Einstellung einer definierten Ionenstärke enthielten. An diesen Lösungen sollte das zur Auswertung verwendete Rechenprogramm WASAN hinsichtlich der zu erreichenden Genauigkeit bei der Berechnung der Konstituenten-Konzentrationen sowie der Übereinstimmung zwischen den errechneten und gemessenen pH-Werten der Titrationspunkte überprüft werden. Tabelle 3 zeigt ein entsprechendes Ergebnis; dabei sind zwei Titrationen zusammengefaßt, nämlich die acidimetrische und alkalimetrische Titration einer Lösung der angegebenen Zusammensetzung.

Es wird deutlich, daß experimentelle und berechnete Werte im Rahmen der Meßgenauigkeit von $|\Delta pH| = 0.02$ ausgezeichnet übereinstimmen; die Abweichungen liegen bei $|\Delta pH| < 0.03$. Je nach Wahl der Titrationspunkte wird ein breites Spektrum für die Genauigkeit der Ergebnisse erzielt, abhängig von deren Lage auf der Titrationskurve und deren Abweichung vom berechneten pH-Wert. Aber selbst wenn die Abweichungen so gering ausfallen wie in dem Beispiel, sind doch erhebliche Fehler die Folge, die bei ungünstiger Wahl der Titrationspunkte bis zu 0.2 mmol/I betragen können. Im Mittel liegen Tabelle 3:Experimentelle Titration einer einfachen Lösung: Vergleich der experimentellen
len und berechneten Titrationsdaten sowie Auswertung der experimentellen
Werte. Die Prozentzahlen in den Klammern geben die Abweichung vom Wert
der Einwaage an. Die Titrationen wurden bei 25°C durchgeführt. Bei der Auswertung wurde die mit WASAN berechnete Ionenstärke (I = 13.84 mmol/I) zu-
grunde gelegt. 'TP' bedeutet Titrationspunkt.

Lös	Lösungszusammensetzung [mmol/l]:									
9.55	58 KCI									
0.50	01 KH₂PO₄									
1.985 NH ₄ HCO ₃										
1.496 NaHCO ₃										
ТР	Zugabe Titrant [mmol/I]	pH(exp.)	pH(ber.)	ΔpH(expber.)						
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	5.182 H* 4.385 H 3.987 H 3.588 H 3.189 H 2.791 H 2.392 H 1.595 H 1.196 H 0.797 H 0.399 H 0.000 0.797 N* 1.594 N 2.392 N 3.189 N 3.986 N 4.784 N 5.581 N 6.378 N 7.972 N	2.837 3.109 3.362 4.005 5.255 5.675 5.933 6.316 6.498 6.696 6.923 7.244 8.476 9.121 9.506 9.824 10.110 10.384 10.660 10.915 11.272	2.839 3.112 3.363 3.978 5.258 5.678 5.937 6.331 6.517 6.717 6.952 7.270 8.483 9.128 9.511 9.821 10.100 10.370 10.642 10.895 11.259	$\begin{array}{c} -0.002\\ -0.003\\ -0.001\\ 0.027\\ -0.003\\ -0.003\\ -0.003\\ -0.004\\ -0.015\\ -0.019\\ -0.021\\ -0.029\\ -0.026\\ -0.007\\ -0.002\\ 0.003\\ 0.010\\ 0.014\\ 0.018\\ 0.020\\ 0.013\\ 0.001\end{array}$						
× _H	= HCI	[1.479	11.400	~0.001						
N	= NaOH									
Aus	wertung									
	Titrationspunkte	[tCO₃] in mmol/I	[tPO₄] in mmol/l	[tNH₄] in mmol/I						
a) b) c) d) e) f) g) h)	5,12,13,17 5,12,14,17 5,7,12,13,15,17 5,7,9,13,15,17 5,10,15,17 5,13,15,17 5,7,9,12,13,14,15,16,17 5,8,15,17	$\begin{array}{c} 3.59 (+3.1\%) \\ 3.54 (+1.7\%) \\ 3.52 (+1.1\%) \\ 3.55 (+1.9\%) \\ 3.55 (+2.0\%) \\ 3.37 (-3.2\%) \\ 3.54 (+1.7\%) \\ 3.58 (+2.8\%) \end{array}$	0.40 (-20%) 0.48 (-4.2%) 0.47 (-6.2%) 0.44 (-12%) 0.53 (+5.8%) 0.60 (+20%) 0.45 (-10%) 0.52 (+3.8%)	1.92 (-3.3%) 1.92 (-3.3%) 1.96 (-1.3%) 1.95 (-1.8%) 1.85 (-6.8%) 2.04 (+2.8%) 1.96 (-1.3%) 1.81 (-8.8%)						

sie bei 0.06 mmol/l. Die prozentualen Fehler sind bei den Konstituenten Carbonat und Ammonium, die in relativ hohen Konzentrationen vorliegen, dementsprechend geringer als bei Phosphat mit seiner vergleichsweise geringen Konzentration. Bei keiner der gewählten Kombinationen der Titrationspunkte wird ein Ergebnis erzielt, bei dem der Fehler für alle drei Konstituenten gleichzeitig minimal wird, lediglich der mittlere Fehler kann auf ein Minimum gebracht werden (Beispiel b) oder c)).

Es ist für die Auswertung von Bedeutung, daß nicht die Anzahl, sondern die Lage der Titrationspunkte Voraussetzung für das optimale Ergebnis ist. So wird im Beispiel g) bei Verwendung von 9 Titrationspunkten kein besseres Ergebnis erzielt als in den Beispielen b) und c) mit 4 bzw. 6 Titrationspunkten.

An diesem einfachen berechneten und praktischen Beispiel werden die Probleme bei der simultanen Bestimmung der drei Konstituenten deutlich, die die Auswertung beeinflussen:

1. lonenstärke

Abweichungen vom genauen Wert führen zwangsläufig zu Fehlern bei der Berechnung der Konstituenten. Eine Abweichung von 20% hat - im Rechenbeispiel - einen Fehler von bis zu 0.07 mmol/l zur Folge.

2. pH-Messung

Selbst Abweichungen zwischen gemessenen und berechneten pH-Werten innerhalb der Meßgenauigkeit von $|\Delta pH| = 0.02$ führen zu beträchtlichen Fehlern, die bei ungünstiger Wahl der Titrationspunkte bis zu 0.2 mmol/l betragen können.

3. Titrationspunkte

Mit der Wahl von Titrationspunkten, die in den steilen Bereichen der Titrationskurve liegen, lassen sich bessere Ergebnisse erzielen als mit Titrationspunkten aus den Bereichen großer Pufferungsintensität. Bei unbekannten Lösungen ist es nicht möglich vorherzusagen, wo diese Bereiche liegen.

4. Differenzierung Carbonat/Phosphat

Die Auswertung der simultanen Titration von Phosphat und Carbonat ist ein grundsätzliches Problem, da die pK-Werte der zweiten und dritten Dissoziationsstufe der Phosphorsäure (7.2 und 12) nahe bei den beiden pK-Werten der Kohlensäure (6.4 und 10.3) liegen. Lediglich im Rechenbeispiel ist eine exakte Differenzierung der beiden Konstituenten möglich, die im praktischen Beispiel so genau nicht erreicht werden kann. Dies ist umso schwieriger, je größer deren Konzentrationsverhältnis ist.

2.2.2 Getrennte Bestimmung von Carbonat und Phosphat/Ammonium

Um speziell die mit der Differenzierung Carbonat/Phosphat verbundenen Schwierigkeiten zu umgehen, wurde ein anderes Konzept mit den folgenden Schritten getestet:

- Aufnahme des ersten Titrationspunktes zur Berechnung der Carbonat-Konzentration, wobei der Einfachheit wegen der pH-Wert der Ausgangslösung mit einem Titrantverbrauch von Null verwendet werden kann, oder ein pH-Wert um 8, der erfahrungsgemäß für Lösungen, bei denen die Konstituenten-Konzentrationen in dem betrachteten Bereich variieren, bei niedriger Pufferungsintensität liegt.
- 2. Acidimetrische Titration bis pH \simeq 4.3, dem zweiten Titrationspunkt zur Berechnung der Carbonat-Konzentration.
- 3. Ansäuern bis pH \simeq 3 und Ausblasen der Kohlensäure mit Argon (15 min).
- Alkalimetrische Titration: Aufnahme von mindestens drei Titrationspunkten, wobei einer bei pH ≃ 10 liegen sollte, der für die Berechnung der Ammonium-Konzentration wichtig ist.

Bei der Auswertung wird zunächst mit Hilfe der drei Titrationspunkte der alkalimetrischen Titration (Schritt 4) die Phosphat- und Ammonium-Konzentration berechnet. Diese Werte werden dann für die Carbonat-Berechnung vorgegeben und zusammen mit den Titrationspunkten aus den Schritten 1 und 2 ausgewertet.

Tabelle 4 zeigt die experimentellen und berechneten pH-Werte einer nach diesem Schema durchgeführten Folge von Titrationen, sowie die Ergebnisse der Auswertung. Gemessene und mit WASAN berechnete pH-Werte stimmen - abgesehen von dem Bereich zwischen pH 4 und 5, der um den pH-Wert des ersten Äquivalenzpunktes der Phosphorsäure liegt - gut überein, die Abweichungen liegen im Rahmen der tolerierbaren Ungenauigkeit von 0.02 pH-Einheiten. Bei der Auswertung wurden die Titrationspunkte 5, 8 und 11 unter Vorgabe der berechneten Ionenstärke I = 13.85 mmol/I zur Berechnung der Phosphat- und Ammonium-Konzentrationen verwendet, die Titrationspunkte 1, 2 und 3 unter Vorgabe von I = 14.83 mmol/I zur Berechnung der Carbonat-Konzentration. Das Ergebnis zeigt, daß sich trotz der großen Abweichung beim Titrationspunkt 5 ein Ergebnis erzielen läßt, bei dem die absoluten Fehler bei nur mehr 0.03 mmol/I liegen, eine deutliche Verbesserung gegenüber der simultanen Bestimmung aller drei Konstituenten. Der prozentuale Fehler ist wiederum bei Phosphat am größten, dabei ist hier aber auch die größte Verbesserung erzielt worden. Für Carbonat und Ammonium konnte der Fehler auf ≤ 1% gesenkt werden. Tabelle 4: Experimentelle Titration einer einfachen Lösung: Das Ausblasen von CO₂ erfolgte bei pH=3.216 nach dem vierten Titrationspunkt. Zur Berechnung der Ergebnisse wurden die mit WASAN berechnete Ionenstärken (I = 13.85 mmol/l bei TP 1, I = 14.83 mmol/l bei TP 4 nach Ausblasen des CO₂) verwendet. Die Prozentzahlen in den Klammern geben die Abweichung vom Wert der Einwaage an. Die Titrationen wurden bei 25°C durchgeführt. 'TP' bedeutet Titrationspunkt.

Lösı	Lösungszusammensetzung [mmol/I]:								
9.57	9.572 KCI								
0.50	0.507 KH2PO4								
1.98	7 NH HCO								
1.00									
1.4/9	9 NaHCO ₃								
TP	Zugabe Titrant [mmol/I]	pH(exp.)	pH(ber.)	ΔpH(expber.)					
1 2	0.000 0.606 N×	7.255 8.206	7.265 8.183	-0.010 0.023					
3 4	4.107 H× 4.785 H	4.313 3.216	4.250 3.216	0.064 0.000					
5 6 7 8 9 10 11 12 13 14 15 ×H =	0.654 N 0.678 N 0.973 N 1.029 N 1.723 N 2.169 N 2.871 N 3.349 N 3.644 N 4.227 N 4.625 N	4.416 4.707 7.011 7.197 8.808 9.251 9.875 10.399 10.645 10.956 11.085	4.297 4.512 7.026 7.200 8.831 9.246 9.865 10.377 10.627 10.934 11.070	0.120 0.195 -0.014 -0.002 -0.022 0.005 0.010 0.022 0.018 0.022 0.015					
N = NaOH									
Auswertung									
Titrationspunkte		[tCO₃] in mmol/l	[tPO₄] in mmol/l	[tNH₄] in mmol/I					
	5,8,11/1,2,3	3.47 (+0.1%)	0.52 (+2.6%)	1.97 (-0.9%)					

Die Durchführung der Titrationen nach dieser Variante ist zwar aufwendiger, führt aber zu genaueren Ergebnissen, da die Phosphat/Ammonium-Bestimmung "ungestört" von Carbonat erfolgen kann. Obwohl die Abweichungen zwischen berechneten und gemessenen pH-Werten zum Teil deutlich höher liegen als bei dem in Tabelle 3 gezeigten Beispiel, wird ein besseres Resultat erzielt. Dieses Konzept ermöglicht zwar keine simultane Bestimmung aller drei Konstituenten mehr, ist dafür aber mit einer größeren Genauigkeit verbunden.

2.2.3 Säure-Base-Titrationen bei Anwesenheit von Calcium und Magnesium

Bei Anwesenheit der Erdalkali-Ionen ergeben sich zusätzliche Schwierigkeiten. Aufgrund der niedrigen Löslichkeiten der Calcium-Phosphate besteht die Gefahr der Niederschlagsbildung bei höheren pH-Werten. Zudem kann Magnesium bei Anwesenheit von Ammonium und Phosphat als MgNH₄PO₄ ausfallen. Bei den gemäß Tabelle 1 zusammengestellten Testlösungen traten bereits bei pH-Werten um 8 deutlich sichtbar Niederschläge auf. Da für die Ammonium-Bestimmung ein Titrationspunkt um pH≃10 benötigt wird, führt die alkalimetrische Titration nach dem in Kapitel 2.2.2 angegebenen Schema hier nicht zum Erfolg, da die Niederschlagsbildung bei der Berechnung der Konzentrationen nicht berücksichtigt werden kann.

Es ist notwendig, die Erdalkali-Ionen unter definierten Umständen, die eine Auswertung mit dem Rechenprogramm ermöglichen, in Lösung zu halten, wozu sich die Zugabe eines Komplexbildners vor der alkalimetrischen Titration anbietet. Dieser wird dann bei der Titration miterfaßt und muß bei der Auswertung berücksichtigt werden. Voraussetzung für den gezielten Einsatz des Komplexbildners ist deshalb, daß die Protonierungs- und Komplexbildungskonstanten, sowie deren Abhängigkeit von der Temperatur und der Ionenstärke bekannt sind, um ihn in das Programm integrieren zu können.

Erste Untersuchungen in dieser Richtung wurden mit NTA durchgeführt, einem Komplexbildner, über dessen Konstanten eine umfangreiche Datensammlung vorliegt (39) Nachdem die Ergebnisse dieser Untersuchungen erfolgreich die Durchführbarkeit dieser Methode belegt haben, führte die Tatsache, daß die Konzentrationen von Calcium und Magnesium ohnehin bekannt sein müssen, zu der Überlegung, einen Komplexbildner zu verwenden, der gleichzeitig zur Bestimmung der Erdalkali-Konstituenten eingesetzt werden könnte. EDTA sollte hierfür besonders geeignet sein, da es bereits erfolgreich zur konsekutiven Bestimmung von Calcium und Magnesium verwendet wird (8) und da über dessen Bildungskonstanten ebenfalls eine Zusammenstellung aller bekannten Daten zur Verfügung steht (40).

Die Auswahl der geeigneten Konstanten aus den Datensammlungen erfolgte auf der Grundlage der Ergebnisse von Säure-Base-Titrationen verschiedener Lösungen, die den Komplexbildner alleine als auch zusammen mit den Erdalkali-Ionen enthielten. Für diese Lösungen wurden die entsprechenden Titrationskurven unter Verwendung unterschiedlicher Konstanten berechnet und mit den experimentellen Kurven verglichen. Diejenigen Konstanten, die zu den geringsten Abweichungen zwischen berechneten und gemessenen Werten führten, wurden in das Programm aufgenommen.

Das Rechenprogramm verwendet Standard-Bildungskonstanten, d. h. Konstanten, die für 25°C gelten und auf die Ionenstärke Null bezogen sind. In der Praxis werden die Bildungskonstanten für die Komplexbildner bei 20 oder 25°C bestimmt; für die Ionenstärke wird i. a. der hohe Wert von 0.1 mol/I - eingestellt mit einem Inertsalz, etwa KCI -, gewählt, um deren Konstanz im Laufe des Experiments zu gewährleisten. Die Konstanten müssen also auf die Standardwerte umgerechnet werden, wozu die Kenntnis der Abhängigkeit von der Temperatur und der Ionenstärke notwendig ist. Die Berechnung der Temperaturabhängigkeit wurde mit Hilfe der Bildungsenthalpien über die van't Hoff'sche Gleichung durchgeführt; dabei wird eine Vereinfachung gemacht, denn die Temperaturabhängigkeit dieser Enthalpien selbst ist nicht bekannt. Dies wird in Kauf genommen, da der im Experiment betrachtete Temperaturbereich so gering ist (15 - 30°C), daß nur mit geringfügigen Fehlern zu rechnen ist. Größere Unsicherheiten bringt die Umrechnung der Konstanten auf die Ionenstärke Null mit sich. Genaue Daten lassen sich aus einer Meßreihe zur Bestimmung der Konstanten mit Variation der Ionenstärke, deren Ergebnisse auf die Ionenstärke Null extrapoliert werden, ableiten. Solche Daten sind für die eingesetzten Komplexbildner aber nicht verfügbar, so daß die Umrechnung über die Debye-Hückel-Gleichung zur Berechnung der Aktivitätskoeffizienten erfolgte. Dabei blieb die Frage ausgeklammert, ob es überhaupt erlaubt ist, diese Gleichung auf die z. T. mehrfach geladenen organischen Moleküle, die bei der Dissoziation des Komplexbildners entstehen, anzuwenden.

Tabelle 5 zeigt die Spezies und Konstanten, die für EDTA zusätzlich ins Rechenprogramm aufgenommen wurden.

Tabelle 5: Bildungskonstanten EDTA: Angegeben sind die im Rechenprogramm verwendeten Protonierungs- und Komplexbildungskonstanten von EDTA. Die Daten beziehen sich auf 25°C und die Ionenstärke 0. Bei den Protonierungskonstanten handelt es sich um die "recommended values" von Anderegg (40). Die thermodynamischen Daten stammen aus (42). Für die Komplexe CaHEDTA- und MgHEDTA- sind keine thermodynamischen Daten verfügbar.

Spezies	log K (25°C, I=0)	Lit.
HEDTA ^{3—}	10.94	(40)
H ₂ EDTA ²⁻	17.69	(40)
H ₃ EDTA ⁻	20.83	(40)
H₄EDTA	23.04	(40)
CaEDTA ²⁻	12.24	(41)
MgEDTA ²⁻	10.32	(42)
CaHEDTA ⁻	15.17	(42)
MgHEDTA	15.15	(42)

2.2.4 Säure-Base-Titrationen bei Anwesenheit von EDTA zur Komplexierung von Calcium und Magnesium

Aus Vorversuchen hat sich folgendes Konzept als zweckmäßig erwiesen:

1. Aufnahme des ersten Titrationspunktes zur Berechnung der Carbonat-Konzentration, wobei der pH-Wert der Ausgangslösung mit einem Titrantverbrauch von Null verwendet werden kann, oder ein pH-Wert um 8, der erfahrungsgemäß für Lösungen, bei denen die Konstituenten-Konzentrationen in dem betrachteten Bereich variieren, bei niedriger Pufferungsintensität liegt.

- 2. Acidimetrische Titration bis pH \simeq 4.3, dem zweiten Titrationspunkt zur Berechnung der Carbonat-Konzentration.
- 3. Ansäuern bis pH \simeq 3 und Ausblasen der Kohlensäure mit Argon (15 min). Zugabe einer ausreichenden Menge EDTA zur Komplexierung der Erdalkali-Ionen.
- 4. Alkalimetrische Titration bis pH ≃11, dabei Aufnahme von mindestens drei Titrationspunkten zur Berechnung der Konzentration von Ammonium und Phosphat.

Tabelle 6 zeigt die pH-Werte einer nach diesem Schema durchgeführten Folge von Titrationen, die entsprechenden mit WASAN berechneten Werte sowie die Ergebnisse der Auswertung.

Mit den Titrationspunkten 9, 12 und 16 wurde unter Vorgabe der berechneten Ionenstärke I = 18.86 mmol/l die Konzentration von Phosphat und Ammonium, mit den Titrationspunkten 1 und 3 unter Vorgabe von I = 23.89 mmol/l die von Carbonat berechnet: die Abweichungen liegen bei \leq 0.03 mmol/l. Hierbei waren die Konzentrationen von Calcium, Magnesium und Sulfat, sowie die Ionenstärke bekannt, nämlich aus der Einwaage. Der Titrationspunkt 1 wurde dem Titrationspunkt 2 zur Berechnung der Carbonat-Konzentration vorgezogen, weil dessen Differenz zu dem mit WASAN berechneten Wert deutlich geringer ist.

2.2.5 Experimentelle Durchführung der Titrationen

Das Lösungsvolumen betrug bei den in den Tabellen 3 und 4 angegebenen Beispielen 627 ml, bei dem in Tabelle 6 angegebenen Beispiel 500 ml. Die Lösungen wurden durch Zugabe der entsprechenden Salze zu destilliertem Wasser, das zuvor durch Auskochen unter Argon von CO₂ befreit wurde, hergestellt. Die acidimetrischen bzw. alkalimetrischen Titrationen erfolgten durch Zudosierung der entsprechenden Titrantvolumina von 1 M HCl bzw. 1 M NaOH mit einem Metrohm Dosimaten 655 in die bei 25°C thermostatisierten Lösungen. Das Carbonat wurde - bei den Beispielen der Tabellen 4 und 6 - nach Aufnahme der für dessen Bestimmung notwendigen Titrationspunkte bei niedrigem pH-Wert (\simeq 3) mit Argon ausgetrieben. Dafür hat sich ein Zeitraum von 15 min als ausreichend erwiesen. Das Argon wurde zunächst durch eine mit destilliertem Wasser gefüllte Waschflasche geleitet und gelangte dann über eine Fritte in die Lösung. Während der alkalimetrischen Titration strömte Argon über die Lösung, um CO₂ aus der Luft fernzuhalten.

Die pH-Messung erfolgte mit einer Radiometer Einstabmeßkette GK2402C, die bei 25°C mit vier DIN-Standardpufferlösungen nach DIN 19266 (37). geeicht wurde. Dabei handelte es sich um die Puffer C (Kaliumhydrogenphtalat, pH = 4.008), D (Phosphat, pH = 6.865), E (Phosphat, pH = 7.413) und F (Borax, pH = 9.180).

Tabelle 6: Titration einer Modellösung bei Anwesenheit von EDTA: Das CO₂ wurde bei pH=3.36 nach TP 4 ausgeblasen, anschließend erfolgte die Zugabe von festem EDTA in Form des Dinatrium-Salzes. Die Auswertung wurde mit Hilfe der mit WASAN berechneten Ionenstärke (I=18.86 mmol/I bei TP1, I=23.89 mmol/I nach dem Ausblasen von CO₂ und der Zugabe von EDTA) durchgeführt. Die Prozentzahlen in den Klammern geben die Abweichung vom Wert der Einwaage an. Die Lösung wurde bei 25°C thermostatisiert. 'TP' bedeutet Titrationspunkt.

Lös	Lösungszusammensetzung [mmol/l]:									
8.01	5 KCI									
0.50	0 KH ₂ PO ₄									
1.00	1.004 CaCl ₂									
0.50	0.506 MgSO ₄									
2.00	4 NH ₄ CI									
3.50	4 NaHCO ₃									
ТР	Zugabe Titrant [mmol/I]	pH(exp.)	pH(ber.)	ΔpH(expber.)						
1	0.000	7.256	7.223	0.033						
2	0.620 N*	8.202	8.044	0.158						
3	4.140 H*	4.311	4.330	-0.019						
4	4.640 H	3.360	3.360	0.000						
	1.504 E*	3.564	3.593	-0.029						
5	0.500 N 1.000 N			-0.045						
7	1.500 N	4.345	4.379	-0.043						
8	2.000 N	4.617	4.640	-0.023						
9	2.500 N	5.010	5.029	-0.019						
10	3.000 N	5.517	5.573	-0.056						
11	3.500 N 4.000 N	7 729	0.374	-0.058						
13	4.500 N	8.798	8.805	-0.040						
14	5.000 N	9.267	9.269	-0.002						
15	5.500 N	9.680	9.688	-0.008						
16	6.000 N	10.178	10.193	-0.015						
1/	6.500 N 7.000 N	10.642	10.638	0.004						
19	7.500 N	11.093	11.072	0.017						
20	8.000 N	11.216	11.197	0.019						
×H =	[×] H = HCI									
N = NaOH										
E = Titriplex III (Dinatriumsalz der EDTA)										
Ausv	vertung									
	Titrationspunkte	[tCO₃] in mmol/I	[tPO₄] in mmol/l	[tNH₄] in mmol/l						
	9.12.16/1.3	3.47 (-1.0%)	0.49 (-3.4%)	2.01(+0.3%)						

2.2.6 Ermittlung der Ionenstärke

Es hat sich gezeigt, daß die Kenntnis der Ionenstärke bei der Auswertung der Säure-Base-Titrationen von großer Bedeutung ist. Wie aus der Definitionsgleichung der Ionenstärke

$$I = \frac{1}{2} \sum_{i} c_i z_i^2$$
[1]

- c_i ist die Konzentration, z_i die Ladung der Spezies i - hervorgeht, läßt sie sich exakt nur bei Kenntnis aller Konstituenten und deren chemischer Speziation berechnen.

Bei den bisherigen Untersuchungen wurden die mit WASAN auf der Grundlage von Gleichung [1] berechneten Werte für die Ionenstärke verwendet. Für eine Lösung unbekannter Zusammensetzung muß eine experimentelle Methode gefunden werden, die diese Größe liefert; dabei kann es sich aber nur um eine mehr oder weniger gute Näherung handeln. So ist der Wert für natürliche Wässer näherungsweise mit einer von Kemp (43) angegebenen empirischen Beziehung aus dem Abdampfrückstand zugänglich. Maier und Grohmann (44) fanden für Trinkwässer eine lineare Abhängigkeit von der Leitfähigkeit, die in Gleichung [2] wiedergegeben ist:

$$I = \frac{LF_{20}}{5.45}$$
 [2]

In anderer Form lautet die Gleichung

$$I = 0.183 \cdot LF_{20}$$
 [3]

oder

$$I = 0.164 \cdot LF_{25}$$
 [4]

 $LF_{20/25}$ bedeutet die elektrische Leitfähigkeit bei 20 bzw. 25°C in mS/m. Wird die Leitfähigkeit in mS/cm angegeben, ergibt sich aus Gleichung [4]

$$I = 16.4 \cdot LF_{25}$$
 [5]

Die Ionenstärke errechnet sich in allen genannten Gleichungen in mmol/I. Die Umrechnung der Faktoren für die zwei Temperaturen erfolgte mit dem Korrekturfaktor 1.116 aus der DIN 38404 zur Bestimmung der Leitfähigkeit (45).

Gleichung [2] wurde aus den Analysendaten von Trinkwässern abgeleitet, d. h. Wässern, in denen zweiwertige Ionen und HCO₃-Ionen überwiegen. Deshalb ist sie auch nur auf Wässer einer entsprechenden Zusammensetzung anwendbar.

Der Linearitätsfaktor gemäß den Näherungsgleichungen [3] - [5] ist stark von der Lösungszusammensetzung abhängig. Zwei- und mehrwertige lonen liefern einen hohen Beitrag zur lonenstärke, weisen aber keine dementsprechend hohe Leitfähigkeit auf. Je größer das Konzentrationsverhältnis zwischen mehr- und einwertigen lonen ist, desto größer ist der Faktor. Bei einem großen Angebot einwertiger lonen gegenüber mehrwertigen lonen ist er klein.

Die Überlegung, den Betrag der Ionenstärke aus der Leitfähigkeit abzuleiten, findet auch bei Pasricha (46) zur Analyse von Bodenlösungen Anwendung. Hier wird der Faktor 11.62 für Gleichung [5] gefunden. Der Autor berichtet in einer Literaturübersicht von anderen Arbeiten, in denen ein Faktor zwischen 11 und 13 ermittelt wurde.

Zwei Verfahren wurden vorgestellt, die sich u. a. optischer Messungen zur Bestimmung der Ionenstärke bedienen. Das eine beruht darauf, daß der pH-Wert der untersuchten Lösung mit zwei verschiedenen, von der Ionenstärke in verschiedener Weise abhängigen Indikatoren gemessen wird, wobei diese Abhängigkeit bekannt ist. Aus der Differenz der Meßwerte läßt sich dann der Wert der Ionenstärke berechnen. Die pH-Messung erfolgt fluoreszenz-photometrisch (47). Dieses Verfahren wurde auch patentiert für die Messung mit "Absorptionsindikatoren, Elektroden als Indikatoren oder sonstigen anzeigenden Verfahren, wenn nur die beiden Messungen eine unterschiedliche Abhängigkeit von der Ionenstärke aufweisen". Eine zweite Methode (48) verwendet nur *einen* pH-Indikator, der auf eine poröse Glasfläche aufgebracht wird. Durch unterschiedliche chemische Behandlung solcher Gläser lassen sich Sensoren gewinnen, die bei der fluoreszenz-photometrischen pH-Messung von der Ionenstärke entweder unabhängig sind oder in charakteristischer Weise von ihr abhängen. Aus der Differenz der mit diesen beiden Sensoren gemessenen pH-Werte läßt sich die Ionenstärke ermitteln.

Allein durch den instrumentellen Aufwand sind solche Methoden für die kombinierten Titrationen ungeeignet. Meistversprechend und am günstigsten in den Analysenprozeß zu integrieren erscheint die Abschätzung der Ionenstärke aus der Leitfähigkeit, einer Größe, die bei einer Wasseranalyse ohnehin bestimmt werden soll und einfach und bequem mit einer Leitfähigkeitsmeßzelle ermittelt werden kann.

Die mit dieser Methode verbundene Unsicherheit liegt in der Wahl des Faktors in der linearen Beziehung nach Gleichung [5]. Für eine 10 mM KCI-Lösung beispielsweise liegt er bei etwa 7, für eine 10 mM CaSO₄-Lösung bei etwa 23. Zwischen diesen Grenzwerten ist der Wert für eine "reale" Lösung, etwa ein Trink- oder Abwasser zu suchen.

Um diese Methode zu testen, wurde die Leitfähigkeit verschiedener Lösungen, in denen das Verhältnis zwischen ein- und zweiwertigen Ionen variierte, bei 25°C gemessen und den mit WASAN berechneten Werten der Ionenstärke gegenübergestellt (Tabelle 7). Für das künstliche Abwasser nach Tabelle 1 ergibt sich ein Faktor von 11.5 (erstes Beispiel); aus den Daten der ersten fünf Beispiele, die repräsentative Zusammensetzungen für die Untersuchungen dieser Arbeit aufweisen, ergibt sich ein Mittelwert von 12.3. Für Lösungen, die viel KCI enthalten, d. h. deutlich durch einwertige Ionen geprägt sind, ist er auf etwa 10 reduziert.

Tabelle 7:Übersicht über die Messungen der Leitfähigkeit verschiedener Lösungen zur
Abschätzung der Ionenstärke. Angegeben ist die Leitfähigkeit bei 25°C in
mS/cm, die mit WASAN berechnete Ionenstärke in mmol/I, sowie der sich
daraus ergebende Proportionalitätsfaktor gemäß Gleichung [5].

ксі	KNO3	Na₂SO₄	MgSO₄	CaCl ₂	KH₂PO₄	Na₂HPO₄	NaHCO ₃	NH₄HCO3	NH₄CI	LF ₂₅	1	f
0.548	0.504	0.506	0.498	1.000	0.251	0.248	1.495	2.005		0.982	11.32	11.5
	0.502	0.521	0.506	1.008			3,523			0.820	10.08	12.3
}	0.495	0.508	1.018	1.990			1.993			0.989	12.85	13.0
	0.500	0.256	0.500	2.001			4.009			1.019	12.56	12.3
			0.498	2.000			3,995			0.915	11.40	12.5
1.996		0.990	2.003							0.893	11.63	13.0 ⁻
			0.503	1.011						0.356	4.77	13.4
5.011			0.498	1.004						1.050	9.79	9.3 .
8.004			0.497	1.003						1.457	12.80	8.8
2.006			0.498	1.000						0.637	6.75	10.6
2.012			1.005	1.001						0.728	8.46	11.6
1.001			0.997	1.007						0.586	7.42	12.7
2.988			0.504	1.007						0.775	7.78	10.0
4.000			0.503	0.997						0.913	8.77	9.6
0.998			0.501	1.011	0.498				2.023	1.111	11.78	10.6
7.991			0.513	1.005	0.498				2.015	2.055	18.86	9.2
			2.000							0.410	8.00	19.5

Abbildung 2 zeigt eine Auftragung der Werte der Ionenstärke aus Tabelle 7 - mit Ausnahme der beiden letzten Beispiele - über deren Leitfähigkeit. Die Regressionsgerade ergibt eine Steigung und damit einen Faktor von 11 für alle Lösungen; die Fehlergrenze liegt bei $\pm 20\%$.

Abbildung 2. Zusammenhang zwischen Ionenstärke und Leitfähigkeit: Die Abbildung zeigt die lineare Verknüpfung zwischen Ionenstärke (in [mmol/l]) und Leitfähigkeit (in [mS/cm]) unter Verwendung der Daten aus Tabelle 7 mit Ausnahme der beiden letzten Beispiele.

zusammenfassend läßt sich sagen, daß für Trinkwässer der Wert von 16.4 nach Gleichung [5] verwendet werden kann, für Abwässer ist ein geringerer Wert anzusetzen, etwa 12±1. Der Faktor 12.5 wurde ins Rechenprogramm aufgenommen. Die Berücksichtigung der Temperatur ist bei dieser Abschätzung bedeutungslos, da deren Einfluß auf die Leitfähigkeit innerhalb der Fehlergrenzen liegt. Zudem ist die Ionenstärke selbst eine nur minimal von der Temperatur abhängige Größe. So ergibt sich z. B. bei einer Temperaturabsenkung von 25°C auf 15°C für das erste Beispiel aus Tabelle 7 ein nur geringer Anstieg der Ionenstärke von 11.32 auf 11.42 mmol/I.

2.2.7 Säure-Base-Titrationen bei Anwesenheit von EGTA zur Komplexierung von Calcium und Magnesium

Für die weiteren Untersuchungen wurde EGTA eingesetzt, da angenommen wurde fälschlicherweise, wie sich später zeigen sollte -, daß dieser Komplexbildner besonders gut zur konsekutiven Bestimmung von Calcium und Magnesium geeignet sei.

EGTA ist hinsichtlich seiner Bildungskonstanten - im Gegensatz zu NTA und EDTA - weniger gut untersucht, weshalb die diesbezügliche Literatur auch nicht so umfangreich ist. Im wesentlichen sind hier zwei Veröffentlichungen von Interesse: dabei handelt es sich um die Untersuchungen von Anderegg (53) und Smith und Miller (54), die leicht voneinander abweichende Sätze von Protonierungs- und Komplexbildungskonstanten vorstellen. Bei der Auswertung der Titrationen wurden beide Konstantensätze getestet.

Die Durchführung der Titrationen erfolgte unter "praktischen" Bedingungen, d. h. die Lösungen wurden nicht thermostatisiert, sondern bei Raumtemperatur titriert; die Ionenstärke wurde nicht mit WASAN berechnet, sondern aus der Leitfähigkeit der Lösung abgeleitet. Damit werden die Ergebnisse dieser Titrationen - abgesehen von den Fehlern, die durch die Ungenauigkeiten bei der pH-Messung, bei der Berechnung der Standard-Bildungskonstanten sowie der Aktivitätskoeffizienten der Spezies des Komplexbildners gemacht werden - durch eine weitere Fehlerquelle beeinflußt, nämlich die Unsicherheiten beim Betrag der Ionenstärke.

Für die Ermittlung der Ionenstärke nach Gleichung [5] wurde bei diesen Untersuchungen kein Faktor festgelegt, sondern es wurden drei Werte (10, 12.5 und 15) aus dem Bereich, in dem der Faktor wahrscheinlich ist, gewählt, von denen zwei mit einer Abweichung von ±20% um einen mittleren Wert liegen. Damit sollte überprüft werden, welche Ungenauigkeit im Ergebnis die Ungenauigkeit des Faktors zur Folge hat. Für die Abschätzung der Ionenstärke der Ausgangslösung wurde deren Leitfähigkeit verwendet, für die Abschätzung der Verfügung: zum einen wiederum über die Leitfähigkeit am entsprechenden Titrationspunkt, zum anderen aus dem bereits ermittelten Wert für die Ionenstärke der Lösung vor den Titrationen, erhöht um einen dem Titrantinkrement entsprechenden Anteil. Beide Möglichkeiten wurden geprüft.

Für die Berechnung der Aktivitätskoeffizienten sind in der Literatur mehrere Gleichungen zu finden, drei der gebräuchlichsten sind die Debye-Hückel-Gleichung, die erweiterte Debye-Hückel-Gleichung und die Davies-Gleichung. Erwähnt sei hier auch noch der modernste Ansatz, der von Pitzer vorgestellt wurde (55): dabei werden neben den in der Debye-Hückel-Theorie zugrunde gelegten Coulomb-Wechselwirkungen hinaus auch noch Kräfte geringer Reichweite zwischen den Ionen berücksichtigt, die die Aktivitätskoeffizienten beeinflussen. In WASA2T und WASAN wird die Debye-Hückel-Gleichung verwendet, die sich bei wasserchemischen Berechnungen für den betrachteten Bereich der Ionenstärke (≲20 mmol/l) als ausreichend erwiesen hat.

