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task definition or to strengthen the competence of a problem-solving method by increasing its
demands on domain knowledge (see Benjamins et al., 1996, for details). Making these
assumptions explicit has several advantages (see Fensel & Straatman, 1996): 

1) They can be used to prove properties of a specification. The formal specification of a
method, with the specification of the method´s assumptions, should enable us to prove
formally the correctness and efficiency of a method. This formal proofs are important,
because only reliable components can be reused. 

2) These assumptions must be proved to hold in a given domain to which the method is to
be applied. Otherwise, reuse of given methods is questionable, because it is not clear
whether the methods will produce a correct result (in an efficient manner). 

3) These assumptions can be used to index the reusable components, and thus to support
the selection, combination, and adaptation of methods for a given domain and task. 

Progress in these areas requires two different research activities. A conceptual framework for
describing the functionality, efficiency, dynamic behavior, and assumptions of reusable
building blocks is necessary. In addition, as it is for validation and verification of formal
specifications, a proof calculus is required.

 

8

 

 Recently, Fensel & Groenboom (1996) introduced
the 

 

Modal Logic for Predicate Modification (MLPM)

 

 for this purpose. Its axiomatic semantics
enable the automatization of such proofs. Fensel et al. (1996b) proposed a conceptual and
formal framework for the specification of problem-solving methods. The 

 

Karlsruhe
Interactive Verifier (KIV)

 

 (Reif, 1995) is used to verify such a specification and to detect
hidden assumptions of a problem-solving method.
Further support for the development of problem-solving methods should be provided by
application of ideas and tools of program transformation. Currently, we are examining the
usefulness of tools such as KIDS (Smith, 1990), which supports the transformation process
from a declarative specification to an operational (i.e., algorithmic) specification. This tool
could be used to transform a desired competence theory of a problem-solving method into an
operational specification.
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layer or by refining the inference layer hierarchically; rather, we add clauses and
terminological expressions to the definitions of knowledge roles and elementary inference
actions. That is, we introduce new ontological commitments during task- and domain-specific
refinements of problem-solving methods.

 

6.1 Comparison with Related Work

 

Source code libraries, such as those in SFB (Klinker et al., 1991), KREST (Steels 1990), and
PROTÉGÉ-II (Puerta et al., 1992), combine implemented building blocks with semiformal
descriptions. Problems arise when a precise understanding of the competence or the
assumptions of such a building block are required. Code inspection is the only way to gain such
an understanding. The other extreme is provided by the CommonKADS library of problem-
solving methods of Breuker and Van de Velde (1994). Only semiformal descriptions at a high
level of abstraction are provided. 
Code descriptions and informal descriptions of a problem-solving method could be
supplemented with formal high-level descriptions that abstract from implementation details.
These descriptions provide two main advantages:

• The method is defined at the conceptual level in terms of the different types of knowledge
required to specify problem solving. The transition of the informal description of a
problem-solving method in terms of the KADS model of expertise to its formal definition
is structure preserving (see also van Harmelen & Aben, 1996).

• The method is defined in a language that has a formal semantics, and abstracts from
implementation issues. The problem-solving method is described precisely, and we can
use the semantics to derive characteristic features of the problem-solving method.

Our formal specification of different method variants supplements the analysis of Schreiber et
al. (1992). They compared the formal specification of the problem-solving methods 

 

cover and
differentiate

 

 and 

 

heuristic classification,

 

 and found significant differences between these
methods. Whereas Schreiber et al. (1992) compared two problem-solving methods developed
for the same type of tasks, we have compared two problem-solving methods that differ in their
task specificity. Akkermans et al. (1993) and Wielinga et al. (1995) sketched an approach that
views the construction process of problem-solving methods for knowledge-based systems as
an assumption-driven activity. One derives a formal specification of a task from informal
requirements by introducing assumptions about the problem and the about problem space. One
refines this task specification into a functional specification of the problem-solving method by
making assumptions about the problem-solving paradigm and about the available domain
theory. Still, their results remain abstract, and they do not relate their work to implemented
libraries of problem-solving methods as provided by PROTÉGÉ-II or operational
specifications of methods that define the dynamics of the reasoning process of a method. In
addition, the discussion of the terminological refinement of methods is vague because no
conceptual modeling primitives for static knowledge are used.

 

6.2 Future Work

 

An important task for future research is the analysis of problem-solving methods based on their
formal and conceptual descriptions (see Fensel (1995a) for an analysis of the problem-solving
method 

 

propose and revise

 

). To reuse problem-solving methods, we must be aware of the
assumptions underlying such methods. Each method defines requirements on the available
domain knowledge and the given task. These requirements can be necessary for the effect of
the method (i.e., its correctness), and for its efficiency. We can use them either to weaken the
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the task, and the domain knowledge can be provided in terms of moves of pieces between
locations, instead of generic state transitions. In the case of the Angele method, knowledge
about state transitions does not need to be provided at all, because the method hardwires these
transitions. Only preferences on slots and components have to be provided.
Fensel and Straatman (1996) refined a version of 

 

generate & test

 

 to 

 

propose & revise

 

 to solve
a parametric design task. The terminological structures of both methods were the same, in
contrast to those in our analysis. The main distinction between generate & test and propose &
revise was that the latter introduces heuristic assumptions over the provided domain
knowledge and the task to improve the 

 

efficiency of the problem-solving process

 

. Generate &
test does a complete search that finds the optimal design. On the other hand, even for simple
design problems, such a strategy is intractable. 

 

Propose & revise

 

 uses a local search technique
that requires either strong assumptions on the provided search control knowledge or
assumptions that weaken the goal of the tasks (assumptions on local optimums). Based on
these assumptions, it can solve the problem with reasonable efficiency. From that perspective,
chronological backtracking and the board-game method behave with equal efficiency as the
latter introduces neither any kind of assumptions on domain knowledge that should improve
the search process nor assumptions that weaken the task.
IN general, one can distinguish at least two dimensions of refining weak to strong problem-
solving methods (cf. O’Hara & Shadbolt, 1996):

• Improving the efficiency of the knowledge acquisition and adaptation process by
strengthening ontological commitments,

• improving the efficiency of the problem-solving process by introducing assumptions over
the provided domain knowledge or precise characterisations of the task.

To develop methods for deriving task-specific problem-solving methods, we must integrate
both aspects.

