View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by KITopen

THIS PAPER APPEARED IN: COMMUNICATIONS OF THE ACM, 35(6):21-24, JuNg 1992

A Critique of the Programming Language C*

Walter F. Tichy
Michael Philippsen

University of Karlsruhe
School of Informatics

D-7500 Karlsruhe, F.R.G.

tichy@ira.uka.de
philippsen@ira.uka.de

C* is a data parallel programming language origi-
nally developed for the Connection Machine. Efforts
are now underway to standardize a revised version of
C* [6]. We think that standardization of C* is prema-
ture at this time, since the language contains a number
of unproven constructs and obvious flaws. We are con-
cerned that standardization of a parallel language now
might force its programming model upon future gen-
erations of programmers, even though we already know
it 15 deficient. The purpose of this note is to make the
relevant issues accessible to a wider audience and to
make specific recommendations for improving C*.

C* is an extension of ANSI standard C and in-
tended as an “efficient, fairly low-level systems pro-
gramming language[6]” for parallel computers with
distributed memory. Parallelism is expressed directly
in the data parallel paradigm. In this paradigm, “par-
allelism comes from simultaneous operations across
large sets of data, rather than from multiple threads
of control[2]”. Data parallelism is a synchronous
paradigm and therefore well suited to SIMD machines.
It has also been implemented successfully on a MIMD
machine[5].

As an extension of C, C* inherits most of the draw-
backs of its ancestor, but we are not concerned about
those here. Neither are we concerned with limiting
C* to a synchronous paradigm, even though an asyn-
chronous one would be more general. We are con-
cerned, however, with the principles of programming
language design, the programming model underlying
C*, and the efficient implementability of C* on both
SIMD and MIMD machines. The problems we identi-
fied in C* in these areas are discussed below.

Phil Hatcher

University of New Hampshire
Department of Computer Science

Durham, NH 03824, U.S.A.

pjh@cs.unh.edu

1 Parallel Data Types

C* introduces the parallel variable as a new data
type. The parallel variable is an array of one or more
“parallel” dimensions. All elements of a parallel di-
mension may be processed simultaneously, while the
traditional, “serial” dimensions can only be processed
serially. For example, if one wishes to define a two-
dimensional array A whose rows can be processed
in parallel, but whose columns are processed serially,
then one declares the following:

shape [N]rowdim;
float:rowdim A[N];

The shape declaration given here introduces rowdim
as the name for a storage structure that can hold vari-
ables with a parallel dimension of N elements; note the
index range declared on the left of the identifier. The
second declaration then allocates a variable A with
the shape given by rowdim. The elements of this vari-
able are again vectors, but with a serial dimension.
This time, the index range is on the right. The left
and right indexing carries over into accessing arrays:
The expression [i{]A[j] would select the element in the
t-th row and j-th column of A. This notation 1s un-
usual, but is intended to provide syntactic clues to the
programmer about which dimensions can be processed
serially and which in parallel. A minor annoyance is
that if the programmer should decide to change a di-
mension from serial to parallel or vice versa, all index
expressions in the program involving the changed type
must be switched around accordingly.

While syntax is a matter of taste, non-orthogonality
of the new type constructor for parallel variables is a
more serious problem. Parallel variables cannot be

https://core.ac.uk/display/197597028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

combined freely with other types. For instance, it is
not possible to create parallel variables with records as
elements that in turn have parallel variables as com-
ponents. Perhaps one could argue that this particular
restriction is minor for the intended application area of
C*. A more serious non-orthogonality concerns point-
ers. Pointers may not be stored in parallel variables
(or in records or other data structures stored in par-
allel variables). This restriction is unfortunate, since
there are many non-numeric applications that could
use parallel pointers[1]. Also, omitting them is incon-
sistent with the spirit of C, where pointers are used
frequently. The prohibition against parallel arrays of
pointers seems to be motivated partly by the address-
ing properties of the Connection Machine, and partly
by the type structure of C* itself. The earlier version
of C* has about ten different variants for each pointer
type. The variants reflect whether the pointer itself is
stored in a singular or a parallel variable and whether
it actually points to a singular or parallel variable, plus
some additional variants. The result is that parallel
pointers in old C* are exceedingly complicated to pro-
gram. It appears that the same complexities would
arise in new C*, and were omitted for this reason.

