
Temporized and localized rule sets

Rose Sturm, Jutta A. M�ulle, Peter C. Lockemann

Institut f�ur Programmstrukturen und Datenorganisation
Fakult�at f�ur Informatik

Universit�at Karlsruhe, 76128 Karlsruhe
[lockemanjmuellejsturm]@ira.uka.de

Abstract. Constraint management plays an important role in design
applications where constraints reect design restrictions and design de-
cisions. ECA rules are a widely used mechanism to enforce constraints.
The paper argues that such rules must be augmented for design envi-
ronments by a spatial and a temporal dimension of validity, resulting
in so-called area-event-condition-action (AECA) rules. The spatial di-
mension allows to restrict constraints locally in the design space, and to
control interaction between designers. The temporal dimension permits
designers to retract their designs to earlier stages.
The paper introduces the concept of AECA rules, motivates them by
examples from building design, discusses rule management, and then
introduces two important issues, conict detection during collaboration,
and backtracking during design revision.

1 Introduction

Active rules (also variously called database triggers, event-condition-action rules,
or ECA rules) are perceived, by researchers and database system (DBS) vendors
alike, as an ideal means to structure both the static and dynamic properties of
complex applications. In an { otherwise critical { paper Simon and Kotz [12] list
as two of their bene�ts a clear separation from and explication of business rules
from application programs with better transparency to and control by the busi-
ness organization, and performance improvement by restricting or concentrating
the auditing of applications to well-de�ned and controllable events. Rules blend
in naturally with constraints because constraints have traditionally been used to
factor out application semantics common to a number of application programs
from these programs.

Since database schemas have over decades been another means for factoring
out common semantics, rules have usually become part of a (perhaps extended)
database schema. However, such an approach imposes severe penalties: it ties
the rules to object types (with \object" being used in a general sense), that is
to a class of similar instances, and it also ties them to the entire life time of the
type de�nitions. In other words, it imposes given rules uniformly over space (all
instances) and time (the entire life time) of a type.

This work was in part supported by the German Research Council (Deutsche
Forschungsgemeinschaft) under contract no. Lo296/11-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197596755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On the other hand, there are applications where it is most natural for the
users to con�ne the validity of constraints in space, i.e., to subsets of instances
of one or more types, and the enforcement of the corresponding rules in time,
i.e., only to certain periods of time. Besides, technically such a limitation would
permit a more selective and, consequently, more e�cient constraint evaluation
and enforcement.

Restricting rules in space and time depends on the notion of \space" and
\time" used. Di�erent applications may use slightly di�erent notions. It makes
sense, therefore, to take a top{down approach in order to develop, or select, the
appropriate mechanisms for rule management and enforcement. For this paper
we choose an application scenario taken from building design. Implementation
issues are only briey touched upon although we are aware that the added ex-
pressiveness of these concepts imposes new challenges that may negate some of
the technical bene�ts associated with the restrictions.

The paper ist structured as follows. In chapter 2 we develop the user's per-
ception and needs for highly dynamic rule management. Chapter 3 relates the
technical requirements to rule management to previous work. Chapter 4 discuss-
es our basic approach to deal with the localized and dynamic aspects of rules
by introducing area-event-condition-action rules and a concomitant execution
model which allows to deal with an essential consequence of design activities,
conict detection during collaboration. Chapters 5 and 6 demonstrate the com-
bined e�ects of spatial and temporal aspects for rule management, with chapter
6 demonstrating a second consequence of design activities, backtracking during
design revision. Chapter 7 outlines the system implementation, and Chapter 8
concludes the paper.

2 A design application scenario and its requirements

In applications like building design, the result of the design process is \one-of-
a-kind". Common to all such design processes is the dearth of useable earlier
results and, hence, the vague, and poorly structured data at the beginning, that
become more and more concrete over the course of the process. Initially, the
designer's freedom of action is only circumscribed by general design rules and
physical laws, but as the design progresses more and more rules are added. Also,
design decisions are often revised, and alternatives pursued. Di�erent parts of
the design exist in di�erent states of detail at the same time.

The premise of this paper is that design decisions can be considered as con-
straints on the degrees of freedom that a designer may have. Consequently, the
de�nition and enforcement of constraints and rules must follow the decision
process. Constraints develop over time, and they may be retracted or revised,
invalidating or modifying some constraints or reverting to earlier constraints.
Similarly, constraints evolve di�erently in di�erent design spaces and, hence,
should be tied to particular design spaces.

