
Are Substitutions the Better Examples?

Learning Complete Sets of Clauses with Frog

Dieter Fensel (+), Monika Zickwolff (*), and Markus Wiese (#)

(+) Department SWI, University of Amsterdam, 1018WB Amsterdam, The Netherlands
e-mail: dieter@swi.psy.uva.nl

(*) Forschungsgruppe Begriffsanalyse, University of Darmstadt, 64289 Darmstadt, Germany
e-mail: zickwolff@mathematik.uni-darmstadt.de

(#) Institut AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
e-mail: wiese@aifb.uni-karlsruhe.de

Abstract. The paper presents an approach for machine learning in a
restricted first-order language with finite minimal Herbrand models
by means of a search through a propositional representation space.
The learning target is to find a set of goal clauses which can be used
to define a target predicate. That is, we deal with single-predicate
learning. For the search process we use the learning algorithm JoJo/
Frog which provides a flexible search strategy. The transition from
the first-order representation to the representation in propositional
logic is achieved by ground substitutions which transform clauses
into ground clauses. Taking a closer look at this transition makes
clear that thesufficiency condition which is used by algorithms like
FOIL and LINUS as a criterion for judging the achieved learning
results doesnot correspond to thecompleteness condition in the
propositional case. Therefore, we use an extended completeness
condition which captures all information given by the example
knowledge. As a consequence we get a new definition of positive
and negative examples. Instead of ground facts we regardground
substitutions as examples.

Introduction

The paper presents a machine learning approach in a restricted first-order language.
Example knowledge (also called evidence in the following) and background knowledge
are generalized to form a finite set ofprogram clauses [Llo87] which describe a target
predicate. The language used to describe the input knowledge and the learned results is
restricted to sets of first-order clauses having afinite minimal (i.e., perfect) Herbrand
model [Ull88]. In this case, the given knowledge can be translated into an equivalent finite

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197596851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

propositional representation. This representation can be used as a search space by the
learning algorithm. In this paper we achieve finiteness by excluding function symbols (cf.
[Rou94] for further possibilities).
The use of propositional logic as a search space for learning in first-order logic is not a
new idea. The learning algorithms FOIL1 (cf. [Qui90a], [QuC93]), LINUS (cf. [LDG91],
[DzL93], [LDG91]), and MILP [Kov94] have already shown how a propositional
representation can be used to learn clauses in first-order logic. Compared to these
approaches, two main characteristics of our approach can be identified:

• We use the strongercompleteness criterion of algorithms like CLAUDIEN [RaB93]
instead of the weakersufficiency criterion of FOIL and LINUS. We demonstrate that
learning strategies like those of FOIL do not use the full information given by the
input knowledge. This becomes obvious when we take a closer look at the transition
from first-order to propositional logic which is achieved via the set of all
substitutions.From our point of view each ground substitution and not only each
ground fact of the goal predicate corresponds to an example. [MuR94] distinguishes
two settings for machine learning in first-order logic which they callnormal
semantics andnonmonotonic semantics. The (posteriory) sufficiency criterion of
FOIL and LINUS is oriented toward the first setting, whereas thecompleteness
criterion which is used by CLAUDIEN and our approach is related to the second
one. On the other hand, we distinguish between background knowledge and
(incomplete) evidence as is generally done in the normal semantics setting. As a
result, our approach bridges both settings.

• We use a more elaborated search strategy for the learning algorithm. In fact, we
apply the learning algorithmsJoJo andFrog for the search process. JoJo [FeW93]
integrates generalization and specialization into a bi-directional search process. JoJo
can start at an arbitrary point in the search space and iterates generalization and
specialization steps until a local optimum has been found. Frog [Fen93b] can
additionally make jumps in the search space.

Like FOIL and LINUS we deal with the case of single-predicate learning. That is, we
assume a correct background knowledgeB and incomplete positive and negative
information (called evidenceE) over a target predicatep. The learned hypothesisH
describesp in a generalized but still correct manner.
The content of the paper is organized as follows. In the first chapter, we describewhat our
approach does. That is, we give adeclarative description of the result of the learning
process. In particular, we show how completeness in the propositional case corresponds
to completeness in the first-order case. Chapter two briefly sketches out the heuristic
learning procedures which are used to find such a hypothesis. Thus chapter two discusses
procedurally how we reach our learning goals. Chapter three gives an evaluation of our
implementation and, finally, we outline some directions for future work.

1. FOIL searches through the space of all ground instantiations of a target clause. Therefore, FOIL
uses a propositional search space by applying ground substitutions to first-order clauses. During the
learning process, the search space is extended by introducing new variables.

1 Representing First-Order Theories with Propositional Logic

The theoretical background for translating a first-order language into a propositional
representation is given by the theory ofHerbrand interpretations, which enable the
description of clauses in a first-order language through the use of propositional means—
which are Herbrand universes, bases, interpretations, and models (cf. [Llo87]). In general,
if the set of ground literals is infinite, the propositional representation requires infinitely
many literals. An easy way to achieve finite Herbrand models (i.e., finite propositional
representations) is to forbid function symbols. In fact, this is the way we achieve
finiteness in the representation of the evidence, the background knowledge, and the
learned goal clauses.
There are, however, some major differences depending on whether a machine learning
system is applied for learning propositional rules or whether it is applied to clauses in a
first-order language. This is due to the fact that variables are introduced in first-order
logic, a circumstance which has several consequences. This becomes important when
investigating the definitions ofcovering an example andcompleteness—especially if we
compare these concepts with the ideas used in learning systems like FOIL and LINUS.
In order to compare our approach to the standard definitions given in [MuR94], we will—
for reasons of clarity—roughly sketch each of them:

• (1) Normal semantics: This setting distinguishes between background knowledgeB
and example knowledgeE (evidence). The learning goal is a hypothesisH which is
consistent with the negative evidenceE-

Β ∪ H ∪ E-|≠
andsufficient in regard to the positive evidenceE+

Β ∪ H |= E+.

• (1a)Definite semantics: This setting replaces the logical consequence |= with a non-
monotonic entailment |≈ using the closed-world assumption (i.e., the minimal
Herbrand model as semantics)2.

• (2) Nonmonotonic semantics: In this setting, background knowledgeB is given, but
no evidenceE. Therefore a different learning goal is defined. A hypothesisH is
correct if H is true in the minimal Herbrand modelΜ+(B). A hypothesisH is
complete if every clauseg which is true inΜ+(B) is true in M+(H). Again the closed-
world assumption is applied.

The main difference between (1) and (2) appears to be that in the nonmonotonic setting:

B ⇔ H holds true according to the minimal model semantics.

Hence in (2),H is “only” a reformulation ofB. In (1), however,H is normally not
equivalent toΒ ∪ E as the scope of the theory should be extended to include unknown
cases.

1.1 The Representation Formalism and Learning Setting

Most of the terms and definitions we use refer to [Llo87]. The first definition introduces
the alphabet and the language for representing input and learned knowledge. As the

2. See [Cla78], [Llo87], [Ull88].

number of variables influences the content of information which is processed by the
learning algorithm and, conversely, the search effort in the enlarged hypothesis space it is
necessary to restrict the number of variables. In our case we define an upper limit for the
number of variables which can be used in a clause by restricting the number of variables
offered by the alphabet. Our definition uses finiteness as a language bias for the learning
task. The language provides only a finite number of denotations and, as function symbols
are excluded, the minimal (i.e., perfect) Herbrand models are also finite.

