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Abstract

Knowledge Engineering (KE) and Software Engineering (SE) have similar goals: developing
methods, techniques, and tools for the building process of either knowledge based systems
(kbs) or (complex) traditional software. Due to this kinship it seems obvious to analyse to
which extent both areas, KE and SE, can benefit from each other. In this paper we want to argue
from the KE point of view. The main paradigm in KE has switched from a transfer point of
view to a modeling point of view. So a lot of emphasis has been put on the development of
notions and methods for building and structuring models, which capture different results of the
development process. Much effort has been investigated into the analysis and development of
reusable components: problem solving methods describing the dynamic behaviour of kbs and
ontologies defining the vocabulary and structure of (domain) models. We describe specific
approaches in KE in some detail which exploit these ideas in different ways: Role-Limiting
Methods, KADS and MIKE. Finally Life Cycle Models, Non Functional Requirements and
Transformational Development are discussed as areas where we think KE might profit from
research and experiences made in SE.

Key Words: Requirements analysis, knowledge engineering, knowledge acquisition, reuse

1 Introduction

In earlier days in AI there was no interest in methodological issues. Instead the research
activities were focused on the development of formalisms, languages, inference mechanisms,
and tools to describe and operationalize knowledge based systems and on the realization of
small knowledge based systems in order to study the feasibility of the different approaches.

Though these studies offered rather promising results, the transfer of this technology into
commercial use in order to build e.g. large expert systems failed in many cases. The situation
was directly comparable to a similar situation in the construction of traditional software
systems, called „software crisis“: the means to develop small academic prototypes were not
sufficient for the design and maintenance of large, long living commercial systems. In the same
way as the „software crisis“ brought the area of Software Engineering to birth the similar
situation in AI brought the area of Knowledge Engineering to birth.

So the goal of KE is similar to that of SE: turning the process of building kbs from an art to
an engineering discipline. This requires the analysis of the building and maintenance process
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itself and the development of appropriate methods, languages, and tools, which support these
processes.

Because both disciplines, SE and KE, have similar roots and goals it is quite obvious that
there are many common interests and that it may be fruitful for both areas to learn from each
other.

Within this learning process the first question which arises is: what are the main differences
between a „traditional“ software system, i.e. a system which has to be tackled by SE methods,
and a kbs?

In [Par86] the concept „incompletely specified functions“ is used in order to characterize
problems, which need a kbs to be solved. Typically kbs are developed to solve very complex
problems or even problems which are not entirely understood [ShG92]. So the functionality of
the system may only be partially specified in advance. Instead such a specification must be
developed iteratively in cooperation with expert(s) and the user(s) of the system. In many cases
the solution of such problems may only be called adequate or inadequate instead of correct or
incorrect.

Even if the functionality of a kbs is entirely specifiable the complexity of every
computational mechanism may be so high, that the problem in its entire generality may only
be solved for small instances. Many AI-problems in their general formulation are NP-hard
problems [Neb95]. Experts solve such problems by using a large amount of domain specific
knowledge, which allows to restrict the problem, to approximate the problem or to reformulate
the problem in order to solve a simpler problem efficiently or to use domain specific heuristics
which allow to reduce the average complexity [Neb95]. So for such problems it is not sufficient
to give a detailed functional specification and to build a solution using „normal“ computer
science know-how. Instead domain specific knowledge is necessary in order to be able to build
a solution which is able to solve larger instances of the problem in a reasonable time.

„In simple terms this means analysis is not simply interested in what happens, as in conventional systems,
but with how and why.“[Bro86].

The last difference between „traditional“ systems and kbs is a rather technical point. In kbs
most knowledge is represented explicitly, whereas in „traditional“ systems a high amount of
knowledge is compiled into the algorithms. In domains where this knowledge changes rapidly
(e.g. configuring computer systems) the explicit representation has especially advantages for
the maintenance of the system.

Nevertheless we don´t think there is a sharp border line which clearly allows to classify
systems as either to be a „traditional“ system or to be a kbs. In contrast we think that both mark
different points on a scale and that the transition between both is fluent.

In this paper we present methods from the area of KE, which we think may be useful for
SE, and we will outline   deficiencies in the actual methods of KE, where we think KE could
learn from SE.

The paper is structured as follows. In section 2 principles and methods from KE, which
could be beneficial for SE as well, are presented. Some well-known approaches of KE,
incorporating these ideas are described in section 3. Some areas, in which in our opinion KE
could profit from SE, are discussed in section 4. Finally, in section 5, we summarize and draw
a conclusion.
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2 Knowledge Engineering: Principles and Methods

In the following some of the main principles and methods which influence the existing KE
approaches are presented.