Design processes are \many{person". To meet short design times under guar-
anteed quality, the steps of such a process and the experts contributing to them

must be closely coordinated, particularly in light of the increasing interleaving
of their activities with their tight feedback loops in place of the more tradition-
al sequential processes. Since designers work on di�erent parts and to di�erent
degrees of detail, the set of shared constraints is again a subset of all constraints
and may vary over time and space.

Let us briey illustrate these aspects. Figure 1 shows a part of the design of
the ground oor of the science wing of a school in Switzerland. All class rooms
on this oor (area A) are specialty rooms. Each room has been assigned to a
particular teacher. Area B is a free communication zone for the students to meet
during their breaks.

Fig. 1. Design for the Cantonal school of Solothurn

The ultimate goal of the designer is the design of objects with well-de�ned
physical or conceptual boundaries. Examples of these so-called design objects
are classrooms, seats, exhibition stalls, plumbing and wiring. Design objects
may be contained in others, such as seats in a classroom, or may overlap with
others, such as plumbing and classrooms. Obviously, then, there is a multitude
of relationships between objects, and the designer deals with them by imposing
a spatial structure, a design space, on them which circumscribes the objects
whose interrelationships are of current interest to him. Take as an example a set
of classrooms together with that part of the wiring and plumbing that directly
a�ect them, in order to study the e�ects of a change of the number of water and
electricity outlets in a classroom.

Constraints may be bound to design object types and also to individual
objects. Specialty rooms may require, in general, water and electricity outlets.
Their particular number may, however, be an invariant of an individual room.

For example, it may depend on the number of wash basins desired by each
teacher. On the other hand, where an object does not yet exist, constraints can
only be associated with design spaces. Consider that the building owner may
decide to have a minimum of 32 seats (area C) in some part of area B, without
determining the concrete position as yet. Finally, even where all objects are
known, a constraint may be more naturally be associated with a design space.
Take a geometric area encompassing part of the classroom area and the public
area where only a certain maximum number of outlets is permitted in total.
Take as another example di�erent levels of detail in planning where the ground
oor may already be in the stage of planning the furniture whereas planning
of the second oor is still on the functional level. Since design objects have
themselves a certain spatial extent, the unifying notion for circumscribing the
range of constraints is that of design space (or design area).

Constraints evolve over time. For example, the constraint for area C may
only be introduced after the size of the classrooms has been determined, and
may later be changed again. Constraints may also be \canned". Consider an
expert tool that reects the work of a specialist, say a sanitary engineer. The
tool will in all likelihood include a number of constraints to be satis�ed once
it gets to work. The constraints \lie in waiting" until then, and become active
afterwards, i.e. must be enforced from then on.

The architectural design process is an iterative procedure. Very often, partic-
ular parts of the design will be set back to an earlier state, and will then be the
new starting point for further design. This feature will cause a backtracking of
all relevant constraints in that part of design. For example, suppose new infor-
mation about the number of future pupils becomes known, causing the need for
two more specialty rooms. Therefore area B must be revisited and set back to an
earlier state. This area-oriented backtracking concerns physical design decisions
as well as constraints related to them, and may a�ect other areas or objects such
as those of the sanitary engineer.

Enforcement of constraints is uneven. A point in time where checking is
mandatory in order for the design to proceed is referred to as a milestone. In
between milestones, however, only certain consistencies { in particular those that
are time{invariant such as zoning and building regulations, building norms, or
physcial laws { should continuously be evaluated whereas other inconsistencies
regarding, e.g., individual requirements of the building owner or the architect
should be tolerated, and not enforced automatically. For example, if a wash basin
has been placed one should immediately check if a sewage pipe with enough
sloping can be installed. If not, the reaction must also be immediate: Either
the wash basin must be placed at a di�erent location, or extensive parts of
the existing plan for sewage pipes have to be changed. On the other hand, a
constraint such as to have a minimum of 32 seats in the free communication
zone, may vary in its importance during the design.

Reactions to a violation even of the same constraint may vary over time
and space. For example, a constraint may have low priority at an early stage
of the design but may become essential later on, such as the position of the

plumbing outlets. A change of the number of wash basins may be prohibited in
one classroom but open to negotiation in another.

3 Related work

A standard technique to deal with constraints, with the exible initiation of
constraint checks, and the speci�cation of appropriate responses to violations
are ECA rules; these are considered as suitable means to support the above
described requirements. An ECA rule is triggered into execution on some event
such as a milestone, a vital design operation or a designer's spontaneous wish for
a consistency check, causing it to evaluate the associated constraint condition
and in case the condition holds, i.e. the constraint is violated, to perform the
associated action.