Gleichung [6] repräsentiert die erweiterte Debye-Hückel-Gleichung.

$$\log \gamma_{i} = \frac{-A z_{i}^{2} \sqrt{I}}{1 + a_{i} B \sqrt{I}} + \beta_{i} I \qquad [6]$$

 γ_i ist der Aktivitätskoeffizient, z_i die Ladung, a_i der "ion-size-parameter" und β_i ein spezifischer Parameter des Ions i, I ist die Ionenstärke, A und B sind Konstanten. Bei der "einfachen" Debye-Hückel-Gleichung entfällt der zweite Term, in der Davies-Gleichung wird für jedes Ion das Produkt a B gleich 1 und β_i gleich 0.2 gesetzt.

Alle drei Gleichungen wurden bei der Auswertung der Titrationsdaten getestet; wiederum blieb die Frage nach der Zulässigkeit ihrer Anwendung auf die Spezies der EGTA ausgeklammert. Smith und Miller (54) fanden im Bereich hoher Ionenstärke (50 - 250 mmol/l) eine, Abhängigkeit der Aktivitätskoeffizienten - verwendet wurde die Guggenheim-Gleichung, die sich von der Davies-Gleichung in der Wahl des Faktors β_i unterscheidet - und damit der Bildungskonstanten von den "Ionenäquivalenten". Die "Ionenäquivalenz" einer Lösung ergibt sich aus der Berechnungsgleichung der Ionenstärke (Gleichung [1]) dadurch, daß der Betrag der Ionenladung $|z_i|$ anstatt seines Quadrates eingesetzt wird.

Bei der Auswahl der geeigneten Größen zur Auswertung der Titrationsdaten handelt es sich somit um einen "Kompromiß", der unabhängig von experimentellen Einflüssen eine Fehlerquelle für sich darstellt. Die Größen wurden folgendermaßen gewählt:

- Der Datensatz von Smith und Miller (s. Tabelle 8), umgerechnet auf 25°C und die lonenstärke Null, wird angewendet.
- Die lonenstärke wird aus den Leitfähigkeiten an den einzelnen Titrationspunkten abgeleitet, unter Verwendung des Umrechnungsfaktors 12.5.
- Die Aktivitätskoeffizienten werden nach der erweiterten Debye-Hückel-Gleichung berechnet; für die Spezies, die mit EGTA verbunden sind, wird der Wert 0.2 für β verwendet, für die übrigen Spezies die Werte aus dem aktuellen "WTL"-Datensatz (56). Dabei handelt es sich um einen laufend aktualisierten Satz von Standard-Bildungskonstanten, thermodynamischen Daten sowie Konstanten zur Berechnung der Aktivitätskoeffizienten, die die Angabe von Bildungskonstanten in Abhängigkeit von der Temperatur und der Ionenstärke ermöglichen.

Tabelle 8: Bildungskonstanten EGTA: In der zweiten Spalte sind die im Rechenprogramm verwendeten Protonierungs- und Komplexbildungskonstanten von EGTA aufgeführt, die aus den von Smith und Miller (54) angegebenen Daten mit Hilfe der thermodynamischen Daten aus (53) abgeleitet wurden. In der dritten Spalte stehen zum Vergleich die aus den Daten von Anderegg (53) abgeleiteten Konstanten. Die Werte beziehen sich auf 25°C und die Ionenstärke Null. Für H₃EGTA-, H₄EGTA, CaHEGTA- und MgHEGTA- sind keine thermodynamischen Daten verfügbar.

Spezies	log K (S/M)	log K (A)
HEGTA ^{3—}	10.29	10.17
H ₂ EGTA ²⁻	19.79	19.57
H₃EGTA [−]	23.05	22.73
H₄EGTA	25.27	24.95
CaEGTA ²⁻	12.47	12.37
MgEGTA ²	6.84	6.82
CaHEGTA	15.39	15.17
MgHEGTA ⁻	13.41	13.22

2.2.7.1 Simultane Titration von Phosphat und Ammonium

Da die für die Carbonat-Bestimmung notwendigen Titrationspunkte ohne Schwierigkeiten aufgenommen werden können, beschränkten sich die Untersuchungen zunächst auf die Phosphat/Ammonium-Bestimmung. Dabei wurden die Konzentrationen der relevanten Konstituenten in gewissen Grenzen variiert. Tabelle 9 zeigt eine Zusammenfassung der Ergebnisse.

Unter Punkt 1 sind die Ergebnisse der Titrationen von Lösungen aufgeführt, die keine Erdalkali- und Sulfat-Ionen enthalten, und in denen die Ammonium-Konzentration deutlich größer ist als die Phosphat-Konzentration. Die Mehrzahl der berechneten Werte weist eine Abweichung von ≤0.03 mmol/I auf. Die Genauigkeit der Ergebnisse bestätigt, daß die gewählten Protonierungskonstanten für EGTA verläßlich sind.

Die Ergebnisse sind weniger verläßlich, wenn die Phosphat-Konzentration kleiner ist als die Ammonium-Konzentration und beide relativ niedrig liegen (Punkt 2). Hier wird das beste Ergebnis bei einer hohen EGTA-Konzentration erzielt (2a). Nimmt die Konzentration des Komplexbildners ab, ist ein Gang der Abweichungen hin zu schlechteren Ergebnissen zu erkennen, für Phosphat in positiver, für Ammonium in negativer Richtung. Die absoluten Fehler liegen <0.04 mmol/I, was bei den gewählten Konzentrationen für Ammonium aber schon 20 % ausmachen kann.

Bessere Ergebnisse werden wieder bei einem umgekehrten Konzentrationsverhältnis erzielt (Punkt 3). Die Phosphat-Konzentrationen liegen beim erwarteten Wert von 0.2 mmol/I, für Ammonium betragen die Fehler bis zu 0.05 mmol/I.
Tabelle 9.Beispiele für Säure-Base-Titrationen bei Anwesenheit von EGTA: Die angegebenen EGTA-Konzentrationen müssen durch den Faktor 1.015 dividiert werden; sie sind aber der Übersichtlichkeit wegen unkorrigiert aufgeführt.

•

Vorgegebene Konzentrationen [mmol/l]							Berec Kor [mm	hnete nz. ol/l]	
<u> </u>	Ca	Mg	SO4	EGTA	KCI	PO ₄	NH ₄	PO ₄	NH ₄
1a) b) c) d) e) f) g) h) i)	- - - - - - - - -	- - - - - - -	 	2 1 0.5 1 2 1 1 1 1	5 5 5 10 10 5 10 5	0.5 0.5 0.25 0.2 0.2 0.2 0.2 0.1 0.05 0.025	2 2 1 1 0.5 0.4 0.2	0.48 0.50 0.51 0.26 0.21 0.20 0.11 0.05 0.03	1.97 1.99 1.93 0.99 1.00 0.97 0.51 0.40 0.15
2a) b) c)	- - -	 	- -	1 0.6 0.2	10 10 10	0.5 0.5 0.5	0.2 0.2 0.2	0.51 0.52 0.53	0.22 0.18 0.16
3a) b) c) d)		-	-	1 0.5 0.26 -	10 10 10 10	0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.5	0.20 0.20 0.20 0.20	0.55 0.51 0.49 0.49
4a) b) c) d) e)			- - -	1 0.6 0.5 0.2 -	10 10 10 10 10 10	0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1	0.11 0.11 0.11 0.11 0.12	0.15 0.11 0.08 0.07 0.10
5a) b) c) d) e)	1 1 1 1	- - -		2.5 2 1.5 1 0.5	5 5 5 5 5 5	0.25 0.25 0.25 0.25 0.25 0.25	1 1 1 1	0.16 0.17 0.22 0.19 0.16	1.20 1.16 0.99 1.10 1.06
6a) b) c) d) e)	1 1 0.975 0.975	0.5 0.5 0.5 0.488 0.488	-	2.5 2 1.5 2 1	5 5 5 5 5 5	0.25 0.25 0.25 0.04 0.04	1 1 0.2 0.2	0.25 0.26 0.30 0.05 0.04	1.02 0.97 0.89 0.20 0.29
7a) b) c)	1 1 1	0.5 0.5 0.5	0.5 0.5 0.5	2 2 2	5 5 5	0.5 0.25 0.2	2 1 1	0.51 0.28 0.19	1.94 0.98 1.01
8a) b) c) d) e) f) g) h)	1 1 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25	0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25	2.5 2 1.5 2 1.5 1 2 1	5 5 2.5 2.5 2.5 2.5 2.5 2.5	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1 1 1 1 1 0.5 0.5	0.25 0.25 0.28 0.24 0.25 0.25 0.25 0.10 0.14	0.99 0.94 0.88 1.08 1.04 1.03 0.57 0.49

Die unter Punkt 4 aufgeführten Beispiele berühren den Grenzbereich der Anwendbarkeit dieser Methode mit Konzentrationen von 0.1 mmol/l für beide Konstituenten. Während für Phosphat wiederum sehr gute Ergebnisse mit Fehlern <0.02 mmol/l erzielt werden, sind die Resultate für Ammonium sehr unzuverlässig; die Fehler erreichen bis zu 0.05 mmol/l, was bei der niedrigen Konzentration Abweichungen von 50% bedeuten kann.

Bei den Beispielen unter Punkt 5 wird ein "Problemfall" erkennbar: liegt neben Phosphat, Ammonium und EGTA in der Lösung als Erdalkali-Konstituente nur Calcium vor, werden äußerst ungenaue Ergebnisse berechnet, die für Phosphat i. a. zu niedrig, für Ammonium zu hoch liegen. Die Abweichungen erreichen in manchen Fällen bis zu 0.2 mmol/l und sind damit unakzeptabel groß.

Die Resultate sind besser, wenn neben Calcium auch Magnesium vorhanden ist (Punkt 6) und EGTA im Überschuß vorliegt. Ein ungünstiger Fall sind äquivalente Konzentrationen von Erdalkali-Ionen und EGTA (6c), eine große Abweichung für Phosphat ($\simeq 0.05$ mmol/I) und Ammonium ($\simeq 0.1$ mmol/I) ist die Folge.

Sehr gute Ergebnisse bieten die Beispiele unter Punkt 7 und 8, in denen Lösungen, die neben beiden Erdalkali-Konstituenten auch Sulfat enthalten, eingesetzt wurden, ausgenommen das Beispiel 8b, wo wiederum äquivalente Konzentrationen von Erdalkali-Ionen und EGTA vorliegen.

Zusammenfassend läßt sich sagen, daß die Methode der simultanen Titration von Phosphat und Ammonium bei Anwesenheit von EGTA mit einer Genauigkeit 0.01 mmol/l für Phosphat und 0.03 mmol/l für Ammonium angewendet werden kann, abgesehen von 3 "Problemfällen":

- geringe Konzentrationen von Phosphat und Ammonium (≤ 0.1 mmol/I)
- neben Phosphat, Ammonium und EGTA liegt nur Ca vor
- äquivalente Konzentrationen von Erdalkali-Ionen und EGTA

In die Berechnung der Ergebnisse gehen einige unsichere Größen ein (Bildungskonstanten, Ionenstärke, Aktivitätskoeffizienten). Um deren Einfluß zu demonstrieren, wurden sie für einige der Beispiele aus Tabelle 9 variiert. Geändert wurde dabei der Datensatz für die Bildungskonstanten, der Faktor aus Gleichung [5] sowie die Berechnungsgleichung für die Aktivitätskoeffizienten. Die Ergebnisse sind in Tabelle 10 zusammengefaßt

Die Daten in Tabelle 10 zeigen, daß das Ergebnis für die Phosphat-Konzentration nur in sehr kleinen Grenzen (≲0.01 mmol/l) variiert, die Unterschiede liegen meistens nur in der dritten Nachkommastelle, und damit innerhalb der Fehler der Meßgenauigkeit. Große Unterschiede ergeben sich aber für die Berechnung der Ammonium-Konzentration. Es wird deutlich, daß es nicht möglich ist, eine "richtige" Kombination der Größen zu finden, die bei allen Beispielen zum optimalen Ergebnis führt. Eindeutig läßt sich sagen, daß der Konstantensatz von Smith und Miller die genaueren Ergebnisse liefert. Tabelle 10: Variation verschiedener Größen, die die Auswertung der Titrationsdaten beeinflussen. 'f' ist der Faktor aus Gleichung [5] zur Ermittlung der Ionenstärke; 'I(TP)' bedeutet die Ermittlung der Ionenstärke an den Titrationspunkten aus der Ionenstärke der Lösung vor Zugabe der Titrantinkremente, erhöht um einen dem Titrantinkrement entsprechenden Anteil; in der Spalte 'D-H' wird die Ionenstärke nach der Debye-Hückel-Gleichung berechnet; 'Daten (A)' bedeutet die Verwendung des Datensatzes von Anderegg. Die Ergebnisse sind auf drei Nachkommastellen angegeben, um einen besseren Vergleich zu ermöglichen.

	Erg.	Tab.)	f =	10	f =	15	ד)ו	P)	D	-H	Date	n (A)
Bsp.	PO ₄	NH₄	PO ₄	$\rm NH_4$	PO ₄	$\rm NH_4$	PO ₄	NH ₄	PO ₄	$\rm NH_4$	PO ₄	NH_4
1b)	0.500	1.991	0.500	2.016	0.500	1.969	0.500	1.981	0.496	2.011	0.509	1.920
2a)	0.510	0.221	0.513	0.250	0.508	0.197	0.508	0.215	0.510	0.241	0.504	0.159
3b)	0.199	0.510	0.200	0.525	0.198	0.498	0.198	0.510	0.199	0.522	0.196	0.477
4b)	0.109	0.105	0.110	0.124	0.107	0.089	0.107	0.098	0.110	0.118	0.102	0.067
5c)	0.216	0.985	0.216	0.999	0.216	0.973	0.216	0.975	0.211	0.997	0.232	0.952
6b)	0.259	0.965	0.253	0.992	0.264	0.942	0.263	0.951	0.258	0.971	0.197	1.045
7b)	0.276	0.976	0.287	1.000	0.266	0.956	0.268	0.959	0.261	0.985	0.280	1.040
8e)	0.254	1.044	0.259	1.069	0.250	1.022	0.249	1.027	0.249	1.057	0.249	1.036

Für Ammonium ergeben sich bei niedrigen Konzentrationen (< 0.5 mmol/l) sehr unsichere Werte (vgl. Beispiele 2a und 4b). Hier zeigen sich die Auswirkungen, wenn die Aktivitätskoeffizienten der EGTA-Spezies mit der Debye-Hückel-Gleichung ermittelt werden. Für die Berechnung der Ammonium-Konzentration wird ein Titrationspunkt bei pH 11 verwendet; in diesem pH-Bereich liegen von EGTA überwiegend die drei- und vierfach negativ geladenen Spezies sowie die doppelt negativ geladenen Erdalkali-Komplexe vor, die einen hohen Beitrag zur Ionenstärke liefern und dementsprechend deutlich - nach der Debye-Hückel-Gleichung - die Aktivitätskoeffizienten und damit auch die berechneten Werte der den Lösungsbedingungen entsprechenden Bildungskonstanten beeinflussen.

Bei den Berechnungen hat sich zur Ableitung der Ionenstärke aus der Leitfähigkeit ein Faktor von etwa 12 als günstig erwiesen; bei Anwesenheit von EGTA müßte eigentlich ein kleinerer Wert gewählt werden, denn die EGTA-Spezies leisten einen relativ geringen Beitrag zur Leitfähigkeit, dafür aber einen großen zur Ionenstärke. Tabelle 11 zeigt dies für zwei der Beispiele aus Tabelle 9.

Mit niedrigen Faktoren (≲10) werden i. a. zu hohe Ammonium-Konzentrationen berechnet (vgl. Tabelle 10), deshalb wurde ein höherer Faktor vorgezogen.

Um eine Verbesserung der Ergebnisse zu erreichen, sind genauere Kenntnisse über die Bildungskonstanten des Komplexbildners, im besonderen über deren Abhängigkeit von der Ionenstärke notwendig. Tabelle 11:Berechnung des Faktors f aus der Leitfähigkeit an den Titrationspunkten
bei der alkalimetrischen Titration von Lösungen, die auch EGTA enthalten.
'LF' ist die Leitfähigkeit, 'l' die mit WASAN berechnete Ionenstärke.

Bsp.	рН	LF[mS/cm]	l[mmol/l]	f
2a)	3.01	2.29	15.44	6.7
	4.52	2.03	16.58	8.2
	8.01	2.06	17.67	8.6
	10.10	2.16	22.68	10.5
7b)	3.01	2.43	18.94	7.8
	4.51	2.18	20.95	9.6
	8.00	2.16	20.55	9.5
	10.10	2.19	22.75	10.4

2.2.7.2 Getrennte Titration von Carbonat und Phosphat/Ammonium

Das Verfahren unter Verwendung von EGTA wurde um die Carbonat-Bestimmung erweitert. Dabei wurde das komplette Titrationsverfahren gemäß dem Konzept aus Kap. 2.2.4. durchgeführt. Tabelle 12 zeigt die Ergebnisse bei der Bestimmung sowohl von Carbonat als auch von Phosphat und Ammonium. Dabei wird die Spannweite der möglichen Ergebnisse beim Einsatz von Lösungen mit den gleichen Konzentrationen deutlich. Es ist anzumerken, daß wesentlich bessere Werte für die errechneten Carbonat-Konzentrationen erzielt werden, wenn die Phosphato-Komplexe mit den Erdalkali-Ionen bei der Berechnung nicht berücksichtigt werden.

Tabelle 12:Beispiele für Säure-Base-Titrationen bei Anwesenheit von EGTA:Bestimmung von Carbonat, Phosphat und Ammonium.In Spalte 3 sind die Ergebnisse für Carbonat mit, in Spalte 4 ohne Berücksichtigung der Phosphato-Komplexe angegeben. 'MW' bedeutet Mittelwert.

Lös	ungszusamme	ensetzung [mn	nol/l]:	
5.0	KCI			
1.0 (CaCl ₂			
0.5	MgSO₄			
0.5	≺H₂PO₄			
2.0	NH ₄ CI			
3.5	NaHCO ₃			
2.0 1	Na₄EGTA			
Erge	bnis			
	[tPO₄] [mmol/I]	[tNH₄] [mmol7I]	[tCO₃] [mmol/I]	[tCO₃] o. K. [mmol/I]
1 2 3 4 5	0.48 0.47 0.50 0.45 0.50	1.98 2.04 2.08 2.03 2.02	3.50 3.45 3.45 3.41 3.41 3.42	3.55 3.50 3.50 3.47 3.48
MW	0 48+0 023	203+0032	3 45+0 031	3 50+0 028

2.2.7.3 Experimentelle Durchführung der Titrationen

Zur Herstellung der Testlösungen wurden Standardlösungen verwendet, die je 10 mmol/l Calcium, Magnesium, Sulfat, Phosphat und Ammonium enthielten. Die Sulfat-, Phosphatund Ammonium-Lösungen wurden durch Auflösen der entsprechenden Einwaagen von Na₂SO₄, KH₂PO₄ und NH₄CI in destilliertem Wasser hergestellt, die Calcium-Lösung durch Auflösen der entsprechenden Menge CaCO₃ in HCI, Verkochen des CO₂ und Auffüllen mit destilliertem Wasser auf 1 I. Für die Magnesium-Standardlösung wurde durch Einwaage des - hygroskopischen - MgCl₂ zunächst eine etwa 0.1 M Lösung hergestellt, die - nach komplexometrischer Gehaltsbestimmung - durch entsprechendes Verdünnen auf die Konzentration von 10 mmol/l gebracht wurde.

Von den Testlösungen wurde jeweils 1 I durch Zusammenmischen der entsprechenden Volumina der Standardlösungen und anschließendes Auffüllen mit destilliertem Wasser hergestellt. Carbonat wurde erst kurz vor den Titrationen als festes NaHCO₃ zu der Lösung, die zuvor auf pH \simeq 7 gebracht wurde, zugesetzt.

Das Probenvolumen für die Titrationen betrug 50 ml.

Wenn die Testlösungen auch Carbonat zur Bestimmung enthielten, wurde mit 0.1 M HCl bis pH 4.3 titriert, anschließend weiter bis pH 3 angesäuert und Argon durch die Lösung geleitet (15 min). Dann wurde das dem Versuch entsprechende Volumen einer 0.5 M Na₄EGTA -Lösung zudosiert. Das Ansäuern bis pH 3 und Durchleiten von Argon erfolgte auch, wenn kein Carbonat in der Lösung vorgegeben war, um das möglicherweise in der stark alkalischen Na₄EGTA-Lösung enthaltene Carbonat zu entfernen. Anschließend wurde - bei ständigem Überleiten von Argon über die Lösung - alkalimetrisch mit 0.1 M NaOH titriert, bei den ersten Versuchen bis zu den pH-Werten 5, 8 und 10, später wurden dann die pH-Werte 4.5, 8 und 10.1 gewählt. In der Ausgangslösung und an jedem Titrationspunkt wurden Temperatur (mit einem Widerstandsthermometer Pt100) und Leitfähigkeit gemessen. Der gesamte Prozeß erfolgte automatisch mit dem Metrohm Titroprocessor 670.

2.2.8 Bemerkungen zu den Phosphato-Komplexen

Bei Titrationen von Lösungen, die Calcium, Magnesium sowie Phosphat und Carbonat enthielten, zeigte sich, daß im pH-Bereich > 8 erhebliche Differenzen zwischen gemessenen und den mit WASAN berechneten pH-Werten auftreten. Die Abweichungen werden kleiner, wenn die Komplexbildung zwischen den Erdalkali-Ionen und Carbonat und Phosphat bei der Berechnung unberücksichtigt bleibt, besonders bei höheren pH-Werten (> 8), wo die Komplexe der höher geladenen Spezies der Kohlen- und Phosphorsäure großen Einfluß gewinnen. Die Komplexe MePO₄ (Me=Ca, Mg) tragen dabei den größten Anteil an den Abweichungen.

Ein weiteres Indiz dafür, daß diese Komplexe in dem Rechenprogramm überbewertet werden, ergab sich aus Untersuchungen mit der Calcium-selektiven Elektrode. In alkali-

schen Lösungen, die Calcium und Phosphat enthielten, wurde eine größere Ca²⁺ -Aktivität gemessen, als dies nach der Rechnung der Fall sein sollte (vgl. Tabelle 13). Dabei ist die Abweichung umso größer, je niedriger die Ca²⁺-Konzentration ist.

Tabelle 13:	Direkte Messungen mit der Calcium-selektiven Elektrode: Gemessene und
	berechnete Ca ²⁺ -Aktivitäten bei Anwesenheit von Phosphat (T = 25°C, pH = 8).

Ca [mmol/l]	PO ₄ [mmol/l]	Ca (exp.) [mmol/l]	Ca (ber.) [mmol/l]
0.5	0.5	0.49	0.45
1.0	0.5	0.93	0.90
2.0	0.5	1.91	1.89

Während die Existenz der Me(HPO₄)^o und Me(H₂PO₄)⁺-Komplexe unumstritten ist - so untersuchten z. B. Daniele et al. (49) die entsprechenden Calcium-Komplexe und verglichen die Ergebnisse mit Literaturdaten -, werden weitere Komplexe zwischen den Erdalkalilonen und Phosphat kontrovers behandelt. Chugtai et al. (50) ermittelten Bildungskonstanten für den Ca(PO₄)⁻-Komplex, abgeleitet aus Untersuchungen mit übersättigten Lösungen. Childs (51) fand Konstanten für die Komplexe MeH₃(PO₄)_{\overline{z}} und Me₂H₂(PO₄)_{\overline{z}}, au-Berdem für MgPO₄, nicht aber für dessen Ca-Analogon.

Truesdell und Jones (52) schließlich verwenden in ihrem Programm WATEQ zur Berechnung chemischer Gleichgewichte in natürlichen Wässern für CaPO₇ die Bildungskonstanten von Chugtai et al., die Konstante für den entsprechenden Mg-Komplex leiten sie aus Analogieüberlegungen ab, verwenden also keinen experimentellen Wert.

2.3 Zusammenfassung Kapitel 2

Es wurde gezeigt, daß die drei Konstituenten Carbonat, Phosphat und Ammonium in einfachen Lösungen mit vier oder mehr Titrationspunkten, die durch Säure-Base-Titrationen erzielt werden, simultan nebeneinander bestimmt werden können; dabei waren Ergebnisse mit Abweichungen < 0.06 mmol/l möglich, bei Verwendung ungünstiger Titrationspunkte traten Fehler bis 0.2 mmol/l auf. Ein Hindernis für bessere Ergebnisse ist die unzureichende Differenzierung zwischen Phosphat und Carbonat, so daß es sinnvoller erschien, deren Bestimmung zu trennen: zuerst werden zwei Titrationspunkte zur Berechnung der Carbonat-Konzentration aufgenommen, dann wird die Lösung stark angesäuert und die Kohlensäure im Argon-Strom ausgetrieben. Anschließend müssen nur noch zwei Konstituenten - Phosphat und Ammonium - durch alkalimetrische Titration simultan erfaßt werden. Bei der Auswertung wurden zunächst die Phosphat- und Ammonium-Konzentrationen berechnet; unter Vorgabe dieser Ergebnisse erfolgte dann die Berechnung der Carbonat-Konzentration. Solch eine Vorgehensweise führt zu genaueren Ergebnissen.

Die Anwesenheit von Erdalkali-Ionen macht es notwendig, das Verfahren zu modifizieren: durch Zugabe eines Komplexbildners werden die Erdalkali-Ionen in Lösung gehalten, um die bei der Aufnahme des für die Ammonium-Bestimmung notwendigen Titrationspunktes bei hohem pH-Wert mögliche Ausfällung von Erdalkali-Verbindungen zu verhindern. Da dieser Komplexbildner dann bei der alkalimetrischen Titration miterfaßt wird, müssen dessen Protonierungs- und Komplexbildungskonstanten in das Auswerte-Programm integriert sein. Getestet wurden die Komplexbildner NTA, EDTA und EGTA. Dabei hat sich gezeigt, daß aufgrund der unzureichenden Kenntnisse über die Abhängigkeit der Konstanten von der Temperatur und im besonderen von der Ionenstärke in ungünstigen Fällen hohe Abweichungen bis 0.1 mmol/l für Phosphat und Ammonium in Kauf genommen werden müssen. Die Abweichungen lagen i. a. aber deutlich niedriger, bei etwa 0.01 mmol/l für Phosphat und 0.03 mmol/l für Ammonium.

Eine nicht zu umgehende Fehlerquelle stellt die experimentell nur sehr ungenau bestimmbare lonenstärke der Lösung dar; sie kann mit einer Genauigkeit von nur $\pm 20\%$ aus der Leitfähigkeit abgeleitet werden. Während dieser Einfluß auf das Ergebnis bei Abwesenheit des Komplexbildners relativ gering ist, bringt er bei dessen Anwesenheit eine schwer abzuschätzende Unsicherheit in die Rechnung ein, besonders für die Berechnung niedriger Ammonium-Konzentrationen.

Es wurde somit ein Weg aufgezeigt, Carbonat, Phosphat und Ammonium - auch bei Anwesenheit der Erdalkali-Ionen - titrimetrisch durch eine Folge von Säure-Base-Titrationen bestimmen zu können. Dabei waren in den Lösungen die - im voraus bekannten - sauren und basischen Konstituenten Carbonat, *Ortho*phosphat, Ammonium und EGTA vorhanden. Sollen "reale" Lösungen titriert werden, müssen sämtliche anderen Konstituenten, die - abgesehen von ihrem Einfluß über die Ionenstärke - den pH-Wert beeinflussen, bekannt sein, um das Ergebnis nicht über die experimentelle Genauigkeit hinaus zu verfälschen.

3. Bestimmung von Calcium und Magnesium

Die Kenntnis der Konzentrationen von Calcium und Magnesium ist eine Voraussetzung zur genauen Auswertung der Säure-Base-Titrationen. Es erschien zweckmäßig, zu deren Bestimmung ebenfalls ein potentiometrisches Verfahren anzuwenden, das in den Prozeß der Säure-Base-Titrationen integriert werden kann, schon allein deshalb, um die vielfältigen Möglichkeiten des eingesetzten Titrators auszunutzen.

Die Tatsache, daß alle bekannten titrimetrischen Methoden zur Calcium- und Magnesium-Bestimmung auf der Komplexometrie beruhen, wird besonders interessant dadurch, daß die Erdalkali-Ionen bei der alkalimetrischen Titration in Anwesenheit von Ammonium ohnehin durch einen Komplexbildner in Lösung gehalten werden müssen, um die mögliche Ausfällung von Erdalkali-Verbindungen zu verhindern. Deshalb lag es nahe, ein Verfahren zu suchen, das die Calcium- und Magnesium-Bestimmung mit der Erdalkali-Komplexierung koppelt.

3.1 Literaturübersicht

Die "klassische" Bestimmungsmethode für Calcium und Magnesium beruht auf der Titration mit EDTA, unter Verwendung von Farbindikatoren zur Endpunktserkennung (57). Dazu sind zwei Titrationen notwendig: eine bei hohem pH-Wert (12 - 13) zur Bestimmung von Calcium - Magnesium ist dann als $Mg(OH)_2$ ausgefallen und stört nicht -, eine zweite bei niedrigerem pH-Wert (\simeq 10) zur Bestimmung der Summe von Calcium und Magnesium. Aus der Differenz der beiden Ergebnisse ergibt sich die Magnesium-Konzentration. Dieses Prinzip machen sich die meisten der vorgeschlagenen Verfahren zunutze, variiert wird der Komplexbildner, der Indikator oder die Methode der Endpunktserkennung.

Gleich zwei Neuerungen führten Schmid und Reilley (58) ein: sie verwendeten zum einen EGTA ("a new complexon") zur Bestimmung der Calcium-Konzentration, ohne daß die vorherige Abtrennung des Magnesiums notwendig ist; zum anderen wurde die Titration potentiometrisch unter Verwendung einer Quecksilber-Elektrode durchgeführt. Die konsekutive Titration von Calcium und Magnesium ist mit diesem Komplexbildner aber nicht möglich, weil der zweite Potentialsprung in der Titrationskurve, der auftritt, wenn eine der Summe von Calcium und Magnesium äquivalente Menge des Komplexbildners zugesetzt ist, zu gering ist. Das macht auch hier eine zweite Titration erforderlich, in der die Summe der Erdalkali-Ionen mit EDTA bestimmt wird. Das gleiche Prinzip, das die Anwendung der Quecksilber-Elektrode ermöglicht, liegt zwei weiteren Methoden zugrunde, die eine Silber-Elektrode (59) bzw. eine Kupfer-Elektrode (60) als Indikator-Elektrode einsetzen: den untersuchten Lösungen muß eine gewisse Konzentration der entsprechenden lonen, auf die die Metall-Elektrode selektiv anspricht, zugesetzt werden, also Hg2+, Ag+ oder Cu2+ . Mit den Metall-Elektroden werden die Aktivitätsänderungen dieser Metall-lonen verfolgt, die auch die Aktivitätsänderungen der Calcium- und Magnesium-lonen repräsentieren.

Ebenfalls potentiometrisch unter Verwendung einer Silber-Elektrode erfolgte die selektive Calcium-Bestimmung mit EGTA in der von Lichtenstein et al. (61) beschriebenen Methode; Magnesium stört dabei und wird mit Acetylaceton oder Citronensäure maskiert.

Whitfield et al. verwendeten erstmals eine Calcium-selektive Elektrode als Indikator-Elektrode: Calcium wird mit EGTA bestimmt, die Summe von Calcium und Magnesium mit DCTA. Die theoretischen Grundlagen werden in (62) erörtert, die praktische Umsetzung in (63). Ein automatisches Verfahren, das die Titration am Wendepunkt abbricht, wird in (64) beschrieben: Sensor ist ebenfalls eine Calcium-selektive Elektrode, als Titrant wird EDTA eingesetzt.

Die Schwierigkeit bei der sukzessiven Bestimmung von Calcium und Magnesium mit EDTA liegt darin, daß deren Komplexbildungskonstanten zu nahe beieinander liegen - die Differenz beträgt etwa 2 logarithmische Einheiten -, um bei der Potentialmessung mit einer der erwähnten ionenselektiven Elektroden zwei eindeutige, scharfe Wendepunkte in der Titrationskurve auszubilden. Es ergibt sich stattdessen ein schwach ausgeprägter erster Wendepunkt für die Komplexierung von Calcium und ein zweiter, steiler Wendepunkt für die Summe der Erdalkali-Konstituenten. Die Summe wird deshalb sehr genau erfaßt, bei der "Verteilung" auf die Konstituenten ergeben sich für Calcium aber i. a. zu hohe, für Magnesium dementsprechend zu niedrige Konzentrationen. Die Lösung dieses Problems gelang Christiansen et al. (8): sie bestimmten Calcium und Magnesium in einer Probe mit Hilfe der Calcium-selektiven Elektrode unter Verwendung von EDTA durch Zugabe eines "Hilfskomplexbildners", der eine größere Affinität zu Magnesium als zu Calcium hat. Dadurch wird die Magnesium-Aktivität herabgesetzt und die Komplexierung von Calcium begünstigt. In der Titrationskurve führt dies zu größeren Potentialänderungen am ersten Wendepunkt, der zweite Wendepunkt wird abgeschwächt. Als Hilfskomplexbildner wird 3,4-Dihydroxybenzoesäure oder Acetylaceton eingesetzt.

Eine weitere Anwendung der Calcium-selektiven Elektrode als Indikator-Elektrode findet sich in (65): dabei wird die Bestimmung von Calcium in Meerwasser mit EGTA als Komplexbildner durchgeführt.

Auch einige nicht-potentiometrische Methoden wurden vorgeschlagen, die sich die Komplexierung von Calcium und Magnesium zu deren Bestimmung zunutze machen: eine automatische photometrische Methode mit EDTA, wobei wiederum zwei Titrationen notwendig sind (66), oder die sukzessive photometrische Titration in einer Probe (67) mit zwei Titranten (EGTA und anschließend DCTA). Ebenfalls mit zwei Titranten (EGTA und EDTA) arbeitet ein amperometrisches Titrationsverfahren (68) unter Verwendung einer PbO₂-Elektrode; das gleiche Prinzip liegt einem puls-polarographischen Meßverfahren (69) zugrunde.

Yoshida et al. (70) entwickelten eine interessante Variante, indem sie die Titration thermometrisch mit EDTA durchführten. Durch Zugabe eines Hilfsreagens wird infolge einer negativen Bildungsenthalpie bei der Komplexierung von Magnesium - in Analogie zu dem oben erwähnten Hilfskomplexbildner - die positive Komplexbildungsenthalpie für die Komplexierung von Calcium scheinbar vergrößert. Dadurch ergeben sich schärfere Knicke in der Titrationskurve. Die Titration erfolgt sukzessive in *einer* Lösung.

Bei den vorgestellten Methoden wird ein wichtiger Gesichtspunkt zur komplexometrischen Bestimmung von Calcium und Magnesium deutlich: es sind entweder - abgesehen von zwei Ausnahmen - zwei Titrationen in zwei Lösungen nötig, oder es bedarf der Verwendung von zwei Komplexbildnern. Lediglich zwei Methoden können mit einer Lösung unter Verwendung eines Komplexbildners durchgeführt werden, allerdings ist dann eine "Manipulation" der Lösungszusammensetzung durch den Zusatz eines Hilfsreagens notwendig.

Die ionenselektiven Elektroden werden bei den erwähnten Methoden nur als Sensoren bei der potentiometrischen Titration eingesetzt. Hierfür sind sie besser geeignet als zur direkten Messung von Calcium und Magnesium. Die Calcium-selektive Elektrode ist inzwischen zu einer der gebräuchlichsten und zuverlässigsten ionenselektiven Elektroden geworden, eine Magnesium-selektive Elektrode ist nicht verfügbar. Verwendung findet noch die "bivalente" oder "Wasserhärte"-Elektrode, mit der die Summe von Calcium und Magnesium gemessen werden kann. Der Nachteil dieser Elektroden liegt darin, daß sie oft zu unselektiv auf eine bestimmte Spezies ansprechen; zudem können mit ihnen nur die Aktivitäten der betreffenden freien Ionen gemessen werden, so daß zur Berechnung der Konzentrationen die Aktivitätskoeffizienten der Ionen bekannt sein müssen; auch werden komplexierte Spezies bei der Messung nicht erfaßt.

Trotz dieser Schwierigkeiten gab es Versuche, geeignete ionenselektive Elektroden zur direkten Messung zu entwickeln und durch Verbesserung des Membranmaterials die Selektivität zu erhöhen. Speziell im medizinischen Sektor besteht ein großes Interesse in dieser Richtung. Anker et al. (71) stellen eine Calcium-selektive Elektrode vor, mit der noch bei pH = 3.5 genaue Messungen im Konzentrationsbereich 1 - 3 mmol/l durchgeführt werden können. Bei solch einem niedrigen pH-Wert ist sonst i. a. keine zuverlässige Messung mehr möglich. Es wurden keine Elektroden gefunden, die selektiv auf Magnesium-Ionen ansprechen; sämtliche Substanzen, die zur Herstellung der Elektrodenmembranen getestet wurden, zeigten sich gegenüber Calcium selektiver als gegenüber Magnesium. Bei Abwesenheit von Calcium läßt sich Magnesium mit der "bivalenten" Elektrode messen. Lanter et al. (72) beschreiben eine Elektrode, die für Mg²⁺-Konzentration nur im μ mol/l-Bereich liegen, wodurch deren Anwendung wiederum auf spezielle Fälle begrenzt ist.

Meier et al. (73) beschäftigen sich mit der Möglichkeit des Einsatzes der bivalenten Elektrode zur direkten potentiometrischen Wasserhärte-Bestimmung, beschränken deren Einsatz aufgrund der Unsicherheiten, die die Ionenstärke und Störionen (im besonderen Na⁺) verursachen, aber auf "relativ weiches" Wasser.