2.1 KE as a Modeling Process

„This transfer and transformation of problem-solving expertise from a knowledge source to a program is
the heart of the expert-system development process.” [HWL83]

In earlier days the development of a kbs has been seen as a transfer process of knowledge from
the head of the expert into the computer system (Figure 1). It was assumed that the knowledge
in the kbs is best structured in the same way as in the expert´s head. Nowadays this process of
building a kbs is seen as amodeling activity. Building a kbs means building a computer model
with the aim of imitating an expert´s approach. It is not intended to create a cognitive adequate
model, i.e. to simulate the cognitive processes of an expert in general, but to create a model
which offers similar results in problem-solving for problems in the area of concern. While the
expert may consciously articulate some parts of his or her knowledge, he or she will not be
aware of a significant part of this knowledge since it is hidden in his or her skills. This
knowledge is not directly accessible by interviews but only by observing the expert and
interpreting these observations. Therefore this knowledge acquisition process is no longer seen
as a transfer of knowledge into an appropriate computer representation, but as a generation of
a model of the knowledge by the observer ([Cla89], [Mor91]).

This also reflects the two different roles of the model. On the one hand, the model is a result
of the knowledge-generating process. It is gained by observing and interpreting the expert’s
behaviour. On the other hand, its role becomes a precondition for the further process. The
model consists of a number of hypotheses about the experts behaviour, which have to be
validated by additional observations. In this case, the already existing model serves as a basis
for gathering and interpreting new observations.

 This modeling view of the building process of a kbs has the following consequences:

• Like every model, such a model cannot reflect reality in general, but is only valid for a
concrete purpose, i.e. it can onlyapproximate the desired behaviour. In principle, the
modeling process is infinite, because it is an incessant activity with the aim of
approximating the model to the intended behaviour.

• The modeling process is acyclic process. New observations may lead to a refinement,
modification, or completion of the already built-up model. On the other side the model
may guide the further acquisition of knowledge.

Fig. 1    Transfer View
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• The modeling process is dependent on the interpretation of the observations made by
the observer. Therefore this process is veryfaulty and a feedback by reality in the cyclic
process is indispensable for the creation of an adequate model. According to this
feedback the model must therefore be revisable in every stage of the modeling process.

2.2 Problem Solving Methods

In [Cla85] Clancey analysed a set of first generation expert systems developed to solve
different tasks, e.g. diagnosis. Though they were realized using different representation
formalisms (e.g. production rules, frames, lisp) he discovered a common problem solving
behaviour. Clancey was able to abstract this common behaviour to a generic inference pattern
called Heuristic Classification, which describes the dynamic behaviour of these systems on an
abstract level, the so called „knowledge level“ [New82]. This level allows to describe
reasoning in terms of goals to be achieved, actions necessary to achieve these goals and
knowledge needed to perform these actions. A knowledge-level description abstracts from
details concerned with the implementation of the system. A similar separation is done in
software engineering where the description at the knowledge level corresponds to the
specification of the system, which is clearly separated from its design and implementation.

Let us consider Heuristic classification in some more detail (Figure 2). First observables are
abstracted maybe over several levels to abstract observables, e.g. the observable „410 C
temperature“ may be abstracted to „high temperature“. These abstracted observables are
matched to a solution class, e.g. „infection“, and finally the solution class is hierarchically
refined to a solution, e.g. the disease „influenca“.

It turned out that Heuristic Classification may be used for specific tasks independently of
the domain at hand. For instance it may be used to diagnose diseases in the same way as it may
be used to diagnose faults in cars.

In the meantime a lot more such generic inference patterns, calledproblem-solving methods
(PSM), have been identified: Cover-and-Differentiate for diagnosis [Mar88], Propose-and-
Revise [Mar88a] for parametric design, Skeletal-Plan-Refinement for hierarchical planning
etc. A description and taxonomy of different PSMs may be found in [Pup93],[McD88].

PSMs may be exploited in the knowledge engineering process in different ways:

• PSMs imply a classification of tasks. An experienced knowledge engineer is able to
select an appropriate PSM for the task to be solved. So PSMs are an important concept
for the way knowledge engineers think and thus for educating knowledge engineers.

observables

abstract solution

solution

abstract refine

match classobservables

Fig. 2    Heuristic Classification
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For this reason a set of semi-formally described PSMs together with the tasks they are
applicable to is described in [BrV94]. For different kinds of diagnosis PSMs are
described in [Ben93].

• PSMs contain actions which need specific knowledge in order to perform their task. For
instance, Heuristic Classification needs a hierarchical classification of observables and
solutions. A PSM generically describes the differentroles which are played by different
kinds of domain knowledge during the problem solving process. For instance the role
„observables” may be instantiated by „patient data”. So a PSM may be used as a
guideline to acquire static domain knowledge and additional domain specific problem-
solving knowledge like heuristics and constraints. Based on this idea powerful
knowledge acquisition tools may be developed which allow to acquire exactly the
knowledge needed by the PSM. In many cases the acquisition of domain knowledge
and the creation of the PSM is an incremental process: First a PSM for the top-level task
is selected. This guides the acquisition of additional knowledge which in turn leads to
the selection of PSMs for the sub-tasks etc. [THW+93].