The source of these difficulties is quite simple: The
orthogonal notions of data type and data layout have
been intermixed in C*. A data type determines which
operations can be applied to a datum; the layout de-
termines whether the operations can be applied in par-
allel or serially. These are two separate, independent
notions. The set of what operations can be applied
to a datum should be independent of how (in parallel
or serially) they can be applied. A better approach
appears to be to rearrange a variable of a given type
implicitly and automatically to fit a required layout
(perhaps with a performance warning from the com-
piler).

2 No Nested Parallelism

Nested parallelism occurs when a parallel pro-
gram calls a procedure or another statement which
spawns additional parallelism. This feature has been
found to be necessary for writing high-level parallel
programs[1]. Nevertheless, nested parallelism is not
possible in C*. Instead, the nested parallelism must
be pushed up to the top level of the program. This
property forces programmers to distort otherwise clear
programs, prevents the top-down structuring of paral-
lel programs with subprograms, and hinders reusabil-
ity. We will illustrate these problems with a somewhat
longer example.

Suppose we wish to write a program for searching
large game trees, such as in chess or checkers. The
nodes in the game tree are board positions, where an
edge connects two nodes if a single, legal move leads
from one node’s position to the other’s. The task is to
write a program for expanding the game tree from a
given position down to a certain level. This situation
is typical for many search algorithms where the search
space is irregular and cannot be given a priori. A clear,
recursive outline for building and searching the tree is
as follows.

void SearchTree(position p) {
if (p->depth < maxdepth) {
successors=Generatelloves (p)
forall i in length(successors) do
SearchTree(successors[i])

I

The function SearchTree obtains a single board po-
sition as parameter and tests whether the maximum
search depth has been reached. If not, it calls func-
tion Generate Moves, which generates the list of le-
gal successor positions and returns it. SearchTree
then spawns as many additional invocations of it-
self as there are successor positions. Note that there
may be many simultaneous invocations of SearchTree
operating simultaneously, but under a synchronous
paradigm, they will all perform their various actions,
such as calling subprograms, in perfect synchrony.
SearchTree would also run unchanged under an asyn-
chronous paradigm.

While this program can be transformed to fit C*,
the result is not nearly as clear and concise. First,
SearchTree and GenerateMoves must be changed to
accept a vector of positions as parameters. Second,
Generate Moves must be split into two parts. The first
part estimates the number of successors for each posi-
tion in the vector. These numbers are added and the
result is used to allocate a new position vector long
enough for storing all successors of the input vector
at once. The second part of GenerateMoves then fills
in the successor positions. Finally, the filled vector
is passed to another invocation of SearchTree. This
transformation illustrates how the parallelism inside
GenerateMoves and SearchTree has to be marshalled
and pushed up to the calling procedure. Although
this transformation is not particularly hard to pro-
gram and becomes easier with practice, we believe it
would be better performed by the compiler and run-
time system. Note also that after the transformation,
the idea of multiple threads operating simultaneously
has been lost, and a compilation of the transformed

program for an MIMD machine might be inefficient
due to the forced synchroneity.

The non-nested parallelism of C* is inappropriate
for writing clear, maintainable, and portable paral-
lel programs. Omne might argue that it is still un-
clear which forms of nested parallelism are appropriate
and how to implement them, but that is precisely our
point: It is too early to standardize nested parallelism
out of existence with C*.

3 Multiple Copies of Each Function

For scalar functions, the programmer must write
two versions: one for parallel, the other for sequential
contexts. For instance, suppose that we have written a
scalar function abs(z) that returns the absolute value
of an integer. It would be natural to apply abs to
parallel variables v1 and v2 of shape rowdim thus:

with(rowdim) v2 = abs(vl);

The with-statement in C* activates as many (virtual)
processors as there are elements in the given shape.
These processors operate on the given parallel vari-
ables elementwise. This notation is normally used
for all scalar operators and assignment. However, the
presence of the call to the scalar function abs makes it
illegal. To make it legal, the programmer must write
a second function abs that takes a parallel variable of
shape rowdim as parameter. Thus, the programmer
must write at least two version of each function. Ad-
ditional versions are needed for additional shapes, or
shapes must be passed as parameters and a case anal-
ysis performed inside the function. The difficulties of
keeping multiple versions of the same function consis-
tent are well known to practicing software engineers.
This discussion points to a problem with the se-
mantics of the with-statement. With creates multi-
ple processors that operate in parallel, but when they
reach a function call, only a single call is actually per-
formed. Inside the function, however, the original pro-
cessors come back to life. Thus, the parallel context
seems to be conceptually suspended for the moment of
the call, then resumed inside the procedure. Appar-
ently, the specifics of the procedure call on a SIMD
machine are reflected in the language definition. A
better, fully consistent view would be to let the with-
statement create as many processors as before, but let
all of them execute the call of the (scalar) function.
Since the processors operate synchronously, there is
an efficient implementation even on a SIMD machine.
A separate, parallel version of each function need not

be written. These simplified semantics also accommo-
date nested parallelism.