 

6 Conclusions

 

PROTÉGÉ-II, like many other approaches to reusable problem-solving methods, such as
generic tasks (Chandrasekaran & Johnson, 1993) and role-limiting methods (Marcus, 1988),
is close in spirit to the source-code libraries available in conventional software reuse (Krueger,
1992). Just as certain source-code libraries are designed to provide implementations of
mathematical functions, problem-solving methods are designed to perform operations that are
meaningful in terms of knowledge-based systems. Problem-solving methods, however, must
perform tasks that are more complex than are those performed by these mathematical software
libraries. An additional obstacle for the design of knowledge-based systems from reusable
methods is that there is no underlying theory of models for problem-solving behavior in the
same sense that mathematics is the underlying theory for numerical-calculation packages. 
KARL enables us to formalize problem-solving methods, and it bridges the gap between
conceptual model and implementations of problem-solving methods. A specification of the
chronological-backtracking and the board-game methods using the formal specification
language KARL improves the developer’s understanding of these methods. We have made
explicit the degree of task and domain dependency of these methods by respecifying the
methods in KARL. Chronological backtracking can be applied to all tasks that can be solved
by search through a space of states. The board-game method makes stronger assumptions
about a state and about transitions between states. We do not accomplish the task-specific
refinement of chronological backtracking into the board-game method by modifying the task
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into a location of highest preference that is still available and that does not cause constraint
violations.

It is clear that both assumptions are not fulfilled by every assignment problem. They reflect
properties of the domain and of the application, as provided in Linster (1994). 
If we compare the KARL definition of the board-game method with the naive Angele method,
we see that the main difference lies in the inference action 

 

Create 

 

and its mapping by the view

 

Successor-Relation

 

. This view is defined in terms of 

 

moves

 

 for the board-game method,
whereas the Angele method makes stronger assumptions about the relation. The relatively
complex mapping of the board-game method must therefore define assumptions and actions
of moves.

 

6

 

 Parts of the knowledge, which must be defined in this mapping of the board-game
method, are hard-wired at the inference layer in the Angele method. The corresponding
mapping of the Angele method therefore requires only a preference on components and slots.
The Angele method uses these preferences to define the derivation of the next “move” in the
body of the inference action 

 

Create

 

.
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Figure 13 illustrates the different levels of abstraction of the three methods. Chronological
backtracking can be reused for arbitrary tasks and domains. However significant effort is
required to apply it to any given task and domain. Such application requires not only the
definition of complicated mappings, but also the introduction of new terminological and
inference knowledge at the inference layer. The board-game method requires only the
definition of domain mappings, because it hardwires stronger task-specific assumptions that
fit the Sisyphus task. 
The board-game method is not domain-specific and is less task-specific than is the Angele
method. Thus, more work is required to define the mappings of the board-game method for the
Sisyphus problem than for the Angele method. However, in addition to beeing used to solve
Sisyphus problem, the board-game method can be reused for other tasks that can be modeled
as one-player games, such as Towers of Hanoi (Eriksson et al., 1995). That is, it has a broader
scope of reuse than does the Angele method.

 

5.4 Weak and Strong Problem-Solving Methods

 

The main distinction between chronological backtracking and the board-game method results
from the richer ontological commitments that are introduced by the latter to characterize a
state. As a consequence, the transition between states can be defined in more detail. These
commitments restrict the number of tasks that can be tackled by the method, but they improve
the 

 

efficiency of the acquisition process for domain knowledge, and of the adaptation process
of the method for a given application

 

 (Eriksson et al., 1995). The method is already adapted to

 

6.  

 

Since this mapping is complex (approximately one page of KARL clauses), we do not introduce it in this paper.

 

7.  

 

The Angele method is specified in a generic, rather than in a domain-specific ,terminology. This terminology, however,
incorporates domain- and task-specific assumptions in its definition and in the inferences that are drawn from it.
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Fig. 13.    Different levels of generality.
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2) We must map this task-specific instantiation of chronological backtracking to the domain
of the room-assignment problem.

The board-game method specializes chronological backtracking for assignment tasks, where a
state describes a set of assignments (i.e., a set of tuples of assignments of components and
slots). Because the board-game method can model directly the Sisyphus room-assignment
task, we need to define only the mapping parts of views and terminators to adapt this method
to the domain of the Sisyphus problem.

 

5.3 Different Levels of Specifity

 

Eriksson et al. (1995) report that 280 lines of CLIPS code were required to apply chronological
backtracking to the Sisyphus task. The board-game method required only 40 lines. Our
experience with the use of KARL for modeling the same tasks is consistent with this result in
that the relative benefit of the board-game method was the same. By using the conceptual
model of KARL to specify these two methods, we make visible the 

 

different types of
knowledge

 

, rather than only their size) that are required for realizing this application:
• The board-game method requires a mapping from the domain-specific knowledge onto the

generic terminology of the problem-solving method. For example, the developer must
map 

 

rooms

 

 to 

 

locations

 

, and persons to pieces.
• Chronological backtracking requires both this mapping and additional knowledge about

the task that should be solved with this method. We must define what a state is (i.e., a set
of assignments) and how we derive a successor state from it (i.e., by changing some of the
assignments). For example, we must define that a state has a task-specific internal
structure. Chronological backtracking requires therefore not only an excessive mapping,
but also the specification of terminological and inference knowledge at the inference layer
(i.e., in stores and elementary inference actions) if this method is to be applied to the
Sisyphus problem.

It is the dual character of KARL that is, the formal character and the knowledge-level
primitives, that gave us these insights into the task-specific refinement of problem-solving
methods. Because the language primitives of KARL distinguish explicitly among different
kinds of knowledge, epistemological differences became visible. In addition, it is the formal
character of KARL that is, the precise semantics, that made it a necessary result. Using KARL
forced us to model the two methodsprecisely. Neither a formal language, which would result
in an amorphous set of clauses, nor an informal knowledge-level language would provide this
strong guiding feature.
In a related study, Angele et al. (1992) provide a straightforward KARL specification for the
Sisyphus problem. They developed the problem-solving method bottom up, using the
Sisyphus problem statement as a guideline. The mapping between the inference and domain
layers in the Angele method is therefore straightforward. The mapping specifies that slots
correspond to places and components correspond to employees. In addition, the place
requirements for employees, as well as the constraints for correct assignments, must be
defined. Naturally, this naive problem-solving method is highly task specific, and hardwires
application- and domain-specific assumptions. Examples of these assumptions follow:

• The method assumes that a goal state is an assignment where every component has a
location and

• the preference for assignments can be defined independently for components and slots.
That is, one preference is used to select the next most important component that is placed
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want to apply chronological backtracking to the room-assignment task, we must introduce new
definitions and clauses at the inference layer (i.e., in stores and elementary inference actions).
We must define the task-specific terminological knowledge of the internal structure of states:
That is, we have to specify that states are sets of assignments involving slots (i.e., locations)
and components (i.e., pieces). In addition, we must introduce new clauses, such as clauses that
define how a successor state is derived from a prior state, and how the successor state inherits
assignments from the old state.
The need for this modeling indicates that chronological backtracking not only requires a
mapping on the given domain knowledge, but also requires adaptation to the given task if it is
to be applicable to the Sisyphus problem. The interpretation that slots represent domain
locations (e.g., rooms) is domain specific. The board-game and chronological-backtracking
methods have this type of mappings in common. That states have this internal structure is,
however, not merely a domain-dependent circumstance, rather, it is related to the task that
should be solved by the problem-solving method. The adaptation of the chronological-
backtracking method to the Sisyphus problem therefore includes two different activities: 

1) We must specialize the generic problem-solving method chronological backtracking to
a relatively strong problem-solving method (McDermott, 1988), such as the board-game
method, that makes specific (i.e., strong) assumptions about a task. Such a task-specific
method can solve only those tasks where a state is characterized by a set of assignments
of pieces and locations.

Fig. 12.    Definition of the view Correct-States.

UPWARD MAPPING
/* Every possible successor state that is not a wrong state is a correct state. */

∀ xSt (correct(xSt )← xSt ε possible-successors ∧ ¬ wrong(xSt )).
/* Every state that assigns to the same room two employees who do
not fit together is a wrong state. */
∀ xA, ∀ xC, ∀ xN, ∀ xS, ∀ xSt, ∀ yA, ∀ yC, ∀ yS

wrong(xSt )←
xSt[assign :: {xA[c : xC, s : xS]}] ∈  possible-successors ∧
xSt[assign :: {yA[c : yC, s : yS]}] ∈  possible-successors ∧
¬ (xC ≅  yC) ∧
xS[room : xN] ∈  place ∧  yS[room : xN] ∈  place ∧
¬  fit-together (c1 : xC, c2 : yC).

/* Two employees may share a room (1) if the roles of both are the same, (2) if
 either both are smokers or both are not, (3) if neither of the two is a boss, and
 (4) if both work on different projects. */

∀ xC∀ xV1,∀ xV2,∀ xV3, ∀ yC, ∀ yV
fit-together (c1 : xC, c2 : yC) ←

¬ (xC ≅  yC) ∧
xC[project : xV1, role : xV2, smoker : xV3] ∈  employees ∧
yC[project : yV, role : xV2, smoker : xV3] ∈  employees ∧
¬ (xC ε boss) ∧  ¬ (yC ε boss) ∧ ¬ (xV1 ≅  yV).

END;1

1.  For a definition of the logical symbols see Figure 11.

VIEW Correct-States
DEFINITIONS

possible-successors

wrong correct
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Create, we define a successor state by the elements of the class moves. A move is a tuple of
two sets: a set of actions and a set of assumptions. An action derives a new location (or a new
ordering) for a piece. When we configure the board-game method to a specific domain, we
must define a move, instead of defining the general T-function in the upward mapping of the
view Successor-Relation. The assumptions of a move model the conditions necessary for
applying it in a given situation such as that a piece can move to only a location that is not
already occupied by another piece. Figure 11 shows the extended definition of Create.

5 Domain and Task-Specific Refinements of Both Methods

In Section 4, we discussed parts of the formal specifications of the chronological backtracking
and the board-game method. In this section, we discuss how these generic problem-solving
methods can be adapted to a specific domain and task—namely, the Sisyphus room-
assignment problem (Linster, 1994), an assignment problem in which employees are assigned
to office places under several requirements. The domain is described by a set of employees,
their names and roles (such as researcher), and their projects. Also it is indicated whether the
employees smoke tobacco, whether they are hackers, and who are their immediate coworkers.
In addition, there is a list of rooms that includes a description of how the rooms are situated
with respect to the building and to the other rooms, and how many people the rooms can
accommodate. The task is to find an assignment of employees and places that fulfils given
requirements.
In Section 5.1, we discuss the modeling of the Sisyphus problem using the board-game
method; in Section 5.2, we examine this mapping for the weak problem-solving method
chronological backtracking. In Section 5.3, we identify different levels of task- and domain-
specifity, and compare these results with another problem-solving method. In Section 5.4., we
draw some general concluions on the differences between weak and strong problem-solving
methods.

5.1 The Board-Game Method: Domain Mapping

Because the board-game method is designed for tasks that can be defined by pieces that are
arranged at locations, the method can be applied easily to tasks where components are arranged
in slots. Therefore, we can apply the board-game method to the Sisyphus room-assignment
task without changing the inference or task layer of the method definition. We have to define
the mapping from the Sisyphus domain to the inference layer of the board-game method by
defining the mapping parts of the views and terminators. Figure 12 shows the mapping of the
domain view Correct-States to the room-assignment domain. This domain view is used by the
elementary inference action Prune (see Figure 9). The mapping rules use the terms of the
inference layer and of the domain layer. Similar mappings must be defined for the other views
of the method.

5.2 Chronological Backtracking: Domain and Task Mappings

The mapping problem is different for the chronological backtracking method than it is for the
board-game method. Specifications for both the elementary inference actions and the
definition parts of the stores are smaller for chronological backtracking. The formal
specification of the elementary inference actions requires only one simple clause. The
terminological knowledge also is trivial (see Section 4.1). This structure implies that, if we
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• We introduce the class moves in the view Successor-Relation. We use moves to specify the
predicate T-function used by the elementary inference action Create. The attribute assumpt
describes the assumptions that states must fulfill for a move to be applied to the state. The
attribute actions describes the modified assignment. That is, the result of applying the
move to a state. It is a set of triples of pieces, locations, and ordering of the pieces that
describes the new assignments of the state (Figure 10c). 