Zusammenfassend läßt sich sagen, daß der Einsatz von ionenselektiven Elektroden unter definierten Bedingungen zur direkten Messung gut geeignet ist, bei unbekannten Lösungen aber nur begrenzt möglich ist. Diese Einschränkungen sind unerheblich, wenn diese Elektroden als Indikatorelektroden bei der potentiometrischen Titration eingesetzt werden. Hierbei kommt es nur auf relative Potentialänderungen, nicht aber auf die absoluten Werte an, wodurch auch das Kalibrieren der Elektrode überflüssig wird. Die Verwendung als Indikatorelektrode führt zu ausgezeichneten Ergebnissen, solange nur eine Konstituente zu bestimmen ist. Bei der Bestimmung mehrerer Konstituenten treten - ähnlich wie bei der pH-Elektrode - Schwierigkeiten auf, wenn die Bildungskonstanten der zugrunde liegenden Reaktionen, etwa die Komplexbildungskonstanten bei Komplexierungsreaktionen nicht hinreichend weit auseinander liegen. Eine weitere Einschränkung ergibt sich dadurch, daß die Metallionenselektiven Elektrode bei weitem nicht so empfindlich sind wie etwa die pH-Elektrode und somit nicht über einen entsprechend großen Bereich eingesetzt werden können. Während die pH-Elektrode 14 logarithmische Einheiten ($\simeq 800$ mV) messen kann, ist der Einsatzbereich der Calcium-Elektrode beispielsweise auf etwa 6 logarithmische Einheiten ($\simeq 200$ mV) begrenzt.

3.2 Experimentelle Calcium/Magnesium-Bestimmungen

3.2.1 Direkte Calcium-Bestimmung

Die Methode von Christiansen et al. (8) bietet die besten Voraussetzungen für ein kombiniertes Titrationsverfahren. Dabei ist der notwendige Zusatz des Hilfskomplexbildners und des pH-Puffers problematisch, denn mit der zunächst komplexometrisch titrierten Lösung sollen anschließend die Säure-Base-Titrationen durchgeführt werden, wobei alle zugesetzten Substanzen von dem Auswerte-Programm zu berücksichtigen sind, d. h. sie müssen "berechenbar" sein. In dem vorliegenden Falle wäre das nicht mehr möglich, da der Lösung mit dem Puffer, dem Hilfskomplexbildner und dem Titrant gleich drei neue Konstituenten zugesetzt würden, die eine Vielzahl von zusätzlichen Gleichgewichten mit sich bringen. Während auf den pH-Puffer verzichtet werden kann, wenn der pH-Wert der Lösung weit genug im alkalischen Bereich liegt (pH \geq 8), ist eine Titration mit EDTA ohne den Hilfskomplexbildner zu unzuverlässig.

Deshalb wurde der folgende Weg getestet: die Bestimmung von Calcium soll direkt mit der geeichten Calcium-selektiven Elektrode erfolgen, die Bestimmung der Summe von Calcium und Magnesium durch komplexometrische Titration in einer zweiten Probe; aus der Differenz läßt sich die Magnesium-Konzentration berechnen. Das Problem der bei der direkten Messung nicht zu erfassenden komplex gebundenen Spezies von Calcium (in Frage kommen Sulfato-, Phosphato- und Carbonato-Komplexe) läßt sich folgendermaßen lösen: die Konzentration der pH-abhängigen Phosphato- und Carbonato-Komplexe kann durch pH-Erniedrigung weitgehend zurückgedrängt werden, das Sulfat läßt sich durch Fällung mit BaCl₂ entfernen. In Lösungen, die neben Calcium auch Phosphat, Carbonat und Sulfat enthielten, konnte Calcium mit einer Abweichung von < 1.5% im untersuchten Konzentrationsbereich von 0.5 - 2 mmol/l bestimmt werden, nachdem die Lösung auf pH \simeq 5 angesäuert und das Sulfat durch Zugabe von BaCl₂ ausgefällt war. Ein niedrigerer pH-Wert muß vermieden werden, da sonst der störende Einfluß der H+ -lonen auf das Elektrodenpotential zu groß wird.

Dieser Weg wurde nicht weiter verfolgt, nachdem sich herausgestellt hatte, daß zu viele Unsicherheiten bezüglich der Elektrodenkonstanz, der Kenntnis der Ionenstärke und der Einhaltung definierter Bedingungen im Spiel sind. Zudem ist ein häufiges Nacheichen der Elektrode notwendig.

Der gegenüber der direkten Messung einfachere Weg der Calcium- und Magnesium-Bestimmung bietet sich in der konsekutiven komplexometrischen Titration unter Verwendung der Calcium-Elektrode als Indikatorelektrode.

Vorbemerkung: Zur Durchführung der komplexometrischen Titrationen bietet der eingesetzte Titrator (Metrohm Titroprocessor 670) zwei geeignete Titrationsarten an:

- 1. die monotone Titration
- 2. die dynamische Titration

Bei der monotonen Titration erfolgt die Titrantzugabe mit konstanten Volumenschritten. Zur Berechnung des Wendepunktes wird eine Interpolationsformel (74) verwendet, die den maximalen Potentialsprung sowie die beiden benachbarten Potentialsprünge berücksichtigt. Damit werden für jeden Wendepunkt vier Titrationspunkte aus dem betreffenden Bereich der Titrationskurve zur Auswertung herangezogen.

Die dynamische Titration erfolgt mit variablen, dem Titrationsverlauf angepaßten Volumenschritten. Dadurch werden viele Titrationspunkte in die steilen Bereiche der Titrationskurve gelegt, die flachen Bereiche werden schnell "überbrückt". Die hohe Meßpunktdichte um die Wendepunkte führt zu einer größeren Genauigkeit gegenüber der monotonen Titration.

Zur Berechnung der Wendepunkte ist eine gewisse Übertitration notwendig; dieser Bereich ist bei der monotonen Titration aufgrund der angewandten Berechnungsmethode deutlich kleiner als bei der dynamischen Titration.

3.2.2 Komplexometrische Bestimmung von Calcium und Magnesium

Zu einer genau auswertbaren konsekutiven komplexometrischen Titration von Calcium und Magnesium ist ein Komplexbildner nötig, bei dem die Komplexbildungskonstanten der betrachteten Erdalkali-Konstituenten hinreichend weit auseinander liegen, um scharfe Wendepunkte in einer potentiometrisch registrierten Titrationskurve zu liefern. Tabelle 14 zeigt die Komplexbildungskonstanten von Calcium-, Magnesium- und Barium-Ionen mit den drei gebräuchlichen Komplexbildnern EDTA, EGTA, DCTA sowie mit einem von Stetter und Frank (75) synthetisierten Komplexbildner, eine Tetraazacycloalkantetraessigsäure, die im folgenden mit TCTA abgekürzt wird. Die ersten drei Komplexbildner sind kommerziell erhältlich, der vierte nicht, weshalb er auch nur zu rechnerischen Vergleichen, nicht aber zu praktischen Experimenten herangezogen werden konnte.

Tabelle 14:Komplexbildungskonstanten verschiedener Komplexbildner: Die Konstanten
der drei ersten Komplexbildner wurden (42) entnommen und beziehen sich
auf 25°C und die Ionenstärke I=0.1 mol/l, die Konstanten des vierten stam-
men aus (75) und gelten für 20°C und I=0.1 mol/l.

	Са	Mg	Ba
EDTA	10.61	8.83	7.8
EGTA	10.86	5.28	8.3
DCTA	13.15	11.07	8.6
TCTA	15.85	11.03	-

Abbildung 3 zeigt die Änderungen der logarithmierten Ca²⁺ -Aktivität (pCa) im Laufe der Titration einer Lösung, die je 1 mmol/I Calcium und Magnesium sowie 10 mmol/I KCI enthält, mit den vier genannten Komplexbildnern. Interessant daran ist, daß nicht nur bei einer der Calcium-Konzentration äquivalenten Konzentration des Komplexbildners ein Wendepunkt in der Kurve auftritt, sondern auch bei äquivalenten Konzentrationen von Komplexbildner und der Summe von Calcium *und* Magnesium. Hannema und Den Boef (76) haben eine Beziehung abgeleitet, die die komplexometrische Titration von zwei Metallen nebeneinander mathematisch beschreibt. Wird die logarithmierte Metallionen-Aktivität der stärker komplexierten Spezies in Abhängigkeit von der Konzentration des Komplexbildners aufgetragen, ergibt sich eine Kurve mit zwei Wendepunkten. Als Bedingung für das Auftreten von zwei *scharfen* Wendepunkten wird von den Autoren eine Differenz der Komplexbildungskonstanten ≥ 4 logarithmischen Einheiten angegeben.

Mit einer idealen Calcium-Elektrode, d. h. einer Elektrode, die spezifisch auf die Ca²⁺-Aktivität anspricht, würden Titrationskurven der in Abbildung 3 gezeigten Form erreicht.

Die Daten der Tabelle 14 lassen TCTA und EGTA am geeignetsten für die konsekutive Bestimmung von Calcium und Magnesium erscheinen, denn in beiden Fällen beträgt die Differenz der Komplexbildungskonstanten etwa 5 logarithmische Einheiten. Optimal wäre TCTA, denn hier sind beide Konstanten zudem hinreichend groß, was steile Wendepunkte zur Folge hat; bei EGTA ist die Komplexbildungskonstante von Magnesium relativ klein, deshalb kann nur ein schwach ausgeprägter zweiter Wendepunkt erreicht werden. EDTA und DCTA sind für die konsekutive Bestimmung von Calcium und Magnesium direkt nicht einsetzbar, denn mit der geringen Differenz von etwa 2 logarithmischen Einheiten können die beiden Konstituenten nicht genau genug differenziert werden. Abbildung 3 verdeutlicht diese Verhältnisse. Man erkennt auch in den Kurven für EDTA und DCTA jeweils zwei Wendepunkte, doch ist der erste in beiden Fällen zu schwach ausgebildet; der zweite - für die Summe von Calcium und Magnesium - ist steil und deutlich. Die zum Erreichen der Wendepunkte dieser Titrationskurven notwendigen Titrantkonzentrationen sind in Tabelle 15 zusammengestellt. Der erste Wendepunkt entspricht der Komplexierung von Calcium, der zweite der Summe von Calcium und Magnesium. Aus der Differenz ergibt sich die Magnesium-Konzentration. Die Wendepunkte entsprechen

Abbildung 3. Berechnete Titrationskurven: Die Kurven zeigen den mit WASAN berechneten Verlauf der logarithmierten Ca-Aktivität (pCa) bei der komplexometrischen Titration einer Lösung, die je 1 mmol/I Calcium und Magnesium sowie 10 mmol/I KCI enthält, mit den Komplexbildnern EDTA, EGTA, DCTA und TCTA.

in guter Näherung den Äquivalenzpunkten. Sie wurden nach der in (8) beschriebenen differentiellen Methode berechnet: dabei werden die Nullpunkte der zweiten Ableitung der Titrationskurve mit Hilfe einer Interpolationsformel ermittelt.

Tabelle 15:Berechnete Wendepunkte der Titrationskurven aus Abbildung 3. Angegeben
ist die Titrantkonzentration in mmol/l, die zum Erreichen der zwei Wende-
punkte notwendig ist. Der erste Wendepunkt ergibt die Calcium-Konzentra-
tion, der zweite die Summe von Calcium und Magnesium, aus der Differenz
errechnet sich die Magnesium-Konzentration. Die in Klammern angegebe-
nen Werte sind ein relatives Maß für die Steilheit der Kurve am Wendepunkt.

	DCTA	TCTA	EGTA	EDTA
	[mmol/l]	[mmol/l]	[mmol/I]	[mmol/l]
1. Wp (Ca)	1.001 (3)	1.001 (28)	1.001 (31)	1.036 (2)
2. Wp (Ca+Mg)	2.019 (37)	2.018 (55)	2.029 (5)	2.018 (36)
Diff. (Mg)	1.018	1.017	1.028	0.982

Da der Komplexbildner TCTA nicht verfügbar war, wurde EGTA eingehender getestet. Dabei zeigte sich, daß - wie erwartet - zwei Wendepunkte in der Titrationskurve gefunden werden, der erste steil und gut auswertbar, der zweite relativ schwach (s. Abbildung 4); Meßelektrode war eine Calcium-selektive Elektrode in Kombination mit einer Kalomel-Referenzelektrode.

Abbildung 4. Experimentelle Titrationskurve: Komplexometrische Titration einer Lösung, die je 1 mmol/I Calcium und Magnesium enthält, mit EGTA. Gemessen wurde mit einer Calcium-selektiven Elektrode in Kombination mit einer Kalomel-Referenzelektrode.

Bei den Untersuchungen mit EGTA zeigte sich, daß die Gesamtkonzentration von Calcium und Magnesium richtig bestimmt wird, die Verteilung auf die beiden Konstituenten aber zu ungenauen Ergebnissen führt, i. a. sind die Werte für Calcium leicht zu hoch, die für Magnesium dementsprechend zu niedrig. Die Ursache liegt darin, daß die Elektrode auch auf Magnesium-Ionen anspricht; dieser Einfluß ist zwar nur gering und vernachlässigbar, wenn eine gegenüber Magnesium hohe Calcium-Aktivität vorliegt. Er macht sich aber dann sehr deutlich bemerkbar, wenn die Calcium-Aktivität sehr niedrig, die Magnesium-Aktivität dagegen sehr hoch ist, wie dies im Bereich des ersten Wendepunktes der Fall ist. Aufgrund der kleinen Komplexbildungskonstante liegen die Mg²⁺-Ionen hier nahezu unkomplexiert vor, entsprechend hoch ist ihre Aktivität und damit ihr Beitrag zum Elektrodenpotential. Der Potentialabfall an der Elektrode ist dadurch geringer, als er es ohne Beeinflussung durch die Magnesium-Aktivität wäre, der Wendepunkt wird bei zu hohem Titrantvolumen berechnet. Die Abweichung liegt bei +2%. Damit wird zwangsläufig die Magnesium-Konzentration zu niedrig berechnet.

Wird die komplexometrische Titration mit EGTA mit dem Titrator durchgeführt, kann nur die montone Titration als Methode gewählt werden, weil die Potentialdifferenzen im Bereich des zweiten Wendepunktes so gering sind, daß der Potentialabfall mit einer dynamisch geführten Titration nicht "rechtzeitig" erkannt wird. Als Folge davon wird der Wendepunkt bei einem zu hohen Titrantvolumen berechnet.

3.3 Konsekutive komplexometrische Titration von Calcium, Magnesium und Barium

3.3.1 Verwendung von EGTA als Komplexbildner

Die Erweiterung der komplexometrischen Titration auf Barium geht auf die Überlegung zurück, dadurch die Sulfat-Bestimmung in die Bestimmung der Erdalkali-Konstituenten einzubeziehen. Damit ließe sich dann eine separate Bestimmung von Sulfat vermeiden. Das Verfahren soll so durchgeführt werden, daß das Sulfat zunächst mit einem Überschuß Barium als BaSO₄ gefällt wird; anschließend wird das überschüssige Barium zusammen mit Calcium und Magnesium komplexometrisch titriert. Aus der Differenz der auf diese Weise bestimmten und der zur Fällung eingesetzten Barium-Konzentration läßt sich die Sulfat-Konzentration berechnen. Sensor für diese Bestimmung soll wiederum die Calcium-selektive Elektrode sein. Bei der Wahl des geeigneten Komplexbildners zeigt Tabelle 14, daß nur EGTA in Frage kommt, da hier die Komplexbildungskonstanten die größten Differenzen aufweisen; dennoch wurden auch EDTA und DCTA getestet. Die Versuche bestätigten die Erwartung: mit EDTA läßt sich nur Calcium und die Summe von Barium und Magnesium gut bestimmen, mit DCTA nur die Summe aller drei Konstituenten, mit EGTA schließlich konnten drei Wendepunkte in der Titrationskurve gefunden werden.

Abbildung 5a zeigt die berechnete Abhängigkeit der logarithmierten Ca²⁺ -Aktivität (pCa) von der EGTA-Konzentration im Laufe der komplexometrischen Titration einer Lösung, in der alle drei Erdalkali-Konstituenten in einer Konzentration von je 1 mmol/I enthalten sind. Dieser Kurve ist eine experimentelle Titrationskurve gegenübergestellt, die mit einer Calcium-selektiven Elektrode als Sensor aufgenommen worden ist (Abbildung 5b).

In der berechneten Kurve sind drei deutliche Wendepunkte zu erkennen, an den Stellen, an denen die EGTA-Konzentration der Konzentration von Calcium, der Summe von Calcium und Barium, sowie der Summe von Calcium, Barium und Magnesium äquivalent ist. Diese Kurve ließe sich mit einer idealen Calcium-spezifischen Elektrode erzielen; demgegenüber sind in der mit einer "realen" Calcium-selektiven aufgenommenen experimentellen Titrationskurve nur zwei scharfe Wendepunkte zu erkennen, der erste um 1 mmol/I EGTA für die Komplexierung von Calcium, der zweite um 3 mmol/I EGTA für die Komplexierung aller drei Konstituenten. Dazwischen liegt ein sehr schwacher Wendepunkt, an der Stelle, an der eine der Summe von Calcium und Barium äquivalente Titrantmenge zudosiert wurde. Auch hier wirkt sich wieder der störende Einfluß der Magnesium-Ionen auf das Elektrodenpotential aus. Während die Calcium- und Barium-Ionen komplexiert werden, bleibt die Mg²⁺-Aktivität auf konstanter Höhe. Abbildung 5a zeigt, daß die Differenz zwischen Mg²⁺ - und Ca²⁺-Aktivität im Bereich des zweiten Wende-

Abbildung 5. Berechnete (a) und gemessene (b) Titrationskurve: Komplexometrische Titration einer Lösung, die je 1 mmol/I Ca²⁺, Mg²⁺ und Ba²⁺ sowie 10 mmol/I KCI enthält, mit EGTA. In Abb. (a) ist der berechnete Verlauf der Aktivitätsänderungen von Ca²⁺, Ba²⁺ und Mg²⁺ in Abhängigkeit von der EGTA-Konzentration aufgetragen, in Abb. (b) das Potential einer Calcium-selektiven Elektrode gegenüber einer Kalomel-Referenzelektrode...

punktes mehrere Zehnerpotenzen ausmacht. Durch die hohe Magnesium-Aktivität kann das Elektrodenpotential nur geringfügig abfallen. Im Bereich des dritten Wendepunktes schließlich nimmt die Magnesium-Aktivität selbst stark ab, dadurch ergibt sich wieder ein deutlicher Wendepunkt; hier spricht die Elektrode nur noch auf die Magnesium-Ionen an, wie Untersuchungen an reinen Magnesium-Lösungen gezeigt haben.

Die Wendepunkte der berechneten und der experimentellen Titrationskurve entsprechen nicht exakt den Äquivalenzpunkten. So liegen die Wendepunkte bei der berechneten Titrationskurve bei 1.014, 1.998 und 2.998 mmol/l, entsprechend Konzentrationen von 1.014 mmol/l für Calcium, 0.984 mmol/l für Barium und 0.999 mmol/l für Magnesium. Bei den experimentellen Kurven liegen sie um 1.06, 2.06 und 3.06 mmol/l, d. h. die Differenzen zwischen den Wendepunkten 1 und 2 bzw. 2 und 3 entsprechen sehr gut der Bariumbzw. Magnesium-Konzentration; in ungünstigen Fällen lagen die Abweichungen bei 5%, gemittelt über alle Ergebnisse liegt der Fehler bei ± 3% für Barium und Magnesium. Der erste und der dritte Wendepunkt ist sehr genau, die größte Unsicherheit - und damit den Fehler für die Barium- und Magnesium-Konzentration - bringt der zweite Wendepunkt mit sich, der zu schwach ausgebildet ist. Die durch den Einfluß der Mg²⁺-Aktivität herbeigeführten Abweichungen des ersten Wendepunktes sind konstant und lassen sich rechnerisch korrigieren. Die konsekutive Titration von Calcium, Barium und Magnesium kann nur monoton geführt werden, da der schwache zweite Wendepunkt bei der dynamischen Titration i. a. nicht erfaßt wird.

Die experimentellen Titrationskurven sind im besonderen hinsichtlich des zweiten Wendepunktes wenig befriedigend, denn davon hängt das Ergebnis von drei zu bestimmenden Konstituenten ab: das für Barium aus der Differenz zum ersten Wendepunkt und damit auch das für Sulfat als Differenz zur zudosierten Barium-Konzentration und schließlich das für Magnesium über die Differenz zum dritten Wendepunkt. Das bedeutet, daß dem am schwächsten ausgebildeten Wendepunkt die größte Bedeutung bei der Auswertung der Titrationskurve zukommt. Deshalb wurde versucht, über eine "Manipulation" der Lösung zu einem besseren Ergebnis zu kommen. Ziel war es, den zweiten Wendepunkt deutlicher hervortreten zu lassen. Dies wurde zum einen versucht durch Zugabe eines Reagens, das die Magnesium-Aktivität absenkt, zum anderen durch das Absenken sämtlicher relevanter Aktivitäten in der Lösung.

3.3.2 Versuche, drei deutliche Wendepunkte in der Titrationskurve zu erreichen

3.3.2.1 Absenken der Magnesium-Aktivität

Das Absenken der Magnesium-Aktivität erfolgte durch Zugabe eines Hilfsreagens, dessen wesentliches Kriterium eine bevorzugte Komplexierung von Magnesium gegenüber der von Calcium und Barium ist. Außerdem müssen seine Komplexbildungskonstanten kleiner sein als die von EGTA, um eine Beeinträchtigung der analytischen Komplexierung auszuschließen. In Tabelle 16 sind die Hilfskomplexbildner zusammengestellt, die erfolgreich getestet wurden, zusammen mit ihren logarithmierten Komplexbildungskonstanten bezüglich der drei Erdalkali-Spezies. Außerdem ist der Konzentrationsbereich angegeben, innerhalb dessen drei auswertbare Wendepunkte bei Lösungen, die je 1 mmol/I der drei Erdalkali-Konstituenten enthielten, erzielt wurden.

Die Untersuchungen zum Auffinden eines geeigneten Hilfskomplexbildners wurden zunächst mit Lösungen durchgeführt, die jeweils 1 mmol/l der drei Erdalkali-Konstituenten enthielten. Es zeigte sich, daß es von großer Bedeutung ist, in welcher Konzentration er zugesetzt wird; mit steigender Konzentration wird der zweite Wendepunkt "auf Kosten" des dritten deutlicher - Abbildung 6 zeigt ein Beispiel mit Asparaginsäure -, bis dieser schließlich ganz verschwindet und nur noch zwei, jetzt sehr deutliche Wendepunkte für Calcium und die Summe von Calcium und Barium übrig bleiben. Magnesium ist dann vollständig von dem Hilfsreagens gebunden und wird durch den Titranten nicht mehr erfaßt; außerdem wird - als positive Begleiterscheinung - das Potential der Calcium-selektiven Elektrode nicht mehr gestört, der erste Wendepunkt erscheint an der "richtigen" Stelle. Tabelle 16: Hilfskomplexbildner für die konsekutive Bestimmung von Calcium, Magnesium und Barium. Angegeben sind deren logarithmierte Komplexbildungskonstanten (T = 25°C, I = 0.1 mol/I), sowie der Konzentrationsbereich, innerhalb dessen mit diesen Hilfskomplexbildnern drei auswertbare Wendepunkte bei Lösungen, die je 1 mmol/I der Erdalkali-Konstituenten enthielten, erreicht wurden. Die Konstanten stammen aus (42). '?' bedeutet, daß keine Konstanten bekannt sind.

	Mg	Ca	Ва	c [mmol/l]	
Essigsäure	0.51	0.53	0.39	5-15	
Malonsäure	2.11	1.51	1.22	5-15	
Asparaginsäure	2.43	1.60	1.14	2-10	
Oxalsäure	3.43	3.00	2.31	2-4	
Citronensäure	3.50	3.50	2.75	0.25-1	
Acetylaceton	3.65	?	?	0.5-2.5	
3,4-Dihydroxybenzoesäure	5.67	3.71	?	0.5-2.5	
Anmerkung: Die Oxalat-Zugabe erfolgte erst nach dem er- sten Wendepunkt					

Abbildung 6. Einfluß des Hilfskomplexbildners Asparaginsäure: Komplexometrischen Titration einer Lösung, die je 1 mmol/I Ca²⁺, Ba²⁺ und Mg²⁺ enthält, mit EGTA.

Der entscheidende Nachteil ist, daß sich keine allgemein gültige Konzentration für den Hilfskomplexbildner angeben läßt, die zu einem optimalen Ergebnis führt. Vielmehr ist diese "optimale" Konzentration abhängig von dem Konzentrationsverhältnis Barium/Magnesium und von der Stärke der Komplexbildung durch das Hilfsreagens. Es ist günstig, wenn diese beiden Konstituenten etwa die gleiche Konzentration aufweisen; schwieriger ist es, wenn eine der beiden, im besonderen Barium, in großem Überschuß vorliegt. Es gelang, drei auswertbare Wendepunkte zu erzielen, wenn das Verhältnis Barium : Magnesium zwischen 4 : 1 und 1 : 6 variiert wurde. Dabei genügten oftmals minimale Änderungen der Konzentration des Hilfskomplexbildners, um 2 Wendepunkte (für Calcium und die Summe aller drei Erdalkali-Konstituenten), 3 Wendepunkte oder wiederum nur 2 Wendepunkte (für Calcium und die Summe von Calcium und Barium) zu finden. Außerhalb dieser Grenzen ist durch solche "Manipulationen" keine befriedigende Auflösung der Titrationskurve mehr zu erreichen.

3.3.2.2 Absenken der Aktivitäten durch Verdünnung oder KCI-Zusatz

Eine Verbesserung der Ergebnisse wurde auch durch eine andere Maßnahme erzielt, nämlich durch das Herabsetzen der Aktivitäten aller relevanten Konstituenten, entweder durch Verdünnung der Lösung oder durch das Erhöhen der Ionenstärke (KCI-Zusatz) oder durch eine Kombination von beiden. Dabei kann auch hier aus der Summe der durchgeführten Titrationen kein allgemeingültiger Schluß gezogen werden, wie groß die Verdünnung oder der KCI-Zusatz sein muß, um ein optimales Ergebnis zu erhalten, dies war von der individuellen Lösungszusammensetzung, im besonderen wieder von dem Konzentrationsverhältnis Barium : Magnesium, abhängig. Bei großem Barium-Überschuß wurden zu hohe Werte für Barium gefunden, bei Magnesium-Überschuß besteht die Gefahr für zu niedrige Barium-Werte. Auch hier genügten oft geringfügige Änderungen der Bedingungen, um 3 Wendepunkte oder nur 2 Wendepunkte (für Calcium und die Summe aller drei Erdalkali-Konstituenten) zu finden.

3.3.2.3 Temperatureinfluß

Eine weitere Möglichkeit, das Ergebnis zu beeinflussen, besteht in der Variation der Temperatur. Die Komplexierung von Calcium und Barium ist mit einer negativen, die von Magnesium mit einer positiven Bildungsenthalpie verbunden. Bei der Gleichgewichtsreaktion

$$Me^{2+} + EGTA^{4-} \Leftrightarrow MeEGTA^{2-}$$
 [7]

hat eine Temperaturerniedrigung somit für Calcium und Barium eine Gleichgewichtsverschiebung nach rechts, für Magnesium nach links zur Folge, d. h. einer stärkeren Abnahme der Aktivitäten von Ca²⁺ und Ba²⁺ steht eine weniger starke von Mg²⁺ entgegen. Die Rechnung sagt voraus, daß der Potentialsprung am zweiten Wendepunkt verstärkt wird.

Im Experiment erwies es sich im Falle von EGTA als günstig, die Titrationen bei niedrigen Temperaturen durchzuführen. Der erste Wendepunkt bleibt bei einer Temperaturerniedrigung unbeeinflußt, der zweite aber erscheint deutlicher und der dritte schließlich schwächer; eine Temperaturerhöhung bringt den zweiten Wendepunkt zum Verschwinden (s. Abbildung 7).

Abbildung 7. Einfluß der Temperatur: Titrationskurven für die komplexometrische Titration einer Lösung, die je 1 mmol/I Ca²⁺, Ba²⁺ und Mg²⁺ enthält, mit EGTA, bei verschiedenen Temperaturen.

Bei EDTA ist die Komplexierung von Calcium und Barium ebenfalls mit einer negativen, die von Magnesium mit einer positiven Bildungsenthalpie verbunden. Hier äußerte sich eine Temperaturerniedrigung im Experiment in einer deutlicheren Hervorhebung des ersten Wendepunktes, eine Temperaturerhöhung in einer Verstärkung des Wendepunktes für die Summe aller drei Konstituenten. Ein dritter Wendepunkt war aber auch durch die Variation der Temperatur nicht zu erreichen. Auch bei der Verwendung von DCTA als komplexierendem Titrant ergaben sich bei der Variation der Temperatur keine drei Wendepunkte.

3.4 Komplexometrische Titration nach Sulfat-Fällung

Zunächst wurde der Lösung bei einem niedrigen pH-Wert (< 5) Barium im Überschuß in Form eines entsprechenden Inkrements einer BaCl₂ -Lösung¹ zugesetzt. Es hat sich gezeigt, daß bei höheren pH-Werten (≳7) bei Anwesenheit von Carbonat und Phosphat die

Oft wird Ba(ClO₄)₂ für die Sulfat-Fällung der Vorzug gegenüber BaCl₂ wegen des geringeren störenden Einflusses der ClO₄-lonen gegeben. Hier ist BaCl₂ besser geeignet, da die Cl⁻-lonen das Potential der Calcium-selektiven Elektrode unbeeinflußt lassen, im Gegensatz zu den ClO₄ -lonen, die es beträchtlich absenken.

Niederschlagsbildung verzögert wird oder völlig ausbleibt. Als Inhibitoren kommen im besonderen die höher geladenen Anionen der Kohlensäure und Phosphorsäure in Frage. Um deren Konzentration abzusenken, wurde deshalb ein niedriger pH-Wert für die Fällung gewählt. Nach einer Zeitspanne von 2 Minuten wird die Lösung alkalisch gemacht (pH \simeq 8) und mit EGTA komplexometrisch titriert.

Bei der Titration in Anwesenheit des Niederschlages ergibt sich eine neue Schwierigkeit: nach Erreichen des dritten Äquivalenzpunktes tritt - bei jetzt überschüssigem Komplexbildner - als Konkurrenzreaktion zur Komplexbildung die Auflösung des BaSO₄- Niederschlages auf. Bei der Niederschlagsauflösung handelt es sich um die thermodynamisch begünstigte Reaktion, die, sofern sie schnell genug abläuft, zur Störung der Titration führt. Es war eine Frage der Wahl des Parameters 'Titriergeschwindigkeit' am Titrator, ob die Titration wie geplant zu Ende geführt werden konnte und drei Wendepunkte erreicht wurden, oder ob die Niederschlagsauflösung dies unmöglich machte, weil dadurch ein Potentialanstieg an der Meßelektrode auftrat und der Wendepunkt "verschmiert" wurde.

Läuft die Titration sehr schnell ab, findet keine Niederschlags-Auflösung statt, läuft sie dagegen sehr langsam ab, führt dies zwangsläufig zur Auflösung. Das Problem liegt darin, daß im Bereich des zweiten Wendepunktes - bei der Barium-Komplexierung - sehr langsam titriert werden muß, bis sich das Komplexgleichgewicht eingestellt hat, nach Erreichen des dritten Äquivalenzpunktes aber sehr schnell, um die Niederschlags-Auflösung zu verhindern. Bei dem eingesetzten Titrator ist es aber nicht möglich, automatisch die Titriergeschwindigkeit zu erhöhen, diese Aktion kann lediglich manuell erfolgen. Um die Prozedur dennoch automatisch durchführen zu können, wurde die gesamte Titration in zwei Teiltitrationen aufgespalten. Die erste wurde bis zu einem vorgegebenen Potential, das zwischen dem zweiten und dritten Wendepunkt liegt, mit einer relativ langsamen Titriergeschwindigkeit geführt. Anschließend wurde die Titration mit einer größeren Geschwindigkeit zu Ende gebracht. Die Auswertung dieser zusammengesetzten Titration ist dann aber nicht mehr durch den Titrator möglich, sondern muß extern erfolgen: die Daten wurden auf einen angeschlossenen Rechner übertragen und dort ausgewertet. Die Berechnung der Wendepunkte erfolgte wiederum mit der in (8) beschriebenen Methode.

Trotz der beschriebenen Schwierigkeiten sind für dieses Titrationsverfahren noch gute Ergebnisse mit Abweichungen <0.03 mmol/I erzielt worden, Tabelle 17 zeigt einige Beispiele. Man erkennt, daß die ermittelten Calcium-Konzentrationen zu hoch liegen; sie müssen durch den Faktor 1.05 dividiert werden. Die untere Grenze dieser Methode der Sulfat-Bestimmung liegt bei 0.1 mmol/I. Bei niedrigeren Konzentrationen waren zwar auch noch gute Ergebnisse möglich, doch war deren Genauigkeit zufällig, hier sind nur noch Aussagen über die Größenordnung des Ergebnisses zulässig.

Aus dem Problem der Niederschlagsauflösung wurde eine Variante des Verfahrens abgeleitet: die gesamte Titration wurde so langsam geführt, daß sich der Niederschlag zwangsläufig auflöste. Dann ergaben sich ebenfalls drei Wendepunkte: die ersten beiden für Calcium und das überschüssige Barium, der dritte für die Summe aus Calcium, Magnesium und Barium, wobei es sich um das gesamte zudosierte Barium handelt, also Tabelle 17:Beispiele für die kombinierte Bestimmung von Calcium, Magnesium und
Sulfat in einer Lösung durch komplexometrische Titration mit EGTA. Alle
Lösungen wurden mit destilliertem Wasser 1:1 verdünnt und enthielten zu-
sätzlich 25 mmol/l KCl. In der Spalte 'Bemerkungen' sind die Zusätze zur
Lösung angegeben, 'Asp' bedeutet Asparaginsäure.

Vorgegebene Konz. [mmo/l]					G	efunde [mn	ne Kon 10/l]	Ζ.
Са	Mg	SO4	Ba	Bemerkungen	Ca	Mg	SO4	Ba
2 1 1 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ \end{array}$	0.5 0.5 0.5 0.5 0.25 0.1 0.1 0.05 0.025 0.025 0.015	1.5 1.5 1.5 1.0 1.0 1.5 1.5 1.5 1.5 1.5 1.5	2.5 mmol/l Asp 2.5 mmol/l Asp 1.2 mmol/l Asp 2.5 mmol/l Asp 2.5 mmol/l Asp 5.0 mmol/l Asp	2.08 1.05 1.04 1.05 2.09 2.10 2.08 2.09 2.09 2.09 2.07 2.08	0.52 0.50 0.51 0.51 0.46 0.53 0.42 0.44 0.51 0.49 0.52 0.52	0.50 0.51 0.52 0.52 0.25 0.10 0.13 0.05 0.03 0.03 0.03	1.00 0.99 1.00 0.48 0.49 1.25 1.40 1.37 1.45 1.47 1.47 1.47

einschließlich des wiederaufgelösten Niederschlages. Auch aus diesen drei Wendepunkten lassen sich die gewünschten Konzentrationen errechnen: der erste Wendepunkt ergibt die Calcium-Konzentration, der zweite die Sulfat-Konzentration und der dritte die Magnesium-Konzentration unter Berücksichtigung des wieder aufgelösten Bariums.

Zusammenfassend läßt sich sagen, daß das Verfahren der konsekutiven Bestimmung der drei Erdalkali-Konstituenten unter Einbeziehung der Sulfat-Bestimmung in einer Probelösung mit zu vielen Unsicherheiten behaftet ist: Die Verwendung eines Hilfskomplexbildners, das Problem der Auflösung des BaSO₄-Niederschlages, ein schwach ausgeprägter Wendepunkt, von dem das Ergebnis für drei Konstituenten abhängt, die Notwendigkeit, die Titration monoton zu führen. Es kommt hinzu, daß das Auftreten von drei Wendepunkten in der Titrationskurve von der Qualität der Elektroden-Membran abhängt. Es gelang nicht, mit jeder der getesteten Membranen drei Wendepunkte zu erreichen; mit einigen wurde zwar auch der zweite Wendepunkt gefunden, aber bei einem zu hohen Titrantvolumen. Es erschien daher angebracht, einen sichereren Weg einzuschlagen.

3.5 Aufspaltung der Calcium-, Magnesium- und Sulfat-Bestimmung in zwei Titrationen

Als Alternative zur konsekutiven Titration von Calcium, Barium und Magnesium bietet sich an, diese Bestimmung in zwei komplexometrische Titrationen aufzuspalten. Dazu sind dann zwei Probelösungen und zwei Komplexbildner nötig.

