
INCOME/STAR: Facing the Challenges for Cooperative Information
System Development Environments

Andreas Oberweis1, Wolffried Stucky2, Gabriele Zimmermann1

Abstract
This paper surveys some innovative features of INCOME/STAR, an ex-
perimental environment for cooperative development of information sys-
tems.
First an extension of high-level Petri nets is described: NR/T-nets allow
modeling of concurrent processes and related complex structured objects in
distributed business applications.
Further new concepts have been developed for entity and relationship
clustering to support a stepwise top-down approach for entity/relationship
based object modeling. Distributed multi-user simulation and prototyping
are proposed for the evaluation and analysis of NR/T-nets and the involved
object schemata.
Then, ProMISE - an evolutionary process model for information system
development - is surveyed. A role-based groupware component is part of
the INCOME/STAR architecture to support communication, organization
and social interaction in development projects.

Keywords
cooperative system design, Petri nets, information systems, Petri net simu-
lation, software development environments, software process support

1 Introduction
Beyond all doubt information ranks as one of the most essential resources
in industry, business and administration - it is at least as important as
monetary budget, raw materials, personnel or machines. Hence, a major
part of today's software systems are large, database supported information
systems.
Providing environments which support an efficient production of high-
quality information systems has been - and still is - a major objective of
information systems engineering. But an industrialization of software engi-

1 Institut für Wirtschaftsinformatik II, J.W. Goethe-Universität, 60054 Frankfurt/Main
2 Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Universität Karlsruhe

(TH), 76128 Karlsruhe

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197596714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

neering in general and information systems engineering in particular is far
from being achieved. More than a decade after the invention of CASE
technology, there are still exciting challenges in this area, mainly because
information systems have advanced in many aspects:
Complexity: Information systems are not only supposed to be specially
suited for a certain application domain but also to support a wide range of
functionality within this domain. On the one hand they must be capable,
e.g., to handle production control data, on the other hand they must manage
business and administration data of an enterprise.
Distribution: Systems may be geographically distributed and are quite fre-
quently integrated in networks.
Interoperability: Systems are supposed to communicate and exchange data
with other systems.
Flexibility : Requirements change frequently due to market factors, new
technologies or strategical decisions. Moreover, systems are embedded in a
heterogeneous software or hardware configuration which is subject to
change.

The objective of the INCOME/STAR project3 is to detect deficiencies of
existing development support systems and to implement a prototype of an
integrated environment supporting cooperative development of large, dis-
tributed information systems in the above sense. The INCOME/STAR
prototype is based on INCOME (Interactive Net-based Conceptual Model-
ing Environment), an existing tool for conceptual modeling and prototyp-
ing of information systems. INCOME was originally developed at our insti-
tute between 1985 and 1990. The main concepts of this academic version
of INCOME are: integration of structural and behavioral system aspects,
prototyping facilities and design dictionary support (cf. Lausen et al. 1989).
Based on these concepts, a commercially available methods and tools
package was developed. The commercial product INCOME (cf. INCOME
1994) is embedded in the ORACLE*CASE product family.
ORACLE*CASE supports CASE*Method, an information engineering
approach for database oriented system development (cf. Barker 1990).
INCOME extends the ORACLE*CASE environment by providing model-
ing facilities for behavioral aspects of the target system, such as business
process modeling, exception handling and temporal restrictions.

3 The INCOME/STAR project is partially supported by the Deutsche Forschungsgemeinschaft DFG

under grant Stu 98/9 in the program "Distributed Information Systems in Business".

While INCOME is primarily suited for the development of new informa-
tion systems, INCOME/STAR supports both the development of com-
pletely new systems and the integration of new components into existing
hardware and software environments. Special emphasis is put on distrib-
uted, heterogeneous target systems (like modern information system net-
works).
These target systems require new or adapted methods and advanced simu-
lation and prototyping concepts. Software process support and cooperative
design techniques were identified as additional important research fields in
the context of system development.
This paper summarizes the new concepts of INCOME/STAR which can be
grouped into four research directions: methodological extensions (Section
2), software process support (Section 3), advanced simulation and prototyp-
ing concepts (Section 4) and cooperative system design (Section 5). Sec-
tion 6 mentions some related approaches while the final section documents
first practical experiences and gives an outlook on future research work.

2 Methodological Extensions

Modeling highly flexible information systems requires object structures
that are not as restricted as postulated by the relational data model. Meth-
odological extensions of INCOME/STAR aim at providing concepts for a
behavior and structure model which is adequate for complex structured
objects. An important step towards this goal is the conception of NR/T-
nets- a new variant of high-level Petri nets closely related to NF2 (Non
First Normal Form) relational databases (cf. Schek, Scholl 1986) - for be-
havior modeling (Section 2.1).
Another useful approach to cope with complex data and process structures
is the use of hierarchically structured models which allow an incremental
approach to conceptual modeling. Refinement and coarsening of Petri nets
has already proven a successful technique in INCOME. INCOME/STAR
provides an equivalent concept on the data side which extends existing
Entity-Relationship model clustering techniques (Section 2.2).