Def. 1 (cf. Alphabet and language)

An alphabet A of a first-order language consists of a finite set of predicate symbols
{ p, b1,..., bm}, a finite set of constants {c1,...,cl}, and a finite set of variables {x1,...,
xk}. In addition, it provides the usual logical connectives (∨, ∧, ¬, ←) and
punctuation symbols. As we regard every variable as universally quantified, we do
not need quantifiers in the alphabet. Alanguage L(A) to an alphabetA is the set of
well-defined and universally quantified clauses over the alphabetA.

The following definition introduces the difference between a target predicate
symbolwhich is used as the learning targetand further predicates symbols for the
background knowledge. These different predicate symbols are used to define evidence,
background knowledge, and the learning goal.

Def. 2 (cf. Target and background predicates and literals)

One predicate symbol is called thetarget predicate and denoted byp. The others are
calledbackground predicates and denoted byb1,..., bm.
A literal using the target predicate is called atarget literal. A literal using a
background predicate is called a background literal. These literals will be denoted
by li.

The following definition ensures syntactical finiteness of the regarded clauses. Each atom
of the language can appear at most once in an allowed premise. As we regard only finite
Herbrand models as semantics, this restriction does not change the expressive power of
the language.

Def. 3 (cf. Allowed premises)

A ground (non-ground)allowed premise P is a conjunction of ground (non-ground)
background literalsl1 ∧...∧ ln with

• l ∈ { l1,...,ln} ⇒ ¬l ∉ { l1,...,ln} with ¬¬l = l and

• li ≠ lj for all i,j = 1,...,n.

Only allowed premises are regarded further on.

The case of recursion where the target predicate is also used as a premise of a goal clause
is discussed in section 1.5.
In the normal semantics setting, background knowledgeB is generally viewed as a set of
true facts and clauses. Actually,B corresponds to the deductive closure of a set of
formulae. In the nonmonotonic setting, which uses the closed-world assumption,B is

viewed as the least Herbrand model M+(B) of a set of clauses and facts. As we apply the
closed-world assumption for background knowledge, we view background knowledge as
its least Herbrand model M+(B). In fact, because we allow stratified negation [Ull88], we
use theperfect Herbrand model. Thus we allow a restricted version of negation in the
bodies of our clauses. In the case of negation in the bodies of clauses, there is no longer a
unique minimal Herbrand model. The stratification can be used to select one of them,
which is called theperfect Herbrand model. Therefore our conception of background
knowledge corresponds to the definite semantics setting slightly generalized to the use of
perfect Herbrand models.

Def. 4 (cf. Background knowledge)

The background knowledge B is a set of stratified program clauses using only
background predicates. M+(B) denotes the perfect Herbrand model ofB and defines
its semantics.

The evidenceE should provide the learner with partial knowledge about the target
predicate. Again, this can be expressed by a Herbrand interpretation. In general, however,
we cannot assume the completeness of the interpretation since we cannot expect complete
knowledge about the target predicate. In fact, we view the induction of new knowledge
about the target predicate as the most important goal of our learning algorithm. We intend
to learn clauses which make predictions for unknown ground instances of the target
predicate. As a consequence, the Herbrand interpretation is apartial interpretation for the
target predicate. Again, the definition of evidence corresponds to the definitions of FOIL
and LINUS.

Def. 5 (cf. Evidence)

The evidence E is a set of ground target literals.E+ (positive evidence) contains
positive andE- (negative evidence) contains negative literals.

To ensureconsistency or prior satisfiability of the knowledge M+(B) ∪ E it must hold:

l ∈ E+ ⇒ ¬l ∉ E-

The following definition introduces the syntactical structure of the goal of the learning
process.

Def. 6 (cf. Goal clause and hypothesis)

Α goal clause is a non-ground program clause of the form:
p(x1,...,xp) ← P

whereP is an allowed premise.

A hypothesis H is a set of goal clauses.

1.2 Transition From First-order to Propositional Logic: What is an Example?

In the case of representation formalisms based on attribute values (and therefore in
propositional logic), an example can be viewed as an rule which has a conjunction of the
attribute values of the example as its premise and its class membership as its conclusion.
Table 1 shows a well-known illustration from [Qui84]. The first and the fourth rows, that

is the first positive and negative examples, correspond to the following rules:
class← eye-color = blue ∧ hair-color = blond ∧ size = small.

¬class← eye-color = brown ∧ hair-color = blond ∧ size = tall.

The transition from our restricted first-order logic to propositional logic is achieved by
means of ground substitutions. Each ground substitution produces a row in a table. Each
substitutionθ with p(x1,...,xp)θ ∈ E+ produces a positive example and each substitution
θ’ with ¬p(x1,..., xp)θ’ ∈ E- produces a negative example in the propositional
representation. Therefore it becomes clear that each substitution and not only each ground
literal of the goal predicate corresponds to what is called an example in propositional
logic. Let us regard the following small problem given in first-order logic:

Predicates of the background knowledge:
{ P(_,_),Q(_)}

Constants:
{ a, b, c}

Set of positive literals holding in the background knowledgeB:
M+(B) = {P(a,a), P(a,b), Q(a), Q(b)}
We can infer with the closed-world assumption that¬P(b,a) = true, etc.

EvidenceE for the target predicate:
{ p(a), ¬p(b)}. That is,E+ = {p(a)} andE- = {¬p(b)} Notice thatE defines
only a partial interpretation.

Number of variables: 2.

This knowledge can be propositionally represented by Table 2. In addition to the given
predicates we add some built-in predicates (called utility predicates in LINUS, cf.
[LDG91]). These predicates can be binary and used to express equality between variables
like =(x,y) or they can be unary and used to express the equality between a variable and a
constant like =a(x), see [RoP89]. The pre-defined semantics of these predicates can be
used to avoid redundancy. For example, we know that =(x,y) implies =(y,x) or =a(x)
implies¬(=b(x)). Clearly, the user can decide whether he want to use these predicates or
not. The set of all non-ground atoms of the background knowledge (including the goal
predicate in the case of recursion) determines the number of columns of the table. Each
non-ground atom creates one column. The rows of the table are determined by all possible
ground substitutions which depends on the number of variables and constants in the
alphabet.3 Each background predicate together with the variables it uses, defines a binary
attribute. The truth values according to a given substitution define its value (i.e., 0 or 1).

3. For a more detailed discussion of this procedure and on complexity results see [LDG91].

Table 1.An illustration for an attribute-value-based representation.

class eye-color hair-color size

+ blue blond small
+ blue red tall
+ blue blond tall
− brown blond tall
...

For example, the second row of Table 2 corresponds to the propositional example:

p(a) ← P(a,b) = 1∧ P(b,a) = 0∧ Q(a) = 1∧ Q(b) = 1∧ =(a,b) = 0∧ a(a) = 1∧...∧ c(b) = 0

This expression is equivalent to:

p(a) ← P(a,b) ∧ ¬P(b,a) ∧ Q(a) ∧ Q(b)∧ ¬ =(a,b) ∧ a(a) ∧...∧ ¬ c(b)

Eachground variable assignment or eachground substitution of the target predicate
generates an example (or an unknown case) in our propositional representation of the
learning problem. Therefore, we expanded the definition of anexample used by FOIL or
LINUS. FOIL and LINUS regard each element ofE+ as a positive example and each
element ofE- as a negative examples. Therefore, an example corresponds to a ground fact
of the target predicate. According to our point of view,each ground substitutionθ which
assigns a constant to each variable of the languageL(A) is either a positive example, a
negative example, or an unknown case.

Def. 7 (cf. Examples)

A positive example is a ground substitutionθ with p(x1,..., xp)θ ∈ E+. A negative
example is a ground substitutionθ’ with ¬p(x1,...,xp)θ’ ∈ E-.