The corresponding concepts, languages and computation models have been
widely explored. In most approaches, though, rules are either ubiquitous or tied
to object types. For example, ADAM/EXACT [5] indexes rules by class: the
class-rules attribute has as its value the set of rules to be veri�ed when a message
is sent to any instance of this class. More exibility can be found in the relational
systems Starburst ([14]) and Postgres ([13]), both of which allow to organize rules
in rule sets. However, each rule must explicitly be placed in a rule set by the user.
This is de�nitely a too low-level mechanism for our purposes, since we are in a
position to attach to rule sets a more speci�c semantics of areas. In particular,
it does not allow to exploit the cross-e�ects between rule sets arising from the
overlap of areas

Flexibility in event handling has recently attracted considerable attention,
particularly in the context of object-oriented, active database systems. SAMOS
([7]), Sentinel ([3], and Ode ([9] support simple and complex events, that are
constructed with event algebras. REACH [1] also introduces the notion to mile-
stones that are to be detected. SAMOS even takes much broader contexts int
account by supporting \event parameters" that may be used to restrict com-
plex events to speci�c relevant categories, e.g., only to the events within one
transaction, or to all events raised by a particular user. Similarly, Sentinel [4]
provides four di�erent rule evaluation contexts which di�er in the set of relevant
events which are used to detect complex events. Some systems allow to relate
time stamps to events with the meaning that the rule will �re only if the event
arises in the de�ned time period.

It appears, then, that the modern aproaches to event management are exible
enough to deal with the spatial aspects of our environment. We submit, though,
that to do so would overload the event mechanism and blur the distinction
between the spatial e�ects with our special area semantics and the temporal
e�ects.

Finally to the best of our knowledge, temporal validity (or lifetime) of rules
has not explicitly been dealt with in the literature (and implicitly only within
the context of time stamping of events) and, hence, backtracking of rules has so
far not been an issue.

4 AECA rules

Our premise is a clear separation of spatial, temporal and lifetime aspects in
rule management. Consequently, we propose to extend ECA rules by a fourth
component that explicitly accounts for the spatial aspects, and a rule header to
account for the lifetime aspects. The result is what we call area-event-condition-
action (AECA) rules (or for short: AECARs).

The structure of AECARs is illustrated in the form of a conceptual schema
in �gure 2. The basic premise for organizing the rules is that each constraint is
represented, in the context of an area, by a single rule. Consequently, each AE-
CAR consists of exactly one area and one constraint condition, whereas several
events and actions may be associated, so that the validation of a constraint in
a speci�c area may be initiated by di�erent events, and several di�erent actions
may be triggered in case of a violation. Clearly, a constraint may appear in as
many rules as there are areas which it presently is associated with. Likewise, an
area may appear in as many rules as there presently are constraints associated
with it. The validity (time) interval for the rule is, through the rule head, asso-
ciated with the rule as a whole. As we shall see below, this allows to establish a
history of design decisions and to permit backtracking of decisions to a speci�c
point in time. The overall structure permits us to leave the condition (and thus,
constraint) part and the action part unimpeded by any temporal and spatial
considerations.

The application scenario seems to suggest that a design area is a purely
two-dimensional geometric a�air. However, our partners from the school of ar-
chitecture de�ne areas in a more far-reaching sense. Areas are placed within a
seven-dimensional design space that formalizes all design decisions from all de-
sign phases according to the geometrical coordinates, time, resolution, size, type,
user, and morphology, etc. in a uniform manner. These attributes are called di-

mensions of the multi-dimensional design space. Within this design space each
design object or area represents a hypercube or, if all dimensions are instantiat-
ed, a point. (Information about our project and the basic concepts can be found
in [10, 11]).

Associated with the AECAR head are attributes which describe the overall
state of an area rule: State of consistency shows whether the constraint, in the
speci�ed area, forces consistency, permits inconsistency, or leaves consistency
open. History holds the validity interval of the rule. The other two areas have
to do with \canned" rules which as part of expert tools come into play only
after the design reaches a certain stage. Nullarea indicates whether the rule has
been prede�ned but is as yet not associated with any area. The attribute user
speci�es the expert tool owning the rule.

Area de�nitions, event speci�cations, constraints, and action speci�cations
are declared individually and are then combined on a case-by-case basis via a
rule header into a rule either statically as part of a general framework or expert
tool or dynamically as the result of interactive design decisions. In particular,
this allows the placement in a library and the reuse of any of them.