2.1 Nested Relation/Transition Nets
Petri nets4 are a graphical language for the formal specification of distri-
buted system behavior. INCOME/STAR uses a new type of high-level Petri

4 We suppose that the reader is familiar with the basic Petri net notation (cf. e.g. Reisig 1985).

nets, called nested relation/transition nets (NR/T-nets) (cf. Oberweis,
Sander, Stucky 1993).
To each place in an NR/T-net, a complex structured object type is assigned,
specified in a semantic data model similar to SHM (Semantic Hierarchy
Model) (cf. Brodie, Ridjanovic 1984). Basic constructs for data structuring
are classification, aggregation, specialization and grouping. Figure 1 shows
the graphical representation of these concepts.

A ggre ga tio n G ro u p in gS p e c ia liza tio n

c
1 c

i
c
n

c
1 c

i
c
n

A SG

m

Fig. 1: Structuring concepts in SHM

The marking of a place in an NR/T-net is a nested relation of the respective
type, i.e. a set of so-called complex objects, where attribute values may
again be nested relations.
A transition in an NR/T-net represents a class of operations on relations in
the transition's input- and output-places. An occurrence of a transition de-
notes one single occurrence of the respective operation. Operations may
not only operate on whole tuples of a given relation but also on 'subtuples'
of existing tuples.
NR/T-nets are an upwards compatible extension of the well-known predi-
cate/transition nets (Pr/T-nets) (cf. Genrich, Lautenbach 1981): the marking
of a place in a Pr/T-net is given as a normalized relation where attribute
values of a tuple are atomic, i.e. unstructured. This is obviously not appro-
priate for modeling operations on complex structured objects, since it does
not allow, e.g., concurrent accesses to different set-valued attributes of the
same complex object. An example is a situation where different project
team members access different parts of the same document.

Example
Figure 2 shows the structure of a (simplified) object type DOCUMENT.

An object of type DOCUMENT is composed of a document identifier (D-
ID), a project identifier (PROJ-ID), and a set of sections (SECTIONS).
Each section (SECTION) is composed of a section name (NAME) and a set

of subsections (SUBSECTIONS). D-ID , PROJ-ID, NAME and
SUBSECTION are atomic attributes.

DOCUMENT

D-ID PROJ-ID SECTIONS

SECTION

NAME SUBSECTIONS

SUBSECTION Fig. 2: Type DOCUMENT

Figure 3 shows the tabular representation of three example documents,
doc1 and doc2 of project p1 and doc3 of project p2 .

DOCUMENT

D-ID PROJ-ID SECTIONS

NAME SUBSECTIONS

SUBSECTION
doc1 p1 {<sec1, {sn1,sn2,sn3}>,

 <sec2, {sn1,sn2,sn3}>
 <sec3, {sn1,sn2}> }

doc2 p1 {<sec1, {sn1,sn2,sn3}>,
 <sec2, {sn1}>}

doc3 p2 {<sec1, {sn1,sn2}>,
 <sec2, {sn1,sn2,sn3}>,
 <sec3, {sn1,sn2,sn3,sn4}>,
 <sec4, {sn1,sn2,sn3}> }

Fig. 3: Tabular representation of three example objects of type DOCUMENT

Figure 4 shows an NR/T-net with three different transitions, each of them
describing a different type of access to objects of the type DOCUMENT. A
possible initial marking of the place DOCUMENT is given in Figure 3.

Arcs in an NR/T-net are inscribed with so-called filter tables which select
data to be inserted into the adjacent output-place or to be removed from the
adjacent input-place. Filter tables may be hierarchically structured to reflect
the hierarchic structure of complex objects. This allows access to values
which are located on lower levels of the attribute hierarchy.

A transition is enabled for an instantiation of the variables in the filter ta-
bles assigned to the incoming and outgoing arcs iff:
• the respective (instantiated) tuples in the filter tables at the ingoing arcs

are contained in the adjacent input places, and
• the respective tuples in the filter tables at the outgoing arcs are not con-

tained in the adjacent output places, and
• the logical rule which is optionally inscribed to the transition is true for

the given instantiation.
For the set valued attributes we distinguish between two cases:
So-called closed variables which are overlined, e.g. X in Figure 4, always
access complete attribute values. In Figure 4, X must be instantiated by
complete sets of sections of a document. If, e.g., D is instantiated to doc1
and P to p1 , then X must be instantiated to

{<sec1, {sn1,sn2,sn3}>,

 <sec2, {sn1,sn2,sn3}>,

 <sec3, {sn1,sn2}> }.

D,P,X

Access-Complete-
Document

D,P, S,Y

DOCUMENT

Access-Complete-
Section

Access-Subsection

D,P, S, Z

Fig. 4: Example NR/T-net (A)

So-called open variables, e.g. X in Figure 5, may be instantiated by an arbi-
trary subset of a set attribute value. If D is instantiated to doc1 and P to
p1 , then X may be instantiated, e.g., to

{<sec1, {sn1,sn2,sn3}>,

 <sec2, {sn1,sn2,sn3}> }.