Therefore, we obtain the three positive examplesθ1 = {(x/a),(y/a)}, θ2 = {(x/a),(y/b)}, θ3
= {(x/a),(y/c)} in our illustration and not just one positive examplep(a). Further on, we
have three negative examplesθ4 = {(x/b),(y/a)}, θ5 = {(x/b),(y/b)}, θ6 = {(x/b),(y/c)} and
three unknown cases. In the next section, we will show that this definition of an example
provides a strong result concerning the completeness of the learned hypothesis. A
hypothesisH which iscomplete in the propositional representation space when it covers
all positive ground substitutions (i.e., substitutions for which the target literal is inE+) is
alsocomplete in the first-order representation space. Thus allgoal clauses which are true
in M+(B) ∪ E+ are also true in M+(B ∪ H). This may not hold true for a hypothesis learned
by FOIL or LINUS. As ground substitutions are the means for transforming a first-order
theory into its propositional counterpart, it is, in fact, this point of view on an example
which translates the completeness of the propositional case into the first-order case.
To learn first-order clauses with our propositional model we regard ground substitutions,
i.e., ground goal clauses with most-specific premises as examples.4 We have to make the
following transfer: in the propositional case each example can be directly used as a (most

Table 2.Propositional representation of function-free first-order logic

(x,y) p (x) P(x,y) P (y,x) Q(x) Q(y) =(x,y) =a(x) ... =c(y)

(a,a) + 1 1 1 1 1 1 0
(a,b) + 1 0 1 1 0 1 0
(a,c) + 0 0 1 0 0 1 1
(b,a) - 0 1 1 1 0 0 0
(b,b) - 0 0 1 1 1 0 0
(b,c) - 0 0 1 0 0 0 1
(c,a) ? 0 0 0 1 0 0 0
(c,b) ? 0 0 0 1 0 0 0
(c,c) ? 0 0 0 0 1 0 1

specific) classification rule which is correct if the example knowledge is separable5; the
transfer from examples to goal clauses in the first-order case is more complicated: each
positive example, that is, ground substitutionθ with p(x1,..., xp)θ ∈ E+, provides a goal
clause:

p(x1,...,xp) ← l1,..., ln
where each non-ground literalli of the languageL(A) occurs in the hypothesis if M+(B) |≈
liθ. As in the propositional case, this clause is correct if the examples areseparable, which
means that the language considered (predicates and number of variables) is sufficient to
separate positive from negative examples. However, the transfer from a (propositional)
example to a universally quantified clause with variables which hold truefor all
substitutions requires a more complex definition of separability.

Def. 8 (cf. Most-specific premises)

A ground (non-ground) most-specific premise P is a ground (non-ground) allowed
premise where

P ⊆ P ́implies thatP ́is not an allowed premise.

Def. 9 (cf. Reverse substitution)

A reverse substitutionθ is a set {(t1/x1),..., (tk/xk)}, where eachti is a constant of
L(A) andxi ≠ xj, ti ≠ tj for i ≠ j. Such a reverse substitutionθ is applied to a ground
clause by simultaneously replacing each ground termti with the variablexi.

Def. 10 (cf. Separable)

Knowledge which is described by a partial Herbrand interpretation M+(B) ∪ E is
calledseparable if no two ground implications

p(t11,..., t1p) ← P
¬p(t21,..., t2p) ← P´

exist withP, P´ are most-specific premises, M+(B) |≈ {P, P }́, p(t11,..., t1p) ∈ E+,

¬p(t21,..., t2p) ∈ E- and two reverse substitutionθ1 andθ2 exist with
Pθ1 = P´θ2 andp(t11,..., t1p)θ1 = p(t21,..., t2p)θ2.

Separability enables the generalization of most-specific ground clauses through the
replacement of constants with variables without this leading to inconsistency. If
separability is not given, then the language provided does not allow a separate description
of the positive and negative examples by means of non-ground clauses. In propositional
logic, separability is implied by consistency, but this no longer holds true in the first-order
case. For example, the following theory is not separable:

E+ = {p(a)}; E- = {¬p(b)}; B = {q(a), q(b)}

The problem of non-separable theories can always be solved by introducing additional

4. Clauses with most-specific premises are also constructed by ILP systems using a bottom-up
search strategy. For this purpose,saturation is defined (see [Rou94]).

5. Thus no positive and negative examples exist which have the same values for each attribute.

unary predicates which mimic the constants. Thus these predicates are true if the
according constant is substituted for the variable. Actually, the propositional learning
procedure Frog (which is introduced in section 2) can also deal with noise. Therefore, it
can be applied to non-separable theories. It uses the ratio of all ground substitutionsθ
cover ed by a goal clause which are positive and negative examples as a measurement for
the accuracy of the clause.

1.3 Sufficiency and Completeness

In the propositional case, thecompleteness of a set of goal clausesH is achieved if every
positive example iscovered by H—that is, if the positive atomclass can be derived from
everyH ∪ p wherep is the premise of a positive example. A set of goal clausesH for a
given class iscorrect if it covers no negative example—that is, if the positive atomclass
cannotbe derived from anyH ∪ p’ wherep’ is the premise of a negative example.
One could transfer these definition to the first-order case: a hypothesisH is called
complete if it covers all examples. This implies that

M+(B ∪ H) |≈ E+.6

This is, in fact, the definition ofposterior sufficiency [MuR94] and thesufficiency-
condition of FOIL and LINUS.
Considering eachground variable assignment or eachground substitution of the target
predicate as an example provides an expanded definition. We have chosen this point of
view for two reasons: first, each ground substitution generates an example in our
propositional representation of the learning problem; second, a hypothesisH which is
complete in the propositional representation space when it covers all positive ground
substitutions (i.e., substitutions for which the target literal is inE+) is alsocomplete in the
first-order representation space. We will prove that a hypothesisH which covers all
ground substitutions iscomplete. Thus allgoal clauses which are true in M+(B) ∪ E+ also
follow from the background knowledge M+(B) and the set of learned goal clausesH.
Before we illustrate the difference between hypothesesH which cover only true goal
atoms and hypothesesH which cover each ground substitution, we will give the
definitions for correctness (i.e., posterior satisfiability), sufficiency, and completeness.
The definition ofposterior satisfiability(i.e., correctness) is modified in accordance to our
different view on an example.

Def. 11 (cf. Correctness)

A goal clause (p(x1,...,xp) ← P) is called correct if no ground substitutionθ exists
such thatPθ is true in M+(B) for a negative exampleθ (i.e.,¬p(x1,...,xp)θ ∈ E-). A
hypothesisH is calledcorrect if H contains only correct goal clauses.

Def. 12 (cf. Sufficiency)

A hypothesisH is sufficient if M +(B ∪ H) |≈ E+.

6. A minimal Herbrand modelH entails a positive ground atoml if l ∈ H, a negative ground atom
¬l if l ∉ H, and an universally-quantified formulaeγ if all ground instantiations ofγ can be entailed
by H.

Def. 13 (cf. Completeness)

A hypothesisH is complete (in the first-order sense) if every goal clauseφ which is
true in M+(B) ∪ E+ is also true in M+(B ∪ H) (i.e., M+(B ∪ H) |≈ φ).