Consider as an example rule the application scenario of �gure 1. The user

actionsconditionsevents
1+ 1+

AECAR (Area−Event−Condition−Action−Rule)

area schema

AECAR head

state−of−consistency
nullarea
user
time interval (his, dhis)

geometry
type
resolution
size
alternative

Fig. 2. AECAR schema

may interactively delineate and declare area E together with an event, resulting
in the declaration (informally stated)

Area: geometry: (x,y,z)-coordinates of area E in �gure 1
type: ffunctional planning, installation planningg
resolution: *,
size: *,
alternative: *.

Event: delete (wash-basin),

At some earlier time, he/she may already have entered into the library the desired
constraint condition and action (\notify" refers to a programmed procedure).

Constraint condition: number of wash-basins � 3,
Actions: notify (installation engineer), notify (user).

The four are combined into a rule by the user with the attributes of the AECAR-
head set by the system (for the setting of History see chapter 5).

The rough execution model is as follows. During his/her work a designer
designates a working area on which he/she is operating. Note that this area
need not be identical to the area of any AECAR or design object. Hence, during
the time of operation, all rules whose area overlaps with the working area must
be taken into consideration. As such they are active, i.e., they become candidates
for possible execution and, hence, for constraint checking. Actual execution takes
place on occurrence of the speci�ed event within the working area. This requires
an extended notion of event which combinesspatial and temporal aspects into a
pair (point in time, area of occurrence). We refer to this kind of event as an area
event.

Fig. 3 gives an example. The user triggers in his/her current working area
the events E1, E2, and E3. CC1, CC2 und CC3 are examples of areas of rules.

CC1 is completely located within the current working area, whereas the area
of CC2 only overlaps with the current working area, and the area of CC3 falls
completely outside of it. Because the user is only able to trigger events within
his/her current working environment, only rules CC1 and CC2 are candidates
for violation. The spatial dimension of event E1 is completely outside the areas
related to CC1 and CC2. Therefore, for the consistency check triggered by event
E1 neither CC1 nor CC2 are relevant. E2 lies within the area of CC2, i.e., the
e�ect of E2 in the design overlaps with the position of CC2. In this case CC2
has to be proven valid but not CC1.

E1

E2

E3

CC1

CC2

CC3

current working area

Fig. 3. Relationship between events and constraint areas

AECARs are well-suited to deal with collaborative behavior between several
designers. Usually, such collaboration will give rise to conicts. If we leave it to
the persons to detect the conicts these may go undetected for a long while. Now,
if rule execution a�ects more than one working area, the violation may point to
a design conict. If these areas are the responsibility of more than one person,
cross-person conicts become immediately visible. Take the previous example
and suppose that a second designer operates in a working area that is disjoint
from the working area shown, but also overlaps with CC2. Then a violation
within CC2 may a�ect him/her as well. This is not the case for E3 and CC1
which are restricted to the user of the working area shown.

In more detail, the execution model looks as follows. Given a speci�c working
area, checking is done in the following steps:

1. Select all rules which overlap with the current working area.
2. From the set of these rules select those for whose related areas events have

been raised.
3. Test for these rules whether a given event applies.
4. Where it applies, check the related constraint.
5. If the constraint is violated, take the corresponding action.

Overlapping is de�ned as an overlap of the geometrical areas together with
the identity of the values of the discrete dimensions of the rule area to those
of the current working area, provided the current system time is included in

the history interval of the rule. As far as the actions are concerned, noti�cation
of the designers via the user interface may in many cases be su�cient. Where
actions take compensatory steps the database state may change, necessitating a
new check of the rules. Note also that because designers may work in parallel,
they may generate events concurrently so that the execution model must be able
to deal with sets of events.

5 Rule management: Spatial e�ects

Design decisions will often a�ect the rules. Consequently, a designer is permitted
to rede�ne the area of a rule, the event that gives rise to the execution of a rule,
the condition under which the action will take place, or the action itself, thus
adjusting constraints to a modi�ed design status. Take as an example that the
designer no longer tolerates that the issue of placing the 32-seat zone remains
unresolved. Hence, the area becomes more narrowly circumscribed, events for
checking the constraints become more frequent, more constraints must be ob-
served, and violations must immediately be compensated for.

A new design decision results in a new AECAR with a new validity interval
whereas the AECAR it replaces remains in the system with a now closed interval.
This, incidentally, is another argument for the decomposition of AECARs into
independent components.

We illustrate the general principle. Consider the left side of �gure 4 as a
schematic representation of the various (partially nested) design areas on the
graphical user interface.