In Figure 4 the following different access types are modeled:
• When transition Access-Complete-Document occurs, it removes

a complete document tuple from the input place DOCUMENT, e.g.
<doc1,p1,{ <sec1,{sn1,sn2,sn3}>,

<sec2,{sn1,sn2,sn3}>,

 <sec3,{sn1,sn2}> }>.

• When transition Access-Complete-Section occurs, it removes a
single section of a given document tuple from the input place
DOCUMENT. The transition may occur concurrently to itself or to other
transitions with respect to different sections - possibly of the same
document. This corresponds to a situation where different persons/tools
access different sections of the same document at the same time.

• When transition Access-Subsection occurs, it removes a single
subsection of a given section of a given design document from the input
place DOCUMENT. The transition may occur concurrently to itself or to
other transitions with respect to different subsections - possibly of the
same section of the same document. This corresponds to a situation
where different persons/tools access different subsections of the same
document at the same time.

The meaning of the transitions in the NR/T-net in Figure 5 is as follows:

D,P,X
Access-Document

DOCUMENT

Access-1-Subsection
D,P, S,Y

<sec4,{sn1,sn2}>
 X ∈

sn1 Y∈

Fig. 5: Example NR/T-net (B)

• Access-Document removes a subset X of sections of a document in
place DOCUMENT, such that X contains the section <sec4,
{sn1,sn2}>.

• Access-1-Subsection removes a subset Y of subsections of a
document in place DOCUMENT, such that Y contains the subsection
sn1 .

For a detailed description of NR/T nets and further examples, the in-
terested reader is referred to (Oberweis, Sander, Stucky 1993).

2.2 ER Model Clustering
The Entity-Relationship approach is a widely accepted method for concep-
tual database design. However, some problems arise when ER modeling is
applied to the design of really large databases concerning whole enter-
prises. There is no way to obtain a general view or to perceive the global
context of a detailed enterprise schema with hundreds of entity and rela-
tionship types.
Several approaches use ER model clustering to overcome these problems
(cf. Feldman, Miller 1986; Teorey et al. 1989; Rauh, Stickel 1992). Sec-
tions of the detailed diagram are mapped into so-called entity clusters,
which are presented as (complex) entity types in a higher level ER diagram.
All approaches are based on an already existing detailed ER diagram.
Based on this, the abstraction layers are built bottom-up.

INCOME/STAR extends the approaches described above. It distinguishes
between three kinds of clustering (cf. Jaeschke, Oberweis, Stucky 1993):
c Entity clustering was first proposed in (Feldman, Miller 1986). An over-
view diagram leaving out several details is created from a detailed ER dia-
gram. Whole sections of the detailed diagram are collected into so-called
entity clusters, which are represented as (complex) entity types in a higher
level ER diagram. The detailed relationship types between entity types ex-
isting in one cluster are disappearing in the higher level ER diagram. The
others - so-called outside-relationship types - are transformed to rela-
tionship types between the clusters containing the originally detailed entity
types. The higher level diagram is abstracted iteratively by this method.

d Simple relationship clustering is newly introduced to refine relationship

types by several semantically similar ones. Simple relationship clustering is

used to formulate integrity constraints more precisely. In Figure 6, the rela-

tionship type 'works at' is refined by simple relationship clustering in the

context of the refinement of 'Employee'. It is expressed that only members

of the ground staff work at airports and that each member of the ground

staff works at exactly one airport. Simple relationship clustering can also

be applied to represent integrity constraints in an ER diagram and to cluster

semantically similar relationship types into one

works at Airport

(0,1) (0,*)

(1,1) (0,*)
works at Airport

Employee

Ground Staff

Crew Member

Employee(N,T)

Fig. 6: Refinement of 'Employee' based on entity clustering; refinement of
'works at' based on simple relationship clustering

e Complex relationship clustering is proposed to refine relationship types
by whole ER diagrams. In contrast to simple relationship clustering not
only the relationship type is divided into several similar relationship types,
additional entity and relationship types are introduced as well. Either a
single element is refined (non-contextsensitive refinement) or a single ele-
ment together with its environment is refined (contextsensitive refinement).

For a detailed description and further examples, the interested reader is
referred to (Jaeschke, Oberweis, Stucky 1993).

3 Software Process Support

Software process support in the INCOME/STAR project has two major
concerns. First is to provide developers with a guideline of how to perform
information system development with INCOME/STAR. A framework
called ProMISE (Process Model for Information System Evolution; cf.
Scherrer, Oberweis, Stucky 1994) describes the methodology supported by
INCOME/STAR and enables people involved in the development process
to reflect, communicate and discuss the process. Its basic structure is lined
out in Section 3.1.
Section 3.2 deals with the second concern of software process support in
INCOME/STAR, which is Process model enactment. Active assistance is
offered to developers for monitoring of development activities, document
and workflow management (cf. Oberweis 1994), control of project respon-
sibilities, capacity planning etc.

