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Abstract. Recent research towards integrating symbolic mathematical

reasoning and computation has led to prototypes of interfaces and envi-
ronments. This paper introduces computation theories and structures to

represent mathematical objects and applications of algorithms occuring

in algorithmic services. The composition of reasoning and computation
theories and structures provide a formal framework for the speci�cation

of symbolic mathematical problem solving by cooperation of algorithms
and theorems.
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1 Introduction

The combination of systems performing any kind of mathematical computa-
tion is a young and active research �eld. We call such systems mathematical

services which include computer algebra systems (CAS), theorem provers and
proof checkers (TPS), mathematical knowledge representation systems, tools for
visualization and editing, . . . . A major requirement to qualify as mathematical
service is the ability to cooperate by incremental and restartable computation
and deduction.

There has been work to integrate homogeneous services, i.e. combining CAS
in Cas/� [13] and OpenMath [1], combining TPS in OMRS [9] and many
others. The integration of CAS and TPS in a common environment has not yet
led to powerful systems. However, some prototypes were developed which prove
the advantages of such a combination, e.g. Analytica [6], interfaces between
Hol and Maple [10], Isabelle and Maple [2], and Nuprl and Weyl [12].

We classify communication and cooperation methods for such environments
in [5]. However, we believe that the lack of a general formal framework is one
reason why nowadays prototypes do not qualify as mathematical services. [1] in-
troduces a semantics of mathematical objects and interfaces and [9] initiates the
formal speci�cation of reasoning theories and reasoning structures for combining
logical services. However, a formal framework to combine CAS and TPS is not
given.
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Another reason is that nowadays CAS behave like black boxes. They are
not designed to allow provisional or restartable computation and do not provide
access to their context. To implement contexts in mathematical reasoning and
computation has been initiated in [8] by proposing extensions to the interac-
tive mathematical proof system Imps [7]. Again, there is no semantics of the
integration.

The long term goal of this work is to provide a methodology for constructing
complex systems by composing mathematical services while the actual goal of
this paper is to provide a formalmethod for their speci�cation. Such a methodol-
ogy has to consist of both a formal theory and structures for its representation.
We introduce computation structures to represent objects and applications of
algorithms appearing in algorithmic services by extending and modifying the
concept of reasoning structures given in [9]. The notions, de�nitions and theo-
rems given here are intentively kept very close to reasoning theories to illustrate
their similarities and to construct natural combinations of deduction and com-
putation. Because of the restricted length of the paper we left some notions
informal or without examples and give references. The composition of reasoning
and computation theories and structures is subject of ongoing research.

The paper is organized as follows. Mathematical services are de�ned in sec-
tion 2. They include interactive and automated open systems performing any
kind of mathematical computation. The formal speci�cation of reasoning struc-
tures is sketched by some examples of Imps in section 3. Section 4 and 5 intro-
duce computation structures and their construction and manipulation. Finally,
section 6 illustrates examples of combining structures for symbolic mathematical
reasoning and computation.

2 Speci�cation of Mathematical Services

A formal description of mathematical services has to ensure interaction capabil-
ities to combine several systems, to contain meta information and justi�cations
on functions, it should allow easy extension by subpackages and interaction of
existing systems. Such a description should consist of several levels such as the
communication level for dynamic distribution of messages and events among
the services and the abstract functionality of the interface (see [17] and [16] for
examples).

The formal approach given in this paper provides a description of theories
for reasoning and computation respectively. [9] introduces the concept of Open
Mechanized Reasoning Systems which we call logical services LS. These systems
are based on reasoning theories and structures. By de�ning computation the-
ories for algorithmic services AS and composition of theories we introduce a
framework for the structures given in the next section.

De�nition1.

A mathematical service (MS) is an implementation of a mathematical com-
putation or processing and an interaction component.