A hypothesisH is calledcomplete (in the propositional sense) if H covers all positive
examples ofE. H coversthe positive exampleθ (i.e.,p(x1,...,xp)θ ∈ E+) if and only
if a clauseh ∈ H exists, withh = (p(x1,...,xp) ← P), such thatPθ is true in M+(B).7

We will show that completeness in the first-order sense and in the propositional sense are
equivalent. Note that not onlyp(x1θ,...,xpθ) is an example (as it is considered in FOIL),
but also the whole substitutionθ. The following example illustrates that only considering
all substitutions as examples can allow us to describe (logical) completeness in a first-
order sense by propositional means viacovering an example. Consider the following
background and example knowledge

M+(B) = {b1(a,a),b2(a,b), b3(a,a)}
E+ = {p(a)}, E- = {¬p(b)}.

The propositional representations for two variables is given in Table 3.

For instance, in regard to two variablesx,y, the following clause (1) covers each true
ground atom of the target predicate (= {p(a)}) and thus fulfils the sufficiency condition:

p(x) ← b1(x,y) (1)

On the other hand, the background knowledge and evidence allow two different ground
substitutions:

θ1 ={(x/a), (y/a)} and θ2 ={(x/a), (y/b)}
with p(x)θ1 ∈ E+ and p(x)θ2 ∈ E+. Clause (1) coversθ1, but notθ2. The following set of
clausesH = {(1), (2)} cover all substitutionsθ with p(x)θ ∈ E+ and thus is complete in
the propositional andas we provein the first-order sense:

p(x) ← b1(x,y) (1)

p(x) ← b2(x,y) (2)

Hence a system based on the sufficiency condition cannot learn both clauses. In this case,
not all information expressed by the number of variables and each possible substitution
is used for the learning process. The information provided by the second substitution is
neglected if the system only learns clauses which coverp(a), since clause (1) already
covers this ground fact.
To illustrate first-order completeness we mention the third clause

7. Except for the different treatment of examples, our definition ofcovering is the same as in
[RLD93].

Table 3. A brief example of completeness and sufficiency.

(x,y) p (x) b1(x,y) b1(y,x) b2(x,y) b2(y,x) b3(x,y) b3(y,x)

(a,a) + 1 1 0 0 1 1
(a,b) + 0 0 1 0 0 0
(b,a) − 0 0 0 1 0 0
(b,b) − 0 0 0 0 0 0

p(x) ← b3(x,y) (3)

which is true in M+(B´) ∪ E+ but cannot be derived fromH = {(1), (2)} only. Otherwise,
with M+(B´) |≈ b1(x,y) ← b3(x,y) holds M+(B´ ∪ H) |≈ (3). Therefore our completeness
result hold only for M+(B´ ∪ H) as we do not generalize the background knowledgeB.

Theorem Let M+(B) be the background knowledge,E be the evidence, with
M+(B) ∪ E is separable, andH is a set of correct goal clauses.

H is complete in a propositional sense⇔ H is complete in a first-order sense
with respect toB andE. with respect toB andE.

Proof

First we prove the “⇒” direction. For each substitutionθ with p(x1,...,xp) θ ∈ E+

there exists a clauseh :=(p(x1,...,xp) ← Ph) ∈ H with Phθ being true in M+(B). Letg
:= (p(x1,...,xp) ← Pg) be a goal clause which is true in M+(B) ∪ E+. We then construct
an induction proof with respect to the number of premises ing. Starting from the
maximal number of literals of a most specific premise (cf. Def. 8)n we conclude to
n-1.

Induction start: 8 Let Pg be a non-ground most-specific premise (the number of
literals in Pg is maximal, each non-ground literal—except for the target—
occurs exactly once, negated or not). Ifg is non-trivially true in M+(B) ∪ E+,
a ground substitutionθ exists such thatPgθ is true in M+(B), hencep(x1,...,xp)θ
∈ E+.9 As a consequence of the assumption a goal clauseh :=(p(x1,...,xp) ←
Ph) ∈ H exists which coversθ (i.e., Phθ is true in M+(B)). As Pg is most-
specific, it must hold true that:Ph ⊆ Pg. Thereforeh |≈ g.

Induction step: We have established that for each non-ground goal clauseg :=
(p(x1,...,xp) ← Pg) which is true in M+(B) ∪ E+ and |Pg| = n it follows thatH
|≈ g. It remains to show that for each non-ground goal clauseg := (p(x1,...,xp)
← Pg) which is non-trivially true in M+(B) ∪ E+ with
| pg| = n - 1 it also holds true that M+(B ∪H) |≈ g.

Let θ be a ground substitution withPgθ being true in M+(B). Furthermore let
l be a literal which is not inpg. W.l.o.g. letlθ be true in M+(B), which implies
that (p(x1,...,xp) ← Pg ∧ l) is non-trivially true in M+(B) ∪ E+. Hence with the
induction start it follows that

M+(B ∪ H) |≈ (p(x1,...,xp) ← Pg ∧ l). (1)

Case 1:Assume that for all substitutionsθ with Pgθ being true in M+(B) lθ is
also true in M+(B). Then (l ← Pg) is true in M+(B). Together with (1) it follows
that M+(B ∪ H) |≈ g.

8. One can see from the induction start that each most-specific goal clause can already derived from
H. That is, the background knowledge M+(B) is not required. Actually this follows immediately
from the propositional completeness.

9. If such a substitution does not exist then it follows immediately that M+(B) |≈ g.

Case 2: Assume that a ground substitutionθ exists, withPgθ being true andlθ
being false in M+(B). Then (p(x1,...,xp) ← Pg ∧ ¬l) is true in M+(B) and we
have with the induction start:

 p(x1,...,xp) ← Pg ∧ ¬l
M+(B ∪ H) |≈ |≈ (p(x1,...,xp) ← Pg) = g.

 p(x1,...,xp) ← Pg ∧ l
Now we show “⇐”: Let θ be a positive example andPθ the set of all literals with
lθ being true in M+(B). Then the conjunction ofPθ is a most-specific premise.
Because of the separability ofE it holds true that: (p(x1,...,xp) ← Pθ) is true in M+(B)
∪ E+, and by our assumption M+(B ∪ H) |≈ (p(x1,...,xp) ← Pθ). This implies thatH
covers the positive exampleθ.

It should be clear that the proof holds only for finite case. That is, we require finite perfect
Herbrand models for our background and example knowledge.

Corollary 1 First-order completeness implies sufficiency.

As completeness in the first-order is equivalent to completeness in the propositional
sense it becomes clear that M+(B ∪ H) |≈ φ for all true goal clauses in M+(B) ∪ E+

implies that M+(B ∪ H) |≈ E+.

In the definition of completeness in Def. 13, which will be calledweak completeness in
the following, is enforced that each correct goal clause which istrue in M+(B) ∪ E+ must
also be true in M+(B ∪ H). A stronger version of completeness can be achieved by
including all correct goal clauses. That is, all goal clauses which arenot false according
to M+(B) andE-. Thisstrong completeness is formalized by the following definition:

Def. 14 (cf. Strong completeness)

A hypothesisH is strongly complete (in the first-order sense) if every correct goal
clauseφ is true in M+(B ∪ H). That is, M+(B ∪ H) |≈ φ.

A hypothesisH is calledstrong complete (in the propositional sense) if H covers all
positive examples and unknown cases ofE (i.e., allθ with ¬p(x1,...,xp)θ ∉E-).
H coversthe positive example or the unknown caseθ if and only if a clauseh ∈ H
exists, withh = (p(x1,...,xp) ← P), such thatPθ is true in M+(B).

The equivalence proof of the propositional and first-order version of strong completeness
follows the above given proof. To achieve strong completeness all variable substitutions
θ which do not lead to a negative example must be covered byH. Actually, strong
completeness corresponds to the definition given in [Hel89]. Strong and weak
completeness are equivalent if the closed-world assumption applies toE.