3.1 Basic Structure of ProMISE

System development with ProMISE takes an evolutionary approach, i.e.
development and maintenance of a system are done as a sequence of sub-
projects. ProMISE combines the advantages of a well-structured, stagewise
approach to software development with other useful techniques, such as
incremental refinement of documents, software reuse, prototyping, and
cooperation support.
Figure 7 gives a graphical representation of a generic development stage in
ProMISE. A specific design document ('result type') has a certain status as,
e.g., requirements schema, implementation module, etc. and is modified
with stage specific activities (e.g. semantic data model editing, compilation,
etc.). In the graphical representation activity types have a specific gray level
indicating the activity's degree of formality.

m ethod o r
techn iq ue

resu lt
type

acti vi ty type

tra nsfo rm a tion

tra nsfo rm a tion

acti v i ty type

(v al i dation)

activ i ty type

acti v
i ty

 ty
pe

m e tho d o r
tec h n iq u e

m eth od o r
tech n iqu e m etho d o r

techn iq ue

d iffe ren t g ray lev e ls
in d ic ate degree o f
fo rm ali ty

Fig. 7: Graphical representation of a generic development stage in ProMISE

Usually, document creation starts with a - more or less formal - transfor-
mation step, converting documents of the preceding stage into (initial)
documents of the current phase. Next, documents are iteratively adjusted
by an activity sequence (refinement, structuring, modeling, information
collection steps etc.). If there are possible design alternatives, analytical
methods or simulation may be used as a decision support. Software reuse is
one potential alternative - either as an integration of standard components
or as project specific adjustment of generic models.

At the end of each iteration, quality checks validate the results of transfor-
mation and modification steps. Whenever it makes sense, end users will be
involved in this process. When a document's quality is acceptable, it may be
transformed into an initial document of the succeeding stage. Otherwise a
new iteration of information collection, modification and quality checking
steps starts. Sometimes a situation may require a go-back to an earlier stage,
e.g. if requirements are added or changed.
A specific description for strategic planning, project specific planning,
requirements collection and analysis, conceptual modeling, database design
and implementation, program design and implementation is available in
(Scherrer, Oberweis, Stucky 1994).

As an example, Figure 8 shows requirements collection and analysis in the
introduced notation.

REQUIREMENTS
COLLECTION
AND ANALYSIS

requirements classes
(data-operation-event)

cross-reference
matrix analysis

semiformal
notations

(glossaries)

interviews,
document analysis

requirements
schema

stru
cturing

concep tua l sch em a
(s ta tic /d ynam ic)

CONCEPTUAL
MODELLING

transformation

transformation

PROJECT
SPECIFIC
PLANNING

val idation

p ro jec t sp ec if ic
in fo rm ation m odel

classi f i cati on

inform
a tion coll ect io

n

and comple tion

Fig. 8: Requirements collection and analysis stage

In the initial transformation step, a requirements collection plan is worked
out by extracting business units and tasks from the project specific infor-
mation model, which is the deliverable of the preceding stage. This initial
document is refined to a complete requirements schema by iterating the
following activity sequence:
For each task/business unit combination in the requirements collection
plan, information is collected and completed through interviews and an
analysis of existing documents. Next, information items are classified as
data, operation or event and then recorded in structured glossaries. Cross-
reference matrix analysis is used for validation. If any inconsistency or
incompleteness is detected, a new iteration is performed.

3.2 Process model enactment
To obtain a computer supported, enactable version of ProMISE, it is speci-
fied as a hierarchy of Petri nets. A similar notation as in Figure 8 may be
used on the top level. This top level representation provides a gross over-
view about the process model and may be used for communication between
different groups of people involved in a software project. Manual and un-
structured activities (like unstructured communication) are expressed by
informal types of Petri nets inscribed with natural language expressions
and enriched with icons that are easy to understand.
Stepwise refinement leads to a precise NR/T-net description of the process.
The resulting nets are instantiated with a project-specific marking and can
then be executed by a Petri net interpreter. Instantiation includes, e.g., as-
sociation of activities and roles, roles and team members, deliverables and
deadlines etc.
Process model enactment in INCOME/STAR means active process sup-
port. The enacted process model is coupled to the central repository
through a process engine (a Petri net interpreter) which can control access
to tools and data and manage the flow of information between people and
tools involved in the software development process.

4 Advanced Simulation and Prototyping Concepts

In INCOME/STAR, simulation is an integrated part of the development
process: simulators are interfaced with the central repository where the
formal behavior specification is stored as a set of high-level Petri nets. Due

to the formal semantics of our underlying net model, this specification is
directly executable.
Some innovative issues of the INCOME/STAR simulation and prototyping
capabilities are now described in detail.

• Simulation support for evolutionary development
The simulation concepts in INCOME/STAR (cf. Mochel, Oberweis,
Sänger 1993) support the evolutionary development approach prescribed
by the chosen software development process model ProMISE: a prelimi-
nary system behavior specification - given as a set of high-level Petri nets -
is simulated and analyzed by a novel graphical query language (see next
paragraph). As a result of this validation step the Petri net model is im-
proved. The same procedure is executed for the resulting net, probably in
several cycles, until the system behavior is modeled adequately.