• A PSM allows to describe the main rationale of the reasoning process of a kbs. First,
this supports the validation of the kbs, because the expert is able to understand the
problem solving process. Second, it may be used for documentation purposes and thus
eases the maintenance process. Third, this abstract information may be used during the
problem solving process itself for explanation facilities.

• The problem solving process itself may be kept flexible by dynamically choosing an
appropriate PSM for the actually to be solved (sub-)task [CJS92]. So for every possible
(sub-)task the system designer describes a set of alternative PSMs, which solve this
subtask. Dependent on application conditions the best PSM for the case at hand is
chosen during the problem solving process.

• A PSM may be a component to be reused in different systems. Thus it is not left only to
the experience of the knowledge engineer, which PSM may be able to solve the task at
hand. Instead a library of PSMs described in an appropriate representation formalism
should be available in order to support technical reuse of PSMs. PSMs may be reused
on different levels. Reusing PSMs described at the knowledge level resembles reusing
specification components in SE. Reusing PSMs at the code level is comparable to the
idea of source-code libraries in SE [Kru92]. In the same way as in SE reuse allows to
reduce the modeling and implementation effort and improves the quality (in the sense
of software quality criteria) of the resulting kbs. Some work is in progress to identify
the assumptions and limitations of a PSM [Fen95a]. This knowledge is necessary to
match features of the task to features of the PSM and thus to support the selection
process of PSMs. In future this may perhaps enable the partial automation of the
selection process.

• PSMs (or combinations of PSMs) may be used as a skeletal description of the design
model of the kbs. If the kbs is realized preserving this structure, the final
implementation of the kbs reflects this conceptual structure.

The concept problem-solving method has strongly stimulated research in knowledge
engineering and thus has influenced a lot of approaches in this area. It has resulted in so-called
Role-Limiting Methods [McD88] (see section 3.1) and in libraries of PSMs (see e.g. [BrV94]).

For PSMs different levels of generality may be distinguished. The above mentioned PSMs
are domain independent but specific for a certain type of task. This means that they are able to
perform a specific type of task (e.g. diagnosis) in different domains. An instantiation of such a
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PSM, i.e. the application in and adaptation to a specific domain, leads to a domain specific
PSM (e.g. diagnosis of infectious diseases). In SE the notion of PSM like it is described above
is not discussed yet. Nevertheless standardized software products have some properties with
PSMs in common. For instance a standardized module for the administration of a stock may
be seen as a domain specific PSM.

2.3  Ontologies

In addition to problem solving methods the notion of anontology provides a further type of
reusable model component. Whereas the meaning of a PSM has reached a rather large
agreement in the KE community, the meaning of the term ontology is still defined in rather
different ways. At least two basic types of ontologies may be distinguished:

• Commonsense Ontologies: Commonsense ontologies aim at defining a collection of
top-level concepts and associated relations which are independent of a specific
application domain. „...they are intended to be comprehensive - to be a ´conceptual coat
rack´ on which to hang more specific ontologies and domain knowledge.” [Gru93]. In
order to make the development of these ontologies manageable, they are typically
divided into different clusters, e.g. for time and events, space, or qualities and quantities
(compare [HeR91] or [LeG90]). E.g. a time cluster could alternatively provide a notion
of time which is based on time points or time intervals. Since such clusters are built on
a sound theoretical basis, their reuse within a requirements modeling process results in
well structured and robust model components and thus avoids the need for inventing
such clusters on the fly. [Pir93] reports on the advantages of such an approach in the
context of building up a model of business process management. Of course, appropriate
methods are required for supporting the reuse of commonsense ontologies and for
avoiding the well-known disadvantages of ´code scavenging´ [Kru92]. In [PiS94] the
KARO approach is introduced which offers an integrated set of formal, lexical, and
graphical methods for reusing commonsense ontologies (see [Pir95] for details).

• Domain Ontologies: Domain ontologies provide a conceptualization of a specific
domain [Gru93]: they constrain the structure and contents of particular domain
knowledge and define the vocabulary, which is used to model the domain. In that way,
domain ontologies may be compared with conceptual schema descriptions of data
bases. However, ontologies are typically specified in more expressive languages
[vHe95]. Domain ontologies aim at making domain knowledge shareable across
different tasks and reusable for different tasks (see [NFF+91]. Again that bears
similarities with the problem of making databases interoperable.

In [SWD+94] and [SWJ95] a proposal is made to organize ontologies into layers, where
each layer expresses ameta-level view on another layer. Thus a task specific ontology, e.g. for
diagnosis, may be defined on top of a domain ontology, e.g. for a medical domain, and a PSM
specific ontology, e.g. for heuristic classification, may in turn be specified on top of the task
specific one.

A slightly different approach is described in [ToA94] for engineering applications. There,
the notion ofontological viewpoints is introduced: ontologies are used to provide different, but
well related views on the modeled systems and to make ontological assumptions of these
different views explicit. [ToA94] proposes three ontologies to structure a library of reusable
models for physical systems: a component, a process, and an information ontology.

