
ematical Assistants { Issues and possible Solutions", 11th European Conference on Arti�cial Intelligence,

Amsterdam, pp. 48{53, 1994.

Towards an Intelligent Mathematical Environment

Bridging the Gap between Theorem Proving and Symbolic Mathematical Computing

Karsten Homann Jacques Calmet

Universit�at Karlsruhe

Institut f�ur Algorithmen und Kognitive Systeme

Postfach 6980 � D-76128 Karlsruhe � Germany

fhomann,calmetg@ira.uka.de

Abstract

One of the purposes of an intelligent assistant for Mathematics is to support formal

reasoning and e�cient computation in mathematics and mathematical applications. Such

an assistant requires to represent complex mathematical knowledge and to perform sym-

bolic mathematical computations in an environment which also provides sophisticated AI

techniques.

We describe and outline the advantages of an intelligent mathematical environment

which combines automated theorem proving and symbolic mathematical computing.

1 Introduction

The dream of an intelligent assistant for mathematicians has motivated researchers for

decades. One of the purposes of a comfortable interactive environment is to support formal

reasoning and e�cient computation in mathematics and mathematical applications. Such

an assistant requires to represent complex mathematical knowledge and to perform sym-

bolic mathematical computations in an environment which also provides sophisticated AI

techniques, e.g. automated theorem proving, machine learning, planning.

Computer algebra systems (CAS) usually o�er a powerful collection of algebraic algo-

rithms and a straightforward programming language. In classical systems the mathematical

knowledge, e.g. de�nitions of mathematical structures, properties of operators on a domain,

domain and range of algorithms and their mathematical speci�cation, is hidden in the alge-

braic algorithms. Axiom [JeSu92] allows the de�nition of new abstract data types including

properties of operators and started a new generation of systems, but no AI methods (e.g. au-

tomated theorem proving, learning) are available. CAS are very e�cient to compute symbolic

solutions by given algorithms but cannot derive new theorems or lemmas.

On the other hand, automated theorem provers (ATP) have shown remarkable results in

proving non-trivial mathematical theorems. However, they lack some mathematical knowl-

edge, algebraic algorithms, intelligible representations and proofs, are hard to use, or compute

huge search spaces.

A promising approach consists in the integration of theorem proving and symbolic math-

ematical computing into a common environment. We report on such an environment called

�����1 which enables to rely on algebraic algorithms, to derive theorems, to deal with both

1
Learning Environment for Mathematic and Mathematical Applications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197596817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

vertical and inclusion polymorphisms, to learn and to apply equation schemata. The explicit

formalization of mathematical dependencies provides new possibilities to explain the solution

steps.

2 An Intelligent Environment for Symbolic Mathematical

Computing

An environment for solving mathematical problems which integrates theorem proving, sym-

bolic computing, explanation-based learning and a knowledge representation system is given

in �gure 1. The schema-based representation of mathematical structures and algorithms en-

ables the representation of meta-knowledge, e.g. constraints of parameters, dependencies of

algorithms and theorems.

Simplifier

Evaluator

Symbolic
Calculator

Learning Subsystem

Problem Solver

Verifyer

Parser Display

GUI
User Interface

Mathematical
Knowledge Base

Normal Forms

Symbol Tables

Special Cases

General Schemata

Mathematical Schemata
Domain Knowledge

User Definitions

Explanation

Generalization

Initial Equation Schemata

Derived Equation Schemata

Theorem
Prover

Type Schemata Algorithm Schemata

Algebraic Algorithms

Figure 1: Architecture of the intelligent environment for symbolic computing

The user interface o�ers frames and graphs for handling schemata and displays expla-

nations about solutions of speci�c problems. An evaluator solves these problems through a

theorem prover, algebraic algorithms (symbolic calculator), and applying equation schemata

(learning subsystem). The knowledge base consists of symbol tables, normal forms of the

simpli�er, algebraic algorithms of the symbolic calculator, algorithm schemata for the speci-

�cation of algorithms, type schemata for abstract computational structures, as well as initial

and derived equation schemata for simplifying expressions.

