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ABSTRACT: Computer-aided architectural design (CAAD) poses a number of novel challenges to
database systems. The central thesis of this paper is that design decisions can be described in terms
of constraints. Consequently one major concern of CAAD is the management of highly dynamic con-
straints. This paper motivates in detail the requirements for a constraint management component in
building design, and presents a method for supporting the dynamic aspects of constraints.

1 INTRODUCTION

An architectural design process has many unique
and individualistic traits: Its result is one{of{a{
kind, the group of experts (architects, sanitary en-
gineers etc.) di�ers from one building to the next,
and each expert is only involved over part of the
time. The cooperation among experts is more se-
quential than parallel, and, hence, becomes sus-
ceptible to misunderstandings or conicts.

Similar shortcomings have been observed for the
engineering activities in other disciplines as well,
where they have in the meantime been overcome
by computer{aided integration. Such an approach
is possible in building design, too. The aim of \In-
tegral Planning" ([14]) is to provide a much closer
interaction between architects and other special-
ists without unduly restricting their creative work
([1]).

Creative work is a series of design decisions.
This observation gives rise to two hypotheses un-
derlying our work on computer support for Inte-
grated Planning. For one, we tie design decisions
to design areas encompassing a number of design
objects rather than individual design objects. Sec-
ond, we describe design decisions in terms of con-
ditions that constrain the range of possible future
design decisions.

Consequently, we base our support framework

on the following concepts: A representation for-
malism for an 11-dimensional design space called
the A4 space, a common database system where all
design decisions can be stored as 11-dimensional
data objects (so-called containers) and easily re-
trieved by spatial overlappings, and so-called con-
straints which represent design rules and design
decisions and impose restrictions and interdepen-
dencies on the set of containers in the database.

2 CHARACTERISTICS OF CONSTRAINTS

Constraints are usually large in number and dif-
fer in type. Some reect design decisions, others
govern relationships between representations of the
same real{world object, e.g., on di�erent scales,
further ones may have to do with general design
rules or with design restrictions. The rules may
be, e.g., organized within the following classes:

1. zoning and building regulations,

2. building norms,

3. expert{speci�c rules,

4. individual requirements of the building owner,

5. individual requirements of the architect.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197596763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Rules of the �rst two classes are of a more stat-
ic nature. Those of the other three groups show
a highly dynamic behavior. Expert{speci�c rules
will be activated or deactivated several times dur-
ing the design process, and the requirements of
the building owner and of the architect reect at-
titudes and may change over time.
This paper will present a method for support-

ing especially the dynamic aspects of constraints.
Figure 1 shows a part of the design of the \canton-
al school" of Solothurn, Switzerland, which we use
to illustrate the characteristics of constraints. The
�gure shows the ground oor of the science wing of
the school. All class{rooms on this oor (area A)
are specialty rooms. Each room has been assigned
to a particular teacher. Area B is a free communi-
cation zone for the students to meet during their
breaks.

Figure 1: Cantonal school of Solothurn

Contrary to more traditional approaches, con-
straints are not bound to object types but to in-
dividual objects. E.g., for each specialty room
in the example above di�erent sets of constraints

are valid: In one room the teacher needs three
wash-basins, whereas in the other room the teacher
needs �ve basins.

In fact, following our hypothesis it would be
more consistent to bind constraints more general-
ly to design areas. Indeed this makes good sense.
Consider that the building owner may decide to
have a minimum of 32 seats in some part of the
free communication zone (area C), without deter-
mining the concrete area as yet.

A design process will result in a continuously in-
creasing set of constraints, or more precisely, of ac-
tive constraints which have to be controlled to as-
certain that they are being satis�ed. By contrast,
passive constraints \lie in waiting". Consider an
expert tool that reects the work of a specialist,
say a sanitary engineer. The tool will in all likeli-
hood include a number of constraints to be satis-
�ed once it gets to work. The constraints remain
passive until then, and become active afterwards.