In the rest of the paper we restrict MS to reasoning and computation
systems.1

MS = LS j AS
LS = Reasoning System + Interaction

AS = Computation System + Interaction

Reasoning System = Reasoning Theory + Control

Computation System = Computation Theory + Control

Reasoning Theory = Sequents + Rules

Computation Theory = Objects + Algorithms

Reasoning theories are de�ned in [9] to consist of a sequent system Ssys =
hS;C; j=; I; [ ]i, a set of identi�ers Id and a rule set ~r 2 Rset[Ssys; Id]. Sequents
allow the use of schematic variables and can be instantiated. A rule is a relation
on tuples consisting of a non-empty sequence of sequents and a �nite set of
constraints.

De�nition2.

An object system is a structure

OSys = hO;C; j=; I; [ ]i

with a set of objects O, a set of constraints C, a constraint satisfaction

mechanism j=� (P!(C)�C), a set of instantiations I, and an application

of instantiations [ ] : [O� I ! O] and [ ] : [C � I ! C].

Objects in CAS include polynomials, numbers, matrices, equations, sequences,
sets, expressions and many others. Conditions in terms of constraints are pro-
vided as local context of objects, e.g. type constraints. We allow objects and
constraints to be schematic and they can be instantiated.

Constraints are also introduced to guarantee certain properties when apply-
ing algorithms. Such an algorithm is a labelled relation on tupels of objects,
input parameters and a unique result, which is closed under instantiation, with
Id a set of identi�ers.

De�nition3.

A set of algorithms over an object system A 2 Algs[OSys; Id] is such that

Algs[OSys; Id] = [Id �! fA � (O� � O � P!(C)) j (8h�o; o;~ci 2 A)(8� 2 I)
(h�o; o; ~ci[�] 2 A)g]

A computation theory speci�es a set of objects and a set of algorithms. They
are designed to provide a methodology for the design and implementation of
future CAS according to the ideas given in [3]. The intermediate computations
are represented by computation structures which are introduced in the next
section.

1 LS corresponds to OMRS in [9], AS to OMCS and MS to OMME in [4].



De�nition4.

Let OSys be an object system, Id a set of identi�ers and ~a 2 Algs[OSys; Id]. A
computation theory CT is a structure

CT = hOSys; Id;~ai :

To de�ne a disjoint composition of theories for composing proofs and com-
putations is subject of ongoing research. It is done by gluing together seperate
reasoning and computation theories using additional rules called bridges. Such
bridges may include syntax transformations or instructions for rigorous systems
how to verify results of external theories. Section 6 sketches two examples of
bridges.

3 Reasoning Structures

Let RT = hSSys; Id; ~ri be an arbitrary but �xed reasoning theory. Reasoning
structures [9] were designed to represent the structures appearing in the con-
struction of derivations and proofs. They can be illustrated as labelled graphs
with edges and two kinds of nodes: sequent nodes and link nodes. These nodes
are labelled by their corresponding sequents and justi�cations respectively. To
enable vertical 
exibility the justi�cations may contain nested reasoning struc-
tures together with an instantiation as well as premiss and conclusion nodes.

De�nition5.

Basic reasoning structures are elements of RS0[RT; SN;LN ], which is the
set of structures rs = hSn; Ln; g; sg; sL; lLi such that

1. Sn 2 P!(SN ) set of sequent nodes of rs,
2. Ln 2 P!(LN ) set of link nodes of rs,
3. g : [Ln! Sn] maps to associated goal sequent node,
4. sg : [Ln! Sn

�] maps to possibly empty set of subgoal sequent nodes,
5. sL : [Sn! S] sequent node labelling map;
6. lL : [Ln! [Id� P!(C)]] link node labelling map such that 8ln 2 Ln :

lL(ln) = hid; ~ci^�s = sL(sg(ln))^s = sL(g(ln)) ) 9~c0 : ~c j= ~c0^h�s; s; ~c0i 2 ~r(id)

For example, a basic reasoning structure rsI in the proof construction of
theorem 6 is illustrated in �gure 1 and expanded in �gure 2. The labelling of the
sequent nodes was omitted because of readability.

Theorem6.