Although ontologies, as discussed in the KE community, are defined differently and with
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different purposes, they all aim at making some kind of knowledge shareable and reusable in
different contexts.

2.4 Integration of Informal and Formal Description Formalisms

A major concern within KE is the development of methods and description formalisms which
support the process of building up an adequate and explicit model of the required expertise (see
section 2.1). Since the participation of the expert in this modeling process is of high
importance, emphasis has been put on constructing well structured and informally or semi-
formally described conceptual models which can be used as a communication basis with the
expert. The Componential Framework [Ste93] with its various models for describing tasks,
methods, and domain knowledge is a notable example of this development. However, in
contrast to SE where the development of informal specification languages (see e.g. Structured
Analysis [You89]) and formal specification languages (see e.g. Z [Spi92]) has been done to a
large extent independently from each other, executable and/or formal specification languages
in KE exploit to a large extent the structure of such conceptual models. Typical examples of
this tight integration of the structure of a conceptual model into the definition of a formal
specification language are (ML)2 [vHB92] and KARL ([Ang93], [Fen93]) (see sections 3.2
and 3.3). As a result, a smooth transition may be achieved between the informal conceptual
model and the formal specification of the kbs [FLN+94].

3 Specific Approaches in KE

The ideas presented in the previous section have had influence on a lot of approaches in KE.
Some of them are described in the following section.

3.1 Role-Limiting Methods

Role-Limiting Methods (RLM) ([Mar88], [McD88]) have been one of the first attempts to
support the development of expert systems by exploiting the notion of a reusable problem
solving method. The RLM approach may be characterized as a shell approach. Such a shell
comes with an implementation of a specific problem solving method and thus can only be used
to solve a predefined type of tasks. The given problem-solving method also defines the generic
roles that knowledge can play during the problem-solving process and it completely fixes the
knowledge representation for the roles such that the expert only has to instantiate the generic
concepts and relationships, which are defined by these roles.

Let us consider as an example the PSM Heuristic Classification (see Figure 2). A RLM
based on Heuristic Classification offers a role „observable” to the expert. Using that role the
expert (i) has to specify which domain specific concept corresponds to that role, e.g. „patient
data” (see Figure 4), and (ii) has to provide domain instances for that concept, e.g. concrete
facts about patients.

It is important to see that a description of a problem solving method is given in a generic,
domain independent way. Since the kind of knowledge, which is used by the problem solving
method, is predefined, the acquisition of the required domain specific instances may be
supported by (graphical) interfaces which are custom-tailored for the given problem solving
method.
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Two RLMs will now be described in some more detail: SALT ([Mar88a]) which is used for
solving constructive tasks and MED2/CLASSIKA ([GaP92], [Pup93]) which is used for
solving classification tasks.

SALT

SALT [Mar88] is a knowledge acquisition tool for generating expert systems which use the
PSM Propose-and-Revise. Thus expert systems may be constructed for solving specific types
of design tasks, e.g. parametric design tasks. The basic inference actions Propose-and-Revise
is composed of may be characterized as follows (see [McD88] for more details):

• (i) extend a partial design by proposing a value for a not yet computed design
parameter,

• (ii) determine whether all computed parameters fulfil the relevant constraints, and
• (iii) apply fixes to remove constraint violations.

In essence three generic roles may be identified for Propose-and-Revise ([Mar88]):

• (i) „design-extensions” refers to knowledge for proposing a new value for a design
parameter,

• (ii) „constraints” provides constraint knowledge restricting the admissible values for
parameters, and

• (iii) „fixes” makes potential remedies available for specific constraint violations.

From that characterization of the PSM Propose-and-Revise one can easily see that only
generic PSM specific terms are used which are totally domain independent. Thus the PSM may
be used for solving design tasks in different domains by specifying the required domain
knowledge for the different predefined generic knowledge roles.

E.g. when SALT was used for building VT [MSM88], an expert system for configuring
elevators, the domain expert used the form-oriented user interface of SALT for entering e.g.
domain specific design extensions (see Figure 3). I.e. the generic terminology of the
knowledge roles is instantiated by VT specific instances.

1 Name: CAR-JAMB-RETURN
2 Precondition: DOOR-OPENING = CENTER
3 Procedure: CALCULATION
4 Formula: [PLATFORM-WIDTH -

OPENING-WIDTH] / 2
5 Justification: CENTER-OPENING DOORS LOOK

BEST WHEN CENTERED ON
PLATFORM.

Fig. 3    Design Extension Knowledge for VT

(the value of the design parameter CAR-JUMB-
RETURN is calculated according to the formula - in
case the precondition is fulfilled; the justification gives
a description why this parameter value is preferred
over other values (example taken from [Mar88a]))
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MED2 / CLASSIKA

MED2 ([GaP92], [Pup93]) is an expert system shell for solving classification tasks. MED2
relies on a Heuristic Classification approach [Cla85]: the identification of diagnoses is based
on the observation of symptoms and on rules describing which observations indicate which
diagnoses. By using evidence factors these rules also include a specification of the strength of
the relationship between an observation and a diagnosis. An example of such a rule in the
domain of fault-finding in automobile motors would read as follows: „If the fuel consumption
interpretation is slightly too high, then rate the diagnosis ‘air filter foal’ with evidence 60%”
([GaP92]). Typically, observations are first abstracted to abstract observations before they are
used in such heuristic rules. Furthermore, diagnoses which are proposed as solutions have to
be evaluated and in the end refined to more specific diagnoses.