New knowledge about the inferences is added primarily to the elementary inference action
Create.5 That is, the inference action Prune remains unchanged. We use the newly introduced
terminology to define in detail how a successor state is derived. In that refined version of

5.  One new clause must also be introduced in the inference actions Init-States and Bookkeeping.

Fig. 11.    Extended definition of the elementary inference action Create.

ELEMENTARY INFERENCE ACTION Create
PREMISES

Selected-States, Successor-Relation;
CONCLUSIONS

Possible-Successors;
RULES

∀ xSt, ∀ ySt
ySt ∈  possible-successors ←

xSt ∈  selected_states ∧ T-function(old : xSt, new :ySt).
/* A move defines a successor of a selected state if its assumptions are a 
subset of the assignments of this state. */
∀ xm, ∀ xSt 

T-function(old : xSt, new : NewSt(xSt,xm))1 ←
xm ∈  moves ∧
xSt ∈  selected-states ∧
apply(state : xSt, move : xm).

∀ xm, ∀ xSt 
apply(state : xSt, move : xm) ←

xm ∈  moves ∧  xSt ∈  selected-states ∧ 
¬∃ xA (xm[assumpt :: {xA}] ∧  ¬xSt[assign :: {xA}]).

/* A successor gets the changed assignments. */
∀ xA, ∀ xl, ∀ xm, ∀ xp, ∀ xO, ∀ xSt

NewSt(xSt,xm)[assign :: {xA[piece : xp, order : xO, location : xl]}] ←
xm[actions :: {xA[piece : xp, order : xO, location : xl]}] ∈  moves ∧
T-function(old : xSt, new : NewSt(xSt,xm)).

/* A successor gets the unchanged assignments. An assignment of a piece remains 
unchanged if the actions of a move do not contain this piece. */
∀ xA, ∀ xm, ∀ xp, ∀ xSt

NewSt(xSt,xm)[assign :: {xA}] ←
xm ∈  moves ∧
xSt[assign :: {xA[piece : xp]}] ∈  selected-states ∧
T-function(old : xSt, new : NewSt(xSt,xm)) ∧
not-changed-pieces(state : xSt, move : xm, pieces :: {xp}) ∧
¬∃ yA (xm[actions :: {yA[piece : xp]}]).

END

1.  The object-id of the new state depends functionally on the object-id of the old state and on the
object-id of the move. Further features of L-KARL are the following:

- x ∈  y means that x is an element of the class y;
- x ≅  y means that x and y are equal;
- x[attribute : y] means that x has the value y for the attribute attribute;
- x[attribute :: {y}] means that x has the set of values y for the attribute attribute;
- p(name : x, ...) means that p is a predicate, name is the argument name, and x is an 
argument.
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We can define the board-game method as a refinement of chronological backtracking. We do
not achieve this refinement by introducing additional inference actions, by using additional
levels of refinement, or by changing the task layer; rather, we do so by adding (problem-
solving-method-specific) terminological knowledge and new clauses to roles and elementary
inference actions.
The specification of the board-game method introduces definitions of new classes and
predicates, as well as new attributes in the existing class definitions.

• We introduce three new class definitions in all stores. An assignment is now a triple
consisting of a location, a piece, and an ordering of pieces (Figure 10a). The order
information is relevant in domains such as the towers-of-Hanoi game, where several
pieces share the same location, but differ in their sequencing.

• All other original class definitions in roles and elementary inference actions of
chronological backtracking are extended by the set-valued attribute assign. For example,
a selected-state is now defined as shown in Figure 10b. The attribute assign assigns a set
of assignments to each element of selected-states.

ELEMENTARY INFERENCE ACTION Create
PREMISES

Selected-States, Successor-Relation;
CONCLUSIONS

Possible-Successors;
RULES

∀ xSt, ∀ ySt
ySt ∈  possible-successors ←

xSt ∈  selected_states ∧ T-function(old : xSt, new :ySt).
END

ELEMENTARY INFERENCE ACTION Prune
PREMISES

Correct-States, Possible-Successors;
CONCLUSIONS

Successor-States;
RULES

/* Every possible successor state that is correct is assumed to be a new element of 
the class successor-states. */
∀ xSt (xSt ∈  successor-states ← xSt ∈  possible-successors ∧ correct-states(xSt ).

END;1

1.  For a definition of the logical symbols see Figure 11.

Fig. 9.    The elementary inference actions Create and Prune.

assignments locationspieces
piece location

INTEGERS

order

selected-states assignments
assign

Fig. 10.    Additional terminological structure of the board-game method.

(a)

(b)

moves assignments

actions

assumpt(c)
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selected states, and checks whether these successors are legal states.
The store Possible-Successors contains the current successor states of the states in the store
Selected-States. The definition of the store Possible-Successors is similar to those of the stores
Selected-States and Successor-States. We use the view Successor-Relation (Figure 8) to define
the successor relationship (i.e., the T-function) of states.

The elementary inference action Create (Figure 9) creates all successor states from the states
in the store Selected-States. The successors are written to the store Possible-Successors.
Create uses the view Successor-Relation to read the required knowledge from the domain
layer. The elementary inference action Prune (Figure 9) checks whether these states are legal.
States that are legal are considered to be new successor states, and are written to the store
Successor-States. The view Correct-States defines the class correct-states.
Create and Prune use different types of knowledge. Create uses general knowledge about the
search space. In a board-game application, Create generates all possible successor states that
a player can achieve by moving one piece. Prune tests whether these moves lead to a situation
that is legal according to the rules of the game. Conceptually, this is, most of the time, a useful
way to describe the different inferences and their different knowledge types. On the other
hand, this generate & test strategy clearly will be changed during implementation. For
efficiency reasons ones tries to compile into the generation step as much as possible of the
knowledge of correct states (cf. Fensel & Straatman, 1996). Actually, the two different
reasoning steps and knowledge types became merged in the implementation of the board-game
method, to improve their efficiency.

4.2 Task-Specific Refinement: The Board-Game Method

The specification of chronological backtracking is trivial. It defines only a search strategy. We
now show how we can refine such a search strategy to a strong problem-solving method by
making assumptions about the task that it can solve. We introduce a KARL specification for
the board-game method. We assume that the game has a fixed number of pieces and locations.
Multiple pieces can be moved to the same location simultaneously, and, if required, the pieces
at each location can be ordered.

4.  See Fensel (1993) for further details.

Create
Successor-
Relation

Selected-
States

Possible-Successors

Successor-

PruneCorrect-
States

Fig. 7.    Refinement of Derive-Successors.