8x; c 2 IR and partial functions f : IR! IR such that D(f)(x) #:

D(c � f(x)) = c � D(f)(c)

Vertical 
exibility allows to nest structures within others to achieve better
presentations and readability of proofs.



((#{IMPS-sqn 1}

(FORCE-SUBSTITUTION

(#{IMPS-sqn 2}

(PRODUCT-RULE

(#{IMPS-sqn 5})

(#{IMPS-sqn 6} GROUNDED)))

(#{IMPS-sqn 3} GROUNDED))))

Fig. 1. Illustration of a deduction graph in Imps
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Fig. 2. Reasoning structure rsI

De�nition7.

A reasoning structure is an element of

RS[RT; SN;LN ] =
[

n2IN

RSn[RT; SN;LN ]

with RSn[RT; SN;LN ] the set of reasoning structures of level n. RSn+1 is
recursively de�ned as the set of structures rs = hSn; Ln; g; sg; sL; lLi satisfying
(1.-5.) of de�nition 5 and



6n+1. vB : [V k! [Id� P!(C)] + [P!(C)� I � [Sk�; Sk]�DSn[DT; SK; V K]]] is
a natural extension of the link labelling function.

Reasoning structures can be instantiated and can represent derivations and
proofs. Such proofs are derivations without open assumptions, e.g. �gure 2. The-
orems about reachability, instantiation of derivation, elimination of nesting and
derivation of trees are given in [9].

4 Computation Structures

Let CT = hOSys; Id; ~ai be an arbitrary but �xed computation theory. Corre-
sponding to reasoning structures we de�ne computation structures to represent
graphs of computations which are constructed by the application of algorithms.
The graphs consist of edges and two kinds of nodes:

{ object nodes, ON , represented by circles and
{ algorithm nodes, AN , represented by squares.

Object nodes are labelled by � jo consisting of a local context � of constraints
and an object o. Algorithm nodes are labelled by explanations which consist
of the name of an algorithm with its parameters or a quadrupel hC; �; [on]; csi
of a nested computation structure cs such that C is the set of constraints, �
instantiation, and [on] sequence of object nodes. Each algorithm node has a
unique link to its result and there are links from object nodes to algorithm
nodes. These graphs allow the representation of contexts for symbolic algebraic
computation.

De�nition8.

cs = hOn;An; r; p; oL; aLi 2 CS0[CT;ON;AN ]

is a basic computation structure with

1. On 2 P!(ON ) set of object nodes of cs,

2. An 2 P!(AN ) set of algorithm nodes of cs,
3. r : [An! On] maps to resulting object node,
4. p : [An! On

�] maps to possibly empty set of input parameter objects,

5. oL : [On! O] object node labelling map,
6. aL : [An! [Id�P!(C)]] algorithm node labelling map such that 8an 2 An :

aL(an) = hid; ~ci^�o = oL(p(an))^o = oL(r(an))) 9~c0 : ~c j= ~c0^h�o; o; ~c0i 2 ~a(id)

De�nition9.

The labelled graph Graph(cs) of a basic computation structure
cs = hOn;An; r; p; oL; aLi is the graph with nodes On [An and edges

f(an; r(an)) j an 2 Ang [ f(on; an) j an 2 An ^ on 2 e(an))g
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Fig. 3. Parts of a computation structure csI

Relying on basic structures we introduce vertical 
exibility for algorithmic
services by nesting structures. Computation structures are de�ned by their depth
and recursive elements. Figure 3 illustrates the graph of a basic computation
structure without constraints.

To increase the readability of computations and to group several steps we in-
troduce vertical 
exibility by nesting computation structures. The nested struc-
ture usually includes schematic variables and one can assign a unique identi�er,
e.g. Squarefree. Nesting computation structures correspond to the concept of
subroutines in symbolic computation systems. To allow for cooperation within
the computation of the squarefree property a CAS must handle structures for
subroutines.