From the description of the PSM as used in MED2 it becomes evident, that few knowledge
roles such as symptoms or diagnoses are sufficient for characterizing the types of knowledge
which are handled within MED2. These predefined knowledge roles are used within the MED2
knowledge acquisition tool CLASSIKA ([GaP92]) to generate appropriate knowledge
acquisition editors. For that purpose CLASSIKA includes predefined graphical structures
([GPS93]) and associated editors, e.g. hierarchies, tables and forms. In that way diagnoses and
symptoms are acquired by filling in domain specific diagnoses (e.g. „fuel tank empty”
[GaP92]) and symptoms (e.g. „not intended engine stop” [GaP92]) using the given hierarchy
editors, whereas heuristic rules are acquired by using the given table editor (see [GaP92] for
details). By offering these various knowledge acquisition editors and by exploiting the
predefined knowledge roles of heuristic classification, knowledge bases can be developed and
maintained to some extent by the domain experts themselves.

On the one hand, the predefined knowledge roles and thus the predefined structure of the
knowledge base may be used as a guideline for the knowledge acquisition process: it is clearly
specified what kind of knowledge has to be provided by the domain expert. On the other hand,
in most real-life situations the problem arises of how to determine whether a given domain
specific task may be solved by a given RLM. This task analysis is still a crucial problem, since
up to now there does not exist a well-defined collection of features for characterizing a domain
task in a way which would allow a straightforward mapping to appropriate RLMs. In addition,
if a given application task may only be solved by combining different PSMs, the fixed structure
of RLMs does not provide a good basis for handling that configuration problem.

In order to overcome this inflexibility of RLMs the concept of configurable RLMs has been
proposed.

Configurable Role-Limiting Methods

Configurable Role-Limiting Methods (CRLM) as proposed in [PoG93] exploit the idea that a
complex PSM may be decomposed into several subtasks where each of these subtasks may be
solved by different methods (see e.g. [CJS92]). In [PoG93] various PSMs for solving
classification tasks, like Heuristic Classification or Set-covering Classification, have been
analysed with respect to common subtasks. This analysis resulted in the identification of
shared subtasks like „data abstraction” or „hypothesis generation and test”. Within the CRLM
framework a predefined set of different methods are offered for solving each of these subtasks.
Thus a PSM may be configured by selecting a method for each of the identified subtasks. In
that way the CRLM approach provides means for configuring the shell for different types of
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tasks. It should be noted that each method offered for solving a specific subtask has to meet the
knowledge role specifications given for the CRLM shell, i.e. the CRLM shell comes with a
fixed scheme of knowledge types. As a consequence, the introduction of a new method into the
shell typically involves the modification and/or extension of the current scheme of knowledge
types [PoG93]. Having a fixed scheme of knowledge types and predefined communication
paths between the various components is an important restriction distinguishing the CRLM
framework from the flexible configuration approaches like e.g. KADS (see section 3.2) or
PROTEGE-II [PET+92].

It should be clear that the introduction of such a flexibility into the RLM approach removes
one of its disadvantages by still exploiting the advantage of having a fixed scheme of
knowledge types, which build the basis for generating effective knowledge-acquisition tools.
On the other hand, configuring a CRLM shell increases the burden for the system developer
since he has to have the knowledge and the ability to configure the shell in the right way.

Generation of Knowledge-Acquisition Tools

Obviously, a big effort is required for implementing a (graphical) knowledge acquisition tool
for all the specific RLMs. Therefore, some proposals have been made to generate such a tool
from the predefined knowledge representation scheme of the shell. META-KA [Gap95] is such
a tool generator, which uses the specification of the knowledge representation together with
some additional information concerning the screen representation for generating various types
of graphical editors. In essence, editors for forms, hierarchies, graphs, and tables may be
generated.

Another approach is the PROTEGE-II approach ([PET+92], [EPM94]), which aims at
supporting the development of expert systems by reusing domain and problem solving
knowledge as well as by providing a meta-level tool, called DASH, to generate (domain-
specific) knowledge-acquisition tools. DASH uses an ontology - specified in a frame like
language - as input and generates a forms oriented tool for instantiating the concepts and
relationships defined in the ontology. DASH also generates a basic dialogue structure and
provides means for customizing the generated tool to the specific needs and preferences of the
user.

RLMs and their various generalizations build a good basis for offering knowledge-
acquisition tools that allow domain specialists to provide themselves much of the domain
knowledge required [EPM94]. Thus, domain specialists may actively participate in the
development process of expert systems, although they are typically non-programmers.