1.4 Learning Task

Finally, we want to characterize the learning task. We do not regard each complete and
correct hypothesis as a solution as we prefer nonredundant hypotheses. We require that
each clause ofH bemost-general (i.e., that their premises contain a minimal set of literals)
and thatH be minimal (i.e., that it does not contain unnecessary goal clauses). The
following definition remains decidable as only finitely many goal clauses can be

expressed in our language (cf. Def. 1, Def. 3, and Def. 6).

Def. 15 (cf. Solution)

A goal clauseφ is most-general iff for each goal clauseφ´ with φ´ |= φ andφ |≠ φ´,
H = {φ´} is not a correct hypothesis. A correct and complete hypothesisH is most-
general if eachh ∈ H is most-general.
A correct and complete hypothesisH isminimal if no h ∈ H exists withH \ {h} being
complete.
A correct and complete hypothesisH which is most-general and minimal is called a
solution.

1.5 Recursive Goal Clauses

A possibility which has not yet been discussed is to allowrecursive goal clauses (i.e., goal
clauses that also contain the target predicate symbol in the premise). This can be achieved
by weakening Def. 3. In the recursive case, also positive target literals could be used in a
premise of a goal clause. Negated target literals can not be allowed in the premise of a goal
clause as this would lead to non-stratified clause sets. That is, we could no longer use our
minimal model semantics which uses stratification to select one unique model (called the
perfect Herbrand model) from all minimal Herbrand models.
As we will assume the closed-world assumption for the predicates used in premises this
implies that we have to apply the closed-world assumption forE in the recursive case.
That is,

E- = {¬p(t1,...,tp) | p(t1,...,tp) ∈ Herbrand base \E+}.
The transition to the propositional representation is achieved by introducing additional
columns in the table using non-ground atoms of the target predicate. But one has to choose
carefully the selected atoms (i.e., the language bias for goal clauses, compare [QuC93])
to prevent the learner from producing goal clauses like:

p(x1,...,xp) ← p(x1,...,xp) or p(x1,...,xp) ← p(y1,...,yp) ∧ =(x1,y1) ... ∧ =(xp,yp).

[Ber93] reports some problems of—what he calls—extensional learning methods like
FOIL or LINUS for learning recursive clauses. Their results need neither be complete nor
correct in a logical sense (i.e., in anintensional sense). Thus, either a correct ground target
atom cannot or an incorrect ground target atom can be entailed byH. Similar problems
arise for our approach.
The following definitions introduces the notion of propositional completeness for
recursive goal clauses. There is no difference between what was called weak or strong
completeness as we apply the closed-world assumption toE.

Def. 16 (cf. Propositional completeness for recursive hypotheses)

A recursive hypothesisH is calledcomplete (in the propositional sense) if H covers
all positive examples ofE. H coversthe positive exampleθ (i.e.,p(x1,...,xp)θ ∈ E+)
if and only if a clauseh ∈ H exists, withh = (p(x1,...,xp) ← P), such thatPθ is true
in M+(B) ∪ E+.

But this kind of completeness does no longer ensure first-order completeness as defined

in the earlier sections. We will illustrate this by a small example.
M+(B) = {q(a),r(b)}
E+ = {p(a)}.

The propositional representations for one variable is given in Table 4.

For instance, the following clause is correct and complete in the propositional sense
p(x) ← p(x)

but M+(B ∪ H) |≠ p(x) ← q(x). Actually,H is not even sufficient asp(a) can no longer be
derived from it. As a result, in the recursive case Frog learns correct goal clauses but can
neither guarantee sufficiency nor completeness. Still, it can find interesting result as
shown in section 3. The incompleteness is not a result of using a propositional search
space (compare [Zic91] who does not have this problem). It is caused by the fact that the
distinction of evidence and background knowledge is abused in the recursive case. On the
one hand, the evidenceE is used as background knowledge (i.e., M+(B) ∪ E+ is used)
during learning clauses. On the other hand, it is no longer available in M+(B) which causes
the incompleteness of M+(B) ∪ H.

2 Frog: A Procedural Description of Our Approach

After describingwhat we want to have we will now discusshow this can be realized by a
heuristic search procedure. In fact, we will briefly sketch the propositional learning
algorithmsJoJo([Fen93a], [FeW93]) andFrog [Fen93b].

2.1 Frog in a Nutshell

Finding a hypothesisH which describes a set of examples in a correct, complete, and
minimal manner can be viewed as a search problem. Theversion space algorithm [Mit81]
is a classical algorithm which learns a set of goal clausesH from a set of examples. It uses
adual search strategy including generalization and specialization. As it uses anexhaustive
searchit can only be applied to small data sets. A lot of effort has been spent in the last
few years to developheuristic search procedures for this task. Two classes of these
algorithms can be recognized: Algorithms which usespecialization as search direction
(for example, AQ [MMH+86], ASSISTANT [Ces87], FOIL [Qui90a], and LINUS
[LDG91]) and algorithms which usegeneralization as search direction (for example,
CIGOL [MuB88], CLINT [Rae92], GOLEM [MuF90]).
Because one generally cannot determine which search direction is better, we developed
the procedure JoJo (cf. [Fen93a]), which integrates generalization and specialization into
one bidirectional search process. The algorithm can start at an arbitrary point in the lattice
of goal clauses and can generalize and specialize as long as the quality or correctness of
the goal clauses regarded can be improved, i.e., until a local optimum can be found, or the
search resources (e.g., computation time) are consumed. Because JoJo integrates both

Table 4.A small example for completeness an sufficiency.

(x,y) p (x) p(x) q(x) r(x)

(a) + 1 1 0
(b) − 0 0 1

search directions, two main advantages are achieved:
• Depending on the preference determined by domain- and task-specific

circumstances, the procedure can utilize the advantages of both search strategies in
a dynamic manner.

• The search procedure can use knowledge about meaningful starting points for the
search. As JoJo can use an arbitrary starting point (i.e., an arbitrary goal clause) for
its search process it can naturally work inan incremental mode by using the goal
clauses which should be refined as starting points for its new search process.

An evaluation of JoJo and its extension into a four-step procedure for refining,
completing, reducing, and minimizing a set of goal clauses according to new examples is
given in [FeW93] and [Wie93].
JoJo generalizes the heuristic search by integrating specialization and generalization into
one bidirectional search process. But JoJo inherits a strong restriction on its search
strategy from its predecessors. It can add or relax just one premise per step. An extended
strategy is to add or delete several premises in one step. This search strategy as used by
Frog allows jumping through the search space. Frog evaluates several goal clauses in the
environment of the current goal clause and selects one (or several in the case of a beam
search) of them as the successor goal clause. The size and location of the environment
where Frog is searching for successor goal clauses depends on the quality of a current goal
clause and the allowed search effort per step. In Figure 1 we sketch the Frog algorithm
using pseudo code. Two possibilities exist for deriving a successor goal clause from a
current one:

• A current goal clause covers too many negative examples and must bespecialized.
The user has to specify a threshold for the allowed ratio of the negative examples
and all examples covered by a goal clause. A successor goal clause is derived by
adding some premises to the current goal clause.

• A current goal clause is correct but should begeneralized. A successor goal clause
is derived by deleting some literals of the body of the current goal clause.