4 Control Structures

The control constructs for loops and conditional
statements are defined in an awkward way and fully
synchronous execution may be too restrictive for effi-
ciency. As an example, consider the following parallel
loop in C*.

while (|= (<parallel-condition>)) {
where (<parallel-condition>) {
statements
}
}

The intent is that multiple processors execute the
above loop simultaneously. The whole statement ter-
minates as soon as <parallel-condition> evaluates
to false in all processors. The operator |= in the first
line, an OR-reduction, expresses this termination. It
is awkward to be forced to repeat this condition in the
second line. The careful programmer would evaluate
the condition only once and then store it into a tem-
porary, in order to prevent unwanted side effects and
inefficiency. The repetition could easily be avoided
and the compiler be burdened with the required code
generation. At least this is how it was in the original
C*.

The language definition as it stands also hurts per-
formance on MIMD machines. The problem is the
overly synchronous behavior required for loops: all
iterations execute in complete lockstep, even if each
loop operates on purely private data. This behavior
is acceptable on a SIMD machine since the hardware
forces that behavior anyway. But on MIMD machines
this could hurt performance. Suppose the loops were
allowed to run asynchronously, then some “natural”
load balancing might occur. That is, suppose one
processor executes the first iteration quickly and the
next more slowly, while another processor exhibits the
opposite behavior and thus the two processors finish
in about the same time. With the present language
definition, the processors are forced to run fully syn-
chronously, and hence are slowed to the speed of the
slowest one.

5 Conclusion

There are many other, small problems in C*, which
we will not discuss further. (Among those are (1) that

value parameters of only single shape can be passed
to functions, (2) that a += b has not necessarily the
same effect as a = a + b, (3) that vector operations
are defined for parallel dimensions, but not serial ones,
and (4) that the language is defined mostly by exam-
ple and not by a precise statement of the semantics).
While we consider the old C* a first and significant
step in the right direction, it is dismaying to see so
many of the old problems being carried over into the
successor. It seems that elementary principles of lan-
guage design such as machine-independence, orthogo-
nality of constructs, consistency, and simplicity have
not been taken into account sufficiently in new C*.

We believe that a much simpler extension of C suf-
fices to realize data parallelism. One needs to add
a single new statement, namely a synchronous forall,
plus perhaps its asynchronous form. For data struc-
tures, one needs to introduce true multidimensional
arrays plus pragmas that specify how to lay out the
data. Such extensions have been implemented success-
fully in a compiler for the language Modula-2, tar-
geting the Connection Machine[4, 3]. A simple and
consistent extension of Modula-2 avoids all the prob-
lems mentioned above, without loss of efficiency. One
might, however, call this work an unconfirmed exper-
iment in language design and compiler construction.
But this is exactly our point: More time is needed
before we can standardize parallel programming lan-
guages.

At this time, design and compilation of parallel lan-
guages 1s in an experimental phase, as can be seen
by the numerous proposals for such languages, but
scant reports on experience with their implementation
and use. However, knowledge in this area is increas-
ing rapidly, so it would be imprudent to fix a poorly
thought-out extension of a language as influential as
C at this time.

References

[1] Guy E. Blelloch and Gary W. Sabot. Compiling
collection-oriented languages onto massively paral-
lel computers. Journal of Parallel and Distributed

Computing, 8(2):119-134, February 1990.

[2] W. Daniel Hillis and Guy L. Steele. Data par-
allel algorithms. Communications of the ACM,
29(12):1170-1183, December 1986.

[3] Michael Philippsen and Walter F. Tichy. Compil-
ing for massively parallel machines. In Proc. of the
Workshop on Code Generation, Schloss Dagstuhl.
Springer Verlag, May 20-24 1991. to appear.

[4] Michael Philippsen, Walter F. Tichy, and Chris-
tian G. Herter. Modula-2* and its compilation.
In First International Conference of the Austrian
Center for Parallel Computation, September 1991.
(under review).

[5] Michael J. Quinn and Philip J. Hatcher. Data-~
parallel programming on multicomputers. [EFEE

Software, pages 69-76, September 1990.

[6] Thinking Machines Corporation, Cambridge, Mas-
sachusetts. C* Language Reference Manual, April
1991.