Figure 4{A1 shows the users' views of the consistencies at design at time t1.
The dotted boxes represent the working areas of several users. For each area the
�gure notes its constraint, related events, and actions. At time t2 the consistency
constraints are modi�ed resulting in the view of 4-A2.

The example shows a number of typical changes:

{ An existing consistency constraint becomes active in another area, e.g., at
point t2 the constraint A is also activated in area7.

{ The associated area of the constraint changes, e.g., area2 for constraint B is
enlarged to form a new area 8.

{ The events change as, e.g., for constraint A in area4.
{ The associated actions change as, e.g., for constraint D in area5.
{ A consistency constraint becomes inactive in a particular area, e.g., con-
straint B has been removed from area6.

Figure 4-B shows the corresponding AECARs for times t1 and t3. Compare
�gures 4-A1 and 4-B1. The consistency constraint A is active at time t1 in two
areas, area1 and area4, though with di�erent behaviour. Hence, two rules R1 and
R5 are necessary. Similarly, the consistency constraint B is active in two areas,
requiring two rules R3 and R6. On the other hand, a single rule R2 indicates
that the consistency check of constraint C in area4 may be enforced by two

(A,e2,a2)

(B,e4,a4)

(E,e2,a1)

(B,e2,a2)

(D,e1,a3)

(A,e1,a1)

(C,{e2,e4},a3)

(A,e2,a2)

(B,e4,a4)

(E,e2,a1)

(D,e1,a4)

(A,e2,a2)

(A,e3,a1)

(C,{e2,e4},a3)

overall planing

area1

area2

area3

area6

area5

area4

area1

area8

area7

area4

area5

area3

overall planing
changing at time t2

A

E

R6 R7

Be2 a2 e2 a1

R11

e2 a2

R1

e1 A a1

R6

Be2 a2

(t1,t2)

(t1,t2)

Rhead 7

Rhead 1

Rhead 6

area7

area6

area4

area6 area3

Rhead 6

Rhead 11

changing at time t2

A B

A1: Situation at time t1

A2: changed situation at time t3 B2: Rules at time t3

B1: Rules at time t1

R2

e2
e4

C a3

Rhead 2

area4

R1

e1 A a1

Rhead 1

area4

A

R5

e2 a2area1

Rhead 5

e1 D

R4

a3

Rhead 4

area5B

R3

e4 a4

Rhead 3

area2

R2

e2
e4

C a3

Rhead 2

area4

A a1

R10

e3

Rhead 10

area4

e1 D

R4

a3

(t1,t2)
Rhead 4

area5B

R3

e4 a4

(t1,t2)
Rhead 3

area2

A

R5

e2 a2

Rhead 5

area1

e1 D a4

R8
Rhead 8

area5Be4 a4

R9 Rhead 9

area8

E

R7

e2 a1

Rhead 7

area3

(t1,*) (t1,*) (t1,*) (t1,*)

(t1,*) (t1,*) (t1,*)

(t1,*)

(t2,*) (t2,*) (t2,*)

(t1,*)(t1,*)

(t2,*)

Fig. 4. Dynamic changes of constraints during the design process

events. The consistency constraints D and E are, each, only active in one area.
Correspondingly, there exist rules R4 and R7.

Figure 4-B also illustrates the development of the history attributes. When-
ever a new rule is created, the endpoint of the history attribute of the old rule it
supersedes, and the starting point of the time interval of the new rule are set to
the current time. Suppose that rule generation begins with time t1. Therefore, in
�gure 4-B1 all rules contain the same starting point t1 in their history attribute.
The end of the time interval is set to *, which represents a time long way into
the future.

At time t2 all rules concerned have to be adapted to reect the changes. The
new set of rules is shown in �gure 4-B2. We observe the following e�ects:

{ In area4 event e3, in place of e1, activates the checking of constraint A.
Therefore, in rule R1 the history interval is closed, i.e., the end of the time
interval is set to t2. To reect the new situation, rule R10 is generated setting

the history interval to start time t2 and end time *.

{ Constraint A is added to area7 where it is activated by event e2 and will
cause, in case of violation, action a2. This is reected in the new rule R11,
with the history interval beginning at t2 and ending at *.

{ Constraint B in area6 is deactivated. Therefore, the history interval of rule
R6 is closed by setting the end of the interval to t2.

{ Constraint B is also active in area2, which is enlarged at time t2. For that
reason, rule R3, in the same way as rule R6 above, is closed and a new rule
R9 with the time interval beginning with t2 and ending with * is created,
corresponding to the new area8.