2.2 Implementation of the Learning Environment

The implementation of JoJo and its environment RJ for preprocessing data and testing
learning results is described in [FKN93]. The learning environment is implemented in C
and available for UNIX and MS-DOS. The learning environment consists primarily of
three different components: thepreprocessing component, the learning component, and
thepostprocessing component. Examples given as ASCII data are converted into binary
data by thepreprocessing element. This is done to improve the efficiency of the learning
algorithms. In addition, continuous and multi-valued attributes are preprocessed and the
data can be divided into a test and a training data set. Thelearning component implements
the RELAX, B-RELAX, JoJo and Frog algorithms. Each of them generates a set of goal
clauses. The binary coded goal clauses are transferred into text data by thepostprocessing
routine. The postprocessing component also tests the goal clauses against the given
examples. Applications and evaluations of RJ/JoJo can be found in [FKN93], [FeW93],
[FGS93], and [Wie93].
In order to apply Frog to problems specified in first-order logic, a transition from this
representation into propositional logic has to be implemented. A simple realization of this
transition was to implement an extension of the preprocessing component which

translated the first-order representation into a table format as shown in Table 2. This table
can be further processed by the preprocessing component of RJ which has already been
implemented.
On the other hand our current implementation is very inefficient concerning storage
amount and computational effort. A re-implementation derives explicitly only all ground
substitutions which are positive or negative example. Similar to FOIL partial
representations of the search space (i.e., the premises of the goal clauses) can be
constructed during the heuristic search process without losing the completeness of the
learning result. In addition it turn out that several steps of the current implementation
which check whether a possible goal clause covers a substitution can be drastically
optimized. Therefore, we expect a significant improvement of performance.
Still, the effort of the learning task increases expotentially with the number of variables.
Therefore, the scope of our approach is limited to learning problems with small number
of variables per clause. The user of Frog can use the number of variables as a language
bias to ensure tractability as the number of variables are fixed before the learning process.
Actually, he could start the learning process with small numbers of variables. If the
learned results are not sufficient, he could stepwise increase the number of variables.

3 An Evaluation of Our Approach

We use examples from [Qui90a] to illustrate and evaluate our approach. In the following
we present the results for asmall network, for learning an arch definition, for learning
recursive relations of lists, and, finally, for learningfamily relationships.

Figure 1. The Frog algorithm

current goal clause := init();1

while current total search amount < total search amount threshold
do

successor goal clause := current goal clause
initialize current search amount
while current search amount < search amount threshold
do

compute a new successor goal clause of the current goal clause
if quality(successor goal clause) < quality(new successor goal clause)
then successor goal clause := new successor goal clauseendif
increase current search amount

enddo
current goal clause := successor goal clause
increase total search amount

enddo

1. In this paper we do not discuss how an initial starting point is derived (see [Fen93b] for
more details).

3.1 A Small Network

Given is a small network as shown in Figure 2. The language for describing the learning
problem consists of nine constantsC = {0,1,2,3,4,5,6,7,8} (the nodes) and two predicate
symbolslinked-to andcan-reach. linked-to(a,b) is true if a andb are linked andcan-
reach(a,b) is true ifa andb are connected. The learning task is to compute clauses which
describe the target predicatecan-reach.
We start the search with two variablesx,y using can-reach(x,y) as the goal andcan-
reach(y,x), linked-to(x,y), linked-to(y,x) as background literals. Table 5 shows a part of the
representation of the learning problem. Frog produces clause (1) describing the target

literal can-reach(x,y):
can-reach(x,y) ← linked-to(x,y) (1)

This clause identifies the directly linked nodes as connected nodes. Thus the result covers
10 of 19 cases. We repeated the search with three variablesx,y,z again usingcan-
reach(x,y) as the target literal andcan-reach(x,z), can-reach(y,x), can-reach(y,z), can-
reach(z,x), can-reach(z,y), linked-to(x,y), linked-to(x,z), linked-to(y,x), linked-to(y,z),
linked-to(z,x), linked-to(z,y) as the background literals. Frog produces the following
clauses describing the target literal can-reach(x,y):

can-reach(x,y) ← linked-to(x,y) (2)
can-reach(x,y) ← can-reach(x,z) ∧ can-reach(z,y) (3)

The search process took around 2 seconds on a SPARC-II. Clause (2) covers 90 ground
substitutionsθ with can-reach(x,y)θ ∈ E+ and clause (3) covers 16. Both clauses together
cover 105. Thus one substitution is shared by both clauses. Both clauses are correct. The
solution is very similar to FOIL´s solution (see [Qui90a]) which also consists of two
clauses. The first clause is identical but the second one differs in the first premise. FOIL
learned the following second clause:

can-reach(x,y) ← linked-to(x,z) ∧ can-reach(z,y) (3´)

Table 5.Search forcan-reach with two variables.

(x,y) can-reach(x,y) linked-to(x,y) linked-to(y,x) can-reach(y,x)

(0,0) - 0 0 0
(0,1) + 1 0 0

...
(8,8) - 0 0 0

Figure 2. A small network.

0

1

2 5

6 8

7

43

Clause (3) as found by Frog is a generalization of the clause (3´) aslinked-to(x,z) |= can-
reach(x,z). Frog finds clause (3) instead of (3´) because five substitutions are cover by (3)
but not by (3´). An example for such a substitution isθ = {(x/0),(y/8),(z/4)}. The following
statements hold true:

can-reach(x,y)θ = can-reach(0,8)∈ E+, can-reach(x,z)θ = can-reach(0,4)∈ M+(B),
can-reach(z,y)θ = can-reach(4,8)∈ M+(B)

On the other hand:linked-to(x,z)θ = linked-to(0,4)∉ M+(B).
Taking a closer look at our solution it becomes visible that 66 positive examples remain
uncovered byH = {(2),(3)}. Frog cannot find correct goal clauses for them because the
description of our problem is not separable. For example,θ’ = {(x/0),(y/2),(z/4)} andθ’’
= {(x/0),(y/7),(z/2)} are two ground substitutions which cannot be separated with the
given background predicates and

can-reach(x,y)θ’ ∈ E+ versus¬can-reach(x,y)θ’’ ∈ E-.
If we allow goal clauses with some relative error—that is, if we apply the possibility of
our propositional learner to deal withnoise—we get an additional goal clause:

can-reach(x,y) ← can-reach(x,z) ∧ can-reach(y,z) ∧ ¬linked-to(x,z). (4)

This clause covers 38 positive examples (13 of them are already covered by {(2),(3)}) but
also 9 negative examples. Its accuracy is therefore 80%.

3.2 Learning Definitions For Arches

Winston introduced the task of learningdefinitions for arches from positive and negative
examples for them. We applied Frog to the target predicateArch with three variables and
it took 6.2 seconds on a SPARC-II to come up with the following clause:

Arch(x,y,z) ← Left-of(y,z) ∧ Supports(z,x) ∧ ¬ Touches(y,z)

This is also the clause learned by FOIL and it covers the two positive examples and none
of the negative examples.

3.3 Learning Recursive Relations On Lists

The example for learningrecursive relations on lists provides the following input facts:

list(()), list((a)), list((b(a)d)), list(((a)d)), list((d)),
null(())
components((a),a,()), components((b(a)d),b,((a)d)), components(((a)d),(a),(d)),
components((d),d,()), components((e.f),e,f)

As we do not provide function symbols, each different list is treated as a different
constant. We applied Frog to the target predicatelist with three variables and it took 10.1
seconds on a SPARC-II to come up with the following three clauses:

list(x) ← null(x) (1)

list(x) ← components(z,y,x) ∧ list(z) (2)

list(x) ← components(x,z,y) ∧ list(y) (3)

Compared to FOIL, an additional clause (3) is derived since {(1),(2)} do not cover 4 of
the 129 positive examples.