Es zeigte sich, daß es grundsätzlich einfacher ist, mit den Komplexbildnern auf zwei anstatt auf drei Wendepunkte zu titrieren; mit EDTA läßt sich Calcium und die Summe von

Barium und Magnesium bestimmen. Die zwei entsprechenden Wendepunkte sind in der ternären Mischung viel deutlicher differenziert als die beiden Wendepunkte bei einer binären Mischung von Calcium und Magnesium, wo der zweite ausgeprägter ist. Durch Zugabe eines Hilfskomplexbildners werden "ausgeglichenere" Wendepunkte erreicht. Mit DCTA lassen sich ebenfalls Calcium und die Summe von Barium und Magnesium bestimmen, dabei ist unbedingt der Zusatz eines Hilfsreagens nötig - Citronensäure und Acetylaceton wurden erfolgreich eingesetzt -, sonst liegt der erste Wendepunkt bei einem zu hohen Titrantvolumen; ein dritter Wendepunkt ließ sich hier durch keinerlei Manipulationen erreichen. Bei EGTA besteht die Möglichkeit, auf drei Wendepunkte zu titrieren, oder durch Zusatz einer ausreichenden Menge eines Hilfsreagens Magnesium zu maskieren und nur auf zwei - jetzt eindeutige Wendepunkte - zu titrieren. Zur Maskierung von Magnesium bieten sich die in Tabelle 16 genannten Verbindungen an; als am besten geeignet hat sich Acetylaceton wegen seiner ausgesprochenen Affinität zu Magnesium erwiesen: von den Elementen der 2. Hauptgruppe sind nur Komplexbildungskonstanten zu Beryllium und Magnesium bekannt (77), zur Komplexierung der höheren Elemente sind in der Literatur keine Angaben zu finden. Somit sind - auch bei höheren Acetylaceton-Konzentrationen - keine negativen Einflüsse auf die Calcium- und Barium-Bestimmung zu erwarten.

Für die Bestimmung der Calcium-, Magnesium- und Sulfat-Konzentrationen mittels zweier komplexometrischer Titrationen wurden zwei Varianten geprüft, unter Verwendung von EDTA/EGTA und DCTA/EGTA als Komplexbildner.

3.5.1 Verwendung von EDTA/EGTA

Zwei Proben der Lösung wurden eingesetzt:

- 1. In der ersten Probe erfolgte die Bestimmung der Summe von Calcium und Magnesium mit EDTA. Diese Lösung wird dann bei Anwesenheit von Phosphat und Ammonium für die Säure-Base-Titrationen eingesetzt. Der Fehler liegt bei <1%.
- 2. In der zweiten Probe erfolgte die Sulfat-Fällung mit BaCl₂. und die Zugabe von Acetylaceton zur Maskierung von Magnesium. Um die Anzahl der einzusetzenden Dosimaten so gering wie möglich zu halten, wurden diese beiden Reagenzien in einer Lösung kombiniert; Konzentrationen von 0.02 mol/I BaCl₂ und 0.3 mol/I Acetylaceton haben sich als günstig erwiesen. Das Inkrement, das notwendig ist, um in einer Probelösung einen Überschuß von 1 mmol/I Barium zu erzielen, enthält dann genügend Acetylaceton, um das Magnesium zu maskieren. Ist die Acetylaceton-Konzentration zu niedrig gewählt, wird das Magnesium nur unzureichend komplexiert; der zweite Wendepunkt der Titrationskurve ist dann nicht scharf genug und wird in ungünstigen Fällen bei einem zu hohen Titrantverbrauch berechnet.

Anschließend erfolgt die komplexometrische Titration mit EGTA zur Bestimmung des Calciums und des überschüssigen Bariums. Aus der Barium-Konzentration läßt sich dann die Sulfat-Konzentration berechnen. Die Abweichungen lagen bei ≤2%.

Tabelle 18 zeigt einige Ergebnisse der titrimetrischen Bestimmung von Calcium und Barium nach der Sulfat-Fällung und der Maskierung von Magnesium.

Vor	gegeb [mr	ene Ko no/l]	G € [□	ef. Kon mmo/l	1 z.]	
Са	Mg	SO4	Ba	Ca	SO4	Ba
1	0.5	1	1.5	0.98	0.98	0.52
1	0.5	1	2.0	1.00	1.01	0.99
1	0.5	1	2.5	1.01	1.02	1.48
1	0.5	1	3.0	1.00	1.01	1.99
kür	nstl. Ał	ςw.	1.5	1.01	0.50	1.00

Tabelle 18: Konsekutive Calcium- und Barium-Bestimmung mit EGTA nach Sulfat-Fäl-
lung und Maskierung von Magnesium. 'künstl. Abw.' ist ein künstliches Ab-
wasser mit Konstituenten-Konzentrationen gemäß Tabelle 1.

Der große Vorteil dieser Variante besteht darin, daß beide Titrationen dynamisch geführt werden können und dadurch genauer sind. Außerdem treten bei der Calcium/Barium-Bestimmung mit EGTA die störenden Einflüsse nicht auf, die die Magnesium-Ionen auf das Elektroden-Potential ausüben; der Einfluß der Barium-Ionen ist um den Faktor 6 geringer als der von Magnesium und macht sich experimentell nicht bemerkbar.

3.5.2 Verwendung von DCTA/EGTA

Der Unterschied zur ersten Variante liegt darin, daß in der ersten Probe der konsekutive Einsatz der beiden Komplexbildner EGTA und DCTA zur Bestimmung von Calcium und Magnesium erfolgt. Zunächst wird mit EGTA titriert, bis der erste Wendepunkt (Ca) vom Titrator erkannt wird, die Titration wird mit DCTA zur Bestimmung des zweiten Wendepunktes zu Ende geführt. DCTA ergibt wegen der weitaus stärkeren komplexierenden Wirkung gegenüber Magnesium (vgl. Tabelle 14) einen schärferen und dadurch genauer auswertbaren Wendepunkt als EGTA. Tabelle 19 zeigt eine Zusammenstellung der Ergebnisse, die bei der Titration von Calcium/Magnesium-Lösungen erhalten wurden. Selbst bei einem 20-fachen Überschuß von Calcium gegenüber Magnesium ergibt sich noch ein gutes Ergebnis. Es wird deutlich, daß für Calcium wiederum mit geringfügig zu hohen Werten gerechnet werden muß, die Abweichungen können maximal +2% erreichen. Die genauere dynamische Titration ist nur anwendbar, wenn beide Konstituenten in höherer Konzentration vorliegen (Ca \geq 1 mmol/I, Mg \geq 0.5 mmol/I).

Die Schwierigkeit bei dieser Variante liegt in der Steuermöglichkeit des Titrators. Es kann erst auf den zweiten Titranten "umgeschaltet" werden, wenn der erste Wendepunkt gefunden ist. Dazu ist eine gewisse Übertitration notwendig. Es hängt vom Verhältnis der Konzentrationen von Calcium und Magnesium ab, welche Titrationsart gewählt werden kann. Ist dieses Verhältnis ausgeglichen, ist die dynamische Titration die Methode der Wahl, bei stark unterschiedlichen Konzentrationen muß die monotone Titration angewen-

Vorgegebene Konz. [mmol/l]			Gemesse [mm	ne Konz. ol/l]	
Ca	Mg	Titrations- arten	Ca	Mg	
2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0	1.0 0.5 0.4 0.3 0.2 0.1 0.5 0.4 0.3 0.2 0.1	D/D M/M M/M M/M M/M D/M M/M M/M M/M	2.03 2.02 2.02 2.01 2.01 2.02 1.01 1.02 1.01 1.02 1.00	1.03 0.50 0.40 0.29 0.20 0.11 0.51 0.40 0.31 * 0.20 0.10	
D=Dynamische Titration M=Monotone Titration					

 Tabelle 19:
 Konsekutive Bestimmung von Calcium und Magnesium mit EGTA/DCTA mit Hilfe der dynamischen (D) und monotonen (M) Titration

det werden, sonst besteht die Gefahr, daß der zweite Wendepunkt im Bereich der Übertitration des ersten "untergeht". Dabei müssen aber sehr kleine Inkremente gewählt werden, um diesen Bereich der Übertitration möglichst klein zu halten. Bei einer großen Konzentration der so titrierten Konstituente führt die große Zahl von Inkrementen dann zu einer langen Titrationsdauer; außerdem besteht die Gefahr, daß "Geisterwendepunkte" berechnet werden, die dadurch zustande kommen, daß die Potentialdifferenzen zwischen den Titrationspunkten im Bereich der Schwankungen des Elektrodensignals liegen. Deshalb ist es in diesem Falle sinnvoll, zunächst ein großes Inkrement bis an den Rand des ersten steilen Bereiches zu dosieren und erst dann kleinere Inkremente zu wählen. Dazu muß vorher ein Anhaltspunkt über die zu erwartende Calcium-Konzentration gegeben sein.

Ein weiterer Nachteil dieser Variante liegt darin, daß diese Lösung für die sich anschließende Säure-Base-Titration ungeeignet ist, weil dann gleich zwei vierbasige Komplexbildner mittitriert werden, die bei der rechnerischen Auswertung dieser Titrationen berücksichtigt werden müßten.

3.5.3 Bemerkung zu den Wendepunkten

Bei der Auswertung der komplexometrischen Titrationen wird die Voraussetzung gemacht, daß der Wendepunkt mit dem Äquivalenzpunkt übereinstimmt, eine Voraussetzung, die nur für exakt symmetrische Titrationskurven erfüllt ist, die einen Idealfall darstellen, der praktisch nicht zu verwirklichen ist, weil allein schon die durch den Titranten verursachte Verdünnung ein geringes Abweichen von der Symmetrie bewirkt. Die praktische Erfahrung zeigt, daß die dadurch verursachten Fehler dennoch eine ausreichende Genauigkeit zulassen. Meites und Meites (78) zeigen, daß bei der komplexometrischen Titration der Punkt maximaler Steigung, der ja bei den Wendepunktsmethoden berechnet wird, immer dem Äquivalenzpunkt vorangeht - selbst bei dem Ausschluß von Verdünnungseffekten. Zu ähnlichen Ergebnissen kommt Carr (79), wonach ebenfalls nur negative Abweichungen vom Äquivalenzpunkt zu erwarten sind. Die Ergebnisse der durchgeführten Titrationen haben gezeigt, daß dies nicht unbedingt der Fall sein muß; vielmehr wurden sowohl positive als auch negative Abweichungen vom erwarteten Wert festgestellt, die - falls es sich um scharfe Wendepunkte handelte - in den Grenzen von $\pm 2\%$ gestreut lagen. Die Abweichungen nahmen zu, je schwächer ausgeprägt die Wendepunkte waren; sie waren am größten bei dem zweiten Wendepunkt der konsekutiven Titration von Calcium und Magnesium oder dem zweiten Wendepunkt der konsekutiven Titration aller drei Erdalkali-Konzentrationen mit EGTA.

3.5.4 Durchführung der komplexometrischen Titrationen

Um bei den Titrationen Niederschläge von Mg(OH)₂ zu vermeiden, sollte der pH den Wert von 10 nicht wesentlich überschreiten. Der Einsatz eines Puffers zur Einhaltung eines konstanten pH-Wertes, etwa Tris-Puffer oder Glycin, wie er in (8) vorgeschlagen wird, scheidet aus, da mit der Lösung, in der die Magnesium-Bestimmung erfolgt, auch die Säure-Base-Titrationen durchgeführt werden sollen. Durch Verwendung von Komplexbildnern der stöchiometrischen Zusammensetzung Na₄X (X = Komplexbildner), hergestellt aus der freien Säure H₄X und NaOH im molaren Verhältnis 1:4, wurde ein End-pH-Wert erreicht, der zwischen 9 und 10 lag, je nach den Konzentrationen puffernder Substanzen, die in der Lösung enthalten waren, z. B. Phosphat. Durch die Wahl eines Komplexbildners dieser Zusammensetzung wird eine pH-Absenkung im Laufe der Titration und damit auch eine ungünstige Verschiebung der pH-abhängigen Komplexgleichgewichte auf jeden Fall vermieden.

Es wurden Lösungsansätze von 10 ml verwendet, die noch einmal mit 10 ml destilliertem Wasser verdünnt wurden. Der pH-Wert wurde mit verdünnter NaOH auf \simeq 8 eingestellt. Getestet wurden Titrantkonzentrationen zwischen 0.1 und 0.5 mol/l, um zu prüfen, ob die durch die unterschiedlichen Konzentrationen unterschiedlich großen Titrantinkremente einen Einfluß auf das Ergebnis haben. Es zeigte sich, daß die eingesetzten Dosimaten gleichbleibend genau arbeiten, daß durch die Variation der Inkrementgröße also kein Fehler verursacht wird.

Die Komplexbildner wurden durch Einwaage der entsprechenden freien Säure H₄X, Zusatz der vierfachen äquivalenten Menge 1 M NaOH und entsprechendes Verdünnen mit destilliertem Wasser hergestellt. Geeicht wurden sie mit einer 0.01 M Calcium-Lösung, hergestellt aus CaCO₃/HCI, die wiederum mit einer 0.1 M Titriplex-III-Lösung von MERCK (Nr. 8431) standardisiert wurde. Dabei wurde der Wendepunkt als Äquivalenzpunkt betrachtet.

Gemessen wurde mit einer Calcium-Selectrode® (Radiometer F2112Ca) gegen eine Ka-Iomel-Referenzelektrode (Radiometer K401).

3.5.5 Zusammenfassung Kapitel 3

Die komplexometrische Titration von Calcium und Magnesium läßt sich erweitern um die indirekte Sulfat-Bestimmung: das Sulfat wird mit einem Überschuß von Barium ausgefällt, anschließend wird das überschüssige Barium ebenfalls komplexometrisch titriert. Dabei hat es sich als unmöglich erwiesen, Calcium, Barium (und damit Sulfat) und Magnesium in einer Probe durch konsekutive komplexometrische Titration mit EGTA zuverlässig mit einer größeren Genauigkeit als $\pm 3\%$ zu bestimmen. Dazu ist weder der ideale Komplexbildner noch die ideale Meßelektrode verfügbar. Es ist günstiger, die Bestimmung auf zwei Titrationen aufzuteilen: in der ersten wird entweder die Summe von Calcium und Magnesium mit EDTA erfaßt oder deren konsekutive Bestimmung mit EGTA/DCTA durchgeführt, in der zweiten erfolgt - nach vorhergehender Sulfat-Fällung - die konsekutive Bestimmung von Calcium und Barium mit EGTA, wobei Magnesium maskiert werden muß. Acetylaceton hat sich als das am besten geeignete Maskierungsreagens erwiesen.

4. Sulfat-Bestimmung

In Kapitel 3 wurde eine Möglichkeit aufgezeigt, Sulfat indirekt im Zusammenhang mit den komplexometrischen Titrationen zu bestimmen. Dennoch wurde versucht, auch für Sulfat eine "eigene", direkte Methode zu finden. Zielvorstellung war wiederum ein potentiometrisches Verfahren, das sich in geeigneter Weise mit den komplexometrischen sowie den Säure-Base-Titrationen koppeln läßt und möglicherweise die doppelte komplexometrische Titration überflüssig macht.

4.1 Literaturübersicht

Die ideale Methode der direkten potentiometrischen Messung mit einer Sulfat-sensitiven Elektrode ist nicht, oder nur unter speziellen Voraussetzungen möglich. Midgley (80) präsentiert eine Zusammenstellung der bisherigen Versuche, solch eine Elektrode zu entwickeln, mit der Schlußfolgerung, "no electrode has been shown to be sufficiently robust, selective or sensitive for general application in a variety of media over a reasonable period of time". Der entscheidende Mangel der bisher untersuchten Elektroden ist ihre große Störanfälligkeit gegenüber Fremdionen, die nur in sehr beschränktem Maße und unter definierten Bedingungen eine direkte Messung erlauben. Geeignet sind sie eher als Sensor einer potentiometrischen Fällungstitration; Sulfat bildet eine Reihe schwerlöslicher Salze, z. B. BaSO₄ oder PbSO₄, deren Fällung hierzu eingesetzt wird.

Kirsten et al. (81) beschreiben ein Verfahren, wie sich Sulfat auch aus komplexen Lösungen abtrennen und durch Fällungstitration bestimmen läßt. Nach Elimination der störenden lonen durch eine Kombination von Adsorption an Aluminiumoxid und anschlie-Bendem Kationenaustausch erfolgt die Titration mit PbNO₃ in mit Aceton versetzter Lösung gegen einen Farbindikator. Dieses Beispiel illustriert das Prinzip jeder titrimetrischen Sulfat-Bestimmung:

1. Abtrennung von störenden lonen

Die Sulfat-Fällungstitration wird durch eine Reihe von Ionen gestört, so z. B. von Calcium-Ionen durch Mitfällung von CaSO₄ und im besonderen durch Phosphat-Ionen, die selbst mit dem Titranten schwerlösliche Verbindungen bilden.

2. organisches Lösungsmittel

Der Zusatz eines organischen Lösungsmittels ist notwendig, um die Löslichkeit der ausfallenden Verbindung herabzusetzen. Das Löslichkeitsprodukt von BaSO₄ in Wasser liegt bei 10⁻¹⁰ mol²/l², das von PbSO₄ bei 1.6 10⁻⁸ mol²/l². Dadurch wird die Bestimmungsgrenze nach unten auf etwa 1 mmol/l beschränkt. Der Zusatz eines organischen Lösungsmittels, dessen Dielektrizitätskonstante kleiner ist als die von Wasser, setzt die Dielektrizitätskonstante der Lösung herab und verringert die Löslichkeit der genannten Verbindungen drastisch. Aus den Untersuchungen von Hulanicki et al. (82) läßt sich ein Faktor von etwa 40 bei einer Lösung, die 75% Methanol enthält, ableiten. Aus den Daten von Ross und Frant (83) ergibt sich bei einem Lösungsanteil von 50% Dioxan ein Faktor von etwa 1000. Die Folge davon sind größere Potentialdifferenzen bei der Titration und wesentlich schärfere Wendepunkte. 1-Propanol, 2-Propanol, Methanol, Ethanol, Dioxan und Aceton wurden erfolgreich dazu eingesetzt. Diese Lösungsmittel werden der wäßrigen Lösung in einem Anteil zwischen 50 und 85% zugesetzt. Tabelle 20 zeigt eine Zusammenstellung ihrer Dielektrizitätskonstanten.

Tabelle 20: Dielektrizitätskonstanten ϵ einiger bei der Sulfat-Fällungstitration gebräuchlicher organischer Lösungsmittel. Die Daten stammen aus (84).

Lösungs- mittel	E
Wasser	78.54
Methanol Ethanol 1-Propanol 2-Propanol Aceton 1,4-Dioxan	20.1 18.3 32.63 24.30 20.7 2.21

Mit wachsendem Anteil des organischen Lösungsmittels steigt die Schärfe des Wendepunktes, allerdings auch die Gefahr, daß das Löslichkeitsprodukt anderer, in wä&.sriger Lösung leichtlöslicher Verbindungen überschritten wird. Zudem steigt die Tendenz zur Mitfällung von Fremdionen.

3. Endpunktserkennung

Die Indikation des Endpunktes bzw. Wendepunktes erfolgt mittels eines Farbindikators oder einer geeigneten Elektrode.

Die einzelnen vorgeschlagenen Verfahren unterscheiden sich in der Wahl des Indikators oder der Elektrode, des organischen Lösungsmittels, des Titranten oder der Methode der Beseitigung von störenden Einflüssen.

Grundlage aller potentiometrischen Verfahren zur Sulfat-Bestimmung ist die Arbeit von Ross und Frant (83), die erstmals die Blei-Elektrode als Sensor einsetzten, unter Verwendung von Pb(ClO₄)₂ als Titrant. Gemessen wird im Laufe der Titration nicht die Änderung der SO₄²⁻ -Aktivität, sondern die der Pb²⁺-Ionen. Praktische Anwendungen dieser Methode finden sich in (85), wo sie zur Sulfat-Bestimmung in natürlichen Wässern und Bodenextrakten dient und in (86), wo sie zur Untersuchung von Mineralwässern und Meerwasser eingesetzt wird. Harzdorf (87) schlägt die Anwendung von Ba(ClO₄)₂ als Titrant vor, da die Bleielektrode nicht nur auf Blei-Ionen, sondern auch auf Sulfat-Ionen anspricht. Die Bestimmungsgrenze wird mit 0.5 μ mol/I angegeben. Als alternative Sensoren stellen Robbins et al. (88) eine Blei-Amalgam-Elektrode und Jaber et al. (89) eine Barium-sensitive Elektrode vor. Jones et al. (90) beschreiben die Störungen durch Fremdionen, die bei der Verwendung der Barium-sensitiven Elektrode auftreten können sowie Möglichkeiten zu deren Beseitigung. Phosphat gehört dabei zu den am meisten störenden Stoffen. Selig (91) stellt eine Methode vor, wie die Bestimmung von Sulfat neben einem großen Überschuß von Phosphat durchgeführt werden kann: die Titration erfolgt bei sehr niedrigem pH-Wert (\simeq 2), um Phosphat-Niederschläge auszuschließen. Als Titrant wird Ba(CIO₄)₂ eingesetzt, da die Bariumphosphate etwas leichter löslich sind als die Bleiphosphate. Sensor ist eine Blei-Elektrode.

Scheide und Durst (92) beschreiben die Anwendung des Gran-Verfahrens zur Auswertung der Sulfat-Fällungstitration.

Ein völlig anderes Elektrodensystem stellen Schumacher et al. (93) vor: sie verwenden eine Mischoxid-Elektrode, bei der eine Pt-Oxid/Pb-Oxid-Deckschicht elektrochemisch auf einer Pt-Elektrode aufgebracht wurde. Das Potential der Meßelektrode wird nicht durch ein Membranpotential bestimmt, sondern entsteht durch die Sulfatadsorption an der aktiven Mischoxid-Oberfläche; es handelt sich dabei um einen kapazitiven Effekt.

Eine Natrium-sensitive Elektrode wurde ebenfalls als Indikatorelektrode für die Fällungstitration eingesetzt (94), (95). Das Meßprinzip beruht auf einer vorübergehenden Beeinflussung ("transient response") des Elektrodenpotentials bei Zugabe des Titranten und nicht auf dessen Abhängigkeit von einer Spezies gemäß der Nernst'schen Gleichung. Diese Methode ist allerdings keine ernstzunehmende Konkurrenz zur klassischen potentiometrischen Messung.

Jasinski und Trachtenberg (96) verwenden ein anderes Indikationsprinzip: Meßelektrode ist hier eine Eisen-selektive Elektrode. Eisen(III)-Ionen, die der zu untersuchenden Lösung zugesetzt werden müssen, bilden mit Sulfat-Ionen Komplexe. Bei der Fällungstitration mit Ba²⁺-Ionen unter definierten Bedingungen werden die Fe³⁺-Ionen aus diesen Komplexen freigesetzt und der daraus resultierende Aktivitätsanstieg mit der Elektrode gemessen. Der Endpunkt der Titration macht sich durch einen Knick in der Titrationskurve bemerkbar, wenn alle Eisen-Ionen freigesetzt sind.

Ein indirektes Verfahren findet sich in den DEV (97). Sulfat wird durch Barium im Überschuß gefällt, die überschüssigen Barium-Ionen werden dann komplexometrisch gegen einen Farbindikator titriert. Diese Methode wurde von Duvivier (98) erweitert: nach der Fällung werden Calcium und Barium mit EGTA unter Verwendung der Calcium-Elektrode als Indikator-Elektrode titriert.

Die potentiometrische Sulfat-Fällungstitration unter Verwendung einer ionenselektiven Elektrode als Indikatorelektrode macht eine Vorbehandlung der Lösung notwendig, um störende lonen zu entfernen, so daß diese Methode schwer zu automatisieren ist.

4.2 Untersuchungen zur Sulfat-Bestimmung durch potentiometrische Titration

4.2.1 Fällungstitration unter Verwendung der Calcium-selektiven Elektrode als Meßelektrode

Die erste untersuchte Methode, Sulfat titrimetrisch zu bestimmen, geht von dem Komplexgleichgewicht [8] aus:

$$Ca^{2+} + SO_4^{2-} \Leftrightarrow CaSO_4^0$$
 [8]

Bei der Fällung von Sulfat-Ionen mit einer BaCl₂-Lösung gemäß

$$Ba^{2+} + SO_4^{2-} \Leftrightarrow BaSO_4 \downarrow$$
[9]

verschiebt sich das Gleichgewicht [7] auf die linke Seite, die Ca²⁺ -Aktivität steigt an und erreicht am Äquivalenzpunkt ihr Maximum, wenn das Sulfat - bis auf den durch das Löslichkeitsgleichgewicht von BaSO₄ vorgegebenen Wert - ausgefallen ist. Bei weiterer Zugabe von Titrant wird die Ionenstärke der Lösung erhöht und die Ca²⁺ -Aktivität sinkt wieder. Dieser Vorgang sollte sich mit einer Calcium-selektiven Elektrode verfolgen lassen und eine Sägezahnkurve mit dem Äquivalenzpunkt im Maximum ergeben.

Die experimentellen Titrationen bestätigten diese Erwartung (s. Abbildung 8). Der Äquivalenzpunkt ergibt sich als Schnittpunkt der Geraden des Sägezahns, der durch lineare Regression genau ermittelt werden kann. Was die Auswertung dieser Titrationskurven schwierig macht, sind die sehr niedrigen Potentialänderungen an der Meßelektrode im Laufe der Titration, die bei etwa 2 mV zwischen minimalem und maximalem Wert liegen - in einer Ausgangslösung, die je 1 mmol/I Calcium und Sulfat enthält. Dabei sind etwa 9% des Calciums im CaSO[®]-Komplex gebunden. Die Titrationskurve beruht in dieser Lösung also auf einer Änderung der Calcium-Aktivität von lediglich etwa 0.09 mmol/I. Bei solch geringen Differenzen machen sich schon geringe Schwankungen des Elektrodensignals, hervorgerufen z. B. durch das Rühren der Lösung, sehr stark bemerkbar und können das Ergebnis negativ beeinflussen. Diese Schwankungen traten besonders im ersten Teil der Sägezahnkurve auf, dem Teil der Titration, in dem die Fällung stattfindet. Im zweiten Teil, in dem nur noch die mit steigender Ionenstärke abnehmende Calcium-Ionen-Aktivität gemessen wird, ergab sich eine glatte Gerade. Die Schwankungen mitteln sich i. a. zwar aus, führen in Einzelfälien aber zu erheblichen Fehlern.

Eine Glättung der Kurve läßt sich erreichen, wenn die Potentiale nicht in gerührter, sondern in ruhiger Lösung gemessen werden (vgl. Abbildung 8); dadurch verlängert sich aber der Zeitraum für die Titration deutlich, da eine gewisse Zeit erforderlich ist, bis sich an der Membran ein stationärer Zustand einstellt und dadurch ein stabiles Potential abgelesen werden kann. Durch Änderung der Titrationsparameter (Größe der Inkremente, Bedingungen für die Meßwertanerkennung, Zeit zwischen den Inkrementzugaben) ließ sich keine grundsätzliche Verbesserung der Ergebnisse erzielen.

Ein weiterer Nachteil dieses Verfahrens liegt darin, daß die Konzentrationen der betreffenden Konstituenten (Calcium und Sulfat) relativ hoch liegen sollten (\gtrsim 1 mmol/l), um ein brauchbares Resultat zu erzielen. Innerhalb dieser Einschränkungen lag die Genauigkeit der Meßergebnisse bei \pm 5%.

Abbildung 8. Sulfat-Fällungstitration: Änderung der Ca²⁺-Aktivität bei der Fällungstitration einer wäßrigen Lösung, die je 1 mmol/l Ca²⁺ und SO²⁻ enthält, in gerührter und ruhiger Lösung, gemessen mit der Calcium-selektiven Elektrode. Die gestrichelte Linie gibt die Lage der erwarteten Äquivalenzpunkte an.

Die Ergebnisse dieser Methode sind insgesamt zu unsicher, um eine praktische Anwendung zuzulassen. Das Konzept schien aber interessant genug, um es weiter zu verfolgen. Für zuverlässigere Ergebnisse sind dabei größere Potentialdifferenzen und stabilere Signale der Meßelektrode Voraussetzung.

Durch ein weniger polares Lösungsmittel sollte sich das Komplexgleichgewicht [8] auf die Seite der ungeladenen Spezies CaSO² verschieben, außerdem sinkt dadurch die Löslichkeit von BaSO⁴, so daß bei einer Titration größere Potentialdifferenzen gemessen werden sollten. Um die Dielektrizitätskonstante der Lösung herabzusetzen, wurde den wäßrigen Lösungen Isopropanol zugesetzt, auf 2 Teile wäßrige Lösung kam 1 Teil Isopropanol. Abbildung 9 zeigt ein experimentelles Beispiel für eine in diesem Medium durchgeführte Titration. Die Titrationen in den Isopropanol/Wasser-Lösungen sind durch größere Potentialdifferenzen zwischen den Inkrementen sowie stabilere Signale der Elektrode gekennzeichnet.

Abbildung 9. Sulfat-Fällungstitration: Änderung der Ca²⁺-Aktivität bei der Fällungstitration einer Isopropanol/Wasser-Lösung, die je 1 mmol/I Ca²⁺ und SO≩⁻ enthält, gemessen mit der Calcium-selektiven Elektrode. Die gestrichelte Linie gibt die Lage des erwarteten Äquivalenzpunktes an.

Die Titration in Isopropanol/Wasser-Lösungen schien die Möglichkeit zu eröffnen, Sulfat auf neue Art und Weise, nämlich unter Verwendung der Calcium-selektiven Elektrode als Meßelektrode titrimetrisch bestimmen zu können.

Bei Titrationen von Lösungen, die neben Calcium und Sulfat noch Phosphat enthielten, lag das Maximum (bzw. der Äquivalenzpunkt) der Titrationskurve jedoch bei zu hohen Titrantvolumina, zurückzuführen auf die Ausfällung von Bariumphosphat und einen dadurch erhöhten Titriermittelverbrauch. Diese Störung ließ sich durch Titration bei niedrigen pH-Werten (pH \simeq 4) verhindern; Phosphat liegt dann überwiegend als H₂PO₄ vor, die Mitfällung unterbleibt. Die Anwesenheit von Magnesium verursachte keine Störungen.

Nach einer Vielzahl von derartig durchgeführten Titrationen mußte aber die Schlußfolgerung gezogen werden, daß die Ergebnisse hinsichtlich der Genauigkeit unbefriedigend sind. Der erste Ast des Sägezahns war oft durch deutliche Potentialsteigerungen vor dem Äquivalenzpunkt nach oben gebogen und damit nicht mehr durch eine Gerade anzupassen. Die Anwesenheit von Phosphat führte zu unkalkulierbaren Störungen, die eine vorherige Abtrennung notwendig machen. Es ist dann kein Vorteil gegenüber den konventionellen Methoden zur potentiometrischen Sulfat-Bestimmung mehr zu erkennen, weshalb die Untersuchungen, die Calcium-selektive Elektrode zur Sulfat-Bestimmung einzusetzen, eingestellt wurden.

4.2.2 Ein interessantes Phänomen

Zur Registrierung der Titrationskurven bei der Sulfat-Fällungstitration wurde ein Elektrodenpaar, bestehend aus einer Calcium-selektiven Elektrode in Kombination mit einer Kalomel-Referenzelektrode eingesetzt. Bei den Untersuchungen, die sich über mehrere Wochen hinzogen, wurde mit der Zeit ein interessantes Phänomen beobachtet, was die Form der Titrationskurve betraf. Die Sägezahnkurven zeigten auffällige Veränderungen derart, daß der erste Ast einen parabolischen Verlauf nahm - der zweite blieb eine Gerade. Im Bereich des Äquivalenzpunktes traten deutlich höhere Potentialsprünge auf als in den anderen Bereichen der Kurve. Die allmähliche Veränderung führte schließlich zu einem S-förmigen Aussehen der Titrationskurven. Die Richtung der Potentialänderungen war abhängig vom pH-Wert der Lösung: bei hohem pH-Wert (\simeq 10) stieg das Elektrodenpotential im Laufe der Titration, bei niedrigem pH-Wert (\simeq 4) fiel es ab. Schließlich wurde nur noch die S-förmige Titrationskurve mit abnehmenden Potentialen beobachtet, unabhängig vom pH-Wert. Abbildung 10 (Kurve 1) zeigt ein Beispiel dafür: die Potentialdifferenz über die ganze Kurve beträgt etwa 30 mV, der Wendepunkt entspricht nicht dem Äquivalenzpunkt, sondern liegt bei einem niedrigeren Titrantvolumen.

Zunächst lag die Vermutung nahe, daß die Calcium-selektive Elektrode für diesen Effekt verantwortlich sei. Bei Verwendung einer neuen Elektroden-Membran bzw. einer neuen Calcium-selektiven Elektrode wurde jedoch das gleiche Verhalten beobachtet, wieder ergaben sich S-förmige Titrationskurven. Deshalb wurde die Referenzelektrode durch eine baugleiche Elektrode des gleichen Fabrikats ersetzt: mit diesem Elektrodenpaar wurden wieder die ursprünglichen Sägezahnkurven erzielt. Diese Beobachtung legte den Schluß nahe, daß das unerwartete Verhalten auf die Referenzelektrode zurückgeht; sie hat im Laufe der Titration kein konstantes Potential, sondern ändert es auf charakteristische Weise mit der Lösungszusammensetzung. Bei diesem Elektrodenpaar kann eher die Calcium-selektive Elektrode als Referenzelektrode betrachtet werden, denn deren Potentialänderungen (vgl. Abbildung 9) sind bei weitem nicht so groß wie die beobachteten Werte.

Erstaunlich ist die große Potentialabnahme im Laufe der Titration, sowie die unerwartete S-förmige Titrationskurve. Sie deutet darauf hin, daß die Elektrode im Sinne der Nernst'schen Gleichung direkt auf eine Spezies anspricht, die im Laufe der Titration deutliche Konzentrationsänderungen erfährt; dabei kann es sich um Ba²⁺, SO²⁺ oder auch Ca²⁺ handeln. Um dies zu klären, wurde eine reine 1 mM Na₂SO₄ -Lösung titriert; wiederum ergab sich eine S-förmige Kurve, Abbildung 10 (Kurve 2) zeigt das Ergebnis. In diesem Falle entspricht der Wendepunkt der Kurve dem Äquivalenzpunkt. Die Titration der Na₂SO₄-Lösung unterstreicht die Vermutung, daß die Calcium-selektive Elektrode nur noch das Referenzpotential liefert, denn in der Lösung waren keine Ionen enthalten, die deren Potential wesentlich beeinflussen können. Die im ersten Falle während der Titration stattfindenden Konzentrationsänderungen von Calcium konnten somit als Ursache für das unerwartete Verhalten ausgeschlossen werden.

Abbildung 10. S-förmige Titrationskurven bei der Sulfat-Fällungstitration: Die Lösungen enthielten je 1 mmol/l Calcium und Sulfat (Kurve 1) bzw. nur Sulfat (Kurve 2). Die gestrichelte Linie zeigt die Lage der erwarteten Äquivalenzpunkte, die Quadrate geben die Lage der berechneten Wendepunkte an.

Im Laufe der Zeit wurden immer größere Potentialdifferenzen während einer Titration beobachtet. Lagen sie anfänglich für die Titration einer 1mM Na₂SO₄- Lösung - über die ganze Kurve gesehen - bei etwa 30 mV, so vergrößerte sich diese Spanne auf etwa 80 mV nach mehrwöchigem Gebrauch der Elektrode. Von der Größenordnung der Potentialänderungen her gesehen war das beobachtete Phänomen deshalb besonders interessant, denn hier stand möglicherweise ein neuer Sensor zur Verfügung, mit dem die Fällungstitration bequem verfolgt werden kann. Die Ursache des Effekts ist unklar und wurde zunächst nicht weiter untersucht; stattdessen wurde zuerst die Anwendbarkeit des Elektrodensystems auf Lösungen verschiedener Zusammensetzung überprüft.
4.2.3 Untersuchungen mit der in ihren Eigenschaften veränderten Kalomel-Elektrode

4.2.3.1 Titration von Isopropanol/Wasser-Lösungen

Sämtliche Titrationen wurden mit 50 ml der betreffenden Lösung, verdünnt mit jeweils 25 ml Isopropanol, bei Raumtemperatur durchgeführt. Die Ionenstärke wurde mit KCI auf 12 mmol/I - bezogen auf den wäßrigen Anteil - eingestellt. Titrant war eine BaCl₂ -Lösung der Konzentration 0.1 mol/I. Die Ergebnisse sind in Tabelle 21 zusammengestellt. Die gefundenen Sulfat-Konzentrationen wurden aus den Wendepunkten der Titrationskurven abgeleitet.

Tabelle 21:	Sulfat-Fällungstitrationen in Isopropanol/Wasser-Lösungen: Übersicht über
	die Ergebnisse. Die Lösungszusammensetzung bezieht sich auf den wäßri-
	gen Anteil - vor Zugabe des Isopropanols -, ebenso der pH-Wert.

	Lösungszusammensetzung [mmol/l]	∘рН	[SO₄] exp. [mmol/l]
1.)	1 Na₂SO₄	6.8	0.99
2.)	1 Na₂SO₄	3.2 4.6 6.8 9.5 10.0 10.5	0.99 0.99 1.00 1.00 1.05 1.06
3.)	1 Na _z SO ₄ + 1 CaCl _z	6.8	0.83
4.)	1 Na₂SO₄ + 1 MgCl₂	6.8	1.00
5.)	1 Na₂SO₄ + 0.5 KH₂PO₄	7.0 4.1	1.22 0.99
6.)	$1 \text{ Na}_2 \text{SO}_4 + 0.5 \text{ KH}_2 \text{PO}_4 + 1 \text{ MgCI}_2$	6.8 4.2	1.20 0.99
7.)	$1 \text{ Na}_2 \text{SO}_4 + 0.5 \text{ KH}_2 \text{PO}_4 + 1 \text{ CaCl}_2$	7.0	0.93
8.)	$1 \operatorname{Na_2SO_4} + 0.5 \operatorname{KH_2PO_4} + 1 \operatorname{CaCl_2} + 1 \operatorname{MgCl_2}$	7.0 4.0	1.05 0.85
9.)	1 Na ₂ SO ₄ + 0.5 KH ₂ PO ₄ + 0.5 La(NO ₃) ₃	8.5	0.97
10.)	1 Na₂SO₄ + 1 CaCl₂ + 1 Na₄EGTA	8.7	1.00
11.)	1 Na ₂ SO ₄ + 1 CaCl ₂ + 0.5 MgCl ₂ + 0.5 KH ₂ PO ₄ + 0.5 La(NO ₃) ₃ + 1 Na ₄ EGTA	10.0	1.00

Bei den Titrationen von Isopropanol/Wasser-Lösungen dauerte es längere Zeit, bis sich die Meßwerte stabilisierten. Ein Zeitraum von 60 sec zwischen den Titrant-Inkrementen hat sich als notwendig erwiesen, um stabile Meßwerte und damit eine sichere Berechnung des Wendepunktes zu ermöglichen.