3.2 The KADS Approach

One of the most prominent knowledge engineering approaches is theKADS approach
([SWB93], [WSB92]) and its further development toCommonKADS [SWD+94]. A basic
characteristic of KADS is the construction of a collection of models, where each model
captures specific aspects of the system to be developed as well as of its environment. In
CommonKADS theorganization model, the task model, theagent model, thecommunication
model, the expertise model, andthe design model are distinguished. Whereas the first four
models aim at modeling the organizational environment the kbs will operate in as well as the
tasks that are performed in the organization, the expertise and design model describe functional
aspects of the kbs under development.
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A major contribution of the KADS approach is its proposal for structuring the expertise
model. This knowledge-level model distinguishes different types of knowledge to describe the
knowledge which is required to solve a given task. Basically, static domain knowledge and two
types of knowledge which constitute the PSM specification are organized into different layers
of the expertise model1 [SWB93] (see Figure 4):

• Domain layer: On the domain layer all the domain specific knowledge is modeled
which is needed to solve the task at hand. This includes a conceptualization of the
domain, a so-called ontology [SWD+94], and a declarative theory of the required
domain knowledge. One objective for the construction of the domain layer is to model
the domain layer as independent as possible from the way it will be used later on for
solving specific tasks. However, this objective is restricted by the so-calledrelative
interaction hypothesis [SWD+94], which assumes that some kind of interaction exists
between the structure of the domain knowledge and the given task.

• Inference layer: On the inference layer theinference actions the generic PSM is
composed of as well as theroles, which are played by the domain knowledge within the
PSM, are described. The dependencies between inference actions and roles are
specified in what is called an inference structure. In that way the inference layer
restricts the set of all possible inferences to those which are defined as inference
actions. In Figure 4 we see the inference structure for the PSM Heuristic Classification.
Furthermore, the notion of roles provides a domain independent view on the domain
knowledge. E.g. „patient data” plays the role of „observables” within the inference
structure of Heuristic Classification (see Figure 4).

• Task layer: The task layer provides means for specifying the control over the inference
actions, which are defined on the inference layer. Thus, the task layer specifies the

1.  We do not consider thestrategic layer which should provide knowledge for selecting the best task structure
for achieving a given goal.

observables

abstract solution

solution

abstract refine

match classobservables

Fig. 4    Expertise model

begin
    abstract()
    match()
    refine()
end

patient data

temperature
infectious

indicate

inference
layer

domain
layer

task
layer

deseases
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control flow of the PSM. Basically, the task layer provides a decomposition of tasks into
subtasks and inference actions including a goal specification for each task, and a
specification of how these goals are achieved.

Two types of languages are offered to describe an expertise model: CML (Conceptual
Modeling Language) [SWA+94], which is a semi-formal language with a graphic notation, and
(ML)2 [vHB92], which is a formal specification language based on first order predicate logic
and dynamic logic. Whereas CML is oriented towards providing a communication basis
between the knowledge engineer and the domain expert, (ML)2 is oriented towards validating
a constructed model through (partial) simulation.

The clear separation of the domain specific knowledge from the generic description of the
PSM on the inference and task layer enables in principle two kinds of reuse: on the one hand,
a domain layer description may be reused for solving different tasks by different PSMs, on the
other hand a given PSM may be reused in a different domain by defining a new view to another
domain layer. Of course, in both cases the interaction hypothesis may make necessary some
modifications of the given model structures. Within CommonKADS a library of reusable and
configurable components, which can be used to build up expertise models, has been defined
[BrV94]. The library covers nine different types of problems, among others diagnosis,
assessment, planning, and configuration.

In essence, the expertise model and the communication model capture the functional
requirements for the target system. Based on these requirements the design model is
developed, which specifies among others the system architecture and the computational
mechanisms for realizing the inference actions. KADS aims at achieving astructure-
preserving design, i.e. the structure of the design model should reflect the structure of the
expertise model as far as possible [SWD+94].

All the development activities, which result in a stepwise construction of the different
models, are embedded in a cyclic and risk-driven life cycle model (see [Tay92]) similar to
Boehm’s spiral model [Boe88].

The basic structure of the expertise model has some similarities with the data, functional,
and control view of a system as known from software engineering. However, a major
difference may be seen between an inference layer and a typical data-flow diagram (compare
[You89]): Whereas an inference layer is specified in generic terms and provides - via roles and
domain views - a flexible connection to the data described on the domain layer, a data-flow
diagram is completely specified in domain specific terms. Moreover, the data dictionary does
not correspond to the domain layer, since the domain layer may provide a complete model of
the domain at hand which is only partially used by the inference layer, whereas the data
dictionary is describing exactly those data which are used to specify the data flow within the
data flow diagram (see also [FAL+93]).