3.4 Learning Family Relationships

The example forfamily relationships provides the twelve predicates:

Aunt, Brother, Daughter, Father, Husband, Mother, Nephew, Niece, Sister, Son,
Uncle, Wife

and uses 24 constants to define 104 facts about family relationships. In the case of three
variables, the translation into a propositional representations produces 13,824 examples
described by 71 attributes. We applied Frog to the target predicateAunt using the ground
atoms of the other predicate symbols as background knowledge. It took around one
minutes on a SPARC-II to get the following two clauses:

Aunt(x,y) ← Nephew(y,x) ∧ ¬Uncle(x,y) (1)

Aunt(x,y) ← Niece(y,x) ∧ ¬Uncle(x,y) (2)

Both cover 96 positive examples and no negative examples.

4 Conclusions and Related Work

In the following we compare Frog with related approaches and identify tasks for future
research.

4.1 Comparison to Related Work

FOIL (cf. [Qui90a], [QuC93]), LINUS (cf. [LDG91], [DzL93], [LDG91]), and MILP
[Kov94] are approaches closely related to Frog, as they use a propositional learning space
for learning goal clauses of a restricted first-order language. Two main distinctions exists
between them and Frog. First, we extend their concept ofsufficiency to include (logical)
completeness of the learned solution. A learned hypothesisH contains all knowledge
about the target predicate which can be expressed in the restricted first-order language.
This is not the case when using the sufficiency condition as used by FOIL and LINUS.
Normally, one would assume that the result of a learning step should enrich the
knowledge of the learner. But using the sufficiency criterion of FOIL, M+(B ∪ H) is
weaker than M+(B) ∪ E+. Thus possible goal clauses

p(x1,...,xp) ← l1 ∧...∧ lm
exist which are a logical consequence of M+(B) ∪ E+ but which are no longer a
consequence of M+(B ∪ H). Therefore, learning by using LINUS and FOIL isalthough
not explicitly mentionedlearning by forgetting.
Second, the search strategy of Frog is much more flexible than the top-down search
strategy of FOIL and LINUS. The search strategy can leave a local optimum and Frog can
start at arbitrary points in the search space, which easily allows for an incremental and
reversible learning strategy. Because MILP uses simulated annealing, it is close in spirit
to Frogas it can also leave a local optimumbut the search is still viewed only as a
specialization process. Frog can use knowledge about meaningful starting points for the
search process, domain- and task-specific preferences for specialization and
generalization as search directions and extend search strategies which only regard direct
successors in the search space.
CLAUDIEN [RaB93] does not use a propositional search space, but the completeness

notion of our approach is similar to its nonmonotonic semantics setting. Despite this
similarity, there are some differences between CLAUDIEN and our approach.
CLAUDIEN cannot deal with incomplete evidence (i.e., partial interpretations) like Frog
can because it applies the closed-world assumption to the entire input knowledge. Frog
distinguishes between complete background knowledge and incomplete evidence about
the target predicate.
CLAUDIEN deals with multiple-predicate learning whereas Frog only learns goal clauses
for a single target predicate. The restriction to single-predicate learning is not a result of
our theoretical framework, which maps first-order representations onto propositional
representations via ground substitutions (see [Zic91] which applies it to multiple-
predicate learning), but it is inherited by our learning procedure, Frog, which is only
designed for learning goal clauses.
[Zic91] and [GaZ94] describe a learning system for definite clauses with finite minimal
Herbrand models, calledrule exploration, which is close in spirit to CLAUDIEN. As in
the nonmonotonic setting, they do not distinguish between background knowledge and
evidence and learn a set of clausesH for which:

M+(B) ⇔ M+(H)
but H is a compact description (i.e., a minimal description by most-general definite
clauses) ofB.10 As is the case with CLAUDIEN they apply their algorithm to the
multiple-predicate learning task. Until now, no comparison of these two approaches can
be found in the literature.

4.2 Directions of Future Work

First, we already mentioned that we implement a partial and dynamic construction of the
search space. Currently the entire search space is statically represented by a complete set
of maximally-specific clauses. In addition to the dynamic expansion of the search space,
the search itself has to be improved by using the symmetry within the search space in
respect to variable permutation (see [Zic91]). The propositional representations of
syntactically different clauses likeP(x) ← Q(x,y) andP(x) ← Q(x,z) differ, although the
clauses have the same semantics.
Second, we want to enrich the expressive power of our representation language. The
omission of function symbols is a strong limitation of our language. Enriching the
language could be done by allowing the use of function symbols. The absence of function
symbols is only a sufficient but not a necessary condition for finiteness. In fact, even with
the use of function symbols it is possible to ensure finite minimal models by defining rules
for the use of function symbols and recursion and for the use of variables in the body and
head of a clause (range restriction) [Ull89].

Acknowledgement

We thank Jörg-Uwe Kietz and several anonymous reviewers from ILP´94 and
ECML´95 for very helpful comments and Jeffrey Butler for correcting our English.

10. This approach is based on theFormal Concept Analysis (cf. [Wil89]).

References

[Ber93] F. Bergadano: Inductive Database Relations. InIEEE Transactions on
Knowledge and Data Engineering, vol 5, no 6, December 1993.

[Ces87] B. Cestnik:ASSISTANT PROFESSIONAL, A Software Tool for Inductive
Learning of Decision Rules, system user manual, Edvard Kardelj University,
Ljubljana, Slovenia, 1987.

[Cla78] K. L. Clark: Negation as Failure. In H. Gallaire et al. (eds.), Logic and Data
Bases, Plenum Press, New York, 1978.

[DzL93] S. Dzeroski and N. Lavrac: Inductive Learning in Deductive Databases. In
IEEE Transactions on Knowledge and Data Engineering, vol 5, no 6,
December 1993.

[Fen93a] D. Fensel: JoJo: Integration of Generalization and Specialization. In
Proceedings of the Workshop Knowledge and Data Engineering, Atelier
d´Ingenierie des Connaissances et des Donees, A.I.C.D., Strasbourg, France,
January 25-27, 1993.

[Fen93b] D. Fensel: RELAX, JoJo, and Frog: Step by Step Generalization of Search
Strategies in Applied Machine Learning. In research report, no 279, Institut
AIFB, University of Karlsruhe, 1993.

[FeW93] D. Fensel und M. Wiese: Incremental Refinement of Rule Sets with JoJo. In
Proceedings of the European Conference on Machine Learing ECML-93,
Vienna, Austria, April 5-8, 1993, Lecture Notes in Artificial Intelligence, no
667, Springer-Verlag, Berlin, 1993.

[FGS93] D. Fensel, U. Gappa, and S. Schewe: Applying a Machine Learning
Algorithm within a Knowledge Acquisition Scenario. InProceedings of the
Workshop Knowledge Acquisition and Machine Learning at the IJCAI´93,
Chambery, France, August 30th, 1993.

[FKN93] D. Fensel, J. Klein, and U. Neubronner: RJ: An Environment for Learning
from Example. InProceedings of the 13th International Conference Expert
Systems and Their Applications, 24-28 Mai, Avignon, 1993.

[GaZ94] B. Ganter and M. Zickwolff: A Tool to Acquire Conceptual Knowledge. In
D. Fensel et al. (eds.),Maschinelles Lernen: Theoretische Ansätze und
Anwendungen (Machine Learning: Theoretical Approaches and
Applications), Proceedings of the Workshop Machine Learning at the 17.
Fachtagung für Künstliche Intelligenz (KI-93), Berlin, September 13-16,
1993, research report, no 298, Institut AIFB, University of Karlsruhe, 1994.

[Hel89] N. Helft: Induction as Nonmonotonic Inference. InProceedings of the 1st
International Conference on Principles of Knowledge Representation and
Reasoning, 1989.