Typically, an expert tool is active only in a dis-
tinguished part of the building and corresponds to
a special step within the design process. As a re-
sult, each area of the architectural design is de-
scribed by a di�erent set of constraints. Just con-
sider that the ground oor may already be in the
stage of planning the furniture whereas planning
of the second oor is still on the functional level.

The set of constraints may vary even if no expert
tool has been added. Because of new ideas and
a deeper perception of the design problem, con-
straints may be dropped, new ones will be added,
or the area in which the constraint is active may
change.

The areas, in which constraints are active are
de�ned not only by their geometric attributes, but
also by other aspects, e.g. the current level of de-
tail. A constraint which governs the arrangement
of pillars is not yet relevant on a functional level
of detail. Once the level of detail changes a large
number of constraints must be included to obtain
a consistent transformation.

Traditionally in databases, consistency is
checked upon internally generated events, and pri-
or changes are undone or must at least be corrected
before the system allows one to proceed. By con-
trast, in architectural design, inconsistent states
must be permitted to the extent desired by the us-
er, checks should be initiated by user{de�ned, i.e.,
external events such as reaching a milestone, and
responses to violations should be performed in a
user{controlled fashion.



During a design step the constraints are anal-
ysed by a constraints checking facility. In support
of \Integrale Planning", conicts between di�erent
users should be detected as early as possible. The
system should either notify the users, thus pro-
viding a platform for their cooperation, or where
possible and meaningful should try to resolve the
conict, possibly with an explanation of the caus-
es.

One aim of the project ArchE is to provide a con-
straint handling component in this highly dynamic
environment. (Information about our project and
the basic concepts can be found in [9, 12, 10, 11]).

3 TRIGGERING CONSTRAINT CHECKS

A standard technique to initiate constraints check-
ing in databases at speci�able times is the concept
of trigger ([2, 3, 6, 4, 5, 15]). Triggers normally
consist of three parts: events, conditions describ-
ing violations, and actions, with the semantics that
if an event occurs, the related condition is checked
and, if true, the action is executed.

Our central idea is to augment triggers by a
fourth component, areas, in order to account for
our hypothesis and, hence, for the special design
situations under which the constraint is applicable
(or \active"). Elements of the area concept are all
the attributes of the A4 space, with its dimensions
of geometry (of the bounding box, where a condi-
tion is valid), several time attributes, resolution,
size, type, alternative, and morphology. We call
this kind of trigger an area trigger.

The execution model of area triggers is as fol-
lows. The part of the design on which the designer
is operating determines the working area. Dur-
ing the time of operation, all triggers whose area
overlaps with the working area, are taken into con-
sideration. As such they are active, i.e., they be-
come candidates for possible execution and hence,
for constraint checking. Actual execution takes
place on occurrence of the speci�ed event within
the working area.

Design decisions are reected in changes of the
attribute values of the area. A designer is also per-
mitted to rede�ne the event that gives rise to the
execution of a trigger, the condition under which
the action will take place, or the action itself, thus
adjusting constraints to a modi�ed design status.
A modi�ed area trigger does not replace its earlier

version but is instead appended to what is called
the trigger history. Consequently, the entire time
line of an area trigger remains available, an im-
portant feature that allows backtracking to earlier
versions whenever one or more design decisions are
revoked.
Cooperation between di�erent designers takes

place by the overlap of containers and areas. In
particular, hence, design decisions and triggers,
and thus constraints can be shared. In this way de-
signers may immediately recognize potential con-
icts if they attempt to associate an area with trig-
gers contradicting each other.
The concepts of container ([12, 11]) and area

trigger ([13]) provide a uniform framework to han-
dle design decisions as constraints. This supports
both, the control of expert-speci�c information and
constraints, and the communication between dif-
ferent experts.