Equation schemata consist of mathematical rewriting rules which model domain knowl-

edge, and user de�ned laws. New equation schemata can be learned by generalizing special-

ized solutions using explanation-based learning (EBL). Given problems are solved by applying

schemata to eliminate obstacles [Shav90] in the calculation of unknown properties of a vari-

able. An explanation why this is an appropriate solution to the problem is generated, the

achieved schema is generalized to solve other problems, and �nally, the knowledge base of

equation schemata is updated by the new generalized schema.

The user doesn't receive any information about the solution steps from the system, e.g.

why is the output the solution of the given problem, or how to �nd the solution of a problem.

Therefore, algorithms are represented in terms of schemata, too. An example schema of the

general gcd algorithm is given in �gure 2. It allows the representation of meta-knowledge

like:

� Name, a unique identi�er of the schema with variable bindings

� Signature, describes the types of input and output

� Constraints, imposed on the domains and ranges

� De�nition, mathematical description of the output

� Subalgs, list of subalgorithms describing the embedded subtasks

� Theorems, describing properties of the algorithm

� Function, name of the corresponding executable algebraic function to compute the

output.

Name gcd(?a; ?b) =?g

Signature ?A � ?A ! ?A

Constraints isa (?A, EuclideanRing)

De�nition (?gj?a) ^ (?gj?b)^ (8c 2?A : (cj?a)^ (cj?b)) (cj?g))

Subalgs

Theorems gcd(u; v) = gcd(v; u)

gcd(u; v) = gcd(v; u mod v)

gcd(u; 0) = u

Function

Figure 2: Schema of algorithm gcd

A proposed interaction between a symbolic calculator (SC) and an automated theorem

prover is illustrated in �gure 3. Algorithms can be used for the e�cient computation of pred-

icates when proving theorems. A simple interaction needs to transfer all necessary knowledge

and parameters to the SC. This is avoided when a common knowledge base is used, and a

direct link between SC and ATP allows the immediate call of an algorithm within a proof,

e.g. Otter 3.0 [McCu94] allows the introduction of user-de�ned algorithms which must be

identi�ed by a special character (e.g. $GCD). CAS provide an extensive collection of very

e�cient mathematical algorithms, thus reimplementation is neither necessary nor meaningful.

Example:

Otter allows the de�nition of simple functions, e.g. factorial. The performance can be

increased strongly by calling the e�cient factorial algorithm available in the SC.

SC

Evaluator

Knowledge Base

User Interface

ATP

Figure 3: Interaction between algorithms and theorems

factorial(x) = % factorial for nonnegative integers

$IF($EQ(x,0),

1,

$PROD(x, factorial($DIFF(x,1)))).

The application of theorems is useful even when running algebraic algorithms (e.g. veri�-

cation of conditions, properties of objects). The advantage lies in using the powerful reasoning

capabilities of the theorem prover in the SC.

Example:

A condition in an algebraic algorithm, e.g. \if #IsNormal(G,H) then..." 2, can be veri�ed

by theorems of an ATP, e.g. try to prove that all subgroups of index 2 are normal.

A complete integration of algorithms and theorems is achieved by combining both inter-

actions. At any step, arbitrary combinations of algorithms and theorems can be applied to

solve a given problem. Such a feature combines the respective advantages, but requires to �t

the SC and the ATP to a common knowledge representation.

Example:

Berlekamp's factorization algorithm contains the condition \if #SquareFree(p) then..." can

be veri�ed using a theorem 8f 2 Zp[x] : SquareFree(f) , $GCD(f; f 0) = 1 . The SC can

be used to compute the derivation of p and the gcd.