[Kov94] M. Kovacic: MILP-a Stochastic Approach to Inductive Logic Programming.
In Proceedings of the 4th International Workshop on Inductive Logic
Programming (ILP-94), Bonn, Germany, September 12-14, 1994.

[LaG94] N. Lavrac and S. Dzeroski: Weakening the Language Bias in Linus. In
Journal of Experimental & Theoretical Aritificial Intelligence, vol 6, no 1,
1994.

[LDG91] N. Lavrac, S. Dzeroski, and M. Grobelnik: Learning of Nonrecursive
Definitions of Relations with Linus. In Y. Kodratoff (ed.),Proceedings of the
European Working Session on Learning (EWSL)´91, Porto, Portugal, March
6-8, 1991, Lecture Notes in Artificial Intelligence, no 482, Springer-Verlag,
Berlin, 1991, pp. 265-281.

[Llo87] J. W. Lloyd: Foundations of Logic Programming, Springer-Verlag, 2nd
edition, Berlin, 1987.

[Mit81] T.M. Mitchell: Generalization as Search, B. Webber et al. (eds). InReadings
in Artificial Intelligence, Tioga Publishinh Co., Palo Alto, 1981.

[MMH+86] R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac: The Multi-Purpose
Incremental Learning System AQ15 and its Testing Application to Three
Medical Domains. INProceedings of the 5th National Conference on AI
(AAAI-86), Philadelphia, August 11-15, 1986, pp. 1041-1045.

[MuB88] S. Muggleton and W. Buntine: Machine Invention of First-Order Predicate
by Inverting Resolution. InProceedings of the 5th International Conference
on Machine Learning (ICML´88), 1988.

[MuF90] S. Muggleton and C. Feng: Efficient Induction of Logic Programs. In
Proceedings of the Workshop on Algorithmic Learning Theory (ALT´90),
Tokyo, October 8-10, 1990.

[MuR94] S. Muggleton and L. De Raedt: Inductive Logic Programming: Theory and
Methods. In Journal of Logic Programming, vol 19/20, May/July 1994.

[QuC93] J. R. Quinlan and R. M. Cameron-Jones: FOIL: A Midterm Report. In
Proceedings of the European Conference on Machine Learning, Machine
Learning: ECML-93, Vienna, Austria, April 5-7, 1993, P. B. Brazdiol (ed.),
Springer-Verlag, Lecture Notes in Artificial Intelligence, no 667, 1993.

[Qui84] J.R. Quinlan: Learning Efficient Classification Procedures and Their
Application to Chess End Games. In R.S. Michalski et al. (eds.), Machine
Learning. An Artificial Intelligence Approach, vol.1, Springer-Verlag,
Berlin, 1984, pp. 463-482.

[Qui90a] J. R. Quinlan: Learning Logical Definitions from Relations. InMachine
Learning, vol 5, no 3, 1990, pp. 239-266.

[RaB93] L. De Raedt and M. Bruynooghe: A Theory of Clausal Discovery. In
Proceedings of the 13th International Joint Conference on Aritificial
Intelligence (IJCAI´93), Chambery, France, 28 August - 3 September, 1993.

[Rae92] L. De Raedt:Interactive Theory Revision: An Inductive Logic Programming
Approach, Academic Press, 1992.

[RLD93] L. De Raedt, N. Lavrac, and S. Dzeroski: Multiple Predicate Learning. In
Proceedings of the 13th International Joint Conference on Aritificial
Intelligence (IJCAI´93), Chambery, France, 28 August - 3 September, 1993.

[RoP89] C. Rouveirol an J.-F. Puget: A Simple Solution For Inverting Resolution. In
K. Morik (ed.), Proceedings of the 4th European Working Session on
Learning (EWSL-89), pp. 201-210, Pitman, 1989.

[Rou94] C. Rouveirol: Flattening and Saturation: Two Representation Changes For
Generalization. InMachine Learning, vol 14, 1994, pp. 219-232.

[Ull88] J.D. Ullman: Database and Knowledge-Base Systems, vol. 1, Computer
Science Press, New York, 1988.

[Wie93] M. Wiese: JoJo:Integration von Generalisierung und Spezialisierung in ein
heuristisches Verfahren zum maschinellen Lernen von Regeln aus
Beispielen, master thesis, Institut AIFB, University of Karlsruhe, 1993.

[Wil89] R. Wille: Knowledge Acquisition by Methods of Formal Concept Analysis.
In E. Diday (ed.), Data Analysis, Learning Symbolic and Numerical
Knowledge, Nova Science Publ., New-York, 1989.

[Zic91] M. Zickwolff: Rule Exploration: First Order Logic in Formal Concept
Analysis, PhD thesis, University of Darmstadt, 1991.

Appendix - Open-world Assumption Applied to the Background Knowledge

For a general discussion of applying the open-world assumption to inductive logic
programming compare [BeW93]. In our context, the open-world assumption applied to
background knowledge implies an extended definition of background knowledge.

Def. 17 (cf. Incomplete background knowledge)

Incomplete background knowledge B is defined by two disjunct subsets M+(B) and
M-(B) of the Herbrand base ofL(A) containing only background predicate symbols.

The transformation from a first-order representation to a propositional representation
translates each ground literal to an attribute having the values true (1), false (0), and
unknown (?). Unknown facts correspond tounknown as attribute value. As propositional
learner are able to deal with data sets containing unknown values it is no surprise that a
propositional learner can also deal with incomplete background knowledge. Different
possibilities exist to interpret the attribute value unknown (i.e., as a missing value, as an
irrelevant value etc., cf. [Qui89]). Similar, we get different possibilities to define
correctness of goal clauses and to define completeness. In the following, we sketch only
one of these possibilities.

Def. 18 (cf. Satisfaction and model)

Let A be a atom,l a literal, andM = (M+,M-) a partial Herbrand interpretation.

• (M+,M-) |= A if A θ ∈ M+ for all ground substitutionsθ

• (M+,M-) |= ¬A if Aθ ∈ M-

• (M+,M-) |= l1 ∨ ... ∨ ln if (M+,M-) |= li for all i=1,...,n

• (M+,M-) |= A ← l1 ∧ ... ∧ ln if A θ ∈ M+ or (M+,M-) |= (¬l1 ∨ ... ∨ ¬ln)θ
for all ground substitutions θ

If (M+,M-) |= φ holds, we say thatφ is true in (i.e.,M is a model ofφ).

If φ is true inM then it is also true in all conservative extensions ofM. A conservative
extensionM´ of M changes only the truth value of unknown facts. That is,M+ ⊆ M´+ and
M- ⊆ M´-.
We get the following completeness definition which hold for the produced result of Frog.

Def. 19 (cf. Correctness and Completeness)

A hypothesisH is called correct if H does not cover a negative examples ofE. H
coversa negative exampleθ (i.e.,p(x1,..., xp)θ ∈ E-) if and only if a clauseh ∈ H
exists, withh = (p(x1,...,xp) ← P), such thatB |= Pθ.

A hypothesisH is called complete if H covers all positive examples ofE. H covers
the positive exampleθ (i.e.,p(x1,...,xp)θ ∈ E+) if and only if a clauseh ∈ H exists,
with h = (p(x1,...,xp) ← P), such thatB |= Pθ.

[BeW93] S. Bell an S. Weber:A Three-valued Logic For Inductive Logic Programming, LS-8
Report 4, Lehrstuhl VIII, Artificial Intelligence, Universität Dortmund, Junly 1993.

[Qui89] J. R. Quinlan: Unknown Atribute Values in Induction. InProceedings of the 6th
International Workshop on Machine Learning, New York, June 26-27, 1989.