4 IMPLEMENTATION

The basic architecture of our CAAD environment
is organized in two levels (�gure 2). The upper lev-
el { the container model { is an immediate reec-
tion of the users' perceptions of the design process
and the design objects and, hence, has as its basic
concepts containers for design areas and objects,
and area triggers to reect constraints as a com-
bination of area of activity, events, condition, and
actions. Basically, the container model is a trans-
lator between all views and actions at the user in-
terface and corresponding internal data structures

Tool 1 Tool 2 Tool 3

Container
Model

Container
Server

Figure 2: Architecture

and actions on them.
The lower level { the container server { is based

on an object{oriented database system. Object{
orientation was chosen because it is known to o�er
a particularly natural mapping from design objects
(here: containers) and the actions de�ned on them
to persistent storage.



The conceptual schema, i.e., the formal speci-
�cation, for area triggers on the container serv-
er level is shown in �gure 3. It consists of
�ve parts which are combined into an AECAR
schema. The schema can be instantiated to AE-
CARs (Area-Event-Condition-Action-Rules). The
area schema models the dimensions of the 11-
dimensional design space and, additionally, some
describing attributes necessary for trigger control.
The AECAR-head integrates the events, condi-
tions and actions which determine the activity in a
speci�ed area. Associated with the AECAR-head
as a whole are further attributes which describe the
overall state of an area trigger: State of consistency
shows whether the constraint, in the speci�ed area,
forces consistency, permits inconsistency, or leaves
consistency open. Nullarea indicates whether the
area trigger has been prede�ned but is as yet not
associated with any area. The attribute user spec-
i�es the expert tool which owns the area trigger.
Each AECAR consists of exactly one area and one
constraint condition, whereas several events and
actions may be associated. Consequently, the val-
idation of a constraint in a speci�c area may be
initiated by di�erent events, and several di�erent
actions may be triggered in case of a violation.

actionsconditionsevents
1+ 1+

AECAR (Area−Event−Condition−Action−Rule)

area schema

state−of−consistency
nullarea
user

additional attributes

geometry
t, dt
his, dhis
type
resolution
size
alternative

AECAR − head

Figure 3: AECAR schema

5 DYNAMICS OF CONSTRAINTS

Each user of the design system will introduce
his/her own constraints, relate them to a particu-
lar part of the design, and specify their behavior,
i.e., the events initiating the validation of the con-

straint, and the actions to be taken in case of con-
straint violation. We expect these constraints to be
frequently changed. For example, in �gure 1 one
of the teachers initially wishes to enforce 5 wash
basins in his/her class{room. Therefore, the ac-
tions on a violation of that constraint should con-
form to a strict enforcement. Later on, the teacher
may decide to loosen the requirement, so that the
actions have to be changed in a way suitable to the
new situation.
We now demonstrate in more general terms how

the container model and the container server will
deal with the dynamics of area triggers. Consider
�gure 4 as a schematic representation of the vari-
ous (partially nested) design areas at the graphical
user interface.
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Figure 4: Dynamic changes of constraints during
the design process

Figure 4a shows the consistency state of the de-
sign at time t1. The dotted boxes represent the
areas in which the constraints are active. Each



area box contains its constraint { condition and
behaviour, i.e., related events and actions. At time
t2 the consistency constraints are modi�ed result-
ing in the consistency state in 4b.
The example shows a number of typical changes:

� An existing consistency constraint becomes
active in another area, e.g., at point t2 the
constraint A is also activated in area7.

� The associated area of the constraint changes,
e.g., area2 for constraint B is enlarged to
area8.

� The events change as, e.g., for constraint A in
area4.

� The associated actions change as, e.g., for con-
straint D in area5.

� A consistency constraint becomes inactive in
a particular area, e.g., constraint B has been
removed from area6.

Figure 5 shows at the container server level the
corresponding AECARs for times t1 and t3.