{ In area5 the violation of constraint D is supposed to invoke action a3 instead
of the former action a4. Accordingly, rule R4 is changed in the same way as
rule R1 above, and rule R8 is created in a way similar to rule R10 above.

{ The changes at time t2 do not a�ect the rules R2, R5, and R7. These are
placed unchanged into the set of rules for time t3. In particular, their history
intervals remain between times t1 and *, indicating their continued actuality.

6 Rule management: Temporal e�ects

As the example demonstrates, the rule base preserves the entire history of design
decisions. As an important consequence, the approach introduces the capability
to backtrack the design of arbitrary user-de�ned parts. Very roughly speaking,
let a designer specify an arbitrary backtracking area BA, and a setback time t.
Within BA the situation is restored to the one that existed at t, that is, all rule
areas within BA are recovered as they existed at t, and all decisions taken after
t are simply purged from the database.

In fact, there is a complicating factor in backtracking in that the architect
may delineate an arbitrary area as a backtracking area. In other words, the
backtracking area may not bear a causal relationship to either the current design
areas or the earlier ones. Consider �gure 5 which continues �gure 4 to a point
t5 in time. At time t4 the user identi�es a backtracking area as shown in the
center left. Apparently, the backtracking procedure must somehow involve all
areas overlapping with the backtracking area. The question, then, is whether
backtracking should a�ect these areas in their entirety, even those parts that lie
outside the backtracking area.

Suppose now that the backtracking area is (at current time t4) to be set back
to time t1. In a �rst step the rules in the current database (B2 in �gure 5) with
areas overlapping the backtracking area must be identi�ed. In the example there
are six such rule areas in the database B2: area3 (with rule R7), area4 (with rules
R1, R2 and R10), area5 (with rule R8), area6 (with rule R6), area7 (with rule
R11), and area8 (with rule R9). In a second step the status of the constraints of
these rules at the time to which the design situation is to be restored (setback
time) must be determined.

We illustrate the restore actions with our example.

(A,e2,a2)

(B,e4,a4)

(E,e2,a1)

(B,e2,a2)

(D,e1,a3)

(A,e1,a1)

(C,{e2,e4},a3)

(A,e2,a2)

(B,e4,a4)

(E,e2,a1)

(D,e1,a4)

(A,e2,a2)

(A,e3,a1)

(C,{e2,e4},a3)

overall planing

area1

area2

area3

area6

area5

area4

area1

area8

area7

area4

area5

area3

overall planing
changing at time t2

A

changing at time t4

(A,e2,a2)

(B,e4,a4)

(E,e2,a1)
(C,{e2,e4},a3)

area1

area4

area5
area3

overall planing

(B,e2,a2)

area9 area10
(A,e3,a1)

(A,e1,a1)

(D,e1,a3)

A

Be4

R5

e2 a2

B

R3

e4 a4

Be2 a2

e1 D

R4

a3

Rhead 3 Rhead 4

Rhead 5

area1 E

R7

e2 a1

Rhead 7

area3

area2 area5

a1

R12

R13

area9 e1 A

area10 e3 A

B3: Rules at time t5

B2: Rules at time t3

A1: Situation at time t1

A2: changed situation at time t3

backtracking area

B
area13

area12

Rhead 12

Rhead 13

Be2 a2

Be2 a2

R14
Rhead 14

R15
Rhead 15

Rhead 16R16

(t1,t2)

(t1,t2)

area13

area12area14

area14

a4

(t1,t2)

area15

R17 Rhead 17

area15

changing at time t4

A

E

R6 R7

Be2 a2 e2 a1

R11

e2 a2

R1

e1 A a1

R6

Be2 a2

(t1,t2)

(t1,t2)

Rhead 7

Rhead 1

Rhead 6

area7

area6

area4

area6 area3

Rhead 6

Rhead 11

changing at time t2B1: Rules at time t1

R2

e2
e4

C a3

Rhead 2

area4

R1

e1 A a1

Rhead 1

area4

A

R5

e2 a2area1

Rhead 5

e1 D

R4

a3

Rhead 4

area5B

R3

e4 a4

Rhead 3

area2

R2

e2
e4

C a3

Rhead 2

area4

A a1

R10

e3

Rhead 10

area4

e1 D

R4

a3

(t1,t2)
Rhead 4

area5B

R3

e4 a4

(t1,t2)
Rhead 3

area2

A

R5

e2 a2

Rhead 5

area1

e1 D a4

R8
Rhead 8

area5Be4 a4

R9 Rhead 9

area8

E

R7

e2 a1

Rhead 7

area3

R2

e2
e4

C a3

Rhead 2

area4a1

A3: changed situation at time t5

(t1,*) (t1,*) (t1,*) (t1,*)

(t1,*)(t1,*)(t1,*)

(t1,*)

(t2,*) (t2,*) (t2,*)

(t1,*) (t1,*)

(t2,*)

(t1,*) (t1,*) (t1,*)

(t2,* (t2,*)

(t1,*) (t1,*) (t1,*)

Fig. 5. Dynamically backtracking of parts of the design

{ Rule R5 with area1 lies completely outside the backtracking area and, hence,
does not change.