Die Übersicht zeigt, daß die Anwesenheit von Magnesium nicht stört (Bsp. 4), wohl aber die von Calcium und Phosphat (Bsp. 3, 5, 6 und 7): Calcium verringerte den Titrantverbrauch durch Mitfällung von CaSO₄, Phosphat vergrößerte ihn bei hohen pH-Werten durch die Ausfällung von Bariumphosphat. Die Phosphat-Fällung läßt sich durch das Erniedrigen des pH-Wertes auf \simeq 4 unterdrücken (Bsp. 5).

Eine weitere Möglichkeit, die Störung durch Phosphat auszuschalten, ist dessen vorherige Entfernung. Hierzu bot sich als eine Möglichkeit die Ausfällung als Lanthanphosphat durch Zugabe von Lanthannitrat (Bsp. 9) bei höheren pH-Werten (8 - 9). Die Lanthanzugabe muß dem Phospat stöchiometrisch erfolgen, denn ein Lanthan-Überschuß hatte eine negative Abweichung des Ergebnisses vom Sollwert zur Folge. Das bedeutet, daß die Phosphat-Konzentration vor der Lanthan-Zugabe bekannt sein muß.

Die Mitfällung des Calciums läßt sich verhindern, wenn es durch Zugabe eines Komplexbildners in Lösung gehalten wird. EDTA und EGTA wurden getestet; EGTA erwies sich als besser geeignet, da es bei dem angegebenen pH-Wert nahezu ausschließlich das Calcium komplexiert, nicht aber evtl. in Lösung vorhandenes Magnesium. Es muß dem Calcium stöchiometrisch zugesetzt werden (Bsp. 10), überschüssiges EGTA komplexiert den Titranten und führt damit zu einem erhöhten Titrantverbrauch. Zur erfolgreichen Komplexierung von Calcium muß der pH-Wert der Lösung auf etwa 8 - 9 angehoben werden. Ein weiterer Vorteil von EGTA liegt darin, daß bei Verwendung dieses Komplexbildners deutlich größere Potentialdifferenzen erreicht wurden als mit EDTA.

Somit stehen zwei "Kunstgriffe" zur Verfügung, die es ermöglichten, die Störungen durch Calcium und Phosphat auszuschalten: zunächst wird das Phosphat mit Lanthannitrat ausgefällt und das Calcium mit EGTA komplexiert (beides bei pH 8-9). Anschließend erfolgt die Sulfat-Fällungstitration (Bsp. 11). Voraussetzung ist, daß die betreffenden Calcium- und Phosphat-Konzentrationen bekannt sind, sonst werden die Ergebnisse der Fällungstitration verfälscht.

Die Titrationsergebnisse waren vom pH-Wert der titrierten Lösung abhängig; mit steigendem pH-Wert verschob sich der Wendepunkt der Titrationskurve zu höheren Werten, der Titrantverbrauch stieg (Bsp. 2). Dieser Effekt machte sich aber erst bei pH-Werten \geq 10 als starke Abweichung (\geq 5%) vom erwarteten Ergebnis bemerkbar.

Die Ursache für den bei zu niedrigem Titrantvolumen gefundenen Wendepunkt bei Anwesenheit von Calcium liegt in der Mitfällung von CaSO₄. Dies wurde durch Ca-Bestimmungen in den titrierten Lösungen belegt. Nach Filtration der Lösungen durch Membranfilter (0.1 μ) wurden mit den Filtraten die konsekutive komplexometrische Calciumund Barium-Bestimmung mit EDTA durchgeführt. Dabei ergab sich ein Unterschuß an Calcium von 5 - 10% gegenüber der Ausgangslösung und dementsprechend ein Überschuß an Barium gegenüber der Konzentration, die zu erwarten wäre, wenn alles Sulfat als BaSO₄ gefällt worden wäre. Bleibt die Lösung jedoch längere Zeit (≥ 2 h) in Kontakt mit dem Niederschlag, so stellt sich das thermodynamische Lösegleichgewicht ein: Ca²⁺ geht wieder in Lösung und Ba²⁺ fällt aus. Es handelt sich also um eine Mitfällung von CaSO₄ und nicht um eine durch das Überschreiten des Löslichkeitsproduktes hervorgerufene Ausfällung.

4.2.3.2 Titration von wäßrigen Lösungen

Nach der erfolgreichen Anwendung der in ihren Eigenschaften veränderten Kalomel-Elektrode als Sensor bei der Sulfat-Fällungstitration in Isopropanol/Wasser-Lösungen, wurde überprüft, ob dieser Effekt auch in wäßriger Lösung in diesem Ausmaße wirksam ist.

Titriert wurden wiederum jeweils 50 ml der betreffenden wäßrigen Lösung. Tabelle 22 zeigt die Zusammenstellung einiger Ergebnisse.

Lösungszusammensetzung [mmol/l]	рН	[SO₄] exp. [mmol/I]
1 Na₂SO₄	6.0	1.01
$1 \text{ Na}_2 \text{SO}_4 + 1 \text{ CaCl}_2$	4.1	1.00
$1 \text{ Na}_2 \text{SO}_4 + 0.5 \text{ KH}_2 \text{PO}_4 + 1 \text{ CaCl}_2$	7.3 4.1	1.23 1.03

Tabelle 22: Sulfat-Fällungstitrationen in wäßriger Lösung: Zusammenstellung einigerErgebnisse.

Es zeigte sich, daß das getestete Elektrodenpaar auch bei der Sulfat-Fällungstitration in wäßriger Lösung mit Erfolg eingestzt werden kann; es ergaben sich sogar zwei Vorteile: zum einen unterblieb die Mitfällung von CaSO₄, zum anderen ließen sich die Titrationen schneller durchführen. Die Elektroden reagierten in wäßriger Lösung so schnell auf Änderungen der Lösungszusammensetzung, daß bereits nach einer Zeitspanne von 15 sec zwischen den Inkrementen stabile Meßwerte registriert wurden. Dabei waren die Potentialdifferenzen nur etwa halb so groß wie in den Isopropanol/Wasser-Lösungen, über die ganze Kurve gesehen betrugen sie \simeq 40 mV; deshalb ist der Wendepunkt hier weniger stark ausgeprägt.

Auch in wäßriger Lösung führte die Anwesenheit von Phosphat bei hohen pH-Werten zu Störungen, die bei niedrigen pH-Werten unterdrückt werden konnten. Die Abhängigkeit der Lage der Wendepunkte vom pH-Wert war wiederum gegeben; sie ist aber erst bei pH \geq 10 von Bedeutung.

4.2.4 Weitere Charakterisierung der veränderten Kalomel-Elektrode

Bei der betreffenden Referenzelektrode handelte es sich um ein Kalomelelektrode mit Keramikdiaphragma und gesättigter KCI-Lösung als Innenelektrolyt. Um die Ursache für das veränderte Verhalten zu finden, wurde diese Elektrode mit einer neuen Elektrode des gleichen Fabrikats verglichen. Zur qualitativen Beurteilung der Durchlässigkeit der Diaphragmen wurden die Ausflußgeschwindigkeiten des Innenelektrolyten verglichen: die Elektroden wurden über einen Zeitraum von 15 Minuten in ein Becherglas mit 50 ml destilliertem Wasser getaucht und dabei wurde die Leitfähigkeit der gerührten Lösung gemessen. Bei der neuen Elektrode stieg die Leitfähigkeit etwa doppelt so schnell wie bei der veränderten Elektrode. Dieses Ergebnis wurde als Hinweis darauf betrachtet, daß deren Diaphragma mit irgend einer Substanz zugesetzt war, so daß die Ursache für die beobachteten Potentiale am oder im Diaphragma zu suchen sein könnte.

Da sonst kein äußerlicher "Befund" festzustellen war, wurde untersucht, wie sich das Elektrodenpotential unter dem Einfluß steigender Konzentrationen verschiedener lonen ändert. Die Elektrode war dabei als Meßelektrode (Meßelektrodeneingang am Meßgerät) gegen eine Ag-Referenzelektrode (Referenzelektrodeneingang) - nicht mehr gegen die Calcium-selektive Elektrode - geschaltet. Bei den zuvor beschriebenen Titrationen war die Polung der Elektroden umgekehrt: am Meßeingang lag die Calcium-selektive Elektrode, am Referenzelektrodeneingang die Kalomel-Elektrode. Dadurch verändert sich das Vorzeichen der Spannung zwischen den Elektroden des Elektrodenpaares und die Richtung der Potentialänderungen bei der potentiometrischen Titration. Gemessen wurden die Potentialänderungen bei Zugabe verschiedener Elektrolyte zu KCI-Lösungen. KCI-Lösungen wurden deshalb gewählt, um ein stabiles Anfangspotential zu gewährleisten. Dabei stellte sich heraus, daß die Meßkette auf H+, stärker noch auf OH- und im besonderen auf SO²⁻ mit einer Potentialabnahme, auf Ca²⁺ und Ba²⁺ mit einer Potentialzunahme reagierte. Die Abhängigkeit des Potentials von der Aktivität einer Spezies gemäß der Nernst'schen Gleichung war nicht feststellbar. Eine "normale" Referenzelektrode reagierte unter den gleichen Bedingungen gegenüber diesen lonen mit Potentialänderungen gleichen Vorzeichens, aber mit weitaus geringeren Beträgen.

In Kombination mit einer Calcium-selektiven Elektrode, etwa bei einer komplexometrischen Titration, zeigte die Referenz-Elektrode ein indifferentes Verhalten; Abweichungen, d. h. deutliche Potentialänderungen traten nur dann auf, wenn sich die Sulfat-Konzentration oder der pH-Wert änderte.

Der Grund für das veränderte Verhalten schien am Zustand des Diaphragmas zu liegen. Zur Prüfung, ob sich etwa auf dem Diaphragma eine potentialbeeinflussende Schicht abgelagert hatte, diente ein recht drastischer Test: Mit einem Skalpell wurde die äußerste Schicht des Diaphragmas abgekratzt. Daraufhin konnten keine "speziellen Effekte" an dieser Elektrode mehr beobachtet wurden: bei den anschließenden Sulfat-Fällungstitrationen in Kombination mit einer Calcium-selektiven Elektrode ergaben sich wieder Sägezahnkurven, auch die Ausflußgeschwindigkeit des Innenelektrolyten durch das Diaphragma war deutlich vergrößert. Damit war bewiesen, daß der Zustand des Diaphragmas das unerwartete Verhalten der Elektrode verursacht hatte. Leider war aber auch die Elektrode selbst in diesem besonderen Zustand nicht mehr existent.

Um die Ursache für das veränderte Verhalten zu klären, galt es, diesen Zustand zu reproduzieren. Für diese weiteren Untersuchungen wurde eine neue Kalomelelektrode gleichen Fabrikats, die einwandfrei funktionierte, eingesetzt.

4.2.5 Versuche, eine Kalomelelektrode in eine Sulfat-selektive Elektrode zu modifizieren

Die verringerte Ausflußgeschwindigkeit des Innenelektrolyten deutete darauf hin, daß sich irgendeine Substanz im Diaphragma abgelagert hatte. Da die Elektrode bei den Fällungstitrationen eingesetzt war, kämen hierfür die Verbindungen Bariumsulfat, Calciumsulfat oder Bariumphosphat in Frage. Durch gezielte Verunreinigung des Diaphragmas mit diesen Salzen ließ sich aber keine Wiederholung des Phänomens erreichen.

Auch die Variation des Innenelektrolyten bezüglich seiner Zusammensetzung, seiner Konzentration oder des pH-Wertes half nicht weiter, ebensowenig wie das Arbeiten mit einer "double-junction"-Elektrode, mit der bequem verschiedene Innenelektrolyte getestet werden können.

Die starke Abhängigkeit des Potentials der veränderten Kalomelelektrode vom pH-Wert der Lösung führte zu der Überlegung, daß vielleicht die Erhöhung der Konzentration von H⁺⁻ oder OH⁻-lonen im Diaphragma diesen Effekt herbeiführen könnte. Aber auch die Verwendung von mit KCI gesättigter 1 N HCI bzw. 1 N NaOH als Innenelektrolyt führte nicht zu dem erhofften Ergebnis. Deshalb wurde eine höher geladene Spezies eingesetzt: dem Innenenelektrolyt wurde Fe³⁺ in Form von FeCl₃ zugegeben; nachdem das Fe³⁺ das Diaphragma durchdrungen hatte, konnte eine Titrationskurve mit zunehmenden Potentialen - die Elektrode war jetzt als Meßelektrode geschaltet, eine zweite Kalomelelektrode diente als Referenz-Elektrode - und einem deutlichen Wendepunkt erhalten werden. Die ersten Kurven waren noch recht "unsauber", stabilisierten sich aber nach einigen Titrationen und ergaben wieder ausgeprägte S-Kurven mit deutlichem Wendepunkt und großen Potentialdifferenzen. Damit war der Effekt reproduziert. Worauf er bei der ersten Referenzelektrode beruhte, kann aus diesem Ergebnis nicht geschlossen werden.

4.3 Untersuchungen mit der modifizierten Kalomelelektrode

4.3.1 Allgemeines

Die Konzentration von Fe³⁺ im Elektrolyten ist ohne Bedeutung, wichtiger ist vielmehr die Konzentration im Diaphragma oder - genauer noch - an der Diaphragma-Spitze. Denn auch bei dieser Elektrode ließ sich der Effekt durch Abkratzen der Diaphragma-Spitze wieder nahezu zum Verschwinden bringen. Dies machte sich in einer deutlichenn Abnahme der Potentialdifferenzen bemerkbar. Die Elektrode regenerierte sich nach einiger Zeit wieder, nachdem die für die Potentialbildung verantwortliche Schicht wieder hergestellt war.

Die Qualität der Funktion als Indikatorelektrode änderte sich im Laufe der Zeit. Als Maßstab dafür läßt sich die Potentialdifferenz angeben, die bei Titrationen von Lösungen gleicher Zusammensetzung gemessen wurde. So schwankte diese Differenz bei der Titration einer 1 mM NaSO₄-Lösung zwischen 20 und 120 mV. Die unterschiedlichen Ergebnisse lassen sich mit dem sich ändernden Zustand des Diaphragmas erklären. Wurde die Potentialeinstellung träge oder verringerten sich die Potentialdifferenzen, konnte das Ansprechverhalten der Elektrode durch vorsichtiges Abschleifen der Diaphragmenspitze mit feinem Schmirgelpapier wieder verbessert werden.

Diese "neue" Elektrode reagierte ähnlich wie die erste Elektrode auf den Einfluß verschiedener Ionen, aber mit einigen Unterschieden. So ist die Abhängigkeit des Potentials von der Sulfat-Konzentration weitaus größer, die von der Barium-Konzentration dagegen deutlich geringer. Die Abhängigkeit von OH--Ionen - stark sinkende Potentiale bei steigender OH--Konzentration - ist auch gegeben, der Einfluß von H+ -Ionen ist deutlich abgeschwächt. Allgemein läßt sich sagen, daß sich negative Ionen weitaus stärker auf das Potential auswirken als positive. Bei der ersten Elektrode waren diese Einflüsse von etwa der gleichen Größenordnung.

Die modifizierte Elektrode arbeitete sowohl in wäßriger als auch in isopropanolhaltiger Lösung mit den bereits erwähnten Vorzügen und Einschränkungen, zeigte aber einen schwerwiegenden Nachteil gegenüber der ersten Elektrode. Bei Anwesenheit von Phosphat traten schwere Störungen des Elektrodenpotentials auf, die auf die Beeinflussung der potentialbestimmenden Schicht des Diaphragmas zurückgeführt werden können, denn Phosphat bildet mit Eisen-Ionen selbst schwerlösliche Verbindungen. Diese Störungen waren auch durch eine pH-Absenkung nicht völlig zu eliminieren.

Die Elektrode wurde eingehender über ihre Möglichkeiten zur Anwendbarkeit in einem titrimetrischen Verfahren zur Sulfatbestimmung geprüft. Dazu gehörte das Verhalten gegenüber Fremdionen, der Einfluß der Ionenstärke sowie die Abhängigkeit von der Konzentration des zu bestimmenden Ions.

4.3.2 Abhängigkeit des Elektrodenpotentials von der Sulfat-Konzentration

Ein Kriterium für die Qualität einer ionenselektiven Elektrode ist das Maß der Abhängigkeit des Elektrodenpotentials von der Aktivität der relevanten Spezies gemäß der Nernst'schen Gleichung. Abbildung 11 zeigt die Veränderung des Elektrodenpotentials der manipulierten Kalomelelektrode in Abhängigkeit von der Sulfat-*Konzentration* und der Sulfat-*Aktivität* (berechnet mit der Debye-Hückel-Gleichung) über den Bereich von 0.01 bis 500 mmol/I. Zwischen 0.05 und 50 mmol/I ist eine lineare Abhängigkeit von den logaritmierten Werten der Konzentration mit der Steigung 27.2 mV, über den Bereich zwischen 0.025 und und 10 mmol/I eine lineare Abhängigkeit von den logarithmierten Werten der Aktivität mit der Steigung 33 mV zu erkennen. Diese Werte liegen nahe bei dem für die Meßtemperatur von 24°C zu erwartenden Wert von 29.48 mV, der nach der Nernst'schen Gleichung für zweiwertige lonen gilt.

Abbildung 11. Abhängigkeit des Elektrodenpotentials von der Sulfat-Konzentration bzw.
 -Aktivität: Die modifizierte Kalomelelektrode zeigt eine Abhängigkeit gemäß der Nernst'schen Gleichung über einen Bereich von etwa 4 logarithmischen Einheiten. Die Steigung der Geraden beträgt 27.2 mV in Abhängigkeit von der Konzentration (1) bzw. 33 mV in Abhängigkeit von der Aktivität (2) bei einer Temperatur von 24°C.

4.3.3 Anwendungsbereich

4.3.3.1 in wäßrigen Lösungen

In wäßriger Lösung ist der Anwendungsbereich der Sulfat-Fällungstitration deutlich eingeschränkt durch das relativ hohe Löslichkeitsprodukt von 10⁻¹⁰ mol²/l² für BaSO₄. Getestet wurde der Konzentrationsbereich zwischen 0.1 und 100 mmol/l Sulfat. Dabei zeigte sich, daß die Titration für Konzentrationen ≳0.5 mmol/l anwendbar ist. Bei Konzentrationen bis 2.5 mmol/l kann der Wendepunkt der Titrationskurve in guter Näherung als Äquivalenzpunkt betrachtet werden. Für höhere Konzentrationen ist diese Art der Auswertung nicht mehr möglich, da der Wendepunkt mit steigenden Konzentrationen immer größere negative Abweichungen vom erwarteten Ergebnis zeigt.

Die Ursache liegt darin, daß die Elektrode zu wenig selektiv auf Sulfat reagiert. Die für niedrige Sulfat-Konzentrationen nahezu symmetrische Titrationskurve (vgl. Abbildung 13) wird mit steigender Konzentration immer unsymmetrischer, der zweite Ast der Kurve wird flacher und geht schließlich in eine Horizontale zur x-Achse über (vgl. Abbildung 12). Der Äquivalenzpunkt verschiebt sich in die Richtung des Knickpunktes der Kurve, der Wendepunkt liegt deutlich davor. Die Kurve zeigt einen Verlauf, wie ihn Carr (99) für eine Fällungstitration berechnet hat, die zum einen durch die Größe des Löslichkeitsproduktes der ausfallenden Verbindung und durch Fremdionen beeinflußt wird und zum anderen mit einer Elektrode registriert wird, die bei niedrigen Konzentrationen nicht mehr anspricht. Man erhält dann nur den ersten Teil der Kurve voll ausgebildet, wo die registrierte Spezies noch in hoher Konzentration vorliegt; nach Überschreiten des Äquivalenzpunktes kann die Ansprechgrenze der Elektrode durch die niedrige Konzentration unterschritten werden, es ergibt sich nur noch eine Gerade.

In diesem Falle muß eine andere Methode der Auswertung gewählt werden. Für eine Kette, die aus einer Meßelektrode, auf die die Nernst'sche Gleichung anwendbar ist, und einer Referenzelektrode besteht, kann für die EMK folgende Gleichung angegeben werden:

$$E = E_0 + E_i - E_{ref} + S \cdot \log a_{SO4}$$
[10]

E ist die EMK, E_0 das Standardelektrodenpotential, E_j das Diffusionspotential, E_{ref} das Potential der Referenzelektrode, S die Elektrodensteilheit und a_{so_4} die Sulfat-Aktivität. Unter Berücksichtigung des Zusammenhanges zwischen Aktivität und Konzentration

$$a_{SO4} = \gamma_{SO4} \cdot c_{SO4}$$
 [11]

wobei γ_{so_4} der Aktivitätskoeffizient von Sulfat ist, kann, sofern E_i , S und γ_{so_4} konstant sind, ein "praktisches" Standardelektrodenpotential E'₀ angegeben werden:

$$E'_{0} = E_{0} + E_{j} - E_{ref} + S \cdot \log \gamma_{SO_{4}}$$
[12]

Gleichung [10] vereinfacht sich damit zu

$$E = E'_0 + S \cdot \log c_{SO4}$$
 [13]

Da die Gleichgewichtskonstante für Gleichung [7] sehr klein ist, so daß das Gleichgewicht weit auf der rechten Seite liegt, läßt sich nach Ivaska (100) folgende Gleichung anwenden:

$$V_{e} - V_{i} = \frac{V_{0} + V_{i}}{c_{L}} \cdot 10^{(E'_{0} - E_{i})/S}$$
 [14]

Dabei ist V_e das Titrantvolumen am Äquivalenzpunkt, V_i das Titrantvolumen am Titrationspunkt i, V₀ das Lösungsvolumen, c_L die Titrantkonzentration und E_i das Elektrodenpotential gegenüber der Referenzelektrode am Titrationspunkt i. Nach Umformung ergibt sich daraus:

$$V_{e} - V_{i} = k (V_{0} + V_{i}) \cdot 10^{E_{i}/S}$$
 [15]

mit einer neuen Konstanten k, in der E'₀ und c_L enthalten sind. Die Auftragung von $(V_0 + V_i) 10^{\epsilon_i/s}$ gegen V ergibt eine Gerade, die die V-Achse im Punkt V_e schneidet.

Es hat sich gezeigt, daß der Wert für S bei der verwendeten Elektrode nicht das Maß an Konstanz aufweist, um direkt in Gleichung [14] verwendet zu werden. Deshalb wurde die Rechnung iterativ nach folgender Methode geführt: für S wird ein Startwert vorgegeben (30 mV), der in der Nähe des tatsächlichen Wertes liegt. Mit diesem Startwert wird für jeden Titrationspunkt i aus dem ersten Ast der Titrationskurve mit dem Wertepaar (V_i, E_{i,exp.}) der Wert für (V₀ + V_i)·10^{Ei,exp./S} berechnet. Durch diese Werte wird eine Regressionsgerade gelegt. Dann werden die zu jedem Titrantinkrement gehörenden Werte auf der Regressionsgerade bestimmt, daraus die Werte E_{i,ber.} ermittelt und damit die Summe der Fehlerquadrate $\sum_{i=1}^{n} (E_{i,ber.} - E_{i,exp.})^2$ berechnet. Der Wert von S wird solange schrittweise verändert, bis die Fehlerquadratsumme ein Minimum erreicht.

Abbildung 12 zeigt die Titrationskurve einer 10 mM Na₂SO₄ -Lösung und deren linearisierten ersten Ast, der den exakten Äquivalenzpunkt als Schnittpunkt mit der Volumen-Achse - in der Abbildung als Konzentrationsachse dargestellt - ergibt, während der Wendepunkt einen zu niedrigen Wert liefert.

Abbildung 12. Titrationskurve und deren Linearisierung: Dargestellt ist die Titrationskurve für die Titration einer 10 mM Na₂SO₄-Lösung sowie deren linearisierter erster Ast. Der Wendepunkt ist mit 'x' markiert. Die Beschriftung der Ordinate bezieht sich nur auf die Titrationskurve, die Ordinaten-Werte für die Gerade sind relative Größen. Die senkrechte gestrichelte Linie gibt die Lage des erwarteten Äquivalenzpunktes an.

In Tabelle 23 sind die mit der Wendepunktsmethode und nach obiger Rechenmethode ermittelten Ergebnisse gegenübergestellt. Meßelektrode war die modifizierte Kalomelelektrode in Kombination mit einer "normalen" Kalomelelektrode. Titriert wurden 10 ml der entsprechenden Sulfat-Lösung mit einer 0.1 M BaCl₂ -Lösung in monotoner Titration. Die Zeit zwischen den einzelnen Inkrementen betrug 30 sec. Tabelle 23: Sulfat-Fällungstitration in wäßriger Lösung: Angegeben sind die nach der
Wendepunktsmethode und nach der rechnerischen Methode durch Lineari-
sierung der Titrationskurve ermittelten Werte.

[S] [mr	O₄] nol/l]	Wende- punkt	Lineari- sierung
C).5	0.53	-
1		1.00	-
2	2.5	2.47	2.54
5		4.94	5.00
10		9.77	9.96
50		47.8	49.1
100		94.6	95.4
L			

Aus Tabelle 23 wird ersichtlich, daß für sehr hohe Sulfat-Konzentrationen (100 mmol/l) auch mit dem rechnerischen Verfahren kein genaues Ergebnis mehr möglich ist, die Werte liegen zu niedrig. Die Ursache liegt darin, daß die Fällungsreaktion [7] nicht exakt stöchiometrisch, sondern unvollständig ("slightly below theoretical") abläuft (96). Dies ist auf die Anwesenheit von Alkali-Ionen zurückzuführen, die zu Mitfällungen von Alkalisulfat neigen. Je höher deren Konzentration ist, desto größer wird dieser Effekt. Bei den titrierten Lösungen handelte es sich um reine Na₂SO₄-Lösungen, damit liegt eine - verglichen mit der Sulfat-Konzentration - doppelt so hohe Na+-Konzentration vor.

4.3.3.2 in Isopropanol/Wasser-Lösungen

Beim Zusatz von Isopropanol ergeben sich deutlich größere Potentialdifferenzen (vgl. Abbildung 13), die Potentiale sind stabiler, der Anwendungsbereich wird in den Bereich kleinerer Konzentrationen ausgedehnt.

Tabelle 24 zeigt eine Zusammenstellung der Ergebnisse bei der Titration verschieden konzentrierter Sulfat-Lösungen. Das Lösungsvolumen von 10 ml wurde mit dem gleichen Volumen Isopropanol versetzt. Die Zeit zwischen den Titrantinkrementen betrug wieder 30 Sekunden. Auch hier muß bei Konzentrationen > 2.5 mmol/l wieder das rechnerische Verfahren angewendet werden, um genaue Ergebnisse zu erzielen.

Die Bestimmungsgrenze liegt bei 10 μ mol/l. Durch Erhöhen des Isopropanol-Anteils der Lösung war kein besseres Ergebnis möglich; dadurch vergrößert sich aber die Neigung anderer Spezies zur Mitfällung, zudem spricht die Elektrode langsamer an. Bei höheren Sulfat-Konzentrationen (>10 mmol/l) ergaben sich negative Abweichungen, die auch durch das rechnerische Verfahren nicht mehr korrigiert werden können. Ursache ist wiederum die Mitfällung von Alkalisulfat, die in alkoholischer Lösung schon bei niedrigeren Konzentrationen auftritt als in rein wäßriger Lösung.

Abbildung 13. Sulfat-Fällungstitration: einer 1mM Na₂SO₄-Lösung in wäßriger und in mit Isopropanol versetzter Lösung (Lösungsmittelverhältnis 1:1).

Es ist möglich, auch die bei höheren Sulfat-Konzentrationen aus den Titrationskurven abgeleiteten Wendepunkte zur Auswertung heranzuziehen. Mit den anhand von Standardlösungen ermittelten Wendepunkten läßt sich - sowohl für die wäßrigen Lösungen als auch für die Isopropanol/Wasser-Lösungen - eine "Eichkurve" für die Elektrode aufstellen, indem die Werte über ein Polynom zweiter oder dritter Ordnung an die Soll-Werte angepaßt werden. Dieses Polynom stellt eine genaue Eichkurve dar.

 Tabelle 24:
 Sulfat-Fällungstitrationen in Isopropanol/Wasser-Lösungen.

[SO₄] [mmol/I]	Wende- punkt	Lineari- sierung
0.01	0.011	-
0.025	0.025	-
0.05	0.052	-
0.1	0.102	0.100
0.25	0.250	0.253
0.5	0.50	0.49
1	0.98	0.99
2.5	2.47	2.51
5	4.85	5.13
10	9.51	9.99

4.4 Störungen

4.4.1 Calcium

Die Mitfällung von CaSO₄ bei der Sulfat-Fällungstitration und die damit verbundenen Minderbefunde sind ein bekanntes Problem. Goertzen und Oster (85) schlagen zur Beseitigung dieser Störung die Zugabe des Inertsalzes NaClO₄ vor. Dies hat zweierlei Auswirkungen: zum einen wird die Ionenstärke der Lösung erhöht, zum anderen kommt es zur Bildung von Ionenpaaren zwischen Ca²⁺-Ionen und ClO₄ -Ionen. Beide Effekte erhöhen die Löslichkeit von CaSO₄. Diese Methode wurde an einer Lösung getestet, die je 1%rbl.mmol/I Calcium und Sulfat enthielt. Der Zusatz von NaClO₄ wurde zwischen 10 und 100 mmol/I variiert. Dadurch ließ sich - unabhängig von der NaClO₄-Konzentration - eine leichte Verbesserung des Ergebnisses erzielen, die Wiederfindungsrate stieg von 86 auf 88%, lag damit aber immer noch deutlich unter dem Sollwert. Ein Nachteil dieser Methode liegt darin, daß die Lösung aufgesalzen wird und dadurch wieder unerwünschte Mitfällungen auftreten können. Außerdem wurden bei dem hohen Elektrolytgehalt geringere Potentialdifferenzen bei der Titration beobachtet.

Die optimale Methode, das Calcium zu entfernen, liegt in der Verwendung eines Kationenaustauschers. Zu diesem Zwecke wurde der stark saure Kationenaustauscher Dowex® 50 WX 8 (50-100 mesh) eingesetzt. Damit ließ sich das Calcium ohne Beeinträchtigung für die nachfolgende Sulfat-Titration aus der Lösung beseitigen.

4.4.2 Carbonat

Bei Anwesenheit von Carbonat traten Störungen auf, wenn der pH-Wert der Lösung größer als 5 war. Dann ergab sich eine verzerrte Titrationskurve. Der Wendepunkt lag durch die Mitfällung von BaCO₃ bei einem zu hohen Titrantverbrauch. Diese Störung ließ sich leicht umgehen, indem das Carbonat zuvor bei niedrigem pH-Wert ausgeblasen wurde, oder indem die Titration einfach bei einem pH-Wert < 5 durchgeführt wurde. Bei dem niedrigen pH-Wert traten dann aber geringere Potentialdifferenzen auf.

4.4.3 pH-Wert

Mit sinkendem pH-Wert verringerten sich die Potentialdifferenzen, die Titrationskurve wurde "gestaucht", an der Genauigkeit des Ergebnisses änderte sich aber nichts. Es erwies sich als vorteilhaft, bei pH-Werten zwischen 6 und 10 zu titrieren.

4.4.4 Hohe Fremdelektrolytkonzentrationen

Hohe Konzentrationen an Fremdelektrolyt hatten zweierlei negative Folgen: zum einen ergaben sich deutlich geringere Potentialdifferenzen, zum anderen traten Mitfällungen auf - wobei dieser Effekt bei Nitrat und Perchlorat geringer war als bei Chlorid -, so daß zu geringe Sulfatkonzentrationen gefunden wurden.

4.4.5 Phosphat

Von allen störenden Spezies übt das Phosphat den größten Einfluß aus. Es stört - bei höheren pH-Werten - nicht nur durch Mitfällung von Bariumphosphat, sondern hat einen direkten Einfluß auf das Membranpotential. Bei Anwesenheit von Phosphat sank es kontinuierlich und unkalkulierbar ab. Die Potentialdifferenzen bei der Titrationskurve waren deutlich reduziert, die Potentiale schwankten stark und führten zu "unsauberen" Titrationskurven. Die Ursache liegt darin, daß die potentialbeeinflussenden Fe(III)-Ionen selbst schwerlösliche Phosphate bilden, die die Einstellung eines konstanten Elektrodenpotentials stören bzw. verhindern.

4.4.5.1 Möglichkeiten zur Beseitigung der Störungen

Mehrere Methoden wurden dazu vorgeschlagen. Ein sehr aufwendiges Verfahren wird von Kirsten et al. (81) vorgestellt: dabei wird das Sulfat durch eine Kombination von Adsorption an Al₂O₃ und Ionentausch von störenden Ionen abgetrennt. Ebenfalls sehr aufwendig ist das Verfahren von Colson (101): das Phosphat wird zunächst mit Silber-Ionen ausgefällt, der Niederschlag abfiltriert und das Filtrat anschließend mit einem Kationenaustauscher behandelt, um die überschüssigen Silber-Ionen zu binden. Selig (91) gibt an, daß die Störung bei den Titrationen unter Verwendung der Blei-Elektrode als Sensor-Elektrode durch das Einstellen sehr niedriger pH-Werte (\approx 2) umgangen werden kann, wobei noch P/S-Verhältnisse von 40 möglich sind. Zur Ausfällung des Phosphates wurden La(III)-Ionen (82) und Fe(III)-Ionen (102) eingesetzt. Jones et al. (90) beseitigten die Störung bei ihren Arbeiten mit der Barium-sensitiven Elektrode durch Ansäuern auf pH \approx 2. Schuhmacher et al. (93) schlagen die Anwendung eines mit Silber-Ionen beladenen Kationenaustauschers vor.

4.4.5.2 Experimentelle Untersuchungen zur Beseitigung der Störungen

Folgende Methoden wurden getestet:

- 1. Titration bei niedrigem pH-Wert
- 2. Fällung mit La(NO₃)₃ ohne Abtrennung des Niederschlages
- 3. Fällung mit La(NO₃)₃ und Abtrennung des Niederschlages
- 4. Fällung mit La(NO₃)₃, Abtrennung des Niederschlages und anschließender Kationenaustausch
- 5. Adsorption an Al₂O₃

6. mit Silberionen beladener Kationenaustauscher

Die pH-Absenkung ist die einfachste Methode, die Störungen durch Phosphat zu umgehen. Allerdings sprechen die meisten ionenselektiven Elektroden auch mehr oder weniger stark auf H⁺ -lonen an, wodurch sich ihr Einsatz bei höheren pH-Werten empfiehlt. So führte die pH-Senkung auch in diesem Falle nicht zu dem gewünschten Erfolg; zwar können bei pH-Werten \simeq 4 noch Phosphat-Konzentrationen bis 0.25 mmol/l toleriert werden, aber selbst dann waren die Kurven stark beeinträchtigt, jedoch noch eindeutig auswertbar. Bei größeren Konzentrationen ist diese Methode mit der modifizierten Kalomelelektrode nicht mehr möglich, die Kurven werden zu stark verzerrt.

Zu diesem Zwecke wurde auch eine Blei-Elektrode (Orion, Modell 94-82) getestet. Die von Selig (91) mit eben diesem Elektroden-Modell gefundenen Ergebnisse konnten nicht nachvollzogen werden, auch das Potential der Blei-Elektrode zeigte sich von den H+-lonen zu stark beeinflußbar und führte zu schlecht auswertbaren Titrationskurven. In der Betriebsanleitung dieser Elektrode wird ausdrücklich eine Entfernung des Phosphates empfohlen.

Die Methode der Fällung mit Lanthan ist solange erfolgreich anwendbar, wie es dem Phosphat stöchiometrisch zugesetzt wird und der Niederschlag in der Lösung verbleibt. Ein Lanthan-Überschuß muß vermieden werden, da die Titrationskurve sonst verzerrt wird und der Wendepunkt bei einem zu niedrigen Titrantvolumen erscheint. Da die Phosphat-Konzentration im voraus nicht bekannt ist, kann die Fällung so nicht durchgeführt werden. Sie muß mit einem Lanthan-Überschuß erfolgen; dieser Überschuß muß anschließend entfernt werden, am günstigsten mit Hilfe eines Kationenaustauschers nach vorheriger Abtrennung des Niederschlages. Dazu wurde die Filtration der Lösung durch Membranfilter (Porenweite 0.1 μ m) und die direkte Filtration über den Ionentauscher getestet. Bei den Filtrationen durch Membranfilter hat sich gezeigt, daß ein großer Teil des Sulfates (bis zu 20%) im Rückstand verbleibt. Der Lanthan-Phosphat-Niederschlag ist amorph und sehr voluminös, so daß er eine sehr große Oberfläche anbietet, an der die Sulfat-Ionen adsorbiert werden können. Deshalb ist es notwendig, den Niederschlag nach der Filtration zu spülen. Als "Spülmittel" wurden destilliertes Wasser und Elektrolyt-Lösungen (KCI, KCIO4, KNO3) getestet. Außerdem wurde untersucht, ob es günstiger ist, wenn der Elektrolyt direkt nach der Fällung der Lösung zugesetzt wird.