Typically, a design process is not a sequential af-
fair but one characterized by iterations and retrac-
tions. Consequently, our CAAD environmentmust
allow arbitrary backtracking of the design for arbi-
trary parts. Consistency constraints must be able
to follow these changes in design states. To do so,
at each change of a constraint, i.e., the associated
area or behavior, a new trigger object will be cre-
ated. Therefore, with such an object we must asso-
ciate the time period (kept in a history attribute)
during which it is valid. During changeover, the
endpoint of the history attribute of the old trigger
object, and the starting point of the time inter-
val of the new trigger object are set to the current
time.

We note from �gure 4 that the same constraint
(more precisely: the same condition) may be valid
in di�erent parts of a design and show in each a
di�erent behaviour. Therefore, each consistency
constraint in conjunction with the area, in which
the constraint is active, needs a separate trigger
object. Consider �gure 4a. The consistency con-
straint A is active at time t1 in the areas area1
and area4. So, to describe this situation, two rules
R1 and R5 are necessary (�gure 5a). Similarly,
the consistency constraint B is active in two areas,
requiring two rules R3 and R6. The consistency
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Figure 5: Dynamic adaptation of the constraints



check of the constraint C in the area4 may be en-
forced by two events reected in �gure 5a by a
single rule R2. The consistency constraints D and
E are, each, only active in one area. Correspond-
ingly, there exist rules R4 and R7.
Figure 5 illustrates the development of the histo-

ry attributes. Suppose that no rules existed in the
database before time t1, i.e., that rule generation
begins with time t1. Therefore, in �gure 5a all of
them contain the same starting point t1 in their
history attribute. The end of the time interval is
set to tn, which represents a time long away in the
future, and means that the rule is currently active.
At time t2 all rules concerned have to be adapt-

ed to reect the changes. The new set of rules is
shown in �gure 5b. For each change of an area
rule the history attributes of the old and new rule
must be set. We observe the following e�ects in
our example:

� In area4 event e3, in place of e1, activates the
checking of constraint A. Therefore, in rule R1
the history interval is closed, i.e., the end of
the time interval is set to t2. To reect the
new situation, rule R10 is generated setting
the history interval to start time t2 and end
time tn.

� Constraint A is added to area7 where it is ac-
tivated by event e2 and will cause, in case of
violation, action a2. This is reected in the
new rule R11, with the history interval begin-
ning at t2 and ending at tn.

� Constraint B in area6 is deactivated. There-
fore, the history interval of rule R6 is closed
by setting the end of the interval to t2.

� Constraint B is also active in area2, which is
enlarged at time t2. For that reason, rule R3,
in the same way as rule R6 above, is closed
and a new rule R9 with the time interval be-
ginning with t2 and ending with tn is created,
corresponding to the new area8.

� In area5 the violation of constraint D is sup-
posed to invoke action a3 instead of the former
action a4. Accordingly, rule R4 is changed in
the same way as rule R1 above, and rule R8
is created in a way similar to rule R10 above.

� The changes at time t2 do not a�ect the rules
R2, R5, and R7. These are placed unchanged
into the set of rules for time t3. In particular,

their history intervals remain between times t1
and tn, indicating their continued actuality.

The architectural design does not restrict
changes to certain �xed times. Openess to changes
at any time is reected in the possibility to set the
time stamps to arbitrary values. As the example
demonstrates, during the design process large sets
of rules will evolve, that allow backtracking to ar-
bitrary earlier time points in the design process.
Since all rules are objects in their own right with
no explicit connection among them, and any part
of a rule may change on creation of a new rule so
that one cannot derive an implicit connection ei-
ther, backtracking must entirely rely on the time
dimension and the related user{de�ned areas.

6 RULE EVALUATION

Typically, several persons work on the same de-
sign project in parallel. This will give rise to fre-
quent conicts among them. If we leave it to the
persons to detect the conicts these may go unde-
tected for a long while, at least if the persons do
not work simultaneously, or even forever, because
the constraint complexity is not yet surveyable by
persons. Consequently, conict detection should
be automated so that it takes place at the earliest
possible time. Our rule evaluation mechanism is
geared to do just that.