• Graphical query language for large simulation runs
Practical experience showed that for large Petri net models, simulation runs
which are generated by automatic simulation may consist of thousands of
markings. Hence it is not obvious how to check a given simulation run for
certain behavior patterns which are of interest to a system designer.
Our novel graphical query languageGTL (Graphical Temporal Language)
(cf. Oberweis, Sänger 1994) for simulation databases combines capabilities
of temporal and graphical database languages. In the simulation database
each net marking is interpreted as a single database state. GTL-queries are
employed to check a simulation database for certain behavior patterns.
These patterns may be related to single states (e.g. Is there a simulation
state where condition c1 holds?) or to sequences of database states (e.g. Is
there a simulation state sequence where first c1 holds, then c2, and finally
c3?). In GTL simulation states are graphically represented by circles and
temporal relationships between simulation states can be expressed along an
implicit time axis. So-called checkpoints (graphically represented as boxes)
specify complex conditions to select a state (sequence) in the simulation
database.
For a detailed description of GTL see (Oberweis, Sänger 1994).

• Multiuser environment and application specific visualizationof
Petri net simulation

An open simulation environment is provided which supports multiuser
enactment and a coupling to external visualization devices.

When dealing with large systems, several developers are involved in the
design process of the corresponding Petri net model. Therefore, the applied
tools should include appropriate multiuser support:
• Access control for Petri net models to avoid inconsistencies when mul-

tiple developers try to apply changes to the net at the same time.
• A possibility to visualize the simulation run on an arbitrary number of

workstations.
• Developers should be enabled to influence the simulation run decentral-

ized from their own workstation.

Another useful property of a simulation environment is application specific
visualization. A common drawback of most today's graphical Petri net
simulation tools is that they provide an animated view of the transition oc-
currences only in the graphical representations of the Petri net itself, i.e.
they visualize the flow of information along the arcs of a net. For large
systems, a visualization on this level is not particularly useful because with
increasing net complexity it becomes more and more difficult to imagine
how a certain system state translates to 'reality'. So what is needed is an
open simulation environment integrating arbitrary visualization modules
which can provide a problem oriented display of the current system state.

A prototype called GAPS (Graphical Animated Petri net Simulator) (cf.
Oberweis, Sänger, Weitz 1994) implements these ideas: A person who ini-
tializes a simulation run becomes the 'master' of this process and can
permit others to join in, either passively by letting them watch the simula-
tion process or actively by granting them the right to influence the process.
Beyond this external visualization, clients can register for certain events:
• The simulation starts.
• A given transition fires.
• The content of a given place changes.
• The simulation ends.
During simulation, the client is notified of the events it is registered for and
reacts to such messages by updating its displays accordingly.

5 Cooperative System Design

Teamwork is an effective way to cope with the increasing complexity of
software systems and high quality demands. Therefore, development envi-
ronments for large software engineering projects should provide support
for cooperative development work.

Teamwork in a software engineering project includes different coordination
aspects. Process models like ProMISE imply different workflows as they
support parallel processing of development deliverables. During the whole
project, communication support and an efficient management of the flow of
work items between different people or groups of people is required.
While process and workflow management primarily deal with technical
aspects of software development, communication support concentrates on
the social action perspective.

A framework of a role-based groupware system called RoCoMan (Role
Collaboration Manager) supporting communication, organization, and
social interaction was worked out. The following teamwork support com-
ponents are currently coupled to the INCOME/STAR repository (cf. Ober-
weis, Wendel, Stucky 1994):

• extended eMail system
The eMail system maintains a semi-structured message exchange which
supports message filtering methods to avoid information overload, a typical
problem of existing computer-mediated communication systems. Therefore
we have extended the eMail system by a component which interprets rule
expressions like 'if mail arrives from team member Smith then put mail
into dictionary smithMail'.
Furthermore there are four different types of eMail: common, formatted,
extended and conversational eMail. Common eMail corresponds to con-
ventional eMail. Formatted eMail supports a structuring of the mail con-
tent. Extended eMail allows the declaration of specific message types, for
instance a request or a question. Conversational eMail is embedded in a so-
called conversation which declares valid sequences of messages which can
be modeled by a conversation editor.
Main components of the extended eMail system are a mail desktop and a
mail editor. The desktop provides access to incoming mails and supports
filtering methods for analyzing incoming mails. The editor maintains the
creation of mail with respect to the selected eMail type. Additionally, it
permits the transformation of a mail of a given type into another type.

• day planner
The day planner maintains three kinds of electronic calendar: personal,
group and common project calendar. A personal electronic calendar con-
sists of private and shared spaces. Shared spaces - in contrast to private
spaces - are periods of time which can be read and manipulated by other
authorized team members.

Shared spaces of team members are used to arrange group appointments.
These appointments are registered in a group calendar. Furthermore, all
deadlines and project dates are registered in a common project specific day
plan which is accessible by all group members.

• conversation manager
The conversation managerallows planning and modeling of conversations
and monitors progress information about current conversation processes.
Conversations are represented by conversation diagrams, a semi-formal
graphical language which allows to specify communication processes in an
easy and intuitive way (cf. Oberweis, Wendel, Stucky 1994). Each conver-
sation consists of a conversation act representing a team member conver-
sation activity, and a processing relation which links the conversation act
to other conversation acts. A processing relation represents so-called con-
ditions of completion to execute a conversation act: the importance
(conversational relevance) of the conversation act, the personal compe-
tence and the organizational role of the team members performing the
conversation act.