100 ml der Lösung wurde mit einem entsprechenden Anteil einer 0.1 M La(NO₃)₃-Lösung versetzt. Daraufhin fiel der pH-Wert auf etwa 3.5 ab. Die Lösung wurde solange mit verdünnter NaOH versetzt, bis der pH-Wert bei etwa 7 konstant blieb, um eine vollständige Fällung zu erreichen. Diese Lösung wurde dann unterschiedlich weiterbehandelt: entweder wurde Elektrolyt (fest oder flüssig) zugegeben und die Lösung anschließend über den Ionentauscher gegeben oder es erfolgte Filtration über Membranfilter, Spülen des Rückstandes und anschließender Ionentausch oder direktes Filtrieren über den Ionentauscher und anschließendes Spülen. Es wurde wieder der Kationenaustauscher Dowex® 50 WX 8 eingesetzt, der zuvor in die Na⁺-Form gebracht wurde, um nicht auch die Alkali-Ionen auszutauschen, die in den Lösungen in hoher Konzentration vorlagen. Von dem Eluat des Ionentauschers wurden die ersten 80 ml verworfen und mit der folgenden Lösung die Sulfat-Fällungstitration durchgeführt. Tabelle 25 gibt eine Zusammenstellung der Ergebnisse.

Tabelle 25:Phosphat-Entfernung durch La-Fällung: Die Grundlösung enthielt 1 mmol/l
Calcium, sowie je 0.5 mmol/l Magnesium und Sulfat. Die Phosphat-Konzen-
tration ist in Spalte 1 angegeben, die zur Fällung eingesetzte La-Konzentra-
tion in Spalte 2.

[PO₄] [mmol/I]	[La] [mmol/l]	Prozedur	[SO₄] gef. [mmol/l]
0.25 0.25 0.50	0.5 1.0 1.0	F, IT F, IT F, IT	0.43 0.43 0.42
0.25 0.50 0.50	0.5 1.0 1.0	F, S (50 ml dest. Wasser), IT F, S (50 ml dest. Wasser), IT F, S (100 ml dest. Wasser), IT	0.45 0.44 0.44
0.25	0.5	IT als Filter	0.45
0.25 0.25 0.50	0.5 0.5 1.0	F, S (50 ml 0.05 M NaNO₃), IT F, S (50 ml 0.1 M NaNO₃), IT F, S (50 ml 0.1 M NaNO₃), IT	0.49 0.48 0.44
0.25 0.25 0.25 0.25 0.25 0.25	0.5 0.5 0.5 0.5 0.5	Lsg. nach FIIg. mit 50 ml 0.05 M NaNO ₃ versetzt, IT als Filter Lsg. nach FIIg. mit 50 ml 0.05 M NaNO ₃ versetzt, F, IT IT als Filter, S (50 ml 0.05 M NaNO ₃) IT als Filter, S (50 ml 0.1 M NaNO ₃) Lsg. nach FIIg. mit 0.05 M NaNO ₃ (fest) versetzt, IT als Filter	0.46 0.48 0.47 0.49 0.46
0.25 0.50 0.50	0.5 0.5 1.0	F, S (50 ml 0.1 M KCl), IT F, S (50 ml 0.1 M KCl), IT F, S (50 ml 0.1 M KCl), IT F, S (50 ml 0.1 M KCl), IT	0.47 0.47 0.42
F = Filtra S = Spüle IT= Ioner	tion en itausch		

Die Ergebnisse zeigen, daß die Phosphat-Entfernung über eine Fällung mit Lanthan-Ionen und anschließende Aufbereitung nicht den gewünschten Erfolg bringt. Die Wiederfindungsrate erreicht in keinem der Fälle 100%, im günstigsten Falle wurden 96% erzielt. Das Hauptproblem dabei ist die Fällung, dabei kann Sulfat mitgefällt oder am Niederschlag adsorbiert werden. Die Tatsache, daß bei stöchiometrischem Zusatz von Lanthan-Ionen und ohne Entfernung des Niederschlages die "richtigen" Ergebnisse erzielt werden, deutet darauf hin, daß Adsorptionseffekte den Ausschlag geben.

Das Spülen des Niederschlages allein mit destilliertem Wasser bringt schon eine Verbesserung des Ergebnisses; eine weitere Verbesserung wird erreicht durch das Spülen mit einer Elektrolytlösung, oder allein durch Zusatz von Elektrolyt nach der Fällung. Allerdings hat diese Methode ihre Grenzen, denn ein hoher Fremdelektrolyt-Zusatz reduziert die Potentialdifferenzen deutlich, außerdem begünstigt ein hohes Angebot an Alkali-Ionen die Mitfällung von Alkalisulfat. Bei der direkten Filtration über den Ionenaustauscher muß dieser zunächst in die Alkali-Form gebracht werden, da es bei der stark sauren Form zu einer Wiederauflösung des Niederschlages kommt. Die direkte Filtration ist aber wenig praktikabel, weil der amorphe Niederschlag sehr rasch die Hohlräume zwischen den Ionenaustauscherkügelchen verstopft.

Je höher die Phosphatkonzentration und demzufolge die des Niederschlages ist, desto schlechter wird das Ergebnis, auch bei Nachbehandlung des Niederschlages. Bis zu einer Phosphat-Konzentration bis zu 0.25 mmol/I lassen sich Ergebnisse mit Wiederfindungsraten von 96% erzielen. Das ist aber die Konzentration, bei der auch noch die direkte Titration bei niedrigen pH-Werten möglich ist, ohne mit einer Verschlechterung des Ergebnisses rechnen zu müssen. Für höhere Konzentrationen sind diese Verfahren nicht mehr geeignet, die Wiederfindungsrate sinkt unter 95%.

Der Versuch, Phosphat über eine Al₂O₃-Säule vom Sulfat abzutrennen, brachte keinen Erfolg: bei einer kurzen Säule ist der Trenneffekt zu gering, bei einer langen Säule dauert es zu lange, bis eine Fraktion mit konstanter Sulfat-Konzentration eluiert wird.

Schließlich wurde noch die Methode getestet, das Phosphat über einen mit Silber-Ionen beladenen Kationenaustauscher zu entfernen. Im Ionentauscher wird das Phosphat als schwerlösliches Silberphosphat ausgefällt und bleibt in der Säule. Es ist wichtig, in der Säule den richtigen pH-Wert einzustellen. Bei zu niedrigem pH-Wert (< 7), wurde nur eine unvollständige Elimination erreicht, das meiste Phosphat gelangte durch die Säule. Deshalb wurde sie zuvor mit Borax-Puffer-Lösung (pH 8.2) gespült. Daraufhin verbesserte sich das Ergebnis; zwar gelangten immer noch geringe Mengen Phosphat (< 0.05 mmol/I) durch die Säule, diese störten die Bestimmung jedoch nicht mehr. Allerdings lag auch hier die Wiederfindungsrate bei einer Lösung, die 0.5 mmol/I Phosphat enthielt, das mit 1 mmol/I La(NO₃)₃ gefällt wurde, bei nur 97%; dabei handelte es sich aber immer noch um das beste aller Ergebnisse der Phosphat-Elimination.

Zusammenfassend läßt sich sagen, daß alle getesteten Methoden, die sich der Phosphat-Fällung bedienen, zu Verlusten an Sulfat zwischen 3 und 20% führten.

4.5 Eine andere Anwendungsmöglichkeit der modifizierten

Referenzelektrode

Die Elektrode ist nicht allein bei der Sulfat-Fällungstitration anwendbar. So ließ sie sich - paradoxerweise - auch als Indikatorelektrode bei der Fällungstitration von Phosphat mit Lanthannitrat einsetzen. Lösungen mit Phosphat-Konzentrationen bis herab zu 100 μ mol/I wurden titriert. Abbildung 14 zeigt die entsprechenden Titrationskurven.

Die Phosphat-Titrationen müssen in gepufferter Lösung durchgeführt werden, da bei der Fällung pH-Änderungen auftreten, die das Elektrodenpotential stark beeinflussen. In diesem Falle wurde der pH-Wert mit Tris-Puffer/HCI auf etwa 7.5 eingestellt. Titriert wurden einfache Lösungen, die nur KH₂PO₄ enthielten. Weitergehende Untersuchungen wurden

nicht durchgeführt. Es sollte hier lediglich geprüft werden, ob die Elektrode allgemein für Fällungstitrationen einsetzbar ist.

4.6 Zusammenfassung Kapitel 4

Es wurde eine Elektrode gefunden, die als Sensor für die Sulfat-Fällungstitration geeignet ist. Es handelt sich dabei um eine Kalomel-Referenzelektrode, deren Innenelektrolyt FeCl₃ zugesetzt wurde. Dadurch entsteht am Diaphragma eine potentialbeeinflussende Schicht, wodurch die Elektrode sensitiv auf Sulfat reagiert und eine Abhängigkeit gemäß der Nernst'schen Gleichung über 4 logarithmische Einheiten zeigt.

Die Sulfat-Fällungstitration ist in wäßriger Lösung für Konzentrationen bis herab zu 0.5 mmol/I erfolgreich einsetzbar. Die Bestimmungsgrenze kann bis auf 10 μ mol/I ausgedehnt werden, indem der Lösung Isopropanol zugesetzt wird.

Für kleine und mittlere Konzentrationen (bis ca. 2.5 mmol/l) kann der Wendepunkt in guter Näherung als Äquivalenzpunkt betrachtet werden, für höhere Konzentrationen wurde eine rechnerische Methode zur Auswertung herangezogen, die auf der Linearisierung des ersten Astes der Titrationskurve beruht. Vor dem Zusatz von Isopropanol muß Calcium entfernt werden; am besten dazu geeignet ist ein Kationenaustauscher. Große Alkalikonzentrationen führen zu Mitfällungen und dadurch zu Minderbefunden von Sulfat. Phosphat stört durch Mitfällung des Titranten (bei höheren pH-Werten) und durch direkte Einwirkung auf die potentialbeeinflussende Schicht am Diaphragma; Konzentrationen bis 0.25 mmol/l können toleriert werden, höhere müssen entfernt werden. Dabei ist eine Elimination, die sich der Fällung bedient, mit Sulfat-Verlusten bis zu 20% verbunden. Der günstigste Weg der Phosphat-Elimination zeigte sich in der Verwendung eines mit Silber-Ionen beladenen Kationenaustauschers.

5. Experimentelle Realisierung des automatisierten Verfahrens

In den Kapiteln 2 bis 4 wurden potentiometrischen Titrationsverfahren vorgestellt, die zur Bestimmung der in Betracht gezogenen Konstituenten ausgearbeitet wurden. Die einzelnen Methoden müssen nun so aufeinander abgestimmt werden, daß sie zu einem automatisierbaren Prozeß gekoppelt werden können. Ziel ist es, diesen so zu gestalten, daß das Probengefäß nur noch mit dem entsprechenden Satz von Elektroden, den Bürettenventilen und den Argonzuleitungen versehen werden muß; nach Betätigen des "Startknopfes" soll der Prozeß sowie die Auswertung automatisch ablaufen.

Zur Steuerung eines automatisierten Titrationsprozesses kann ein Computer oder ein kommerziell erhältlicher Titrator eingesetzt werden. Es wurden eine Reihe automatisierter Titrationsapparaturen vorgestellt, die aus einem steuernden Rechner, einer oder mehrerer Büretten und entsprechenden Meßgeräten (z. B. pH-Meter) bestehen und für die eigene Steuer- und Rechenprogramme erstellt wurden, wie z. B. von Martin und Freiser (103) oder von Ehrenteich et al. (104). Solch ein System hat den Vorteil, daß es explizit zur Lösung eines speziellen Problems ausgerichtet werden kann. Ebel und Seuring (105) beschreiben allgemeine Grundlagen zur vollautomatischen potentiometrischen Titration (meßtechnische Probleme, Auswertung der Daten, Steuerung usw.), ihre Umsetzung in die Praxis wird in (106) und (107) vorgestellt. Stur et al. (5) präsentieren eine chronologische Übersicht über automatisierte Titrationen bis 1982.

Demgegenüber bieten eine Reihe von Firmen (z. B. Metrohm, Mettler, Orion, Radiometer) Titratoren an, die Titrationsprozeduren automatisch durchführen können. Sie "beherrschen" i. a. die monotone, die dynamische und die Endpunktstitration. Das Orion-Gerät ist zusätzlich in der Lage, ausgefeiltere Techniken wie etwa die Gran-Auswertung einer Titrationskurve durchzuführen. Bei diesen Geräten muß mit einer vorgegebenen Software gearbeitet werden, die innerhalb gewisser Grenzen (z. B. hinsichtlich der Titrationsparamter wie Meßpunktdichte, Titrationsgeschwindigkeit oder Kriterien der Meßwertanerkennung) beeinflussbar ist.

5.1 Apparatur und praktische Durchführung

Für die vorliegende Arbeit wurde einer dieser Titratoren, der Metrohm Titroprocessor 670, eingesetzt; zur Auswertung der Titrationsdaten wurde er über eine parallele Schnittstelle (IEEE 488) mit einem Rechner verbunden. Während die komplexometrischen Titrationen mit dem Gerät selbst ausgewertet werden können, müssen die Ergebnisse der Säure-Base-Titrationen mit einem eigenen Rechenprogramm verarbeitet werden, das so komplex ist, daß es die Rechenmöglickeiten des Titrators weit übersteigt. Die bei dem Titrationsprozeß anfallenden Meßwerte und Teilergebnisse werden deshalb auf den Rechner übertragen und dort weiter ausgewertet. Die folgende Übersicht stellt die komplette Apparatur vor:

- Metrohm "Titroprocessor 670", daran angeschlossen eine Metrohm "Drive Unit 677" (zur Steuerung der Magnetventile und des Hilfsdosimaten) und eine Metrohm "Switch Box 671" (zum Anschluß des Leitfähigkeitsmeßgerätes und des Elektrodenpaares Calcium-selektive Elektrode/Kalomel-Referenzelektrode)
- 4 steuerbare Dosimaten Metrohm "Dosimat 665" (0.1 M HCl, 0.1 M NaOH, 0.05 M Na₄EGTA und 0.05 M Na₄EDTA), angeschlossen an den Titroprocessor
- 1 Hilfsdosimat Metrohm "Dosimat 655" (0.02 M BaCl₂ /0.3 M Acetylaceton-Lösung), angeschlossen an die "Drive Unit 677"
- 2 Magnetventile, die den Argon-Strom beim Ausblasen des CO₂ aus der Lösung und beim Fernhalten des atmosphärischen CO₂ bei der alkalimetrischen Titration regeln, gesteuert über die "Drive Unit 677"
- Leitfähigkeitsmeßgerät (Knick Labor-Konduktometer 600), angeschlossen an die "Switch Box 671"
- Rechner Hewlett Packard HP9816 über eine parallele Schnittstelle IEEE 488 an den Titroprocessor gekoppelt - mit HP9133 "Disc Drive" (Festplatten- und Diskettenlaufwerk) und HP2225A "Think Jet"-Drucker
- Elektroden
 - pH-Elektrode (Radiometer Einstabmeßkette GK2402C), direkt an den Titroprocessor angeschlossen
 - Widerstandsthermometer Pt100 (Metrohm), direkt an den Titroprocessor angeschlossen
 - Calcium-Selectrode®(Radiometer F2112Ca), Kalomel-Referenzelektrode (Radiometer K401), an die "Switch Box 671" angeschlossen
 - Leitfähigkeitsmeßzelle (Schott LF 1100)

Abbildung 15 verdeutlicht die Zusammenschaltung der einzelnen Komponenten.

Abbildung 15. Schaubild der Titrationsapparatur.: Vier Dosimaten ('D1'-'D4') sind direkt an den "Titroprocessor" ('TP') angeschlossen, der Hilfsdosimat 'D5' wird über die "Drive Unit" ('DU') gesteuert. Die "Drive Unit" steuert auch die beiden Magnetventile und den Magnetrührer ('Rü'). Die pH-Elektrode ('pH') und das Widerstandsthermometer ('T') sind direkt an den Titroprocessor angeschlossen. An dessen zweitem Meßeingang liegt die "Switch Box" ('SB') zum des Leitfähigkeitsmeßgerät (′LF′) Anschluß und der Meßkette Ca-Selectrode®/Kalomel-Referenzelektrode ('Ca'). In das Titrationsgefäß ('G') tauchen 5 Bürettenspitzen, die Leitfähigkeitsmeßzelle, das Widerstandsthermometer, die pH-, Calcium- und Referenzelektrode sowie die Fritte zur Argoneinleitung. Der Titroprocessor ist mit einem Rechner ('PC') verbunden.

Die Abbildungen 16 und 17 zeigen Fotografien der Apparatur. In Abbildung 16 ist der komplette Aufbau zu sehen, Abbildung 17 zeigt das auf dem Magnetrührer stehende Titrationsgefäß, in das die Elektroden und Dosimaten-Zuleitungen eintauchen.

Abbildung 16. Die Titrationsapparatur: In der Mitte des Bildes ist der Titroprocessor zu erkennen, links daneben (von oben nach unten) das Leitfähigkeitsmeßgerät, die "Drive Unit" und die "Switch Box". Links außen stehen die fünf Dosimaten, davor auf dem Magnetrührer das Titrationsgefäß mit den Elektroden und den Dosimatenzuleitungen. Rechts neben dem Titroprocessor steht der Rechner mit Disketten- und Festplattenlaufwerk, Drucker und Tastatur.

Abbildung 17. Das Titrationsgefäß: Die Fotografie zeigt das auf dem Magnetrührer stehenden Titrationsgefäß, in das die Elektroden, die Dosimatenzuleitungen und die Fritte zur Einleitung des Argon eintauchen. Das Gefäß hat ein Fassungsvermögen von 50 ml Lösung.

Die Ausarbeitung der verschiedenen titrimetrischen Methoden hat gezeigt, daß die Möglichkeit, alle Konstituenten titrimetrisch in einer einzigen Probe sicher zu bestimmen, nicht gegeben ist. Mindestens zwei Proben müssen verwendet werden. Im folgenden wird unterschieden zwischen einer "Trinkwasser"-Analyse, in der die Konstituenten Calcium, Magnesium, Sulfat und Carbonat bestimmt werden und einer "Abwasser"-Analyse, bei der das Verfahren um die Bestimmung von Phosphat und Ammonium erweitert wird. Es werden jeweils zwei Varianten der Durchführung angegeben:

1. "Trinkwasser"

- Möglichkeit 1:
 - Probe I: direkte Sulfat-Bestimmung durch Fällungstitration nach Abtrennung von störenden lonen.
 - Probe II: acidimetrische Titration zur Carbonat-Bestimmung, anschließend pH-Erhöhung, Zugabe von Acetylaceton und komplexometrische Titration mit EDTA zur Calcium/Magnesium-Bestimmung.
- Möglichkeit 2:
 - Probe I: acidimetrische Titration zur Carbonat-Bestimmung, Zudosieren eines Barium-Überschusses zur Sulfatfällung, Maskierung von Magnesium mit Acetylaceton, pH-Erhöhung und komplexometrische Titration mit EGTA zur Calcium/Barium-Bestimmung.
 - Probe II: Bestimmung der Summe von Calcium und Magnesium mit EDTA.

2. "Abwasser"

- Möglichkeit 1:
 - Probe I: direkte Sulfat-Bestimmung durch Fällungstitration nach Abtrennung von störenden lonen.
 - Probe II: acidimetrische Titration zur Carbonat-Bestimmung, anschließend pH-Erhöhung, Zugabe von Acetylaceton und komplexometrische Titration mit EDTA zur Calcium/Magnesium-Bestimmung.
 - Probe III: Ansäuern, Ausblasen von CO₂, Zudosieren eines Komplexbildners (EDTA oder EGTA). Alkalimetrische Titration zur Bestimmung von Phosphat und Ammonium.
- Möglichkeit 2:
 - Probe I: acidimetrische Titration zur Carbonat-Bestimmung, Zudosieren eines Barium-Überschusses zur Sulfatfällung, Maskierung von Magnesium

mit Acetylaceton, pH-Erhöhung und komplexometrische Titration mit EGTA zur Calcium/Barium-Bestimmung.

Probe II: Ansäuern, Ausblasen von CO₂, pH-Erhöhung und Bestimmung der Summe von Calcium und Magnesium mit EDTA; anschließend wieder Ansäuern und alkalimetrische Titration zur Bestimmung von Phosphat und Ammonium.

Von den aufgeführten Möglichkeiten wurde die Möglichkeit II experimentell anhand von Beispielen realisiert. Tabelle 26 zeigt das Ergebnis für eine Lösung, in der Calcium, Magnesium, Sulfat und Carbonat bestimmt wurden ("Trinkwasser"), sowie das Ergebnis für eine Lösung, die zusätzlich Phosphat und Ammonium ("Abwasser") enthielt. Im Falle des "Trinkwassers" sind die Ergebnisse von zwei direkt nacheinander durchgeführte Prozeduren mit einer Lösung der gleichen Zusammenstzung aufgeführt, um die Genauigkeit des Verfahrens bewerten zu können. Das Probenvolumen betrug jeweils 50 ml. Die gesamte Prozedur dauerte für das "Abwasser"-Beispiel etwa 70 Minuten, für das "Trinkwasser"-Beispiel etwa 40 Minuten. Diese Zeitspannen können verringert werden, wenn die verschiedenen Titrationsparameter (Dosiergeschwindigkeit, Meßpunktdichte, Kriterien der Meßwertanerkennung) "großzügiger" eingestellt werden.

Tabelle 26: Meßergebnisse für ein "Abwasser"-Beispiel und ein "Trinkwasser"- Beispiel. In den Spalten 2 und 4 stehen die vorgegebenen Konstituenten-Konzentrationen (in [mmol/I]), in den Spalten 3, 5 und 6 die experimentell ermittelten Werte. Für das "Trinkwasser"-Beispiel wurden zwei Proben der gleichen Lösung unmittelbar hintereinander mit dem Verfahren analysiert ('exp. a)' und 'exp b)').

<i>"</i> ,	Abwassei	-11	"Trinkwasser"			
	Ansatz	exp.	Ansatz	exp. a)	exp. b)	
[tCa]	1.0	0.99	1.0	1.00	1.00	
[tMg]	0.5	0.51	0.5	0.51	0.50	
[tSO ₄]	0.5	0.49	0.5	0.52	0.50	
[tCO ₃]	3.5	3.48	3.5	3.48	3.53	
[tPO ₄]	0.5	0.42	-			
[tNH ₄]	2.0	2.12	-			

Die Ergebnisse des "Abwasser"-Beispiels zeigen, daß die Bestimmung von Calcium, Magnesium Sulfat und Carbonat mit Fehlern ≤2% erfolgte, während für Phosphat und Ammonium größere Abweichungen (≃0.1 mmol/l) auftraten. Im "Trinkwasser"-Beispiel beschränkt sich das Verfahren auf die sicher zu bestimmenden Konstituenten Calcium, Magnesium, Sulfat und Carbonat. Die Gegenüberstellung der Ergebnisse einer Doppelbestimmung illustriert die Streuung der Ergebnisse, die hier bei 0.03 mmol/l liegt. Die Bestimmung von Calcium und Magnesium gelingt sicher, die Abweichungen liegen bei 0.01 mmol/l; für Sulfat ergeben sich Abweichungen bis 0.02 mmol/l, was bei der geringen Konzentration einen Fehler von 4% ausmachen kann. Die Ergebnisse für die Berechnung der Carbonat-Konzentration streuten in den drei Fällen um ± 0.03 mmol/I; die Abweichungen liegen damit <1%.

5.2 Bewertung des Verfahrens

Das ausgearbeitete Verfahren ermöglicht die simultane Bestimmung derjenigen Größen, die für den pH-Wert, die Pufferungsintensität und Calcitsättigung eines Wassers wichtig sind. Es erreicht nicht die Genauigkeit, die mit Einzelbestimmungen möglich ist; besonders bei Phosphat und Ammonium muß mit Fehlern bis zu 15% gerechnet werden. Bei Calcium, Magnesium und Carbonat lag der beobachtete Fehler ≤2%, für Sulfat kann er 4% erreichen, was für ein Routineverfahren als ausreichend betrachtet werden kann. Es ist damit bei der Analyse von Trinkwässern gut, bei der Analyse von Abwässern eingeschränkt anwendbar.

Der "Fehler" bei Phosphat und Ammonium ist auch unter dem Gesichtspunkt zu werten, daß in der Praxis schon die kurzzeitige Variabilität und die Probenvorbereitung es nicht zulassen, aus einer Einzelprobe die Konzentrationen des "Abwassers" im Bereich von wenigen Prozent genau zu bestimmen. Wichtiger ist hier der Aspekt, daß mit der automatisierten Bestimmung eine fortlaufende Überwachung des Wasserstromes möglich wird.

Für die Ermittlung der Konzentrationen von Phosphat und Ammonium werden bessere Ergebnisse dann möglich, wenn genauere Daten über die Komplex- und Protonierungskonstanten des Komplexbildners - im besonderen über deren Abhängigkeit von der lonenstärke - bekannt sind.

Das Verfahren verwendet ausschließlich potentiometrische Titrationstechniken, wobei die Elektroden - mit Ausnahme der pH-Messung - zur Erkennung der End- bzw. Äquivalenzpunkte eingesetzt werden. Damit wird das heute verfügbare Methoden-Instrumentarium also bei weitem nicht ausgeschöpft. Es war jedoch das Ziel der Arbeit, nur titrimetrische Methoden einzusetzen, um die Möglichkeiten des eingesetzten Titroprocessors so weit wie möglich auszunutzen. Zudem lassen sie sich leicht automatisieren. Der eigentliche Analysenteil ist nämlich das Titriergefäß, ein relativ einfacher "Apparat", mit verschiedenen Elektroden und Titrantzuführungen. Die Apparatur ist kompakt und auf ein Meß- und Steuergerät beschränkt.

Demgegenüber wäre ein ganz anderer Ansatz, für jede Meßgröße ein eigenes Meßgerät zu installieren, d. h. verschiedene "Meßmodule" hintereinander zu schalten. Damit ließen sich theoretisch spezifische Signale erhalten; das Gesamtsystem wäre beliebig ausbaubar. Die Zusammenfassung der Informationen erfordert jedoch auch hier einen Rechner; die laufende Kontrolle der Apparatur, etwa durch Eichlösungen, wird nicht einfacher.

6. Titrationsprozeß und Auswerteprogramm

6.1 Titrationsprozeß

Am Beispiel der Titrationen eines "Abwassers" wird ein vollständiger Titrationsprozeß dokumentiert. In diesem Falle ist das Titrationsprogramm so umfangreich, daß drei Methodenspeicher des Titroprocessors (hier mit den Titeln "Abwasser"-Titration Teil I, II und III) belegt werden müssen. Ein Methodenspeicher kann bei dem Titroprocessor mit maximal 4 Titrationen, die unter den Titrationsarten monotone, dynamische oder Endpunktstitration ausgewählt werden können, belegt werden. Für den gesamten Prozeß werden elf dieser Titrationen benötigt, die auf drei Methodenspeicher aufgeteilt und im Laufe des Prozesses nacheinander abgerufen werden.

Die folgende Übersicht zeigt das komplette Titrationsprogramm des Titroprocessors.

"Abwasser"-Titration Teil I

	OPERATIONS/PAR	AMET	ERS	OPERATIONS/PARAMETER:	3
1	STIR 1:			13 CTR 13)	100 ms
2	TMEAS2;		10 s	14 0CTR13;	100 ms
З	GMEAS2;			15 NOP ;	300 s
3a	QUANTITY	ρН	at 25.0 Cel	16 TDIR +;	
ЗЫ	DRIFT ∠min		5 mV	17 SET 2;	
Зc	M.DELAY		72 s	17a EP.VALUE pH	8.300
4	SB0X11;			175 DOS.RATE /min	5.000 mL
5	GMEAS1;			17⊂ DYNAMICS pH	1.000
5a	QUANTITY	U		18 TSTOP ;	
5b	DRIFT ∠min		OFF	18a S.DELAY	20 s
Se	M.DELAY		10 s	186 VOLUME	5.000 mL
6	MEAS 2;			19 SBOX12;	
6a	QUANTITY	pН	at 25.0 Cel	20 MEAS 1;	1
6Ь	DRIFT ∠min		5 mV	20a QUANTITY U	
6c	M.DELAY		72 s	20b — DRIFT ∕min	5 mV
2	SET 1)			20c M.DELAY	72 s
Za	EP.VALUE	pН	4.300	21 DYNT 3;	
7ь	DOS.RATE ∕m	in	5.000 mL	21a MPT.DENSITY	0
2c	DYNAMICS	pН	1.500	215 DOS.RATE ∕min	5.000 mL
8	TSTOP ;			21⊂ f.VRESOL	0.05 %
8a	S.DELAY		50 s	22 TSTOP ;	
85	VOLUME		5.000 mL	22a N.EPs	2
9	TMEAS2;		10 s	226 VOLUME	5.000 mL
10	GMEAS1;			22c M.VALUE	OFF
10a	QUANTITY	U		23 BEEP ;	1 =
105	DRIFT ∠min		OFF	24 BEEP ;	1 ≅
10c	M.DELAY		10 s	25 BEEP ;	
11	SET 1;			26 NOP ;	120 s
11a	EP.VALUE	pН	3.000	27 END ;	
11b	DOS.RATE ∕mi	n	5.000 mL		
iic	DYNAMICS	рН	.500		
12	TSTOP ;				
l2a	S.DELAY		20 s		
εь	VOLUME		5.000 mL		

"Abwasser"-Titration.Teil II

OPERATIONS/PARAMETERS 1 STIR 1; 2 MEAS 2; VOLUME 15b M.VALUE 2a QUANTITY pH at 25.0 Cel 15c 16 MEAS 2; 25 DRIFT /min 5 mV 72 s 2⊂ M.DELAY 16a QUANTITY 3 TDIR -; 165 4 SET 1; M.DELAY 16c EP.VALUE pН 4a 3.000 17 SET 15 **4**b DOS.RATE MAX. 17a EP.VALUE 4c DYNAMICS pН .500 17b DOS.RATE 5 TSTOP ; 17c DYNAMICS 5a S.DELAY 10 s 18 TSTOP ; 5ь VOLUME 20.000 mL 18a S.DELAY 6 CTR 12; 900.8 s 18b VOLUME 2 0CTR12; 100 ms 19 CTR 12; 8 CTR 11; 100 ms 20 0CTR12; 9 TDIR +; 21 GMEAS2: 10 SET 2; 21a QUANTITY 8.000 10a EP.VALUE pH 21Б DRIFT ∕min 5.000 mL 21c M.DELAY DOS.RATE ∕min 10b 1.000 10c OYNAMICS pH 22 END ; 11 TSTOP ; 20 s. iia S.DELAY 20.000 mL 11b VOLUME 12 SB0X12; 13 MEAS 1; QUANTITY H 13a 5 mV ORIFT Zmin 13b 72 s M.DELAY 13c 14 DYNT 4; 14a MPT.DENSITY 1 5,000 mL DOS.RATE /min 145 0.10 % 14c f.VRESOL 15 TSTOP ;

OPERATIONS/PARAMETERS 15a N.EPs 2 5.000 mL OFF pH at 25.0 Cel 5 mV DRIFT /min 72 s pН 3.000 MAX. pН 1.000 20 s 20.000 mL 120.0 s 100 ms pH at 25.0 Cel 5 mV 72 s

	ARTRATIONS (BABAMETERS)			OPERATIONS/PARAMETE	IRS
	OFIC A		15a	QUANTITY U	
1	SHIR IJ	100	15b	DRIFT /min	OFF
3	UTR 11;	100 88	15c	M.DELAY	10 s
3	TMEAS2;	10 5	16	SET 2:	
4	SBOX11;		165	EP VALUE 58	10.000
5	GMEAS1;		100	DOC DOTE (min	10.000 ml
5a	QUANTITY U		100	000.KHIC /010 DULANTOO -0	10.000 mc
5ь	DRIFT /min	0FF	160	UTRHMICO PR	1.000
5c	M.DELAY	10 s	1/	1510P ;	50 -
6	MEAS 2;		1/a	S.DELHY	
6a	QUANTITY pH at	25.0 Cel	175	VOLUME	20.000 ML
6b	DRIFT /min	5 mV	18	TMEAS2;	10 s
60	M.DELAY	72 s	19	GMEAS1;	
2	THIR +;		19a	QUANTITY U	
â	SET 2;		19Б	DRIFT ∠min	OFF
	FR. VALUE DH	5.000	19c	M.DELAY	10 s
OH	DOS PATE (min	10.000 mL	20	END ;	
00		1.000			
оц. С	TETAP :				
		50 s			
23	UCI IME	5.000 ml			
20		10 -			
10	NHEHOCA AMEACA	10 5			
11	GMEHBIJ				
11a	QUANTITY U	ore			
115	DRIFY Zmin	UFF 10			
11⊂	M.DELAY	10 3			
12	SET 2;				
12a	EP.VALUE pH	8.000			
125	DOS.RATE /min	10.000 mL			
12c	DYNAMICS pH	1.000			
13	TSTOP ;				
i3a	S.DELAY	50 s			
13b	VOLUME	20.000 mL			
14	TMEAS2;	10 s			
15	GMEAS1;				

Im Teil I wird zunächst der Magnetrührer eingeschaltet (Schritt 1), dann erfolgt die Messung der Temperatur, des pH-Wertes und der Leitfähigkeit der Probenlösung (Schritte 2, 3 und 5). Anschließend wird für die Carbonat-Bestimmung mit HCI (Dosimat 1) bis pH 4.3 titriert (Schritt 7). Die Lösung wird weiter angesäuert bis pH 3 (Schritt 11). Im Schritt 13 wird die "ConTRol"-Leitung 13 geöffnet, die dem Dosimaten 5 den Impuls gibt, die am Dosimat vorgegebene Menge der BaCl₂ /Acetylaceton-Lösung zu dosieren. Nach einer Wartezeit von 5 Minuten (Schritt 15) wird die Lösung durch Zugabe von NaOH (Dosimat 2) alkalisch gemacht (Schritt 17) und die komplexometrische Titration mit EGTA (Dosimat 3) zur Ca/Ba-Bestimmung dynamisch durchgeführt (Schritt 21). Nachdem der zweite Wendepunkt berechnet ist, wird die Titration abgebrochen (Schritt 22) und es ertönt ein "Alarmsignal" mit einer nachfolgenden Wartezeit für den manuellen Probenwechsel² (Schritte 23-26), die den Teil I abschließt.

Im Teil II erfolgt nach Einschalten des Magnetrührers das Ansäuern der Lösung auf pH 3 (Schritt 4). Anschließend wird über die Kontrolleitung 12 das erste Magnetventil geöffnet (Schritt 6), das den Argon-Strom durch die Lösung freigibt, um die Kohlensäure als CO₂ auszutreiben. Nach 15 Minuten wird dieses Magnetventil wieder geschlossen (Schritt 7), und ein zweites Magnetventil über die Kontrolleitung 11 geöffnet (Schritt 8), das den Argon-Strom über die Lösung freigibt, um den CO₂-Zutritt aus der Luft zu verhindern. Die Lösung wird im Schritt 10 alkalisch gemacht (pH 8) und anschließend mit EDTA (Dosimat 4) zur Bestimmung der Summe von Calcium und Magnesium dynamisch titriert (Schritt 14). Nach Berechnen des zweiten Wendepunktes (Schritt 15), der für die Summe von Calcium und Magnesium gilt, wird die Titration abgebrochen und die Lösung wieder bis pH 3 angesäuert (Schritt 17). Das erste Magnetventil wird noch einmal für 2 Minuten geöffnet (Schritt 19), um eventuell über die alkalische EDTA-Lösung in die Probe gelangtes Carbonat als CO₂ zu entfernen. Im Schritt 21 wird der pH-Wert der sauren Lösung ge-

Im Teil III wird zunächst wieder der Magnetrührer eingeschaltet und das zweite Magnetventil geöffnet, das den Argon-Strom über die Lösung freigibt (Schritte 1 und 2). Anschließend erfolgt die Aufnahme der drei Titrationspunkte für die Phosphat/Ammonium-Bestimmung. Hier wurden die pH-Werte 5, 8 und 10 gewählt (Schritte 8, 12 und 16). Bei jedem Titrationspunkt wird die Temperatur (Schritte 10, 14 und 18) und die Leitfähigkeit (Schritte 11, 15 und 19) gemessen. Nach der Messung der Leitfähigkeit beim letzten Titrationspunkt ist der Prozeß abgeschlossen.

Nach Ablauf jeder dieser drei Teile wird ein Ergebnisbericht, der die zur Auswertung notwendigen Daten enthält, an den Rechner zur weiteren Verarbeitung geschickt³. Im folgenden ist der komplette Ergebnisbericht für eine "Abwasser"-Titration wiedergegeben.

² Bei Verwendung eines Probenwechslers wäre dieser Schritt überflüssig und das Verfahren vollständig automatisiert.

³ Nach dem Einschalten des Titroprocessors muß zunächst die Methode 0 ("NEW") gewählt werden, sonst wird - wegen eines Hardwarefehlers (108) - die Schnittstelle nicht erkannt und es erfolgt keine Datenübertragung.