De�nition10.

cs = hOn;An; r; p; oL; aLi 2 CS[CT;ON;AN ] =
[

n2IN

CSn[CT;ON;AN ]

is a computation structure. The set CSn+1 of computation structures of

depth n is recursively de�ned as the set of structures such that (1.-5.) in de�-
nition 8 holds and

6n+1. aL : [An ! [Id � P!(C)] + [P!(C) � I � [On�; On] � CSn[CT;ON;AN ]]]
the algorithm nodes labelling map such that (6.) holds for basic structures



and if aL(an) = h~c; �; [ �on; on]; cs0i ^ cs
0 = hOn0; An0; r0; p0; oL0

; aL
0i then

[ �on; on] 2 (On0)� ^ oL
0([ �on; on])[�] = [oL(p(an)); oL(r(an))]

Computation structures can include schematic variables to allow for schematic
computations. It was de�ned for such a computation to be closed under instan-
tiation. Examples for objects with schematic variables are gcd(n; 2n) = n orR
x
n
dx = xn+1

n+1
.

De�nition11.

An instantiation of a computation structure

cs = hOn;An; r; p; oL; aLi 2 CS[CT;ON;AN ] and � 2 I

is cs[�] = hOn;An; r; p; oL[�]; aL0i such that

8an 2 An

(ra) aL(an) = hid; ~ci ) aL
0(an) = hid; ~c[�]i and

(nest) aL(an) = h~c; �1; [ �ok; ok]; cs1i ) aL
0(an) = h~c[�]; � � �1; [ �ok; ok]; cs1i.

Computation structures represent the computation of a resulting object from
a set of given input parameters if no algorithm application has unsolved con-
straints. The following lemma states that vertical 
exibility can be eliminated
by vertical unfolding.

Lemma12. Elimination of nesting

Let cs 2 CS[CT;ON;AN ] be a computation structure with result o and input

parameters ~o then there exists a computation structure cs0 2 CS[CT;ON;AK]
of depth 0 with result s and input parameters ~o.

5 Construction and Manipulation of Structures

Operations Ors = faddS; linkR; solveC; linkNg for constructing and manipulat-
ing reasoning structures are given in [9], including the empty reasoning structure
emptyRS, introduction of sequents, link by forward and backward application of
rules, constraint solving, and nesting. This section introduces the corresponding
operations on computation structures.

De�nition13.

emptyCS = h;; ;;;;;;;;;i

is the empty computation structure.

Since emptyCS = emptyRS we denote empty structures as empty.



De�nition14.

Objects o 2 O are introduced by addO

addO(cs; o) = hOn [ fong; An; r; p; oLfon 7! og; aLi

with new object node on 2 ON nOn.

De�nition15.

Let on 2 On; �on 2 On
�
; a = hid; �o; o;~ci 2 ~a; j= f�o � oL( �on); o � oL(on)g. Links

by application of algorithms are de�ned as

linkA(cs; �on; on; a) = hOn;An[ fang;

rfan 7! ong; pfan 7! �ong; oL; aLfan 7! hid; ~cigi

with new algorithm node an 2 AN nAn.

De�nitions of operations for solving constraints, nesting links, extending op-
erations to nested computation structures and additional operations to combine
structures by introducing bridge rules correspond to [9] and are given in [11].
One can easily proof that the operations of Ocs = faddO; linkA; solveC; linkNg
are sound, independent, and complete generators of any computation structure
out of empty.

Let a = hid; �o; o0; ~ci be an algorithm such that �o = [o1; : : : ; on] and j= ~c.
We de�ne the application of an algorithm to be a computation structure as a
sequence of operations from Ocs.

De�nition16.

Let cs = hOn;An; r; p; oL; aLi be a computation structure such that �on =
[on1; : : : ; onn] 2 On

� ^ 8 1 � j � n : oL(onj) = oj . Let on0 62 On ^ an0 62 An.
applyA(cs; a; �on) is the sequence of operations

{ cs0 = addO(cs; o0) by introducing on0;
{ cs1 = linkA(cs0; �on; on0; a) by introducing an0;
{ cs

0 = solveC(cs1; vk0; ;).