6 Related Work
Several other approaches propose software development environments
supporting process model enactment and/or teamwork coordination. Some
of them use different variants of Petri nets as a formal basis for the specifi-
cation of system behavior:
MELMAC is a software process management environment using an exten-
sion of high-level Petri nets called FUNSOFT nets. MELMAC supports
process analysis and process model enactment (cf. Deiters, Gruhn 1994).
SPADE-1 is a process-centered software engineering environment support-
ing software process analysis, design and enactment (cf. Bandinelli, Braga,
Fuggetta et al. 1994). The underlying process modeling language - SLANG
- is based on an extension of a high-level Petri net formalism called ER
nets (cf. Ghezzi, Mandrioli, Morasca et al. 1991).
(Ellis, Nutt 1993) use Petri nets as a formal basis for the specification of
workflows. Workflow management systems are similar to active process
support systems in a sense that both types of systems support "information
logistic" (cf. Fernström 1993), i.e. they support the flow of information
between actors.
There are further proposals for process modeling languages combining
semantic data modeling with Petri net based behavior modeling (cf. Eder,

Kappel, Tjoa et al. 1987; Heuser, Peres, Richter 1993; Lausen 1988; Sakai
1983; Sølvberg, Kung 1986).
However, none of these approaches provides appropriate concepts for be-
havior modeling of complex structured objects. There is no possibility to
model concurrent access to different components of the same complex
structured object. Our concept of NR/T-nets on the other hand supports
locking with different granularity and by this allows to model concurrent
access to design documents at different levels.

Several other approaches focus on social aspects of software projects:
(Hahn, Jarke, Rose 1990) also consider aspects like problem negotiation,
responsibilities for task fulfillment and task contraction in the area of soft-
ware projects. Different models like so-called group model for task coop-
eration, multi-agent conversation model for task-oriented negotiations and
software process data model, are proposed and integrated.
Process WEAVER is a set of tools that adds process support to UNIX-
based environments (cf. Fernström 1993). A notation similar to Petri nets is
used to describe the control flow of process model activities. Process en-
actment assists in managing the flow of information in development teams,
providing team members with task-specific work-contexts and automating
certain activities.
(Berztiss 1993) considers concurrent engineering of information systems.
The software process model is represented in the executable SF (Set-
Function) specification language, which also allows prototyping. However,
it does not provide a graphical representation of workflows.
ConversationBuilder is a tool for collaborative software development de-
scribed in (Kaplan, Tolone, Carroll et al. 1992). Based on Conversation-
Builder (Gintell, Arnold, Houde et al. 1993) propose a collaborative in-
spection and review system for software engineering products. The system
is tailorable to different development process models.
(Barghouti 1992) describes the cooperation facilities of MARVEL which is
a rule-based software engineering environment. Rules are used to describe
the development process model and to control the execution of the devel-
opment tools.
In the ALF environment, a programming-language like construct called
MASP (Model for Assisted Software Process) serves as process descrip-
tion formalism. A process model is described by a hierarchy of MASPs and
can be therefore viewed at different levels of abstraction - a similar concept
as the NR/T-net hierarchies in INCOME/STAR. There is, however, no fa-
cility for graphical visualization of MASPs. Efforts are made to apply ALF

technology to groupware support. As a first experiment, a conversation
manager was built (cf. Lonchamp 1992).

7 Practical Experience and Outlook
The INCOME/STAR prototype is implemented in a workstation environ-
ment. The user interface (including the graphical editors) is realized in
SMALLTALK, the simulation kernel in PROLOG. A relational database
system is used as basis for the repository.

Since some of the methods and tools are still under development, a practi-
cal evaluation of the complete system is not possible so far. Still, some
valuable experiences were gained by evaluating parts of the system in some
smaller case studies:
An information system for the administration of examination data was en-
tirely developed with methods and tools available in the INCOME/STAR
development environment (cf. Jaeschke, Stucky 1994).

Several other case studies were carried out in cooperation with external
partners to determine practical requirements and gain experiences with
some specific methods. Two questions were of particular interest:

c Which semantic data model is most applicable in practice and should
therefore be supported by the INCOME/STAR methodology? What is
more important in practice: rich semantics or simplicity? Three alternatives
were taken into consideration:
– a simple binary Entity-Relationship model
– an extended Entity-Relationship model
– the semantic hierarchy object model
One (surprising) result was that it can make sense to use different variants
of the ER model in the same project. In spite of its restricted expressive-
ness, the simple, binary variant seems to be an adequate basis for discus-
sion with end users, while versions with enriched semantics are preferred
by software experts. But even developers sometimes switch to the binary
variant at later stages, mainly because it can easily be converted into a re-
lational database schema.
The semantic hierarchy object model seems to fit best with the NR/T-net
concept and NF2 databases.
For this reason, instead of restricting the INCOME/STAR environment to
one data model, we are thinking about a component which supports a con-
version from one model to another.

d Is there a reasonable degree of acceptance for Petri nets in practice?
How should methodological support for Petri nets look like?
Experiences in this area were quite contradictory: Acceptance for Petri nets
seem to be much better in manufacturing than in administration. One pos-
sible explanation for this phenomenon could be that behavioral aspects of
technical processes are more obvious and can therefore be modeled more
easily. There is a lack of methodological support for the development of
Petri net models, especially for applications in administration, where be-
havioral aspects can normally not be recognized as intuitively as in techni-
cal applications. Most advantageous for practical acceptance seem to be
user-friendly visualization techniques and an automated generation of Petri
nets and markings.