States

Fig. 8.    The definition of the view Successor-Relation.

VIEW Successor-Relation

possible-successorsselected-states

T-function

newold
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depends on the properties of the domain knowledge provided to define the preference relation
for a given application. Figure 4 shows the inference structure of chronological backtracking.
It consists of three subtasks (i.e., composed inference actions) and one elementary inference
action:

• The elementary inference action Init-States creates all initial states. Init-States uses the
view Init-View to read the necessary knowledge from a domain layer. 

• Find-Solution checks to see whether the store Selected-States contains a goal state. If it
finds a goal state, it stores the best state (according to the preference predicate) in the
domain layer via the terminator Solution.

• Derive-Successor derives the successors of all selected states, and checks whether they are
legal states.

• Bookkeeping checks whether these successors are different from already-considered
states. If new states are found, the best of them are put into the store Selected-States. As
mentioned previously, if the domain preference knowledge defines a total ordering on all
states, one state is chosen. If the preference knowledge defines only a partial ordering, the
Bookkeeping inference action chooses several states. Bookkeeping provides an earlier
state according to backtracking if no new states could be derived.

Figure 5 shows the definition of the stores Selected-States and Successor-States. Each store
contains only one class definition without any attributes, because chronological backtracking
does not make any assumptions about the internal structure of a state. This simplicity is shown
in Figure 5. We shall demonstrate how the board-game method adds (compare Figure 5 to
Figure 10).
The control flow of the method is defined at the task layer. Figure 6 shows the control flow at
the top-level of the method specification. After initialization (by Init-States), the iteration of
the three composed inference actions is repeated as long as no solution has been found and a
further successor that is different from an already-considered state can be found.

4.1.1 Refinement of Derive-Successors

In the following, we show the refinement of the composed inference action Derive-Successors.
Due to space limitation, we omit the refinement of the other two composed inference actions.4

The composed inference action Derive-Successor (Figure 7) derives the successors of all

Fig. 5.    The definitions of the stores Selected-States and Successor-States.

STORE Selected-States selected-states

STORE Successor-States successor-states

Fig. 6.    The task layer of chronological backtracking.

Selected-States := Init-States(Init-View)
while ¬∃ x ∈  Solution ∧  ∃ x ∈ Selected-States

Solution := Find-Solution(Selected-States);
if no Solution
then 

Successor-States := Derive-Successors(Selected-States);
Selected-States := Bookkeeping(Successor-States )

endif
endwhile
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a move must be empty. Also, the board-game method requires as input the initial and goal
states of the game (or a goal predicate that is satisfied when the goal is reached). In addition to
constraints on moves, certain games define constraints in terms of illegal game states.
Consider, for instance, the cannibals-and-missionaries problem. A legal move in terms of
transportation may result in a forbidden state where missionaries are cannibalized (i.e., there
are more cannibals than missionaries at one shore). The developer must configure the board-
game method to avoid such illegal states in the game.
The board-game method is generic in the sense that the developer can use the method to
perform many game like tasks. For instance, we have configured the board-game method to
perform the following tasks: towers of Hanoi, cannibals and missionaries, and Sisyphus room
assignment (Eriksson et al., 1995). We can model the Sisyphus room-assignment task as a
board game by viewing the rooms as locations, and the persons as pieces. Initially, all persons
are located outside the building (i.e., at the unassigned location), and the method moves one
person at the time to an appropriate room. If illegal states occur, the board-game method
backtracks to a legal state and examines a different search path.

4 The Models in KARL

This section presents highlights from the KARL specifications of the methods introduced in
Section 3. In Section 4.1, we specify chronological backtracking. In Section 4.2, we discuss
the refinements and extensions that are required for developing the board-game method
specification from the chronological backtracking specification.

4.1 Chronological Backtracking: A Weak Method

In the following, we illustrate how chronological backtracking is modeled in KARL. The
chronological-backtracking method can use depth-first search, beam search, or breadth-first
search3 (Bundy, 1990). Whether the specification of the method selects one or several
successor states depends on a preference predicate (called an S-Function in Eriksson et al.,
1995). The search collapses to depth-first search if the domain knowledge used to define the
preference predicate defines a total ordering. In domains where we do not have sufficient
knowledge to identify a single best state, all subsequent states that cannot be distinguished are
considered in parallel. In this case, beam search is used. Finally, if no domain knowledge is
provided, the search becomes full breadth-first search. Therefore, which type of search is done

3.  In that case, the backtracking disappears, because all possible successor states of earlier states have already been checked.

Book-
keeping

Successor-

Find-
Solution

States
Selected-

Derive-
Successors

Init-States

Init-View

Fig. 4.    Inference structure of chronological backtracking.

States

Solution
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specification languages for information systems and databases, such as F-logic (Kifer et al.,
1995), TROLL (Jungclaus, 1993), and INCOME (Oberweis et al., 1994). The main advantages
of these modeling primitives are the following:

• There is a close relationship between the semiformal and formal models. In the case of
KADS, the rich conceptual models that can be specified semiformally with the conceptual
modeling lLanguage CML (Schreiber et al., 1994a) must be translated to (ML)2, which
provides the usual means of first-order logic for specification (i.e., constants, functions,
predicates, and types). As a consequence, epistemological distinctions of the conceptual
model disappear in the formal model, and the two models have to be discussed separately.
In the case of KARL, the semiformal and the formal models use the same primitives; the
formal model is simply a refinement of the semiformal one (cf. Fensel & Neubert, 1994;
Angele et al., 1996).

• The terminological structure can be used for the automatic creation of the knowledge
acquisition editors that are part of the PROTÉGÉ-II approach (Eriksson et al., 1995).

• The terminological modeling primitives of KARL can characterize the task- and domain-
specific refinement process of problem-solving methods. We achieve such refinement by
adding terminological structure and logical axioms to a given specification (Section 5).

More detailed comparisons of KARL with other specification languages that also cover other
aspects are provided by Fensel & Harmelen (1994) and by Fensel (1995c).