The foundation for conict detection is the
event. An event has a time dimension: it takes
place whenever a designer performs a change to
the design. An event also has a spatial dimension:
it relates the change to a particular part within
the design area. Constraint checking will now be
invoked at the time of the event for all constraint
areas which include the spatial dimension of the
event. If there is more than one a�ected area, vi-
olation may point to a design conict. If these ar-
eas are the responsibility of more than one person,
cross{person conicts become immediately visible.

Fig. 6 gives an example. The user triggers in
his/her current working area the events E1, E2,
and E3. CC1, CC2 und CC3 are examples of ar-
eas of rules. CC1 is completely located within the
actual working area, whereas the area of CC2 only
overlaps with the actual working area, and the area
of CC3 falls completely outside of it. Because the
user is only able to trigger events within his/her



current working environment, only rules CC1 and
CC2 are candidates for violation. The spatial di-
mension of event E1 is completely outside the areas
related to CC1 and CC2. Therefore, for the con-
sistency check triggered by event E1 neither CC1
nor CC2 are relevant. E2 lies within the area of
CC2, i.e., the e�ect of E2 in the design overlaps
with the position of CC2. In this case CC2 has to
be proven valid but not CC1. Suppose now that
a second designer operates in a working area that
is disjoint from the working area shown, but also
overlaps with CC2. Then a violation within CC2
may a�ect him/her as well. This is not the case
for E3 and CC1 which are restricted to the user of
the working area shown.

E1

E2

E3

CC1

CC2

CC3

current working area

Figure 6: Relationship between events and con-
straint areas

The execution model must facilitate the checks
as discussed above. Since the working areas of de-
signers remain fairly stable over some time, some
e�ciency can be gained by precomputation. On
the other hand, because designers may work in
parallel, they may generate events concurrently so
that the execution model must be able to deal with
sets of events.
Suppose that all rule areas have been precom-

puted, which overlap with the current working area
(we refer to these rules as O{rules). Given a spe-
ci�c working area, checking is done in the following
steps:

1. Select all O-rules.

2. From the set of O{rules select those for whose
related areas events have been raised.

3. Test for these rules whether an event applies.

4. Where it applies, check the related constraint.

5. If the constraint is violated, take the corre-
sponding action.

For the selection of the O{rules, overlapping is
de�ned by the following conditions that must si-
multaneously hold:

� The geometrical areas overlap.

� The current system time is included in the
history interval of the rule.

� The values of the discrete rule dimensions
equal the corresponding variables of the cur-
rent working area.

As far as the actions are concerned, noti�cation of
the designers via the user interface may in many
cases be su�cient. Where actions take compensa-
tary steps the database state may change, necessi-
tating a new check of the O{rules.
Computation of the set of O{rules can be made

more e�cient by the use of a multi{dimensional ac-
cess path. These access paths provide fast access to
the areas overlapping with the selection criterion.
From the selected areas the constraints of interest,
with their events and actions, may very easily be
found on the basis of the structure of the AECARs.
The technique applies to a current working area as
a selection criterion as well as to any arbitrarily
de�ned area in which the user may show an inter-
est. We provide a single access path covering all
AECARs regardless of which user de�ned it.

7 CONCLUSION

We claim that area triggers are a novel and high-
ly promising concept to describe the progressively
more restrictive design space in which a designer
operates as the design evolves. We also claim that
area triggers maintain the exibility of creative de-
sign, by taking the current situation into account,
giving the designer latitude to determine the de-
gree of consistency desired, and permit him/her
to retrace or revoke earlier design decisions. On
the other hand, to the extent that constraints have
been de�ned and activated, he/she obtains auto-
matic support for enforcing design decisions taken
by him/her or - through the overlap of areas - by
other experts.



We are currently validating the area trigger con-
cept on the basis of an object-oriented imple-
mentation of containers, triggers, the underlying
database and a graphical interface, using two de-
sign expert tools, the component-based steel sys-
tem MIDI ([7]) and the installation planning tool
Armilla ([8]).
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