Future research work includes the following issues: While our graphical
editors support both Pr/T-nets and NR/T-nets, our simulators currently
work with strict Pr/T-nets. For the future, both net types will be supported.
Furthermore, we are planning methodological support for a conversion
from one net type into the other.
Our support for process modeling currently concentrates on qualitative
aspects of software process management. Now we are planning to consider
quantitative aspects as well by adding a component for software productiv-
ity and quality measurement.
As far as teamwork coordination is concerned, an important aspect of fu-
ture research is the support of other system environments, e.g. available
commercial groupware applications.
A final research direction concerns the replication of parts of the repository
in distributed environments, which is not yet supported.

References
Bandinelli, S.; Braga, M.; Fuggetta, A.; Lavazza, L.: The architecture of the

SPADE-1 process-centered SEE; in: Warboys, B.C. (Ed.): Software
Process Technology, Springer 1994, pp.15-30.

Barghouti, N.S.: Supporting cooperation in the MARVEL process-centered
SDE; ACM SIGSOFT Software Engineering Notes, 17(5), 1992,
pp. 21-31

Barker, R.: CASE*Method: Tasks and Deliverables; Addison-Wesley
1990.

Berztiss, A.T.: Concurrent engineering of information systems; in: Prakash,
N.; Rolland, C.; Pernici, B. (Eds.): Information System Develop-
ment Process, North-Holland 1993, pp. 311-324.

Brodie, M.L.; Ridjanovic, D.: On the design and specification of database
transactions; in: Brodie, M.L.; Mylopoulos, J.; Schmidt, J.W.
(Eds.): On Conceptual Modelling, Springer 1984, pp. 278-306.

Deiters, W.; Gruhn,V.: The FUNSOFT net approach to software process
management; International Journal on Software Engineering and
Knowledge Engineering, 4(2), pp. 229-256 1994.

Eder, J.; Kappel, G.; Tjoa, A.M.; Wagner, A.A.: BIER - The behaviour
integrated entity relationship approach; in: Spaccapietra, S. (Ed.):
Proc. 5th International Conference on the Entity-Relationship Ap-
proach, North-Holland 1987, pp. 147-168.

Ellis, C.A.; Nutt, G.J.: Modeling and enactment of workflow systems; in:
Marsan, M.A. (Ed.): Proc. 14th International Conference on Appli-
cation and Theory of Petri Nets, Springer 1993, pp. 1-16.

Feldman, P.; Miller, D.: Entity model clustering: Structuring a data model
by abstraction; The Computer Journal, 29(4), 1986, pp. 348-360.

Fernström, C.: PROCESS WEAVER: Adding process support to UNIX;
Proc. 2nd International Conference on the Software Process, IEEE
Computer Society Press 1993, pp. 12-26.

Genrich, H.J.; Lautenbach, K.: System modelling with high-level Petri
nets; Theoretical Computer Science, 13, 1981, pp. 109-136.

Ghezzi, C.; Mandrioli, D.; Morasca, S.; Pezzè, M.: A unified high-level
Petri net formalism for time-critical systems; IEEE Transactions on
Software Engineering, 17(2), 1991, pp. 160-172.

Gintell, J.; Arnold, J.; Houde, M.; Kruszelnicki, J.; McKenney, R.;
Memmi, G.: Scrutiny: A collaborative inspection and review sys-
tem; in: Sommerville, I.; Paul, M. (Eds.): Proc. Software Engineer-
ing - ESEC'93, Springer 1993, pp. 344-360.

Hahn, U.; Jarke, M.; Rose, T.: Group work in software projects; in: Gibbs,
S.; Verrijn-Stuart, A.A. (Eds.): Multi-User Interfaces and Applica-
tions, North-Holland 1990, pp. 83-101.

Heuser, C.A.; Peres, E.M.; Richter, G.: Towards a complete conceptual
model: Petri nets and entity-relationship diagrams; Information
Systems, 18(5), 1993, pp. 275-289.

INCOME User Manuals: INCOME/Designer, INCOME/Dictionary,
INCOME/Generator, INCOME/Simulator; PROMATIS Informatik,
Karlsbad/Germany 1994.

Jaeschke, P.; Oberweis, A.; Stucky, W.: Extending ER model clustering by
relationship clustering; in: Elmasri, R.; Kouramajian, V. (Eds.):
Proc. 12th International Conference on the Entity-Relationship Ap-
proach, Arlington/Texas 1993, pp. 447-459.

Jaeschke, P.; Stucky, W.: An integrated tool for information system devel-
opment: practical experience; Universität Karlsruhe, Institut für
Angewandte Informatik und Formale Beschreibungsverfahren, For-
schungsbericht 297, Karlsruhe/Germany 1994.