3 Chronological Backtracking and the Board-Game Method

We use two problem-solving methods to illustrate method specification in KARL. In this
section, we provide intuitive descriptions of the methods, and describe briefly how these
methods are defined in the PROTÉGÉ-II framework. Section 4 discusses the KARL models
of these methods.
State-space search is a fundamental artificial-intelligence technique for problem solving. We
can model many tasks in terms of states, and we can encode many problem-solving behaviors
as a search through a state space. The chronological-backtracking method searches for a
sequence of states, where the initial and goal states are given, and where two consecutive states
in the sequence satisfy constraints on how states can follow one another. It backtracks to the
final state that provides successor states that have not already been selected if a death-end of
the search appears. The concept of state transitions is important for state-space search. For the
chronological-backtracking method, PROTÉGÉ-II uses a transition function (T-function) that
produces a set of subsequent states given the current state. To reuse the chronological-
backtracking method for new tasks, the developer must define the initial and goal states (or a
goal predicate) and the T-function.
The board-game method (Eriksson et al., 1995) supports tasks that the developer can model as
a one-player board game. The method adopts a cognitive model where game pieces move
between board locations under certain constraints. The method assumes that the game has a
fixed number of pieces and locations. Operationally, the board-game method searches through
the space of game states by performing legal move operations on the current state to generate
subsequent states.
To configure the board-game method to support a new board-game task, the developer must
identify the pieces and locations of the game, and must define the constraints under which
pieces can move. For example, the rules of the game might stipulate that the target location for
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leveled dataflow diagrams are used at the inference layer (see Figure 3), and program-flow
diagrams are used at the task layer.

2.2.4 Comparison of KARL with Other Languages

The terminological modeling primitives, provided to express the structure of the static
knowledge, constitute a significant distinction between KARL and other formal specification
languages for knowledge-based systems such as DESIRE (van Langevelde, Philipsen and
Treur, 1993), KBSSF (Spee & in ‘t Veld, 1994), (ML)2 (van Harmelen & Balder, 1992), and,
from software engineering, specification languages such as VDM-SL (Jones, 1990) and Z
(Spivey, 1992). The rich terminological structure that is provided by KARL is based on

class is-a term:

x = single-valued attribute for elements:

domain range
class classx

x = set-valued attribute for elements:

domain range
class classx

x

range

the range of the attribute is a value type range:

predicate:

Fig. 2.    Graphical modeling primitives of L-KARL.

representation of facts:

c ≤ {..., ci,...}

E-ID term attribute1 ... attributek

class definition:

terminatorview

composed inference action

elementary inference action

this arrow indicates a conclusion of the inference action

this arrow indicates a premise of the inference action

this arrow indicates a premise and a conclusion of the 
inference action

store

Fig. 3.    Graphical modeling primitives at the inference layer.
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solving method. This layer specifies the sequence, alternatives, and loops of the inferences.
KARL provides two sublanguages, P-KARL and L-KARL, for specifying such a conceptual
model.

2.2.1 The Domain Layer and the Inference Layer

KARL uses concepts of object-oriented databases and logic for specifying the domain layer,
the inference layer, and their connections. KARL provides the sublanguage Logical-KARL
(L-KARL) for this purpose. L-KARL is derived from Frame-logic (F-logic) of Kifer, Lausen
and Wu (1995). Terminological knowledge can be described by a taxonomy of classes.
Attributes can be defined for each class, and are inherited according to the taxonomy.
Additional knowledge can be described with logical formulae. A domain layer is structured
and ordered hierarchically by the is-a hierarchy between classes and by a module hierarchy.
In addition to its use at the domain layer, L-KARL is used to specify the logical relationships
defined by inference actions at the inference layer. Extending KADS, L-KARL can be used to
define a terminological structure of a knowledge role. In KADS, such roles are flat containers,
whereas, in KARL, they can be used to define a terminology that is specific to a problem-
solving-method-specific independent of the domain-specific terminology. The need for such a
terminology is one of the most significant results of the role-limiting method approach
(Marcus, 1988; Puppe, 1993).2

An inference layer in KARL can be refined hierarchically, similar to leveled dataflow
diagrams (Yourdon, 1989). KARL distinguishes between roles that model the dataflow
between inference actions, and roles that define a connection between the domain and
inference layers. Roles of the first type are called stores. Roles of the second type are called
views when they define an upward mapping from the domain to the inference layer, and are
called terminators when they are used to write the results of the inference layer back on the
domain layer. The inference diagrams that are used in this paper were inspired by Wielinga et
al. (1992), but have been modified to incorporate these additional features of KARL.

2.2.2 The Task Layer

The sublanguage Procedural-KARL (P-KARL) is used for specifying the control flow of a
problem-solving method by sequence, branch, loop, and procedure call. The elementary
program statements are the execution of an inference action. Conditions can be specified via
logical statements about the contents of knowledge roles. The syntax of P-KARL is a
customization of dynamic logic (cf. Harel, 1984; Kozen, 1990). We chose dynamic logic
because it incorporates the notions of states and state transitions into a logical framework.

2.2.3 Graphical Representations

KARL provides graphical representations of most modeling primitives (Figures 2 and 3).
Every graphical symbol has a defined meaning given by the semantics of the corresponding
language primitive. It combines the formal semantics with the conceptual model used to
describe the system: enhanced Entity Relationship (EER) diagrams (Hull and King, 1987) are
used to represent terminological knowledge at the domain and inference layers (see Figure 2),