"Abwasser"-Titration Teil I				METHOD 16 SØ SIZE	5 50.9999 ml	"Abwasser"-Titration Teil III					METHOD 13 S0 SIZE 50.0000 mL	
						TITR	EP V/	mL EP	M.VAL	TEST M.VAL	FIN.V/mL	pK or HN
TITR	EP V∕mL	EP M.VAL	TEST N.VAL	FIN.V/mL	pK or HNP	#1 pHc						
#1 pH⊂						F1	2.17	+ 5	.006		2.174	
F1	1.916	4.287		1.916		#2 pHc						
#2 pH⊂						F2	0.87	6 8	.001		0.376	
F2	0.600	2.999		0.600		#3 pH⊂						
#3 pH⊂						F3	0.98	4 1	0.013		0.984	
F3	4.034	3.301		4.034							_ ~	
#4 U												
E1	1.016	5.7 mV		2.597		CALCULATION	18					
E2	2.053	-65.0 mV				Temp.(vor S	ETs) =	26.9	Grad C			,
						Temp. <1.TF	·) =	26.9	Grad C			
						Temp. (2.TF	·) =	26.9	Grad C			
CALCULATION	15					Temp. (3.TF	·) =	26.9	Grad C			
Temp. (Star	-1) =	26.9 Grad C				LF (vor SET	(s) =	219.800	mS∕n			
Темр. (рН 4	1.3) =	27.1 Grad C				LF (1.TP)	=	190.200	mS∕m			
Leitf.(Star	nt) =	98.2000 mS/m				LF (2.TP)	. =	193,900	mS∕m			
Leitf.(pH 4	f.3) - =	110.400 mS/m				LF (3.TP)	. =	192,500	mS∕m			
pH (Stan	rt) =	7.6780				NaOH> 1.	.TP =	.2174	nmo l			
HC1>pH +	t.3 =	.1916 mmol				NaOH> 2.	.TP =	.3050	660 mmol			
add. 8a Emm	nol] =	75.000 E- 3 mmol				Ha0H> 3.	TP =	. 4034	mmo l			
Ca Emmol]	=	49.566 E- 3 mmol				V(NaŭH) ->	1.TP =	2.174	ml			
SO4 Emmol3	=	24.376 E- 3 mmol				V(NaúH) ->	2.TP =	3.050	տլ			
V(HC1) ->pH	4 4.3 =	1.916 ml				V(На0Н) ->	3.TP =	4.034	ml			
DATE 89-08	8-10	TIME 15:31	RUN : NAME	# 2 Yuppi	0020	DATE 39-0:	8-10	TIME 16	- 13	RUN HAMI	# 1 E Yuppi	0020

"Abwa	isser"-T	itration	Teil II		METHOD 17 S0 SIZE 50.0000 mL			
TITR		EP V/ml	L EP N.VAL	TEST M.VAL	FIN.V/mL	pK or HNP		
#1	pH⊂							
	F1	2.536	2.985		2.536			
#2	рНс							
	F2	0.926	8.007		0.926			
#3	U							
	Ei	1.013	13.6 mV		1.735			
	52	1,502	-58.6 mV					
# 4	pHc							
	Ft	3,252	2,997		3.252			
CALCU Ca+Mq EDTA Summa pH (\	JLATIONS g Emmol∕i Emmol∕i g add. V yor SETg	 1] = .] = /ol. = :) =	25.146 E- 3 mmol 86.2500 E- 3 mmol 8.4490 ml 3.0044					
DATE	39+98-	-10	TIME 15:05	RUN	# 3 Yuqoi	0020		

Nach dem Empfang des dritten Ergebnisberichtes werden die Daten zunächst abgespeichert, anschließend erfolgt die Auswertung. Die reine Rechenzeit für dieses Beispiel betrug 68 Sekunden, die Zeit für die komplette Analyse etwa 70 Minuten. Diese Zeitspanne läßt sich reduzieren, wenn die Titrationsparameter geändert, d. h. wenn sie etwas "großzügiger" eingestellt werden. Nach Beendigung der Rechnung wird das Ergebnis abgespeichert. Abbildung 18 zeigt das Ergebnis für das aufgeführte Beispiel.

> Daten abgespeichert im Daten-File:X10 Aug1615 Ergebnis im Daten_File:Y10 Aug1615 T(gesamt).. 71.4 min pH.....7.677 m-Wert.... 2.101 mmol/1 [tS04].... 0.488 mmol/1 [tCa].... 0.991 mmol/1 [tMg].... 0.512 mmol/1 [tC03].... 3.481 mmol/1 [tP04].... 0.418 mmol/1 [tNH4].... 2.119 mmol/1

Abbildung 18. Ergebnis einer "Abwasser"-Titration: Die experimentellen Daten werden jeweils nach Abarbeitung der in den Methodenspeichern vorgegebenen Titrationsprozeduren automatisch auf der Festplatte abgespeichert, das Ergebnis wird nach Beendigung der Rechnung abgespeichert.

6.2 Das Rechenprogramm

6.2.1 Grundlagen der Auswertung der Säure-Base-Titrationen

Das Rechenmodell, auf dem die Auswertung beruht, wird ausführlich in (3) erläutert, deshalb soll hier nur eine kurze Zusammenfassung gegeben werden. Grundlage ist die mathematische Kopplung der Massenbilanzen der Konstituenten des Systems mit der Ladungsbilanz unter Berücksichtigung des Massenwirkungsgesetzes. Für das betrachtete System ergibt sich die Beziehung:

$$[H] \cdot FH - [OH] \cdot FOH - [HCI] + [NaOH]$$

= $-m_0 + [tCO_3] \cdot FC + [tPO_4] \cdot FP - [tNH_3] \cdot FN$ [16]

Unter Einbeziehung eines Komplexbildners K (z. B. EDTA) wird diese Gleichung erweitert:

$$[H] \cdot FH - [OH] \cdot FOH - [HCI] + [NaOH] - [tK] \cdot FK = -m_0 + [tCO_3] \cdot FC + [tPO_4] \cdot FP - [tNH_3] \cdot FN$$

$$[17]$$

Bei [H] und [OH] handelt es sich um die Konzentrationen der H+- und OH--lonen, bei den [tX] um die Gesamtkonzentrationen der Konstituenten X (hier Carbonat, Phosphat, Am-

monium und Komplexbildner), bei den Faktoren FX (außer FH und FOH) um die sogenannten Ladungsbilanzfaktoren, in die die H⁺-Konzentration sowie alle Bildungskonstanten, die mit der Konstituente X verknüpft sind, eingehen. Mit FH bzw. FOH werden die HSO₄-Ionen bzw. die Hydroxo-Komplexe berücksichtigt. [HCI] und [NaOH] bedeuten die Konzentration des Titranten bei einer Säure-Base-Titration. m₀ ist der m-Wert der Ausgangslösung, definiert als die Ladungsbilanz der Gesamtkonzentrationen der starken Elektrolyte. Auf der linken Seite der Gleichung [17] stehen bekannte Größen (die Konzentrationen [tX]) oder berechenbare Größen (die Faktoren FX), auf der rechten Seite stehen die Unbekannten m₀ und die zu bestimmenden Konzentrationen [tX], die Faktoren FX sind berechenbar. Die Produkte [tX]·FX für die Konstituenten, die bekannt sind, kommen auf die linke Seite, oder fallen aus der Gleichung heraus, wenn sie nicht zu berücksichtigen sind. Zusammengefaßt lautet Gleichung [17]:

$$L = -m_0 + \sum_{i} [tX_i] \cdot FX_i$$
[18]

Das Produkt [tX_i] FX_i hat für Carbonat und Phosphat ein positives, für Ammonium ein negatives Vorzeichen. L und die Faktoren FX_i sind berechenbar. Damit ergibt sich eine lineare Beziehung mit i+1 Unbekannten (m₀ und die [tX_i]). Diese Beziehung gilt für jeden Titrationspunkt. Zur Bestimmung von N Konstituenten sind also N+1 Gleichungen, d. h. N+1 Titrationspunkte notwendig. Man erhält ein System linearer Gleichungen, das mit Hilfe einfacher Matrixoperationen lösbar ist, wobei der Lösungsvektor der Rechnung die gesuchten Größen m₀ und die [tX_i] enthält.

Der bisher beschriebene Ansatz gilt nur, falls während der Titration keine Verdünnung stattfindet. Wird die Verdünnung berücksichtigt, ergibt sich aus Gleichung [19] unter Einführung des Verdünnungsfaktors

$$f_{TP_{i}} = 1 + \frac{V_{i}}{V_{0}}$$
[19]

wobei V, das Volumen des Titrantinkrementes für den Titrationspunkt i und V₀ das Lösungsvolumen ist, folgende Gleichung:

$$[H] \cdot FH - [OH] \cdot FOH - \frac{[HCI]}{f_{TP_i}} + \frac{[NaOH]}{f_{TP_i}} - \frac{[tK]}{f_{TP_i}} FK$$
$$= \frac{-m_0}{f_{TP_i}} + \frac{[tCO_3]}{f_{TP_i}} FC + \frac{[tPO_4]}{f_{TP_i}} FP - \frac{[tNH_3]}{f_{TP_i}} FN$$
[20]

oder

$$f_{TP_i}([H] \cdot FH - [OH] \cdot FOH) - [HCI] + [NaOH] - [tK] \cdot FK$$

= $-m_0 + [tCO_3] \cdot FC + [tPO_4] \cdot FP - [tNH_3] \cdot FN$ [21]

Gleichung [20] oder [21] bildet das Kernstück des Auswerteprogrammes, das im folgenden anhand der Programmauflistung ausführlicher erläutert wird.

6.2.2 Programmauflistung

Die für die Auswertung der Säure-Base-Titrationen wichtigen Programmteile wurden aus WASAN übernommen und für die Zwecke dieser Arbeit modifiziert. Variablen- und Konstantennamen stimmen weitgehend mit denen aus WASAN überein.

In den Zeilen 100-420 werden Variablen, Vektoren und Felder vereinbart und bestimmte Startwerte gesetzt.

```
100
      OPTION BASE 1
110
     DIM Dat_zeile$[80],Daten$(100)[80]
                                                ! Daten vom Titroprocessor
120
     DIM Bem$[100]
                                                ! Kommentar
                      -----
130
      1---
     DIM Ion$(44)[7]
140
                                                        ! Spezies
     DIM Isp(44), Bild25(44), Deltah(44), Deltacp(44), Lad(44) ! Daten z. Berech.
150
160
     INTEGER Fak1(44), Fak2(44), Fak3(44), Fak4(44), Fak5(44)
                                                        ! d. Bildungskonst.
170
     DIM Bti(44)
                                                        ! Konst. (Temp., Ios)
180
     DIM Gamaf(44),Gamma(0:44)
                                                        ! Aktivitaetskoeff.
190
     DIM C(0:44),Tk(0:15)
                                                  ! Spezieskonz., Totalkonz.
200
     1 - -
                          DIM Titdat(2,3),Titph(2,3),Icstit(2,3),Titemp(2,3)
210
                                                        ! Rechendaten
220
     DIM Titvol(2,3), Verd(2,3)
230
     DIM Messmat(3,3),Rechmat(3,3),Rechvek(3),Loesvek(3)
240
     INTEGER Date(3), Ep_1(3), Calc(3)
250
     INTEGER Dat_zahl,Dat_block,Stz,Zz,Zeile,Iter,Mkompl
260
     !-----
                   270 Startwerte:
280
     MAT C=(0)
290
     MAT Tk = (0)
     MAT Gamma= (1)
300
310
     C(0) = 1.
                                    ! Anzahl der beruecksichtigten Spezies
320
     Spezies=44
330
     Loes_vol=50
                                    ! Probenvolumen. [ml]
                     - - - - - - - - -
340
     !-----
                                      _ _ _ _ _ _ _ _ _ _ _ _
     Hp_ib=7
                                    ! HP-IB Interface hat Select Code 7
350
360
                                    ! Primary Address Titroprocessor = 23
370
                                    ! --> Device Selector = 723
380
     ASSIGN @Tipro TO 723
                                    ! I/O-Path zum Titroprocessor 670
     LOCAL @Tipro
                                    ! Tipro sendet Daten "von sich aus"
390
     ON INTR Hp_ib GOTO Interrupt_670 ! Interrupt an HP-IB-Interface =>
400
410
                                   ! Serviceroutine Interrupt_670
420
     ENABLE INTR Hp_ib;2
                                    ! SRQ-Interrupt erlaubt
430
     _ _ _ _ _ _ _ _ _
```

Der Programmteil "Datentransfer" (Zeilen 780-1150) regelt die Datenübertragung vom Titroprocessor auf den Rechner. Der Rechner bleibt in einer Warteschleife (Zeile 1030) bis ein "Service Request" vom Titroprocessor eintrifft. Wird der "Service Request" empfangen, d. h. die experimentellen Daten des Titroprocessors stehen abrufbereit, wird die Serviceroutine (Zeile 1050 ff.) durchlaufen. Nach Erhalt der Datenblöcke 1 und 2, d. h. der Ergebnisberichte der Teile I und II des Titrationsprozesses gelangt der Rechner wieder in die Warteschleife. Nach Erhalt des dritten Ergebnisberichtes werden die Titrationsdaten verarbeitet, d. h. abgespeichert (Zeile 930) und ausgewertet (Zeilen 940-950). Dann wird das Ergebnis abgespeichert (Zeile 960).

```
780 Datentransfer:
                               ! Titroprocessor ---> PC
790
                               ! Datenblock-Zaehler
     Dat_block=0
800
     Dat zahl=0
                               ! Datenzeilen-Zaehler
810
     1
820 If_etx:
          1
     IF Dat_zeile$=CHR$(3) THEN
830
                               ! CHRS(3) = "ETX"
840
      Dat_block=Dat_block+1
      IF Dat_block=3 THEN
850
                               ! Titrationen beendet,
860
                               ! 3 Datenbloecke empfangen!
        REDIM Daten$(Dat_zahl)
920
        GOSUB Datstore
930
940
        GOSUB Auswertung
950
        GOSUB Sb_rech
960
        GOSUB Ergstore
1000
      END IF
1010
    END IF
                              1020
    !-----
1030 Schleife_srq:GOTO Schleife_srq ! Warten auf SRQ
28)
1070
    Statbyte=SPOLL(@Tipro)
                               ! Serial Poll: Antwort=Statusbyte
1080
                               ! Statusbyte-Bit 7 = 1 bei LOCAL-Betrieb
1090
    ENTER @Tipro;Dat_zeile$
                               ! Tipro sendet 1 Datenzeile
1100
    Dat_zahl=Dat_zahl+1
    Daten$(Dat_zahl)=Dat_zeile$
1110
    SEND Hp_ib;UNL
                               ! UNListen-Kommando an Interface
1120
1130
    ENABLE INTR Hp ib
                              · ! Interface wird erneuter Interrupt
1140
                               ! erlaubt
1150
    GOTO If etx
    1160
```

Im Programmteil "Auswertung" (Zeilen 1170 - 1810) erfolgt das Herauslesen der Daten aus den Ergebnisberichten. Die Schleife zwischen den Zeilen 1220-1320 durchsucht die Ergebnisberichte nach bestimmten Begriffen, die die weitere Datensuche vereinfachen. In den Zeilen 1390-1490, 1530-1560 und 1600-1810 werden die Daten aus den Ergebnisberichten der Teile I, II und III herausgelesen.

1170 1180	Auswertung:	! !	der vom Titroprocessor geschickten Daten
1200	Zz=1	•	
1210	Zeile=0		
1220	REPEAT	!	Aufsuchen bestimmter Datenzeilen im
1230		1	Ergebnisbericht
1240	Zeile=Zeile+1		-
1250	SFLECT Daten\$(Zeile)[1,4]		
1260	CASE " #1"	1	Zum Auffinden der End-pH-Werte
1270		1	der SETs
1280	Ep_1(Zz)=Zeile		
1290	CASE "CALC"	1	Rechenergebnisse Titroprocessor
1300	Calc(Zz)=Zeile		
1310	Zz=Zz+1		
1320	END SELECT		
1330	UNTIL Zz=4		

```
! Herauslesen der Ergebnisse aus den Datenzeilen
1350
 1360
1370
       ! Daten der ersten Titrationsfolge (--> [tCO3],Ca,Ba/SO4)
 1380
1390
       ENTER Daten$(Calc(1)+1);Titemp(1,1)
                                                   ! Temp. b. Start (TP(1,1))
1400
       ENTER Daten$(Calc(1)+2);Dummy,Titemp(1,2)!Temp. bei TP(1,2)
       ENTER Daten$(Calc(1)+3);Leitf(1,1)
1410
                                                   ! Leitf. b. Start (TP(1,1))
1420
       ENTER Daten$(Calc(1)+4);Dummy,Leitf(1,2)! Leitf. bei TP(1,2)
       ENTER Daten$(Calc(1)+5);Titph(1,1)
1430
                                                   ! pH Start = TP(1,1)
       ENTER Daten$(Calc(1)+6);Dummy,Hcl_verbr ! HCl-Verbrauch bis TP(1,2) [mmol]
1440
1450
       ENTER Daten$(Calc(1)+8);Tca
                                                   ! Ca-Konz. 1. kompl. Tit. [mmol]
1460
       ENTER Daten$(Calc(1)+9);Dummy,Tso4
                                                   ! SO4-Konz. 1. kompl. Tit. [mmol]
1470
       ENTER Daten$(Calc(1)+10);Dummy,Titvol(1,2)!HCl-Verbrauch bis TP(1,2) [ml]
1480
       Ph_dat$=Daten$(Ep_1(1)+1)[24,40]
1490
       ENTER Ph_dat$; Titph(1,2)
                                                   ! End-pH-Wert Tit.-->TP(1,2)
1500
       ! Daten der zweiten Titrationsfolge (--> Summe Ca+Mq)
1510
1520
1530
      ENTER Daten$(Calc(2)+1);Tea
                                                   ! Summe Ca+Mg [mmol]
       ENTER Daten$(Calc(2)+2);Tedta ! Verbrauch EDTA 2. kompl. Tit. [mmol]
ENTER Daten$(Calc(2)+3);Zus_vol ! zus. Vol. durch HC1/NaOH/EDTA/HC1 [ml]
1540
1550
1560
       ENTER Daten$(Calc(2)+4);Ph_vor
                                                   ! pH (vor SETs 3 ... 11)
1570
       ! Daten der dritten Titrationsfolge (--> [tPO4],[tNH4])
1580
1590
1600
      ENTER Daten$(Calc(3)+1);Tempvor
                                                      ! Temp. (vor SETs 3 ... 11)
                                                      ! Temp. bei TP(2,1)
       ENTER Daten$(Calc(3)+2);Dummy,Titemp(2,1)
1610
       ENTER Daten$(Calc(3)+3);Dummy,Titemp(2,2)
1620
                                                      ! Temp. bei TP(2,2)
                                                        Temp. bei TP(2,3)
Leitf. (vor SETs)
1630
       ENTER Daten$(Calc(3)+4);Dummy,Titemp(2,3)
                                                      1
1640
       ENTER DatenS(Calc(3)+5);Leitfvor
                                                      1
1650
       ENTER Daten$(Calc(3)+6);Dummy,Leitf(2,1)
                                                      ! Leitf. TP(2,1)
1660
       ENTER Daten$(Calc(3)+7);Dummy,Leitf(2,2)
                                                      ! Leitf. TP(2,2)
      ENTER Daten$(Calc(3)+8);Dummy,Leitf(2,3) ! Leitf. TP(2,3)
ENTER Daten$(Calc(3)+9);Dummy,Naoh_verbr(1) ! Verbr. NaOH --> P(2,1)[mmol]
1670
1680
      ENTER DatenS(Calc(3)+10);Dummy,Naoh_verbr(2)! Verbr. NaOH -->TP(2,2)[mmol]
1690
1700
      ENTER Daten$(Calc(3)+11);Dummy,Naoh_verbr(3)! Verbr. NaOH -->TP(2,3)[mmol]
                                                      ! Verbr. NaOH -->TP(2,1)[m1]
! Verbr. NaOH -->TP(2,2)[m1]
1710
       ENTER Daten$(Calc(3)+12);Dummy,Titvol(2,1)
      ENTER Daten$(Calc(3)+13);Dummy,Titvol(2,2)
1720
1730
      ENTER Daten$(Calc(3)+14);Dummy,Titvol(2,3)
                                                      ! Verbr. NaOH -->TP(2,3)[ml]
1740
1750
       ! Das Programm rechnet mit mol/1, deshalb werden die Daten in
1760
         [mmol] und [ml] eingegeben!
      1
1770
1780
      FOR I=1 TO 3
         Ph_dat$=Daten$(Ep_1(3)+(2*I-1))[24,40]
1790
1800
         ENTER Ph_dat$;Titph(2,I) ! End-pH-Werte SET--> TP(2,1-3)
1810
      NEXT I
1830
      Tmg=Tea-Tca
1840
      1
1850
      T1=Tso4
1860
      T2=Tca
      T3=Tmg
1870
1880
      T4=Tedta
```

Im Programmteil "Sb_rech" (Zeilen 1920-3590) erfolgt zunächst die weitere Datenaufbereitung. Da der verwendete Temperaturfühler Pt100 um 0.6 Grad zu hohe Werte anzeigte, müssen die - unter Berücksichtigung dieser Temperaturen - gemessenen pH-Werte auf die tatsächliche Temperatur korrigiert werden (Zeilen 2050-2100). In den folgenden Zeilen wird die Ionenstärke an den einzelnen Titrationspunkten aus den Leitfähigkeiten abgeleitet, dann werden die Titrantinkremente und Verdünnungsfaktoren berechnet.

```
1910
     _____
                              ! Berechnung d. Konz. aus den Titrationsdaten
1920 Sb rech:
                              ! Konstanten usw. werden eingelesen
1970
     GOSUB Daten
     _____
1980
     Ios_fak=12.5  ! zur Umrechnung Leitf. --> Ionenstaerke
Ios_fak=Ios_fak/1.E+5  ! --> Ios in mol/l
1990
2000
2010
     Pt100 diff=.6
                              ! [Grad]; ungenaue Temperaturmessung,
2020
                              ! Pt100 misst um 0.6 Grad zu hohe Werte!
2030
2040
     T0=273.15
     FOR I=1 TO 2
2050
2060
       FOR J=1 TO 3
         Korr=(T0+Titemp(I,J))/(T0+Titemp(I,J)-Pt100_diff)
2070
                                              ! Korrektur der pH-Werte auf
         Titph(I,J)=Korr*(Titph(I,J)-7)+7
2080
                                              ! die richtigen Temperatur
2090
2100
       NEXT J
2110
     NEXT I
2120
     MAT Titemp= Titemp-(Pt100_diff)
                                              : Korrektur Temperaturen
                                              ! Stz=2 --> [tPO4] u. [tNH4]
     FOR Stz=2 TO 1 STEP -1
2130
2140
       SELECT Stz
                                              ! Stz=1 --> [tCO3]
2150
       CASE 2
                                              ! Anzahl TP
         Titmax=3
2160
                                              ! Zus_vol=Verduennung
         Ges_vol=Loes_vol+Zus_vol
2170
         FOR I=1 TO Titmax
2180
           2190
2200
                                              ! wg. Titrantinkrement
           Titdat(2,I)=-(Naoh_verbr(I))/(Ges_vol+Titvol(2,I))
2210
                                             ! Eingabe NaOH neg.!
2220
2230
           Iostit(2,I)=Leitf(2,I)*Ios_fak
                                              ! IOS TP(2, 1-3)
         NEXT I
2240
                                              ! Ios vor Titrationen
2250
         Iosein=Leitfvor*Ios_fak
       CASE 1
2260
2270
         Ges_vol=Loes_vol
                                               ! Anzahl TP
         Titmax=2
2280
2290
         Titdat(1,1)=0
         Titvol(1,1)=0
2300
         Titdat(1,2)=Hcl_verbr/(Loes_vol+Titvol(1,2)) ! Eingabe HCl pos.!
2310
         FOR I=1 TO Titmax
2320
                                             ! IOS TP(1,1-2)
2330
           Iostit(1,I)=Leitf(1,I)*Ios_fak
2340
         NEXT I
2350
         Verd(1,1)=1
         Verd(1,2)=1+Titvol(1,2)/Loes_vol
2360
2370
         Iosein=Iostit(1,1)
         Ergf=1+Zus_vol/Loes_vol
                                              ! Korrektur wg. Zus_vol
2380
2390
         Tk(11)=Loesvek(2)*Erqf
                                              ! [tPO4]
         Tk(12)=Loesvek(3)*Ergf
                                              ! [tNH4]
2400
2410
      END SELECT
     1_____
2420
```

Ab Zeile 2430 erfolgt die "eigentliche" Berechnung der Konzentrationen der sauren und basischen Konstituenten. Der zentrale Schritt ist die Berechnung der Koeffizienten des linearen Gleichungssystems gemäß Gleichung [21] mit zwei Matrixoperationen (Zeilen 3080/3090). Davor werden die Daten zur Auffüllung des Vektors 'Rechvek' und der Matrix 'Messmat' aufbereitet. Bei der Berechnung werden im Hauptprogramm zwei iterative Schleifen durchlaufen, die erste Schleife (2500-3400) solange, bis bei der Berechnung der Konstituenten-Konzentrationen der Quotient dieser Konzentrationen bei zwei aufeinanderfolgenden Iterationen den Grenzwert von 10⁻³ unterschreitet, die zweite Schleife (2490-3740) solange, bis bei der Berechnung der Ionenstärke der Grenzwert von 0.1 für den Quotient zweier aufeinanderfolgender Iterationen unterschritten wird. Die Grenzwerte für diese beiden Schleifen liegen in WASAN deutlich niedriger (10⁻⁷ und 10⁻⁶), wurden hier aus Gründen der Einsparung von Rechenzeit aber höher gesetzt, allerdings
nur so hoch, daß bei der Berechnung der Konzentrationen in mmol/I keine Änderung in der dritten Nachkommastelle mehr auftritt. Nach Verlassen der zweiten Schleife endet das Hauptprogramm.

```
! Iterationen
2430
        Iter=0
 2440
        Mkompl=0
2450
        Isex=Iosein
 2460
         2470
      ! -
2480
      ۲
                                      ! solange bis Iosein=Ios
2490 Loop1:REPEAT
                                      ! solange bis [tX] konst.
2500 Loop2:REPEAT
2510
            MAT Rechvek= (0)
2520
            MAT Messmat= (0)
2530
            Iter=Iter+1
            Messmat(1,1)=Titmax
2540
                                      ! Iter=1: Rechnung ohne,
2550
            IF Iter>1 THEN Mkompl=1
2560
                                        Iter>1: Rechnung mit Beruecksichtigung
                                      1
2570
                                      1
                                                d. Komplexbildung
2630
      1
        - - - - innere Schleife=Auffuellen von Messmat u. Rechvek - - - -
2640
      1-
2650
      1
            FOR I=1 TO Titmax
2660
2670
              Tk(3)=T1/(Ges_vol+Titvol(Stz,I))
2680
              Tk(8)=T2/(Ges_vol+Titvol(Stz,I))
2690
              Tk(9)=T3/(Ges_vol+Titvol(Stz,I))
2700
              SELECT Stz
2710
              CASE 1
2720
              Tk(13) = 0
2730
              CASE 2
              Tk(13)=T4/(Ges_vol+Titvol(Stz,I))
2740
2750
              END SELECT
2760
              Temp=Titemp(Stz,I)
2770
              Isex=Iostit(Stz,I)
2780
                                                 ! rechnet mit Isex
              GOSUB Btis
              C(1)=(10^(-Titph(Stz,I)))/Gamma(1) ! H-Aktivitaet am TP
2790
              GOSUB Konsti
2800
2810
              IF Iter=1 THEN Ypsilon
2820
              GOSUB Verb
2830
              GOSUB Iosber
2840 Ypsilon: Y1=Fh*C(1)-Titdat(Stz,I)-Foh*C(2)-Fedta*Tk(13)
2850
              SELECT Stz
2860
              CASE 1
2870
                Messmat(1,2)=Messmat(1,2)-Fc
2880
                Messmat(2,2)=Messmat(2,2)+Fc*Fc
                Y1=Y1-Tk(11)/Verd(1,1)*Fp+Tk(12)/Verd(1,1)*Fn
2890
2900
                Y1=Y1*Verd(1,I)
2910
                Rechvek(2)=Rechvek(2)+Fc*Y1
2920
              CASE 2
2930
                Messimat(1,2)=Messimat(1,2)-Fp
2940
                Messmat(1,3)=Messmat(1,3)+Fn
                Messmat(2,2)=Messmat(2,2)+Fp*Fp
2950
2960
                Messmat(2,3)=Messmat(2,3)-Fn*Fp
2970
                Messmat(3,3)=Messmat(3,3)+Fn*Fn
2980
                Y1=Y1*Verd(2,I)
2990
               Rechvek(2)=Rechvek(2)+Y1*Fp
3000
               Rechvek(3)=Rechvek(3)-Y1*Fn
3010
              END SELECT
3020
             Messmat(2,1)=Messmat(1,2)
3030
             Messmat(3,1)=Messmat(1,3)
             Messmat(3,2)=Messmat(2,3)
3040
3050
             Rechvek(1)=Rechvek(1)-Y1
3060
           NEXT I
3070
     !----
                  - - - - Ende innere Schleife - - - - - -
```

3080	MAT Rechmat= INV(Messmat)	
3090	MAT Loesvek= Rechvek*Rechmat	! Loesung LGS
3100	Tkexit=0	Ū
3110	SELECT Stz	
3120	CASE 1	
3130	Tkexit=Tkexit+ABS(Tk(10)/Loesy	vek(2)-1)
3140	Tk(10) = Loesvek(2)	[[tCO3]
3150	CASE 2	
3160	FOR $T=2 \text{ TO } 3$	
3170	$\frac{1}{2} \frac{1}{2} \frac{1}$	pesvek(T) = 1
3180	Tk(T+9) = Loesvek(T)	$\frac{1}{1}$
3100	NEXT I	· [cro4] und [chin4]
3200	END SELFOR	
3210	Muert=Locguek(1)	
2220	Tack=Togoin	
3220	$m_{r}(2) = m_{1}/m_{o}$	
2230	$\pi (3) = 11/\text{Ges}_{01}$	
3240	$TK(8) = T2/Ges_vol$	
3250	$TK(9) = T3/Ges_Vol$	
3260	SELECT Stz	
3270	CASE 1	
3280	TK(13)=0	
3290	CASE 2	
3300	$Tk(13) = T4/Ges_vol$	
3310	END SELECT	
3320	GOSUB Btis	
3330	GOSUB Phber	
3340	GOSUB Konsti	
3350	GOSUB Verb	
3360	GOSUB Iosber	
3370	Tk(14)=Tk(14)+.5*(Iosein-Ios)	! LB-
3380	Tk(15) = Tk(15) + .5 * (Iosein-Ios)	! LB+
3390	UNTIL TKexit<1.E-3	! Ende Loop2
3390 3400	UNTIL TKexit<1.E-3 ! Ende aeussere Sch	! Ende Loop2 leife 2
3390 3400 3410	UNTIL TKexit<1.E-3 !Ende aeussere Sch GOSUB Btis	! Ende Loop2 leife 2
3390 3400 3410 3420	UNTIL TKexit<1.E-3 !Ende aeussere Sch GOSUB Btis GOSUB Phber	! Ende Loop2 leife 2
3390 3400 3410 3420 3430	UNTIL TKexit<1.E-3 !Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440	UNTIL Tkexit<1.E-3 !Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3440 3450	UNTIL Tkexit<1.E-3 !Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3460 3470	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I)	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3460 3470 3480	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=2+Lad(I)*C(I) NEXT I	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3460 3470 3480 3490	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3460 3470 3480 3490 3500	UNTIL TKexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z)	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 3510	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 3510 3520	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z)	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 3510 3520 3520	UNTIL Tkexit<1.E-3 !Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) FND TE	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 3510 3520 3520 3530	UNTIL TKexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14)	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 3510 3520 3530 3530 3540	UNTIL Tkexit<1.E-3 !Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(5)=C(15)	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3500 3510 3510 3520 3530 3540 3550 3550	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3500 3510 3520 3510 3520 3530 3540 3550 3550 3550	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Locovit=ABS(Locoin(Loc-1))	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3550 3550 3560 3570	UNTIL Tkexit<1.E-3 !Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1)	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 3510 3520 3510 3520 3530 3540 3550 3550 3550 3560 3570 3580	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3500 3510 3520 3510 3520 3550 3550 3550 3550 3550 3550 355	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1 NEXT Stz Tonde=TUMEDATE	! Ende Loop2 leife 2
3390 3400 3410 3420 3440 3450 3460 3460 3460 3460 3510 3510 3520 3550 3540 3550 3560 3570 3580 3590 3590 3590 3500 3590 3500 3500 3500 3590 350 3500	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1 NEXT Stz Tende=TIMEDATE	! Ende Loop2 leife 2
3390 3400 3410 3420 3440 3450 3460 3460 3460 3460 3510 3510 3520 3510 3520 3550 3550 3550 3550 3550 3550 3550 3550 3550 3560 3570 3580 3590 360 3600	UNTIL TKexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1 NEXT Stz Tende=TIMEDATE	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3460 3460 3500 3510 3520 3510 3520 3550 3550 3550 3550 3550 3560 3570 3580 3590 3600 3610 3620	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1 NEXT Stz Tende=TIMEDATE	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3460 3470 3480 3500 3510 3520 3550 3550 3550 3550 3550 3550 355	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1 NEXT Stz Tende=TIMEDATE Tso4=Tso4/Loes_vol Ten=C4/Loes_vol	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3460 3470 3480 3500 3510 3520 3510 3520 3550 3550 3550 3550 3550 3550 355	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1 NEXT Stz Tende=TIMEDATE Tso4=Tso4/Loes_vol Tca=Tca/Loes_vol Tmg=Tmg/Loes_vol	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3460 3470 3480 3500 3510 3520 3550 3550 3550 3550 3550 3550 355	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1 NEXT Stz Tende=TIMEDATE Tso4=Tso4/Loes_vol Tca=Tca/Loes_vol Tmg=Tmg/Loes_vol Tco3=Tk(10)	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3500 3510 3520 3510 3520 3550 3550 3550 3550 3550 3550 355	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1 NEXT Stz Tende=TIMEDATE Tso4=Tso4/Loes_vol Tca=Tca/Loes_vol Tco3=Tk(10) Tpo4=Tk(11)	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3510 3510 3510 3520 3510 3550 3550 3550 3550 3550 3550 355	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1 NEXT Stz Tende=TIMEDATE Tso4=Tso4/Loes_vol Tca=Tca/Loes_vol Tco3=Tk(10) Tpo4=Tk(11) Tnh4=Tk(12)	! Ende Loop2 leife 2
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3500 3510 3520 3510 3520 3550 3550 3550 3550 3550 3550 355	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1 NEXT Stz Tende=TIMEDATE Tso4=Tso4/Loes_vol Tca=Tca/Loes_vol Tca=Tca/Loes_vol Tco3=Tk(10) Tpo4=Tk(11) Tnh4=Tk(12) Ph=-LGT(C(1)*Gamma(1))	<pre>! Ende Loop2 leife 2</pre>
3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3500 3510 3520 3510 3520 3550 3550 3550 3550 3550 3550 355	UNTIL Tkexit<1.E-3 ! Ende aeussere Sch GOSUB Btis GOSUB Phber GOSUB Konsti GOSUB Verb Z=0 FOR I=1 TO Spezies Z=Z+Lad(I)*C(I) NEXT I IF Z>0 THEN C(14)=C(14)+ABS(Z) ELSE C(15)=C(15)+ABS(Z) END IF Tk(14)=C(14) Tk(15)=C(15) GOSUB Iosber Iosexit=ABS(Iosein/Ios-1) UNTIL Iosexit<.1 NEXT Stz Tende=TIMEDATE Tso4=Tso4/Loes_vol Tca=Tca/Loes_vol Tco3=Tk(10) Tpo4=Tk(11) Tnh4=Tk(12) Ph=-LGT(C(1)*Gamma(1)) RETURN	<pre>! Ende Loop2 leife 2</pre>

In der Subroutine "Daten" werden für die Spezies die "ion-size-parameter", die Standard-Bildungskonstanten, die thermodynamischen Daten und die Ladungszahlen eingelesen. Diese Daten sind notwendig zur Berechnung der Bildungskonstanten in Abhängigkeit von der Temperatur und der Ionenstärke. Die Daten wurden - abgesehen von den mit EDTA verbundenen Spezies - dem aktuellen "WTL"-Datensatz (56) entnommen.