Kaplan, S.M.; Tolone, W.J.; Carroll, A.M.; Bogia, D.P.; Bignoli, C.: Sup-
porting collaborative software development with Conversation-
Builder; ACM SIGSOFT Software Engineering Notes, 17(5), 1992,
pp. 11-20

Lausen, G.: Modelling and analysis of the behaviour of information sys-
tems; IEEE Transactions on Software Engineering, 14(11), 1988,
pp. 1610-1620.

Lausen, G.; Németh, T.; Oberweis, A.; Schönthaler, F.; Stucky, W.: The
INCOME approach for conceptual modelling and prototyping of in-
formation systems; Proc. 1st Nordic Conference on Advanced Sys-
tems Engineering, Stockholm/Sweden 1989.

Lonchamp, L.: Supporting social interaction activities of software proc-
esses. in: Derniame, J.C (Ed.): Software Process Technology,
Springer 1992, pp. 34-54.

Mistelbauer, H.: Datenmodellverdichtung: Vom Projektdatenmodell zur
Unternehmensarchitektur; Wirtschaftsinformatik, 33(4), 1991, pp.
289-299.

Mochel, T.; Oberweis, A.; Sänger, V.: INCOME/STAR: The Petri net
simulation concepts; Systems Analysis - Modelling - Simulation,
Journal of Modelling and Simulation in Systems Analysis, 13,
1993, pp. 21-36.

Oberweis, A.: Workflow management in software engineering projects; in:
Medhat, S. (Ed.): Proc. 2nd International Conference on Concurrent
Engineering and Electronic Design Automation, Bournemouth/UK
1994, pp. 55-60.

Oberweis, A.; Sänger, V.: Graphical query language for simulation runs;
Journal of Microcomputer Applications, 17, 1994.

Oberweis, A.; Sänger, V.; Weitz, W.: GAPS - A multiuser tool for graphi-
cal simulation of Petri Nets; in: Halin, J.; Karplus, W.; Rimane, R.
(Eds.): Proc. 1st Joint Conference of International Simulation So-
cieties, Zurich/Switzerland 1994, pp. 377-381.

Oberweis, A.; Sander, P.; Stucky, W.: Petri net based modelling of proce-
dures in complex object database applications; in: Cooke, D. (Ed.):
Proc. IEEE 17th Annual International Computer Software and
Applications Conference, Phoenix/Arizona 1993, pp. 138-144.

Oberweis, A.; Wendel, T.; Stucky, W.: Teamwork coordination in a dis-
tributed software development environment; in: Wolfinger, B.
(Ed.): Innovationen bei Rechen- und Kommunikationssystemen,
Springer 1994, pp. 423-429.

Rauh, O.; Stickel, E.: Entity tree clustering - a method for simplifying ER
design; in: Pernul, G.; Tjoa, A.M. (Eds.): Proc. 11th International
Conference on the Entity-Relationship Approach, Springer 1992,
pp. 62-78.

Reisig, W.: Petri Nets; EATCS Monographs on Theoretical Computer Sci-
ence, Springer 1985.

Sakai, H.: A method for entity-relationship behaviour modeling; in: Davis,
C.G.; Jajodia, S.; Ng, P.A.; Yeh, R.T. (Eds.): Entity-Relationship
Approach to Software Engineering, North-Holland 1983, pp. 111-
129.

Schek, H.-J.; Scholl, M.: The relational model with relation-valued attrib-
utes; Information Systems, 11(2), 1986, pp. 137-147.

Scherrer, G.; Oberweis, A.; Stucky, W.: ProMISE - a process model for
information system evolution; Proc. 3rd Maghrebian Conference on
Software Engineering and Artificial Intelligence, Rabat/Morocco
1994, pp. 27-36.

Sølvberg, A.; Kung, D.C.: On Structural and behavioral modelling of real-
ity; in: T.B. Steel and R. Meersman (Eds.): Database Semantics,
North-Holland 1986, pp. 205-221.

Teorey, T.J.; Wei, G.; Bolton, D.L.; Koenig, J.A.: ER model clustering as
an aid for user communication and documentation in database de-
sign; Communications of the ACM 32(8), 1989, pp. 975-987.

—C—

conversation manager xx

—D—

design dictionary, see also repository iii

—E—

Entity-Relationship model (ER model) x

- clustering x

evolutionary system development xii; xvi

—F—

filter tables vii

—G—

GAPS xviii

graphical query language xvi

groupware xviii

GTL xvi

—I—

INCOME ii

INCOME/STAR iii

- environment iii

- methodology iv

- simulation concepts xv

- software process support xi

- teamwork support xviii

—N—

nested relation/transition nets (NR/T-nets)

iv

- filter tables vii

—O—

ORACLE*CASE iii

—P—

predicate/transition nets (Pr/T-nets) v

process engine xv

process model xi

process model enactment xv

ProMISE xii

—R—

repository, see also design dictionary xv;

xvi; xix; xxii

RoCoMan xviii

—S—

Semantic Hierarchy Model (SHM) iv

simulation xvi

software process support xi

—W—

workflow management xii; xxi