2.  The lack of such a task- and problem-solving-specific terminology in KADS was criticized by Causse (1994), who provided
a different approach for specifying the reasoning process of knowledge-based systems. The entire state of the reasoning
process is described by an object, and the roles in KADS are subobjects (i.e., values of complex attributes) of this object. The
roles are therefore embedded in a terminological structure, and inferences are modeled as methods of objects. KARL defines
a mid-position between the inference-oriented approach of KADS and the role-oriented approach of Causse. It provides
additional terminological structure compared to KADS, but keeps the inferences as independent modeling primitives.
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reflects the distinguishing between specification and design or implementation in software
engineering. In software engineering, the distinction between a functional specification and
the design or implementation of a system is often discussed as a separation of what and how:
“The generation of system-level requirements is, to the extent possible, a pure what,
addressing the desired characteristics of the complete system. The next steps, determining the
next level of the hierarchy and allocating system requirements to the elements, are in fact a
how” (Dorfman, 1990). During the specification phase, what the system should do is
established in interaction with the users. During design and implementation, how the system
does its tasks (i.e., which algorithmic solution can be applied) is defined. This separation does
not work in the same way in the domain of knowledge-based systems, because the efficiency
of the reasoning process must be considered during the specification phase. In general, most
problems tackled with knowledge-based systems are inherently complex and intractable, see
Bylander (1991), Bylander et al. (1991), and Nebel (1996). A problem-solving method has to
describe not just a realization of the functionality, but rather one that takes into account the
constraints of the reasoning process and the complexity of the task. At the knowledge level,
the knowledge required by a knowledge-based system to solve the task efficiently is described
in an implementation-independent manner. This knowledge is not made up of efficient
algorithms and data structures, rather, exists as domain- and task-specific heuristics developed
by an expert as a result of experience. “In simple terms this means analysis is not simply
interested in what happens, as in conventional systems, but also with how and why” (Brooking,
1986). One must acquire not only knowledge about what a solution for a given problem is but
also knowledge about how to derive such a solution in an efficient manner.
As a consequence, we must distinguish two kinds of knowledge of how to solve the problem
in knowledge engineering. “There is a difference between what we would call respectively
knowledge-level control and symbol-level control” (Schreiber, 1992). At the knowledge level,
there is a description of the domain knowledge and the problem-solving method that an agent
requires to solve the problem effectively and efficiently. This knowledge must have been
modeled during the specification phase. At the symbol level, there is a description of efficient
algorithmic solutions and data structures for implementing an efficient computer program (i.e.,
a specific agent). As it can be in software engineering, this type of knowledge can be added
during the design and implementation of the system. Therefore, a requirement for languages
that specify knowledge-based systems is that they must combine nonfunctional and functional
specification techniques: On the one hand, it must be possible to express nonfunctional
algorithmic control over the dynamic reasoning process of the substeps. On the other hand, it
must be possible to characterize substeps of the reasoning process only functionally, without
making commitments to their algorithmic realization.

2.2 The Knowledge Specification Language KARL

KARL is a specification language for knowledge-based systems. It provides language
primitives to represent knowledge according to the layers of a KADS model of expertise
(Wielinga et al., 1992; Schreiber et al., 1994b). It distinguishes different types of knowledge,
and defines different language primitives for them. It provides a formal semantics that is
operationalized and implemented, thus allowing prototyping as a means to evaluate a
specification.
The conceptual model of KARL distinguishes three types of knowledge. The domain layer
contains domain-specific knowledge about concepts, their features, and the relationships
among them. The inference layer defines the inferences of the problem-solving process, and
describes the role of the domain knowledge for inferences. This layer describes the logical
inferences and their data dependencies. The task layer defines the control flow of the problem-
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from the details of implementation but that still allow us to define the reasoning behavior (i.e.,
the how) of the problem-solving process. Second, we sketch the language KARL, which
enables such specifications.

2.1 Abstract on the Implementation

The knowledge level “is characterized by knowledge as the medium and the principle of
rationality as the law of behavior” (Newell, 1982).

We shall discuss first the need to abstract from concerns that are related to the efficiency of the
implementation. We shall then show that the efficiency of the problem-solving process
remains an important issue during knowledge-level modeling.

2.1.1 Abstracting from Efficiency

A specification of a problem-solving method refines the informal description but is still more
abstract then its implementation. A specification can neglect implementation details, such as
storage allocation or other issues that are related to the fact that such functionality is realized
by a program running on a computer. In addition, a specification also ignores a specific
purpose of an implementation: realizing an efficient computation of the specified behavior. A
formal specification in a language such as KARL defines an intermediate level between a
description of a problem-solving method at the conceptual level and an implementation
(Figure 1). It refines the description at the conceptual level without clouding it with additional
knowledge about the effective and efficient implementation of the problem-solving method in
a given software environment. An implementation normally not only provides too much detail
in describing a method, but also does not provide an adequate description of the method. The
basis for the respecification of the chronological-backtracking and board-game methods in
KARL was an informal model of the methods. Initially, we attempted to model the methods
from the implementation of the methods in CLIPS code. However, we realized quickly that the
basic problem-solving structures of these methods cannot be found in the same manner in the
implementation. For reasons of efficiency, the different main reasoning steps of a method are
partially merged together. An implementation not only provides unnecessary information, but
also hides information. Its purpose is not the adequate conceptual description of a problem-
solving method (i.e., the main rationale), but rather an efficient realization by a computer
program. Therefore, it was appropriate to identify the basic problem-solving structures of these
methods from their informal descriptions. The ambiguity and incompleteness of the informal
description had to be resolved by intensive discussions with the method developer.

2.1.2 Modeling Efficiency Concerns at the Knowledge Level

Distinguishing between the specification and the implementation in knowledge engineering

Informal description

KARL specification

Implementation

refines

abstracts

Fig. 1.    The intermediate level between informal descriptions and implementations.
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formally specified model of expertise. Thus, a communication basis is established between the
knowledge engineer and the expert. A design model is provided for capturing both
nonfunctional requirements and design decisions that are influenced by those requirements
(Landes and Studer, 1995).
Because KARL combines logic with a conceptual model to describe a knowledge-based
system it affords two advantages. First, the system (or the problem-solving method) is
described at a conceptual level according to the KADS models of expertise (Wielinga et al.,
1992; Schreiber et al., 1994b). The specification therefore can be used for a conceptual
analysis of the method. The smooth transition from a semiformal to a formal specification
improves the understandability of these specifications. Second, the system (or the problem-
solving method) is described at a formal level avoiding the shortcomings of natural language
descriptions, such as ambiguity or imprecision. KARL combines logic programming, object-
orientation, and dynamic logic for this purpose (Kifer et al., 1995; Harel, 1984).
In this paper, we shall discuss lessons learned from specifying reusable building blocks of the
PROTÉGÉ-II framework with KARL. We show the usefulness of a formal and conceptual
specification of these buildings blocks. Understandability and preciseness of the description
can be achieved without reference to implementation details. These implementation details
neither are necessary nor improve understanding of a problem-solving method. Part of
implementing a method is modifying the methods conceptual description to gain an efficient
implementation. Therefore, it is not possible to directly abstract the conceptual description of
a method (i.e., its main rationale) from its implementation.
We describe how we used KARL to specify different variants of a method. We started by
specifying the classic search method of chronological backtracking. We then defined the
board-game method as a task-specific refinement of chronological backtracking, and mapped
these methods to the Sisyphus room-assignment task (cf. Linster, 1994).1 We show how such
a task-specific and domain-specific refinement of a general-purpose problem-solving method
can be achieved. We did not achieve this refinement by introducing additional inference
actions, by using additional levels of hierarchical refinement at the inference layer, or by
changing the task layer. Instead we added terminological knowledge and new logical
relationships to the specification of roles and elementary inference actions. That is, we
achieved the task- and domain-specific refinement of problem-solving methods by introducing
ontological commitments over the entities used to describe the input, intermediate results, and
output of the reasoning process of the method.
This paper is organized as follows. In Section 2, we give the main rational underlying
specification languages for knowledge-based systems, and briefly characterize the
specification language KARL. In Section 3, we discuss two problem-solving methods: the
chronological-backtracking method and the board-game method. Section 4 provides a partial
KARL specification of the methods. In Section 5, we discuss the mapping of both methods to
the Sisyphus room-assignment problem (Linster, 1994). We thus illustrate the task-, domain-,
and application-specific refinements of both methods. Section 6 concludes by comparing our
results with those of related work, and by pointing out lines of future research.