6 Examples

6.1 Isabelle and Maple

We designed and implemented an interface between the tactical theorem prover
Isabelle [15] and Maple [14] by extending the simpli�er of Isabelle ([2], �g-
ure 4). The simpli�er is extended by new kinds of rules to call external functions
of the CAS. The interactive proof involves computation structures with only one
algorithm application. As an example, the inductive proof of

8n 2 IN : 5 � n =) n
5 � 5n:

expands all of the products in the induction step. x+1 is an object in the sequent
of a reasoning structure which serves as input node to the expand algorithm of
Maple.
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Fig. 4. Schematic Link between Isabelle and Maple

- by (res_inst_tac [("P",

= "%y.expand((x + 1) ^ 5) <= y")] expandE 1);

n ^ 5 <= 5 ^ n

1. !!x. [| x : Nat; 5 <= x; x ^ 5 <= 5 ^ x |] ==>

expand((x + 1) ^ 5) <= expand(5 ^ (x + 1))

- by (asm_simp_tac Nat_simplify_ss 1);

n ^ 5 <= 5 ^ n

1. !!x. [| x : Nat; 5 <= x; x ^ 5 <= 5 ^ x |] ==>

x ^ 5 + 5 * x ^ 4 + 10 * x ^ 3 +

10 * x ^ 2 + 5 * x + 1 <= 5 * 5 ^ x

The interface was implemented without explicit construction of computation
structures. The semantic of the interaction is given in [2].

6.2 Imps and Calvin

To introduce external function calls in a rigorous theorem prover is di�cult. Ei-
ther algorithmsmust be proven to be correct or the results of algorithmsmust be
fully proven by the proof system because rigorous systems can not trust external
tools. [10] introduces the concept of trust in cooperated reasoning and computa-
tion. Such cooperations can be used to guide proofs where veri�cation is easier
as computation by theorems. Since a huge subset of mathematical algorithmic
computation can be easily veri�ed by simple equations we started to implement
an interface between Imps [7] andMaple along the concept of external macetes
introduced by [8]. External computation and veri�cation of results could be suc-
cessfully implemented, e.g., for factorisation of polynomials, anti-derivatives, gcd
computations, Hensel lifting, and chinese remainder. Problems with complete-
ness of results occur by applications of the solve operator, i.e. solving linear
and di�erential equation systems, recurrence relations and equational simpli�-
cation. The veri�cation of numerical or \direct" computations, however, is of
same complexity.

A link with an existing CAS allows only to apply computation structures
with just one algorithm node. To implement a CAS capable to manage contexts
is one of our long term research projects. The system, called Calvin, allows



restartable and incremental application of algorithms. These contexts can be
used to guarantee correctness of computations, e.g. requesting the context of n
when integrating xn.

7 Conclusion and Further Research

This paper introduces computation theories and structures which serve as a for-
mal framework and tool for representing mathematical objects and applications
of algorithms appearing in algorithmic services. The composition of reasoning
and computation theories and structures will provide a theoretical and technical
framework for the speci�cation and implementation of symbolic mathematical
problem solving by cooperation of algorithms and theorems.

Nowadays CAS behave like black boxes. Cooperation with such systems result
in computation structures with just one algorithm node. Although the beni�t of
the given theory still is a formal description of the cooperation between provers as
well as several CAS and horizontal 
exibility, major redesign of CAS is required
to achieve high level cooperation. We have shown how computation structures
naturally correspond to reasoning structures and give access to intermediate
knowledge. To develop the CAS Calvin along the concepts presented in this
paper is part of an ongoing research project.

Cooperating services must provide some kind of access to reasoning and
computation structures. The functionality of interfaces for distributed reasoning
and computation are given in [16] and [11] respectively. Although they might
not explicitly be implemented cooperations among mathematical services are
based on manipulation of structures for symbolic mathematical reasoning and
computation.
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