3 A Knowledge-Based Type System

The theory of algebraic speci�cation provides a good framework to design the type system

of a mathematical assistant. The speci�cation language Formal-� [CaTj93] has been de-

signed to represent the mathematical knowledge. It is well-suited to specify mathematical

domains of computations, e.g. �nite groups, polynomial rings, which are inherently modular.

An algebraic speci�cation introduces constants, operators and properties in their intended

interpretation and enables the re-use of subspeci�cations within a speci�cation in accordance

with the dependencies between particular speci�cation modules of an abstract computational

structure (ACS).

A type schema represents such a module and consists of:

2The special character # indicates a call to the theorem prover.

� Name, a unique identi�er

� Based-on, a list of inhereted ACS

� Parameter, a list of ACS which are parameters

� Sorts, declaration of new sorts

� Operators, declarations of new operators

� InitialProps, initial properties.

Figure 4 show the schemata of some example ACS (more details may be found in [CHT92]).

These de�nitions build a based-on hierarchy of the mathematical domains of computation

(�gure 5).

Name Monoid

Based-On SemiGroup

Sorts Mo

ne 2 Elt

Operators

InitialProps 8x 2 Elt: ne f x = x

Name Group

Based-On Monoid

Sorts Gr

Operators inv :: Elt ! Elt

InitialProps 8x 2 Elt: inv(x) f x = ne

Name Ring

Based-On MultSemiGroup (rename: (f;�); (ne; 1))

AddAbelianGroup (rename: (f;+); (ne; 0); (inv;�)

Sorts Ri

Operators

InitialProps 8x; y; z 2 Elt: x� (y + z) = (x� y) + (x� z)

8x; y; z 2 Elt: (y + z)� x = (y � x) + (z � x)

Figure 4: Type schemata for Monoid, Group, and Ring.

4 Conclusion

We have very brie
y outlined the main features of an intelligent mathematical environment

which combines automated theorem proving and symbolic mathematical computing. The ar-

chitecture of the environment integrates a subsystem for learning equation schemata by EBL

and an automated theorem prover for the derivation of theorems based on the de�nitions and

theorems of algorithm schemata and properties of operators of type schemata. Explanations

on the solutions to a given problem are given by graphs of dependencies between algorithms,

mathematical de�nitions and types.

The foreseen advantages and bene�ts of this approach consist in being able to address

the following problems:

SemiGroup

Monoid

Group

AbelianGroup

AddAbelianGroup

Ring

MultSemiGroupAddAbelianSemiGroup

OrderedSet

OrderedMonoidMultMonoid

Set

Boolean

Figure 5: Hierarchy of type schemata

� problem solving by combining automated theorem proving and symbolic calculations

� modifying EBL to incrementally complete the properties of operators in ACS,

� extraction of mathematical schemata from algebraic algorithms,

� explanation of the solutions.

The next tasks within this on-going project are to design a common language for SC and

ATP, the generation of algorithms from theorems and their veri�cation and the integration

of the learning component.

References

[CHT92] J. Calmet, K. Homann, I.A. Tjandra, Uni�ed Domains and Abstract Com-

putational Structures , in J. Calmet (ed.), International Conference on Arti�cial

Intelligence and Symbolic Mathematical Computing, Karlsruhe, August 3{6, 1992,

LNCS 737, pp 166{177, Springer, 1993.

[CaTj93] J. Calmet, I.A. Tjandra, A Uni�ed-Algebra-Based Speci�cation Language for

Symbolic Computing , in A. Miola (ed.), Design and Implementation of Symbolic

Computation Systems, LNCS 722, pp 122{133, Springer, 1993.

[JeSu92] R.D. Jenks, R.S. Sutor, AXIOM , Springer, 1992.

[McCu94] W.W. McCune, OTTER 3.0 Reference Manual and Guide, Technical Report

ANL-94/6, Argonne National Laboratory, 1994.

[Shav90] J.W. Shavlik, Extending Explanation-Based Learning by Generalizing the Struc-

ture of Explanations , Pitman, London, 1990.