2 Formal Specifications at the Knowledge Level

First, we discuss the need of formal specifications of problem-solving methods that abstracts

1.  We used the Sisyphus room-assignment problem (Linster, 1994) to compare different approaches in knowledge engineering.
It defines an assignment problem, in which employees are assigned to offices under several contraints (see section 5).
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recognized the potential for reusable design components in knowledge engineering.
McDermott (1988) proposed the use of role-limiting problem-solving methods as the basis for
the development of knowledge-based systems. Currently, several research groups are working
on knowledge-engineering approaches that incorporate reusable problem-solving methods
(Klinker et al., 1991; Musen, 1992; Puppe 1993; Steels 1990; Wielinga et al., 1992;
Chandrasekaran & Johnson, 1993; Breuker & Van de Velde, 1994; Schreiber et al., 1994a;
Benjamins, 1995). An underlying assumption in most of these approaches is that reusable
methods can be stored in libraries. Developers can retrieve, specialize, and combine these
methods to from the reasoning part of a knowledge-based system.
The PROTÉGÉ-II system (Puerta et al., 1992; Eriksson et al., 1995) allows developers to build
knowledge-based systems from reusable problem-solving methods. The PROTÉGÉ-II
approach distinguishes between tasks that the final knowledge-based system should perform
and problem-solving methods that carry out such tasks. In the PROTÉGÉ-II approach, the
developer performs a task analysis, and uses the PROTÉGÉ-II environment to select from a
library of reusable methods a method appropriate for the task. Examples of such methods are
state-space search by chronological backtracking, propose and revise, skeletal-plan
refinement, and temporal abstraction. Because such library methods are designed to be
applicable to many domains, the developer must configure the methods to perform new tasks
by mapping the methods to the domain ontology. Moreover, methods can delegate problems
as subtasks, that other methods or mechanisms must perform. In PROTÉGÉ-II, mechanisms
are methods that cannot be decomposed into subtasks. Because mechanisms accomplish their
task without delegation, the mechanisms are black boxes from the developer's point of view.
In addition to assisting the developer in the design of the performance element of the target
knowledge-based system, the PROTÉGÉ-II environment supports knowledge acquisition
from domain experts by generating a domain-specific knowledge-acquisition tool, which
elicits the expertise required by the problem-solving methods (Eriksson et al., 1995).
PROTÉGÉ-II thus supports two important aspects of the design of knowledge-based systems:
the selection and configuration of problem-solving methods for the task, and the acquisition of
the domain knowledge required by those methods to accomplish their task. 
Unfortunately, there are many obstacles to the reuse of problem-solving methods. Workers in
software engineering have studied software reuse for several decades. Although software reuse
promises to reduce the cost of software development, practical software reuse has proved to be
difficult (Krueger, 1992). Currently, the most successful examples of software reuse are
mathematical and statistical libraries, where developers can retrieve by name library functions
that have a well-defined and well-documented meaning. Problem-solving methods, unlike
these mathematical software components, are often designed to perform complex inferences
using knowledge bases. Their description and adaptation to specific tasks and domains
therefore require much more effort. Each method defines a whole family of variants that
depend on the precise assumptions about the task and the required domain knowledge (see
Fensel, 1995a). Support in refining problem-solving methods to a given task and domain is an
essential precondition for successful method reuse. Other preconditions are a notion for the
competence of methods (Akkermans, 1993), and appropriate indexing of methods.
To identify the requirements for formal method representations and the relative benefits of
formal languages versus source code in method reuse, we have respecified two of the problem-
solving methods used in the PROTÉGÉ-II framework in the knowledge-specification
language KARL (Fensel, 1995; Fensel et al., 1996a), developed as part of the MIKE project.
MIKE defines an engineering framework for interpreting, formalizing, and implementing
knowledge to build knowledge-based systems (see Angele et al., 1996). The formal and
operational specification language, KARL, is provided for specifying a model of expertise. A
hypertext-based model (Neubert, 1993) mediates between natural-language protocols and the
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Abstract Reusable problem-solving methods as provided by the PROTÉGÉ-II
improve knowledge engineering by allowing developers to design reasoners
quickly from pre-existing components. The PROTÉGÉ-II approach allows
developers to select methods from a library, and to map the methods to a domain
ontology. Still, these methods lack a clear conceptual and formal description that
would enable their reuse through matching their competence and assumptions with
the available domain knowledge and the given task. KARL is a conceptual and
formal knowledge-specification language that provides modeling primitives for
specifying problem-solving methods. In this paper, we show how the code and
informal descriptions of problem-solving methods in PROTÉGÉ-II can be
complemented with the conceptual and formal method definitions in KARL. For
our case study we choose two methods from the PROTÉGÉ-II framework:
chronological backtracking and a task-specific refinement, the board-game
method. In addition to the conceptual and formal specification of these methods,
we provide insights in the refinement of general-purpose methods to task-specific
(i.e., strong) problem-solving methods. We further show how a task-specific
method can be adapted to a given domain and application. In the case of both
methods, we achieve this adaptation by introducing ontological commitments over
the terminological structure of the entities used to describe the states of the
reasoning process, and by using these terminological structure to define state
transitions of larger grainsize.

1 Introduction

Developers are designing knowledge-based systems for a wide range of application domains.
Although many application tasks have similar features, from the computer scientist’s
perspective, few solutions are reused across domains and tasks. Chandrasekaran (1983, 1986)
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