3.3 The MIKE Approach

MIKE (Model-based and Incremental Knowledge Engineering) [AFL+93] defines an
engineering framework for eliciting, interpreting, formalizing, and implementing knowledge
in order to build kbs. It aims at integrating the advantages of life cycle models, prototyping,
and formal specification techniques into a coherent framework for the knowledge engineering
process. Subsequently, we will discuss the main principles and methods of MIKE.
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In contrast to other approaches which assume that the expert creates the model himself, it
is assumed that the knowledge engineer is the moderator of this modeling process. This is
necessary due to the following reasons:

• Often the knowledge about the problem-solving process becomes conscious to the
expert only during the communication with the knowledge engineer.

• The approach that the expert completes the model of expertise by filling facts of the
domain into the system is only applicable for simple domains or by using predefined
shells which are specialized to one problem-solving method or one application domain.

• Often the expert is overstrained in learning to use acquisition tools or representation
formalisms in order to model the expertise himself.

Considering knowledge engineering as a modeling activity implies that this process is
cyclic, faulty andapproximative.

Within the MIKE approach these properties have been considered as the main reasons in
order to develop methods and techniques which provide feedback for the knowledge engineer
as early as possible within the modeling process. Therefore prototyping of the acquired
expertise using executable models has been integrated into the modeling process as one of its
main features.

Within the modeling process a large gap has to be bridged between informal descriptions of
the expertise which have been gained from the expert using knowledge elicitation methods and
the final realization of the kbs. Dividing this gap into smaller ones reduces the complexity of
the whole modeling process because in every step different aspects may be considered
independently from other aspects.

The knowledge gained from the expert in the elicitation phase is described in natural
language. It mainly consists of interview protocols, protocols of verbal reports, etc. These
knowledge protocols define theelicitation model [Neu94](Figure 5). This knowledge
represented in natural language must be interpreted and structured. The result of this step is
described semi-formally in the so-calledstructure model [Neu94], using predefined types of
nodes and links.

According to the KADS approach the knowledge-level description of the functionality of
the system is given in themodel of expertise(cf. [SWB93]). For describing the model of
expertise the formal and operational specification language KARL ([Ang93], [Fen93]) has
been developed. KARL is based on first order logic and dynamic logic and offers language
primitives for each of the three different layers of the model of expertise.

The model of expertise finally includes all functional requirements of the desired system.
For the realization of the final system, additional requirements have to be considered which are
still independent of the final implementation of the system. These requirements are non-
functional requirements such as efficiency of the problem-solving method, maintainability of
the system, persistency of data etc. Capturing such decisions within thedesign modeldivides
the gap between the model of expertise and the implementation of the final system. For the
description of the design model the language KARL has been extended to the language
DesignKARL [Lan94] which allows to describe data structures, algorithms and offers
additional structuring primitives like clusters and modules.

The different representations of knowledge, i.e. elicitation model, structure model, model
of expertise, design model and the final system either represent the same knowledge in a
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different way or contain additional knowledge which is closely related to other knowledge in
another representation. To gain the full benefits for documentation, maintenance, and
explainability these different models are interrelated explicitly. Thus traceability of the system
development process is achieved.

Using the MIKE approach it has been started to build up a library of formally specified
problem solving methods: Hill Climbing [AFL+92], Chronological Backtracking [Fen93],
Beam Search [Fen93], Cover-and-Differentiate [Ang92], Board-game Method [FEM+93],
Propose-and-Exchange [LFA93], and Propose-and-Revise [PFL+94]. In [Fen95a] limitations
and assumptions of the PSM Propose-and-Revise have been analysed which is a precondition
to match features of a given task to appropriate PSMs.

The different knowledge representations are results of different steps of the building
process. For this process a spiral process model (cf. [Boe88]) has been defined (see [Ang93],
[Neu94]), which describes the different activities, their resulting models and the sequence of
the activities within the whole building process. Due to the above mentioned properties of this
modeling process explorative and experimental prototyping have been integrated [Flo84] as a
main feature.

For the design process the language DesignKARL additionally allows to describe the
design process itself and to describe interactions between design decisions. Thus, the design
process is documented and the maintainability of the final kbs is improved.

4 Exploitable Results from SE

Although KE has developed a lot of methods in order to improve the process of building kbs,
a lot remains to be done. Due to the kinship of both areas it seems obvious, that a lot of methods
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Fig. 5    Representation levels in MIKE
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which have resulted from research and experience in SE, may be adopted in KE. A small
choice of such methods, from our subjective point of view, are presented in the following.

4.1 Life Cycle Models

In earlier days the prevailing paradigm for developing kbs wasrapid prototyping. The acquired
knowledge was immediately operationalized using an operational representation formalism.
The running program delivered immediate feed-back for validation purposes. Based on this
feed-back the represented model was modified and revised. Rapid prototyping fits well to the
transfer view of knowledge acquisition: no intermediate steps like specification and design are
necessary, because it is assumed that the knowledge is represented in the computer similarly
to the knowledge in the experts head. This has severe disadvantages [Ang93]:

• The knowledge engineer is overstrained by simultaneously eliciting, interpreting, and
structuring knowledge, as well as designing and implementing the system. Thus he has
to consider the whole complexity of the system and of the development process at the
same time.