! Gleichgewichtskonstanten, thermodynam. Daten einlesen 4090 Daten: 4100 RESTORE FOR I=1 TO Spezies 4110 READ Ion\$(Î),Isp(I),Bild25(I),Deltah(I),Deltacp(I),Lad(I) 4120 READ Fak1(I), Fak2(I), Fak3(I), Fak4(I), Fak5(I) 4130 4140 NEXT I RETURN 4150 4160 1----! WTL-Datensatz 4170 Spezies |ISP|K(25,0)| dH |dcp |Lad |Fak1|Fak2|Fak3|Fak4|Fak5 4180 1 4190 !----Ο, Ο, ٥, Ο, ο, ",6.8, Ο, 1, 1 4200 Sp_1:DATA "H ο, -1, Ο, 4210 Sp_2:DATA "OH ",4.2,-13.996, 56550,-200, Ο, ٥, Ο, 1 ο, ٥, ο, 4220 Sp_3:DATA "SO4 ",3.0, ο, ٥, -2, Ο, 1 Ο, ",2.5, ",4.5, -1, Ο, 4230 Sp_4:DATA "NO3 ο, ο, 0, Ο, Ο, Ο, 1 ٥, -1, Ο, ο, ٥, "Cl Ο, 1 4240 Sp 5:DATA Ο, ο, 4250 Sp_6:DATA "Na ",4.6, Ο, Ο, 1, Ο, Ο, Ο, Ο, 1 Ο, ο, Ο, Ο, 1, ",3.5, ο, 4260 Sp_7:DATA "K Ο, Ο, 1 0, ",5.4, ",6.2, Ο, Ο, 4270 Sp_8:DATA "Ca Ο, Ο, 2, Ο, Ο, ٥, 1 2, Ο, Ο, ο, ٥, 4280 Sp_9:DATA "Mg Ο, Ο, 1 Ο, Ο, ٥, ",4.1, Ο, Ο, 1 "cõ3 -2, 0, Ο, 4290 Sp10:DATA 0, ",4.7, ",3.0, ",6.0, -3, ٥, Ο, 4300 Sp11:DATA "PO4 ٥, ٥, 0, Ο, 1 Ο, Ο, 4310 Sp12:DATA "NH3 Ο, Ο, Ο, Ο, Ο, 0, Ο, 1 -4, ο, Ο, ٥, ٥, Ο, 0, 1 "EDTA 4320 Sp13:DATA Ο, Ο, Ο, Ο, -1, "LB-",3.2, 0, Ο, Ο, 1 Ο, 4330 Sp14:DATA Ο, ٥, 1, ο, 4340 Sp15:DATA "LB+ ",3.5, Ο, ο, ٥, Ο, 1 ",3.0, 2.024, 22000,-100, ",1.5, 10.329,-14950, 290, 2.024, 22000,-100, -1, З, Ο, 0 4350 Sp16:DATA "HSO4 1, 1, -1, 1, 1, 10, 0 "HCO3 0, 4360 Sp17:DATA 2, Ο, 4370 Sp18:DATA "H2CO3 1, 10, 0 ",3.0, 16.685, -24200, 620, Ο, -2, 1, 1, 4380 Sp19:DATA "HPO4 ",3.6, 11.959, -4370, 510, 11, 0, 0 -1, 740, 1, n 4390 Sp20:DATA "H2PO4 ",1.5, 19.159, -8450, 2, 11, Ο, Ο, ",3.0, 21.308, ",3.5, 9.245,-900, 1, з, 11, Ο, 0 "НЗРО4 -760, 4400 Sp21:DATA

 4410
 Sp2:DATA
 "NH4
 ",3.5, 9.245,-52200,

 4420
 Sp2:DATA
 "HEDTA
 ",6.0, 10.940,-23800,

 4430
 Sp2:DATA
 "HEDTA
 ",6.0, 10.940,-23800,

 4440
 Sp2:DATA
 "HEDTA
 ",4.5, 17.690,-18400,

 4440
 Sp2:DATA
 "H2EDTA
 ",4.5, 17.690,-18400,

 4440
 Sp2:DATA
 "H3EDTA
 ",3.0, 20.830, 6000,

 4450
 Sp26:DATA
 "H4EDTA
 ",3.0, 23.040, 750,

 4460
 Sp27:DATA
 "CaCO3
 ",3.0, 3.200, 16000,

 4470
 Sp28:DATA
 "MgCO3
 ",3.0, 2.947, 13000,

 4480
 Sp29:DATA
 "CaHCO3
 ",5.4, 11.450, -7000,

 4490
 Sp30:DATA
 "MgHCO3
 ",6.2, 11.397, -7700,

 4500
 Sp31:DATA
 "CaSO4
 ",3.0, 2.310, 7600,

 4510
 Sp32:DATA
 "MgSO4
 ",3.0, 2.263, 18000,

 4520
 Sp33:DATA
 "CaPO4
 ",5.4, 6.462, 11500,

 4530
 Sp34:DATA
 "MgPO4
 ",6.2, 6.589, 13000,

 4540
 Sp35:DATA
 "CaHPO4
 ",5.4, 14.531, 8000,

 4550
 Sp36:DATA
 "MgHPO4
 1, 0 4410 Sp22:DATA "NH4 9.245,-52200, 1, 1, 12, Ο, 4, -3, 1, 1, 13, Ο, Ο, 0 1, 0 Ο, -2, 2, 13, Ο, з, 13, ο, Ο, 0 -1, 1, Ο, 1, 4, 0 13, Ο, Ο, 8, Ο, 430, ο, 1, 10, 1 1, 70, Ο, 9, ٥, 10, 1 8, 1, 10, 1, 1 290, 1, 290, 1, 9, 1, 10, 1 -7700, 1, 8, ٥, З, Ο, 1, 1 170, 10, 9, 0, З, 1 0, 1, 8, Ο, 11, 1 Ο, -1, 1, -1, 11, ٥, 9, 0, 1 1, 8, Ο, 1, 11, 1 8000,-200, 1, 4540 Sp35:DATA CaHPO4 ,5.4, 14.837, 9500, 4550 Sp36:DATA "MgHPO4 ",6.2, 14.837, 9500, 4560 Sp37:DATA "CaH2PO4",5.4, 20.165, 4600, 4570 Sp38:DATA "MgH2PO4",6.2, 20.680, 5800, 4580 Sp39:DATA "CaEDTA ",5.4, 12.240,-27200, Ο, 9, 1, 11, 1 Ο, 1, 8, -20, 2, 11, 1 1, 1, 2, 11, Ο, ı, 1, 9, 1 ο, 13, -2, 8, 1 Ο, 1, 4580 Sp39:DATA CAEDIA ,5.4, 12.240, 1460, 4590 Sp40:DATA "MgEDTA ",6.2, 10.320, 14650, 4600 Sp41:DATA "CAHEDTA",5.4, 15.170, 0, 4610 Sp42:DATA "MgHEDTA",6.2, 15.150, 0, 4620 Sp43:DATA "CAOH ",5.4, 1.340, 13000, 70000, 7000, 7000, 7000, 7000 Ο, --2, 9, 13, 0, 1 1, 13, -1, 8, 1 Ο, 1, 1, -1, 9, 13, ٥, 1, 1 1, 4620 Sp43:DATA "CaOH 1, 8, 1, Ο, 0 50, 2, 1, 2, 0 ",6.2, 2.220, 7000, 100, 1, 9, Ο, 4630 Sp44:DATA "MgOH ______ 4640

Die Subroutine "Btis" berechnet die Bildungskonstanten in Abhängigkeit von der Temperatur und Ionenstärke. Die Aktivitätskoeffizienten werden mit der Debye-Hückel-Gleichung berechnet.

```
4660 Btis: ! Btis berechnet die Bildungskonstanten bei der Temperatur Temp
4670
           ! und der Ionenstaerke Isex
4680
4690
      Temp0=273.15+Temp
     F0=1./(2.302585*8.31441)
4700
                                                                      1 D H
4710
     F1=1/298.15-1/Temp0
                                                                      ! e u
     F2=LOG(Temp0/298.15)+298.15/Temp0-1.
4720
                                                                      ! b e
     Dk=87.74-.40008*Temp+.0009398*Temp*Temp-.00000141*Temp*Temp*Temp
4730
                                                                      1 у с
     Wurzel=SORT(Isex)
                                                                      ! e k
4740
4750
     A1=-Wurzel*1823000./((Temp0*Dk)^1.5)
                                                                      ! - e
4760
     B1=Wurzel*50.3/SQRT(Temp0*Dk)
                                                                      1
                                                                         1
4770
      1
4780
     MAT Gamaf = (1)
4790
     Gamma(0)=1.
4800
     FOR Ib=1 TO Spezies
       Gamma(Ib)=10.^{A1*Lad}(Ib)*Lad(Ib)/(1.+B1*Isp(Ib)))
4810
4820
     NEXT Ib
4830
     Gamaf(2)=1./(Gamma(1)*Gamma(2))
4840
     FOR Ib=16 TO Spezies
       Gamaf(Ib)=Gamma(Fak1(Ib))^Fak2(Ib)*Gamma(Fak3(Ib))*Gamma(Fak4(Ib))/Gamma
4850
(Ib)
4860
     NEXT Ib
4870
     FOR Ib=1 TO Spezies
4880
       Bti(Ib)=F0*F2*Deltacp(Ib)+F0*F1*Deltah(Ib)+Bild25(Ib)
4890
       Bti(Ib)=Bti(Ib)+LGT(Gamaf(Ib))
4900
       Bti(Ib)=10.^Bti(Ib)
4910
     NEXT Ib
4920
     RETURN
4930
```

Die Subroutine "losber" berechnet die lonenstärke der Lösung gemäß Gleichung [1]

In der Subroutine "Konsti" werden die Faktoren FX aus Gleichnug [21] sowie m(schwach), d. h. der m-Wert der Lösung - ermittelt aus den schwachen Elektrolyten - berechnet.

! berechnet Konz. der Konstituenten sowie m(schwach) 5030 Konsti: 5040 1 ! Summe Zaehler, Nenner ohne Komplexbildung fuer CO3, PO4, NH3, SO4, EDTA 5050 5060 Chh2=C(1)*C(1)5070 Chh3=Chh2*C(1) Chh4=Chh3*C(1) 5080 : CO3 5090 Szco=2+Bti(17)*C(1)5100 Snco=1+Bti(17)*C(1)+Bti(18)*Chh2 ! PO4 Szpo=3+2*Bti(19)*C(1)+Bti(20)*Chh2 5110 Snpo=1+Bti(19)*C(1)+Bti(20)*Chh2+Bti(21)*Chh3 5120 ! NH4 Szno=Bti(22)*C(1) 5130 5140 Snno=1+Bti(22)*C(1) ! SO4 5150 Snso=1+Bti(16)*C(1) 5160 Szedo=4+3*Bti(23)*C(1)+2*Bti(24)*Chh2+Bti(25)*Chh3 ! EDTA 5170 Snedo=1+Bti(23)*C(1)+Bti(24)*Chh2+Bti(25)*Chh3+Bti(26)*Chh4 5180 C(2) = Bti(2)/C(1)5190 t OH 5200 ! Nicht-komplexbildende Spezies 5210 5220 FOR Ik=4 TO 7 ! NO3,Cl,Na,K C(Ik) = Tk(Ik)5230 5240 NEXT IK 5250 C(12)=Tk(12)/Snno! NH3 5260 C(14) = Tk(14)! LB+ 5270 C(15) = Tk(15)! LB-5280 5290 IF Mkompl=0 THEN 5300 C(3)=Tk(3)/Snso! SO4 C(8) = Tk(8)5310 ! Ca C(9) = Tk(9)5320 ! Mg 5330 C(10) = Tk(10) / Snco1 CO3 C(11)=Tk(11)/Snpo 5340 ! PO4 5350 C(13)=Tk(13)/Snedo! EDTA 5360 ENDIF 5370 1 5380 Scca=Bti(27)+Bti(29)*C(1) Scmg=Bti(28)+Bti(30)*C(1)5390 Spca=Bti(33)+Bti(35)*C(1)+Bti(37)*Chh2 5400 5410 Spmg=Bti(34)+Bti(36)*C(1)+Bti(38)*Chh2 5420 Sedca=Bti(39)+Bti(41)*C(1) 5430 Sedmg=Bti(40)+Bti(42)*C(1) 5440 ł 5450 Sncalt=Snco 5460 Snpalt=Snpo 5470 Snsalt=Snso 5480 Snedalt=Snedo 5490 1

```
5500
      :Berechnung Summe Zaehler bzw. Nenner mit Komplexbildung
5510
      LOOP
        C(8)=Tk(8)/(1.+Scca*C(10)+Bti(31)*C(3)+Spca*C(11)+Bti(43)*C(2)+Sedca*C(1
5520
3))
5530
        C(9)=Tk(9)/(1.+Scmq*C(10)+Bti(32)*C(3)+Spmq*C(11)+Bti(44)*C(2)+Sedmq*C(1
3))
5540
        Sns=Snso+Bti(31)*C(8)+Bti(32)*C(9)
5550
        C(3)=Tk(3)/Sns
5560
        Sncm=Snco+C(8)*Scca+C(9)*Scmg
5570
        C(10) = Tk(10) / Sncm
5580
        Snpm=Snpo+C(8)*Spca+C(9)*Spmg
5590
        C(11)=Tk(11)/Snpm
        Snedm=Snedo+C(8)*Sedca+C(9)*Sedma
5600
5610
        C(13) = Tk(13) / Snedm
5620
        Lims=ABS(Sncm/Sncalt-1)+ABS(Snpm/Snpalt-1)+ABS(Sns/Snsalt-1)+ABS(Snecm/S
nedalt-1)
5630
      EXIT IF Lims<1.E-5
5640
        Sncalt=Sncm
5650
        Snpalt=Snpm
5660
        Snsalt=Sns
5670
        Snedalt=Snedm
5680
      END LOOP
5690
      1
5700
      Szc=Szco+(Scca+Bti(27))*C(8)+(Scmg+Bti(28))*C(9)
5710
      Szp=Szpo+(Spca+Bti(35)*C(1)+2*Bti(33))*C(8)+(Spmg+Bti(36)*C(1)+2*Bti(34))*
C(9)
5720
      Szed=Szedo+(Sedca+2*Bti(41)*C(1)+3*Bti(39))*C(8)+(Sedmg+2*Bti(42)*C(1)+3*B
ti(40))*C(9)
5730
5740
     Fc=Szc/Sncm
5750
     Fp=Szp/Snpm
     Fn=Szno/Snno
5760
5770
     Fedta=Szed/Snedm
5780
     Fh=1+Bti(16)*C(3)
5790
     Foh=1.+(Bti(43)*C(8)+Bti(44)*C(9))
5800
     Mschw=Foh*C(2)-Fh*C(1)+Tk(10)*Fc+Tk(11)*Fp-Tk(12)*Fn+Tk(13)*Fedta
5810
5820
     RETURN
5830
       1____
```

Die Subroutine "Verb" berechnet die Konzentrationen aller im System berücksichtigten Verbindungen aus den Bildungskonstanten und den Gesamtkonzentrationen der Konstituenten gemäß den Gleichgewichtsbeziehungen.

"Phber" berech**net** iterativ den pH-Wert, bis die Differenz der m-Werte, die als Ladungsbilanz der starken Elektrolyte (aus der Lösung des linearen Gleichungssystems, 'Mwert'), und als Ladungsbilanz der schwachen Elektrolyte ('Mschw') berechnet werden, den Wert 10⁻¹⁰ unterschreitet.

```
! berechnet den pH-Wert
5920 Phber:
              ! Mschw kommt aus Konsti, Mwert aus Loesung LGS
5930
5940
      Hneu=.0001
5950
      Hstart=1.E-7
5960
      LOOP
5970
        C(1) = Hstart
5980
        Halt=Hstart
        GOSUB Konsti
5990
6000
        Mkompl=1
        Diff0=Mschw-Mwert
6010
     EXIT IF ABS(Diff0)<1.E-10
6020
        C(1)=C(1)*(1.+Hneu)
6030
        GOSUB Konsti
6040
6050
        Diff1=Mschw-Mwert
        Hstart=Halt*(1.+Diff0*Hneu/(Diff0-Diff1))
6060
6070
        Hstart=MAX(Hstart,Halt/EXP(1))
6080
        Hstart=MIN(Hstart,Halt*EXP(1))
     END LOOP
6090
6100
      RETURN
```

"Datstore" und "Ergstore" sorgen für das Abspeichern des Ergebnisberichtes des Titroprocessors und der Rechenergebnisse.

```
6150 Datstore:
                                ! Abspeichern aller Daten vom Titroprocessor
6170 MASS STORAGE IS ":,700,1"
     Zeit$=TIME$(TIMEDATE)
6180
     Datum$=DATE$(TIMEDATE)
Rest$=Datum$[1,6]&Zeit$[1,2]&Zeit$[4,5]
6190
6200
     NameS="X"&RestS
6210
6220
     Platz=(Dat_zahl*82)+2
     CREATE BDAT Name$, (Platz/256)+.5
6230
     ASSIGN @Out TO NameS
6240
    OUTPUT @Out;Dat_zahl
6250
6260
    OUTPUT @Out; Daten$(*)
6270
     ASSIGN @Out TO *
6290
     RETURN
6300
     !-----
             6310
     t
6320 Ergstore:
                             ! Abspeichern des Ergebnisses
6340 Erg$="Y"&Rest$
     Platz=LEN(Bem$)+4
6350
                             ! Speicherplatzbedarf f. Bem$
6360 Platz=Platz+64
                              1
                                                 f. Erg.
     CREATE BDAT Erg$,1,Platz
6370
6380
     ASSIGN @Out TO Erg$
     OUTPUT @Out;Bem$
6390
6400
     OUTPUT @Out; Tso4, Tca, Tmg, Tco3, Tpo4, Tnh4, Mwert, Ph
6410
     ASSIGN @Out TO *
6430
     RETURN
6440
     <u>}</u>
```

7. Literaturverzeichnis

- (1) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung Bestimmung der Summe des gelösten Kohlendioxids (G1)
 6. Lieferung, Ausgabe 1971
- Bradshaw A. L., Brewer G. B., Shafer D. K.
 Measurements of Total Carbon Dioxide and Alkalinity by Potentiometric Titration in the GEOSECS Program
 Earth Planet. Sci. Lett. <u>55</u> (1981) 99-115
- (3) Eberle S. H. Die wasserchemische Berechnung der Kohlensäuregleichgewichte unter Berücksichtigung der Komplexierung von Calcium und Magnesium sowie der Anwesenheit von Phosphat, Ammonium und Borsäure KfK-Bericht 3930 UF (1986)
- (4) Rieger J.
 Untersuchungen zur Phosphatentfernung aus Wasser durch Abscheidung von Calciumphosphat
 Dissertation Universität Karlsruhe (1987)
- (5) Stur J., Bos M., van der Linden E.
 A Generalized Approach for the Calculation and Automation of Potentiometric Titrations
 Anal. Chim. Acta <u>158</u> (1984) 93-111
- (6) Anfält T., Jagner D. The Precision and Accuracy of some Current Methods for Potentiometric End-Point Determination with Reference to a Computer-Calculated Titration Curve Anal. Chim. Acta <u>57</u> (1971) 165-176
- (7) Fortuin J. M. H.
 Method for Determination of the Equivalence Point in Potentiometric Titrations Anal. Chim. Acta <u>24</u> (1961) 175-191
- (8) Christiansen T. F., Busch J. E., Krogh S. C. Successive Determinations of Calcium und Magnesium in Drinking Water by Complexometric, Potentiometric Digital Titration to Two Equivalence Points Anal. Chem. <u>48</u> (1976) 1051-1056
- (9) Gran G.
 Determination of the Equivalence Point in Potentiometric Titrations. Part I Acta Chem. Scand. <u>4</u> (1950) 559

(10) Gran G.

Determination of the Equivalence Point in Potentiometric Titrations. Part II Analyst 77 (1952) 661-671

- (11) Ingman F., Still E.
 Graphic Method for the Determination of Titration End-Points Talanta <u>13</u> (1966) 1431-1442
- (12) Ivaska A.

Graphic Determination of Equivalence Volumes in Potentiometric Titrations of Mixtures of Weak Acids - I Two Monobasic Acids Talanta <u>21</u> (1974) 1167-1173

- (13) Ivaska A.
 Analysis of a Mixture of a Known and an Unknown Weak Acid by Titration to a Preset pH
 Talanta <u>22</u> (1975) 995-999
- (14) Pehrsson L., Ingman F., Johansson S.
 Acid-Base Titrations by Stepwise Addition of Equal Volumes of Titrant with Special Reference to Automatic Titrations - II Theory of Titration of Mixtures of Acids, Polyprotic Acids, Acids in Mixture with Weak Bases, and Ampholytes Talanta <u>23</u> (1976) 781-788
- (15) Midgley D., McCallum C.
 Improved Linear Titration Plots for Weak-Acid Titrations Talanta 21 (1974) 723-733
- McCallum C., Midgley D.
 Linear Titration Plots for the Potentiometric Determination of Mixtures of Strong and Weak Acids
 Anal. Chim. Acta 78 (1975) 171-181
- McCallum C., Midgley D.
 Linear Titration Plot for Resolving Mixtures of Weak Acids by Potentiometric Titration
 Anal. Chem. 48 (1976) 1232-1235
- Midgley D., McCallum C.
 Linear Titration Plots for the Analysis of Mixtures of Three Weak Acids or Bases Talanta 31 (1984) 409-416

- (19) Seymour M. D., Clayton Jr. J. W., Fernando Qu.
 Determination of pK_a Values of Acid Components in Atmospheric Condensates by Linearization of Segmented Titration Curves Anal. Chem. <u>49</u> (1977) 1429-1432
- (20) Seymour M. D., Schubert S. A., Clayton Jr. J. W., Fernando Qu.
 Variations in the Acid Content of Rain Water in the Course of a Single Precipitation Water, Air and Soil Pollution <u>10</u> (1978) 147-161
- (21) Glover G. M., Webb A. H.
 Weak and Strong Acids in the Surface Waters of the Tovdal Region in S. Norway
 Water Res. <u>13</u> (1979) 781-783
- (22) Gans P.
 Numerical Methods for Data-Fitting Problems
 Coord. Chem. Rev. <u>19</u> (1976) 99-124
- Meites L.
 Some New Techniques for the Analysis and Interpretation of Chemical Data CRC Crit. Rev. Anal. Chem. (1979) 1-53
- Meites Th., Meites L.
 A General Multiparameter Least-Squares Curve-Fitting Computer Programme and Some of its Applications Talanta <u>19</u> (1972) 1131-1139
- Barry D. M., Meites L.
 Titrimetric Applications of Multiparametric Curve-Fitting
 Part I. Potentiometric Titrations of Weak Bases with Strong Acids at Extreme Dilutions
 Anal. Chim. Acta 68 (1974) 435-445
- (26) Ingman F., Johansson A., Johansson S., Karlsson R.
 Titration of Mixtures of Acids of Nearly Equal Strengths
 Anal. Chim. Acta <u>64</u> (1973) 113-120
- (27) Johansson A., Johansson S. Automatic Titration by Stepwise Addition of Equal Volumes of Titrant Part IV. General-purpose Program for Evaluating Potentiometric Acid-Base Titrations Analyst 104 (1979) 601-612
- (28) Simms H. S.
 Dissociation of Polyvalent Substances
 I. Relation of Constants to Titration Data
 J. Am. Chem. Soc. 48 (1926) 1239-1250

- (29) Arena G., Rizzarelli E., Sammartano S., Rigano C. A Non-Linear Least-Squares Approach to the Refinement of All Parameters Involved in Acid-Base Titrations Talanta <u>26</u> (1979) 1-14
- (30) Gordon W. E.Component Discrimination in Acid-Base TitrationJ. Phys. Chem. <u>83</u> (1979) 1365-1377
- (31) Gordon W. E.
 Data Analysis for Acid-Base Titration of an Unknown Solution Anal. Chem. <u>54</u> (1982) 1595-1601
- (32) Johansson O., Wedborg M.
 On the Evaluation of Potentiometric Titrations of Seawater with Hydrochloric Acid Oceanol. Acta <u>5</u> (1982) 209-218
- (33) Sayce I. G.

Computer Calculation of Equilibrium Constants of Species Present in Mixtures of Metal lons and Complexing Agents Talanta <u>15</u> (1968) 1397-1411

- (34) Sillén L. G., Warnqvist B.
 High-Speed Computers as a Supplement to Graphical Methods. 6
 A Strategy for Two-Level LETAGROP Adjustment of Common and "Group" Parameters. Some Features that Avoid Divergence
 Arkiv för Kemi <u>31</u> (1969) 315-339
- (35) Sabatini A., Vacca A., Gans P.
 MINIQUAD a General Computer Programme for the Computation of Formation Constants from Potentiometric Data Talanta <u>21</u> (1974) 53-77
- (36) Zuberbühler A. D., Kaden T. A. TITFIT, a Comprehensive Program for Numerical Treatment of Potentiometric Data by Using Analytical Derivatives and Automatically Optimized Subroutines with the Newton-Gauss-Marquardt Algorithm Talanta <u>29</u> (1982) 201-206
- (37) pH-Messung Standardpufferlösungen DIN 19266, August 1979
- (38) Bates R. G.
 The Modern Meaning of pH
 CRC Crit. Rev. Anal. Chem. <u>10</u> (1981) 247-278

- (39) Anderegg G.
 Critical Survey of Stability Constants of NTA Complexes
 Pure & Appl. Chem. <u>54</u> (1982) 2693-2758
- (40) Anderegg G.Critical Survey of Stability Constants of EDTA Complexes Pergamon Press, 1977
- (41) Anderegg G., Podder N. G., Bläuenstein P., Hangartner M., Stünzi H.
 Pyridine Derivatives as Complexing Agents X.
 Thermodynamics of Complex Formation of N,N'-Bis-(2-Pyridylmethyl)-Ethylenediamine and of Two Higher Homologues
 J. Coord. Chem. <u>4</u> (1975) 267-275
- (42) Martell A. E., Smith R. M.Critical Stability ConstantsPlenum Press, New York and London, 1974
- (43) Kemp P. H.
 Chemistry of Natural Waters I
 Fundamental Relationships
 Water Res. <u>5</u> (1971) 287-311
- (44) Maier D., Grohmann A.
 Bestimmung der Ionenstärke natürlicher Wässer aus deren elektrischer Leitfähigkeit
 Z. f. Wasser- und Abwasser-Forschung 1 (1977) 9-12
- (45) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung Bestimmung der elektrischen Leitfähigkeit (C8)
 15. Lieferung 1985
- (46) Pasricha N. S.
 Predicting Ionic Strength from Specific Conductance in Aqueous Soil Solutions Soil Sci. <u>143</u> (1987) 92-96
- (47) Lübbers D. W., Opitz N.
 Verfahren und Anordnung zur Messung der Ionenstärke
 Offenlegungsschrift DE 3222325 A1, Offenlegungstag 15. 12. 83
- (48) Wolfbeiss O. S., Offenbacher H.
 Fluorescence Sensor for Monitoring Ionic Strength and Physiological pH Values Sensors and Actuators <u>9</u> (1986) 85-91

- (49) Daniele P. G., Rigano C., Sammartano S. Formation and Stability of Calcium- and Magnesium-Phosphate Complexes in Aqueous Solution at 37°C. A Potentiometric Investigation by Glass and Calcium Ion-Selective Electrodes in the Ionic Strength Range 0.03 ≤ I ≤ 0.5 Ann. Chimica <u>72</u> (1982) 341-353
- (50) Chugtai A., Marshall R., Nancollas G. H.
 Complexes in Calcium Phosphate Solution
 J. Phys. Chem. <u>72</u> (1968) 208-211
- (51) Childs C. W.
 A Potentiometric Study of Equilibria in Aqueous Divalent Metal Orthophosphate Solutions
 Inorg. Chem. <u>9</u> (1970) 2465-2469
- (52) Truesdell A. H., Jones B. F.
 WATEQ, a Computer Program for Calculating Chemical Equilibria of Natural Waters Jour. Research U.S. Geol. Survey <u>2</u> (1974) 233-248
- (53) Anderegg G.
 Komplexone XXXVI. Reaktionsenthalpie und -entropie bei der Bildung der Metallkomplexe der höheren EDTA-Homologen Helv. Chim. Acta <u>47</u> (1964) 1801-1814
- (54) Smith G. L., Miller D. J. Potentiometric Measurements of Stoichiometric and Apparent Affinity Constants of EGTA for Protons and Divalent lons Including Calcium Biochim. Biophys. Acta <u>839</u> (1985) 287-299
- (55) Pitzer K. S.
 Thermodynamics of Electrolytes.
 I. Theoretical Basis and General Equations
 J. Phys. Chem. 77 (1973) 268-277
- (56) Eberle S. H. A Correctness Test for the Computation of Chemical Speciation for the Main Constituents of Natural Waters Water Res., im Druck
- (57) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung Bestimmung von Calcium und Magnesium
 11. Lieferung (1982)
- (58) Schmid R. W., Reilley C. N.
 New Complexon for Titration of Calcium in the Presence of Magnesium Anal. Chem. <u>29</u> (1957) 264-268

- (59) Fritz J. S., Garralda B. B.
 Potentiometric Titration of Metal Ions Using a Silver Electrode Anal. Chem. <u>36</u> (1964) 737-741
- (60) Mascini M.
 Potentiometric Titrations with Solid-state Ion-selective Electrodes. Determination of Calcium und Magnesium in Water Analysis
 Anal. Chim. Acta <u>56</u> (1971) 316-321
- (61) Lichtenstein I. E., Coppola E., Aikens D. A. Selective Potentiometric Titration of Calcium with EGTA Using Silver Ion Indicator Anal. Chem. <u>44</u> (1972) 1681-1683
- (62) Whitfield M., Leyendekkers J. V.
 Liquid Ion-Exchange Electrodes as End-Point Detectors in compleximetric Titrations. Determination of Calcium und Magnesium in the Presence of Sodium Part I. Theoretical Considerations
 Anal. Chim. Acta <u>45</u> (1969) 383-398
- (63) Whitfield M., Leyendekkers J. V., Kerr J. D.
 Liquid Ion-Exchange Electrodes as End-Point Detectors in compleximetric Titrations.
 Part II. Determination of Calcium und Magnesium in the Presence of Sodium Anal. Chim. Acta <u>45</u> (1969) 399-410
- (64) Hadjiioannou T. P., Papastathopoulos D. S.
 EDTA Titrations of Calcium und Magnesium with a Calcium-Selective Electrode Talanta <u>17</u> (1970) 399-406
- (65) Krumgalz B. S., Holzer R.
 On the determination of Ca²⁺ Ion Concentration in Seawater Limnol. Oceanogr. 25 (1980) 367-370
- (66) Malmstadt H. V., Hadjiiannou T. P.
 Rapid and Accurate Automatic Titration of Calcium und Magnesium in Dolomites and Limestones
 Use of EDTA Titrant and Automatic Derivative Spectrophotometric End-Point Termination
 Anal. Chim. Acta <u>19</u> (1958) 563-569
- (67) Sato H., Momoki K. Successive Photometric Titration of Calcium und Magnesium Anal. Chem. <u>44</u> (1972) 1778-1780
- (68) Huber C. O., Dahnke K., Hinz F. Amperometric Titration of Calcium und Magnesium Using a Lead Dioxide Electrode Anal. Chem. <u>43</u> (1971) 152-154

- (69) Jackson L.L., Osteryoung J., O'Dea J., Osteryoung R. A.
 Consecutive Amperometric Titrations for Calcium und Magnesium Anal. Chem. <u>52</u> (1980) 71-75
- (70) Yoshida H., Hattori T., Arai H., Taga M. Simultaneous Thermometric Compleximetric Titration of Calcium und Magnesium with Sulfosalicylic Acid as an Auxiliary Reagent Anal. Chim. Acta <u>152</u> (1983) 257-263
- (71) Anker P., Wiland E., Ammann D., Dohner R. E., Asper R., Simon W. Neutral Carrier Based Ion-Selective Electrode for the Determination of Total Calcium in Blood Serum Anal. Chem. <u>53</u> (1981) 1970-1974
- (72) Lanter F., Erne D., Ammann D., Simon W.
 Neutral Carrier Based Ion-Selective Electrode for Intracellular Magnesium Activity Studies
 Anal. Chem. <u>52</u> (1980) 2400-2402
- (73) Meier P. C., Erne D., Cimerman Z., Ammann D., Simon W.
 Direct Potentiometric Water Hardness Determination Using Ion-Selective Electrodes Mikrochim. Acta (1980) 317-327
- (74) Keller H., Richter W.
 Automatische rechnerische Auswertung potentiometrischer Titrationen Metrohm Bullletin <u>2</u> (1971)
- (75) Stetter H., Frank W. Komplexbildung mit Tetraazacycloalkan-N,N',N'',N'''-tetraessigsäuren in Abhängigkeit von der Ringgröße Angew. Chem. <u>22</u> (1976) 760
- (76) Hannema U., Den Boef G.
 Titration Curves of Complexometric Titrations of Mixtures of Metal lons with One Ligand
 Part II. Conditions for Sharp End-Points
 Anal. Chim. Acta <u>39</u> (1967) 479-484
- (77) Stary J., Liljenzin J. O.
 Critical Evaluation of Equilibrium Constants Involving Acetylacetone and its Metal Chelates
 Pure & Appl. Chem. <u>54</u> (1982) 2557-2592

- (78) Meites L., Meites T.
 Theory of Titration curves
 Part VI. The Slopes and Inflection Points of Potentiometric Chelometric Titration
 Curves
 Anal. Chim. Acta 37 (1967) 1-11
- (79) Carr W. P.
 Intrinsic End-Point Errors in Titration with Ion Selective Electrodes
 Chelometric Titrations
 Anal. Chem. <u>44</u> (1972) 452-456
- (80) Midgley D.
 Sulphate and Phosphate Ion-Selective Electrodes
 Ion-Selective Electrode Rev. <u>8</u> (1986) 3-53
- (81) Kirsten W. J., Hansson K.-A., Nilsson S. K.
 Determination of Sulfate and Sulfur in Inorganic and Organic Materials
 Anal. Chim. Acta <u>28</u> (1963) 101-117
- (82) Hulanicki A., Lewandowski R., Lewenstam A.
 Elimination of lonic Interferences in the Determination of Sulphates in Water Using the Lead-sensitive Ion-selective Electrode Analyst <u>101</u> (1976) 939-942
- (83) Ross J. W., Frant M. S.
 Potentiometric Titrations of Sulfate Using an Ion-Selective Lead Electrode Anal. Chem. <u>41</u> (1969) 967-969
- (84) Weast R. C., Selby M. S., Hodgman C. D.Handbook of Chemistry and PhysicsThe Chemical Rubber Co., Cleveland, Ohio, 1964
- (85) Goertzen J. O., Oster J. D.
 Potentiometric Titration of Sulfate in Water and Soil Extracts Using a Lead Electrode Soil Sci. Soc. Amer. Proc. <u>36</u> (1972) 691-693
- (86) Mascini M.
 Titration of Sulphate in Mineral Waters and Sea Water by Using the Solid-state Lead Electrode
 Analyst <u>98</u> (1973) 325-328
- (87) Harzdorf C.
 Potentiometrische Titration von Sulfat, Barium und Strontium mit Hilfe einer bleisensitiven Elektrode
 Z. Anal. Chem. <u>262</u> (1972) 167-170

- (88) Robbins C. W., Carter D. L., James D. W.
 Potentiometric Titration of Sulfate in Water and Soil Extracts Using a Lead-Mercury Amalgam Indicator Electrode
 Soil Sci. Soc. Amer. Proc. <u>37</u> (1973) 212-215
- (89) Jaber A. M. Y., Moody G. J., Thomas J. D. R. Solvent Mediator Studies on Barium Ion-selective Electrodes Based on a Sensor of the Tetraphenylborate Salt of the Barium Complex of a Nonylphenoxypoly(ethyleneoxy)ethanol Analyst <u>101</u> (1976) 179-186
- (90) Jones D. L., Moody G. J., Thomas J. D. R., Hangos M. Interferences of a Barium Ion-selective Electrode Used for the Potentiometric Titration of Sulphate Analyst <u>104</u> (1979) 973-976
- (91) Selig W.
 Microdetermination of Sulfate in the Presence of Phosphate without Separation Mikrochim. Acta (1975 II) 665-674
- (92) Scheide E. P., Durst R. A.
 Indirect Determination of Sulfate in Natural Waters by Ion-Selective Electrode Anal. Lett. <u>10</u> (1977) 55-65
- (93) Schumacher E., Hackmann B., Rieckemann B. Indikation der Sulfat-Fällungstitration mit Mischoxidelektroden und Anwendung der Methode auf die Schwefelbestimmung in Brennstoffen sowie auf die Sulfatbestimmung in Wässern Fresenius Z. Anal. Chem. <u>310</u> (1982) 81-88
- (94) Akimoto N., Hozumi K.
 Potentiometric Microtitration of Sulfate Ion Using a Sodium-Selective Glass Electrode in a Nonaqueous Medium Anal. Chem. 46 (1974) 766-769
- (95) Vesely J.
 Differential Titration Based on Transient ISE Response Anal. Lett. <u>13</u> (1980) 543-547
- (96) Jasinski R., Trachtenberg I.
 Potentiometric Titration of Sulfate Using an Ion-Selective Iron Electrode
 Anal. Chem. <u>44</u> (1972) 2373-2376
- (97) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung Bestimmung der Sulfat-Ionen (D5)
 15. Lieferung 1985

(98) Duvivier L.

Electro-Titration

Nouvelle méthode pour la détermination des sulfates dans les eaux naturelles Trib. Cebedeau <u>501</u> (1985) 3-8

(99) Carr P. W.

Intrinsic End-Point Errors in Precipitation Titrations with Ion Selective Electrodes Anal. Chem. <u>43</u> (1971) 425-430

(100) Ivaska A.

Linear Titration Plots with Ion-Selective Electrodes Talanta 27 (1980) 161-164

(101) Colson A. F.

The Removal of Phosphate in the Barium Perchlorate Titration of Sulfate Analyst <u>88</u> (1963) 26-29

- (102) Luther III G. W., Meyerson A. L., D'Addio A. Voltammetric Methods of Sulfate Ion Analysis in Natural Waters Marine Chemistry <u>6</u> (1978) 117-124
- (103) Martin C. R., Freiser H.Microcomputer-Controlled Potentiometric Analysis System Anal. Chem. <u>51</u> (1979) 803-807
- (104) Ehrenteich F., Lerchner J., Werner G., Otto M.
 Einsatz eines Mikrorechners zur Durchführung und Auswertung potentiometrischer Titrationen
 Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R. 35 (1986) 100-108
- (105) Ebel S., Seuring A.Vollautomatische potentiometrische Titrationen Angew. Chem. <u>89</u> (1977) 129-141
- (106) Ebel S., Hocke J., Reyer B.
 Vollautomatische rechnergesteuerte Titrationssysteme
 1. Gerätebeschreibung
 Fresenius Z. Anal. Chem. <u>308</u> (1980) 437-440
- (107) Ebel S., Reyer B.
 Vollautomatische rechnergesteuerte Titrationssysteme
 2. Dynamische Steuerung der Volumenschritte
 Fresenius Z. Anal. Chem. <u>312</u> (1982) 346-351
- (108) Firma Metrohm Persönliche Mitteilung

Mein Dank gilt

Herrn Prof. Dr. S. H. Eberle für das interessante Thema und die Betreuung der Arbeit,

allen Mitarbeiterinnen und Mitarbeitern der Abteilung Wassertechnologie, im besonderen Herrn J. Rieger, für ihre freundliche Unterstützung,

dem Kernforschungszentrum Karlsruhe für die Förderung der Arbeit durch ein Doktorandenstipendium.