{ Rule R8 with area5 lies completely within the backtracking area but its
validity interval does not include t1 because at t2 the action was changed
from a3 to a4. Therefore Rule R8 is deleted. The validity interval of rule R4
with area5 includes t1. Because interval endtime t2 extends into the future
as seen from the perspective of t1, R4 is reactivated with the validity interval
(t1, *).

{ Rule R11 with area 7 lies completely within the backtracking area and was
generated at time t2. Because rule R11 was not active at t1, R11 is deleted.

{ Rule R7 is not a�ected although its area3 overlaps with the backtracking
area, because its validity interval includes t1.

{ The same is true for rule R2 and area4.

This leaves area4 with rule R10 and area8 with rule R9, which overlap with
the backtracking area. In order to deal with them we distinguish between closed
constraints which if valid in an area are valid in each subarea, and open con-
straints, otherwise. For example, physical laws are closed constraints whereas
design decisions such as the 32-seat requirement usually are not. We can then
establish as a procedure that for closed constraints only the subarea within the
backtracking area is rolled back whereas for open constraints the entire area is
rolled back. For closed constraints this entails splitting the area. For the pieces
inside the backtracking area, the old state must be regenerated whereas outside
the current state must be preserved. Note that the change of an area results
in the generation of a new rule so that for each split part a new rule must be
established. Now suppose that constraints A and B are closed. Accordingly:

{ Rule R10 with area4 gives rise to new rules by splitting area4 into two parts.
Outside the backtracking area (area10) the same composition of events, con-
dition, actions as in R10 is valid. This is postulated as rule R13 with the
area10. Inside the backtracking area (area9) the status at t1 must be regen-
erated. R12 is the updated rule R1 with the new area area9 and the new
validity interval t1 to *. R10 is then deleted.

{ For rule R9 area8 must be similarly split. The subarea within the backtrack-
ing area would have to be restored to its state at time t1. No corresponding
rule can be found inside this area. This leaves R9 adjusted for the area out-
side the backtracking area area15, which is postulated as rule R17. R9 must
be deleted.

Finally, there is the not-so-obvious case of rule R6 which with area6 does not
exist any longer at time t4 but existed at restoration time t1 and overlaps with
the backtracking area. Its constraint B is closed so that the splitting principle
applies again. Rule R6 must be restored for the subarea area14 which lies in-
side the backtracking area. This is described by rule R14 which is identical to R6
except for the area14. To generate the correct situation outside of the backtrack-
ing area, two new (rectangular) areas area13 and area12 must be established.
Correspondingly, two new rules R15 and R16 are created, which except for the

areas are copies of R6 and hence have a time interval (t1,t2), so that they are
not active at time t5.

7 System environment

Rule management as discussed in this paper is part of a three-layered implemen-
tation architecture for a CAAD environment. The topmost layer { the represen-
tation layer { reects the users' perceptions of the design process and the design
objects and areas. An elaborate user interface allows the architect to deal not
only with the geometrical con�nes of areas but also with the other dimensions
([10]). Speci�cally for the purposes of this paper, he/she may de�ne and asso-
ciate rules with areas as a combination of area of activity, events, constraints,
and actions, and he/she may delineate working areas and raise events within
them. Through the overlap of areas the interaction between di�erent experts
during the design becomes immediately visible to them in the form of additional
sets of constraints to be observed as the result of a design decision in some other
areas.

On the next lower layer all concepts on the user interface are represented in a
uniform (conceptual) data structure, the so-called container. For the purposes of
this paper, the most important functionality of the layer is the management of
the rule base according to sections 5 and 6 as well as provision of the execution
machine for the rules according to section 4, essentially as a trigger mechanism.

On the lowest level { the container server { the containers are implemented
via an object-oriented database system. This layer also directly utilizes perfor-
mance enhancing measures such as the precomputation of the set of overlapping
rules for a given working area and multi-dimensional access paths to containers
and to AECARs to allow arbitrary selection criteria for the rapid identi�cation
of relevant AECARs according to our in section 4 introduced event notion.