• Different aspects of knowledge, like implementation aspects, functional requirements,
non-functional requirements etc. have to be considered simultaneously and as a
consequence are mixed inseparable in the final system.

• The functionality of the system is extended from a small functionality at the beginning
to the final functionality at the end. Thus the architecture of the system is not planned in
advance but evolves over time.

• The running system is the only representation of the knowledge. The reader of such a
representation gets lost in detail. This representation is not understandable and is thus
not suitable for documentation or explanation purposes.

• The represented knowledge is determined and limited by the used implementation
formalism.

• Because of the lack of defined mile stones the progress of the project is difficult to
control by the project management.

At the beginning of the KADS project a variant of the waterfall model has been adopted.
This model represents the diametrical opposite to rapid prototyping. But as it has been already
recognized a long time ago in SE, this model is not very well suited for the construction of
complex software and in the same sense it is not very well suited for building kbs.

So later on, advanced process models from SE like the Spiral Model [Boe88] have been
adopted from SE and adapted to the special needs in KE (see [Ang93], [Tay92]).

The research for suitable process models and the experience in the application of these
models in SE in the past have strongly influenced corresponding activities in KE   and we think
they will influence them in future.

4.2 Non-Functional Requirements and Design Rationales

Up to now, the treatment of non-functional requirements has almost been neglected in KE. This
is in contrast to the software engineering and the information systems engineering community,
which have proposed several approaches for handling non-functional requirements (see e.g
[MCN92]) and for capturing the rationale for design decisions (see e.g. [Lee91] and [RoP94]).
When considering the types of non-functional requirements, which are discussed in these
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approaches or summarized in [IEEE93], it is obvious that these categories are to a large extent
relevant categories for the development of kbs as well [LaS95]. Obviously, some categories
like understandability may be more important for kbs, whereas other categories like accuracy
[MCN92] may be more important for information systems.

In KE proposals for handling non-functional requirements and building up design rationales
have been made only rather recently. When looking at the models, which are proposed in
[StM95] and [Van95] for capturing design decisions, we can see that rather similar model
structures are proposed in both communities. This holds for the approach taken in MIKE
([Lan95], [LaS95]) as well. However, within MIKE more emphasis is put on supporting the
process of eliciting and structuring non-functional requirements and on relating elementary
design decisions to the modeled requirements.

4.3 Transformational development

The development of a new PSM from scratch may be seen as a transformational process
[Fen95b]. This process starts with the definition of a PSM Generate-and-Test for the task at
hand. Generate-and-Test contains two subtasks: Enumerate all solutions in the generate step
and test the generated solutions against constraints which describe valid solutions. Starting
from this very general PSM and taking characteristics of the task and / or domain into account
a more efficient PSM is developed in a transformational process.

For this kind of transformational development there has been a lot of research in SE (cf.
[PaS83], [Smi90]). E.g. in [Smi90] an efficient algorithm for the k-queens problem is
developed in the following steps: choose a global search strategy to enumerate solutions,
simplify expressions, apply partial evaluation and specialization, use finite differencing,
perform case analysis and finally refine data. Each step is guaranteed to be consistent with the
original functional specification. Such a transformational approach may also be exploited in
the design phase of a kbs for transforming a declarative specification of the functionality of the
kbs into a more algorithmic one.

5 Conclusion

During the last ten years, the knowledge engineering community has put a lot of emphasis on
developing notions and methods for building up and structuring (reusable) models.

The development of formal specification languages which are based on a highly structured
conceptual models provides a sound framework for supporting a stepwise transition from
informal system specifications to formal ones. This approach is obviously interesting for SE
as well and is reflected in developments in the context of VDM [LPT93] or TROLL [JWH+94].

A major achievement in KE is the development of the notion of a reusable generic problem
solving method, i.e. the identification of generic structures to describe the problem solving
behaviour of a kbs. Obviously, the notion of a problem solving method can not be directly
transferred into the field of software engineering. Nevertheless, it could be worthwhile to
investigate, to which extent the development and maintenance process of software systems
could benefit from the identification of reusable structures, which describe the functional
behaviour in a similar way as problem solving methods specify the behaviour of kbs.

The construction of domain models as part of the requirements analysis activities has gained
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a lot of interest in recent years [JBR+93]. As a consequence, the principles and methods for
building up domain models, which have been developed in KE, are of relevance for the
requirements engineering process as well. E.g. the notion of reusable domain abstractions
[SuM94] bears a lot of similarities with libraries of reusable model components, as e.g.
described in [BrV94]. Especially, the granularity problem and the problem of matching the
characteristics of an application task with features of stored models are also subject of current
research in KE. Here, a mutual exchange of ideas and experiences could be beneficial for both
communities.

On the other hand, since KE is faced with all the problems, which are involved in the
development of software systems, as well, KE can clearly profit from the methods, which result
from research and experiences in the software engineering community. In addition to the
topics, which have been discussed in section 4, we think e.g. of methods for system design and
of methods for verifying system properties.
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