8 Conclusion

Our paper deals with constraint management. Taking a purely top-down view
we have argued that at least in certain design environments ECA-rules have a
strong avor of spatial and temporal validity. We suggested a more discrimi-
nating mechanism of area-event-condition-action (AECA) rules. They allow to
impose constraints locally in the design space, to control interaction between
designers, and to permit designers to retract their designs to earlier stages. We
also demonstrated that the combination of these dimensions during backtracking
may give rise to complicated situations.

By building AECA rules around the real needs of building designers and
their view of the design process and design decisions, we are in the fortunate
situation of having a testbed and test persons to evaluate our approach from
both a technical and an applications standpoint. We developed an extensive set
of constraints for an expert tool, and are currently implementing the testbed.

Much remains to be done. Foremost are experiments with our collaborators
from the school of architecture whether AECA rules o�er the necessary exibility
without imposing undue technical penalties. If successful, much more attention
must be paid to the issue of designing constraints and rules, if possible even
spontaneously. Third, while our current testbed implementation does not con-
sider e�ciency as an overriding issue, the ultimate success will depend on good
performance of the AECA rule mechanism.

References

1. A.P. Buchmann and H. Branding and T. Kudra� and J. Zimmermann. Rules in an
Open System: The REACH Rule System. In N.W. Paton and M.H. Williams, edi-
tors, Rules in Database Systems. 1st Int. Workshop on Rules in Database Systems,
Springer Verlag, 1994.

2. S. Chakravarthy, B. Blaustein, A.P. Buchmann, M. Carey, U. Dayal,
D. Goldhirsch, M. Hsu, R. Jauhari, R. Ladin, M. Livny, D. McCarthy, R. McKee,
and A. Rosenthal. HIPAC: A research project in active, time-constrained database
management. Technical Report XAIT-89-02, Xerox Advanced Information Tech-
nology, Cambrige, Massachusetts, July 1989.

3. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite Events
for Active Databases: Semantics, Contexts and Detection. In Proc. 20th Conf. on

Very Large Data Bases, pages 606{617, Santiago, Chile, 1994.

4. S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin, and R. H. Badani. ECA Rule
Integration into an OODBMS: Architecture and Implementation. Technical Report
UF-CIS-TR-94-023, University of Florida, May 1994.

5. O. Diaz, N.W. Paton, and P. Gray. Rule Management in Object-Oriented
Databases: A Uniform Approach. In Proc. 17th Int. Conf. on Very Large Data

Bases, pages 317{326, Barcelona, Spain, 1991.

6. S. Gatziu and K.R. Dittrich. SAMOS: An Active Object-Oriented Database Sys-
tem. IEEE Quarterly Bulletin on Data Engineering, 15(1-4):23{26, December
1992.

7. S. Gatziu and K.R. Dittrich. Events in an Active Object-Oriented Database Sys-
tem. In N.W. Paton and M.H. Williams, editors, Rules in Database Systems. 1st
Int. Workshop on Rules in Database Systems, Springer Verlag, 1994.

8. N. H. Gehani and H. V. Jagadish. Ode as an Active Database: Constraints and
Triggers. In Proc. 17th Int. Conf. on Very Large Data Bases, pages 327{336, 1991.

9. N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite Event Speci�cation
in Active Databases: Model and Implementation. In Conf. on Very Large Data

Bases, pages 327{338, 1992.

10. L. Hovestadt, V. Hovestadt, J. A. M�ulle, and R. Sturm. ArchE { Entwicklung ei-
ner datenbankunterst�utzten Architektur - Entwurfsumgebung. Technical Report
Nr.23/94, Universit�at Karlsruhe, November 1994.

11. P.C. Lockemann, J.A. M�ulle, R. Sturm, and V. Hovestadt. Modeling and integrat-
ing design data from experts in a CAAD-environment. In Proc. of the European

Conf. on Product and Process Modelling in the Building Industry, to appear, 1995.

12. E. Simon and A. Kotz-Dittrich. Promises and Realities of Active Database Sys-
tems. To appear in Proc. Int. Conf. on Very Large Databases, 1995.

13. M. Stonebraker, a.J. Jhingran, j. Goh, and S. Potamianos. On Rules, Procedures,
Caching and Views in Data Base Systems. In Proc. of SIGMOD, pages 281{290.
ACM Press, 1990.

14. J. Widom. The Starburst Active Database Rule System. IEEE Transactions on

Knowledge and Data Engineering, to appear.

This article was processed using the LaTEX macro package with LLNCS style

