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the introduced mapping operator allows to exploit all information of the domain layer by the
PSM at the inference layer. This supports the reuse of the PSM in another domain and the
reuse of the domain layer for another task.

• The introduced mappings allow to map expressions described in one terminology into
expressions described in another terminology. This supports the configuration of PSMs
which come with their own method ontology when they have been retrieved from a library
of PSMs.

• Handling domain rules as objects and selectively evaluating them at the inference layer
allows to dynamically configure the environment in which a rule is evaluated at the infer-
ence layer. PSMs like Propose-and-Revise which selectively evaluate rules within the envi-
ronment of newly computed data may thus be represented more adequately.

Thus the language New KARL allows to represent the method-to-task approach more adequately.
It provides means for formalizing the notion of tasks and PSMs as defined e.g. within PROTÉGÉ-
II [Puerta et al., 1992] or CommonKADS ([Schreiber et al., 1994a]. Furthermore it supports the
configuration of PSMs and the introduced extensions may in future be exploited to semi-automat-
ically support the retrieval process of PSMs. Additionally New KARL provides the basis for the
verification of single (components of) PSMs and the verification of complex models configured of
(components of) PSMs.

After having defined a new version of KARL, namely New KARL, current work is in progress to
(i) define a complete formal semantics for New KARL which also allows to reason over the spec-
ification itself and to (ii) implement an interpreter for New KARL.
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cially the notion of a method ontology is taken from the PROTÉGÉ-II approach. Within PRO-
TÉGÉ-II an ontology of mapping relations is defined for connecting methods and domains
[Gennari et al., 1994]. Gennari et al. define for instance renaming mappings, filtering mappings,
and class mappings. All these types of mappings may be described by the mapping operatormap
of New KARL. Thus New KARL provides means for formalizing the types of mappings which
are used to relate a method ontology to an application ontology within the PROTÉGÉ-II frame-
work.

The TASK approach [Pierret-Goldbreich, 1994] claims to be different from KADS approaches in
dealing with flexible problem-solving and dynamic behaviour specification. TASK proposes three
different languages for the conceptual, the formal and the implementation level respectively
[Talon and Pierret-Goldbreich, 1996] - and by this suffers from the same disadvantages as
described above. The strongest affinity between TASK and MIKE is on the formal level, i.e.
between New KARL and the formal language TFL that is based upon abstract data types (ADT)
[Pierret-Goldbreich and Talon, 1995]. ADTs are well-suited to specify the functional description
of a PSM but they are insufficient to specify the operational part. This aspect, to treat the different
parts of a PSM specification as one unit, is emphasized in New KARL. TASK ignores the specifi-
cation of the operational part of a PSM - especially the control flow - because it considers methods
as pre-built components that are configured during runtime via oppurtunistic reasoning. Similar to
our approach TASK postulates the necessity to specify goals. This is also done in the framework
of ADTs [Pierret-Goldbreich, 1996] but since goals are treated as separate entities that are linked
neither to processes nor tasks it remains unclear how they can be exploited for reuse rsp. oppur-
tunistic configuration.

DESIRE ([Treur, 1994], [van Langevelden, Philipsen, and Treur, 1993], [van Langevelden,
Philipsen, and Treur, 1992]) is a formal KBS specification language that also does not rely on the
KADS model of expertise. DESIRE uses linear temporal logic with partial models to define the
semantics of a reasoning process, whereas New KARL uses temporal logic to specify the input/
output behaviour of an inference action. It is therefore not only directly possible to define the
notion of a state change in New KARL, e.g. what should be true in the next reasoning step, but it
is also possible to describe the semantics of the whole inference process in terms of a temporal
Herbrand model. In DESIRE the specification of the input/output of a reasoning module is done
by defining an input/output signature. New KARL has a more general approach: signatures are
translated, but also entire formulae.

5 CONCLUSION

In this paper we presented New KARL, an extension to the language KARL. This extension pro-
vides the following advantages.

• The integration of the concepts task and PSM into the language itself allows to formally rep-
resent all conceptual aspects of tasks and PSMs and their relationships. The assumptions
and goals of tasks are represented via pre- and postconditions. A PSM is represented by its
functional specification using pre- and postconditions and by its operational specification.
Thus PSMs may be represented unambiguously and are open for further analysis. Addition-
ally this knowledge may in future be exploited (i) for verifying whether an operational spec-
ification of a PSM fulfils its functional specification, (ii) for verifying whether a PSM
together with the available domain knowledge performs the given task, (iii) for supporting
the retrieval of the PSM out of a library of PSMs, and (iv) for adapting the PSM to the needs
at hand.

• The access to the entire ontology and to the ingredients of the rules at the domain layer by
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4 RELATED WORK

Within the KADS framework [Schreiber, Wielinga, and Breuker, 1993] two different languages
have been developed: the language CML [Schreiber et al., 1994a] to describe models of expertise
semi-formally on a conceptual level and the language ML2 [van Harmelen and Balder, 1992] to
describe models of expertise formally. Guidelines and tool support are available to semi-automat-
ically transform a CML-description into an ML2-description [van Harmelen and Aben, 1996]. A
subset of ML2 is executable by a simulator [Teije, van Harmelen, and Reinders, 1991] in order to
support the validation by testing. In contrast to that, KARL already combines these three different
aspects in one language: specification on a conceptual level, formal specification, and operational
specification. Thus the knowledge engineer has to learn only one language and there are no con-
sistency problems between different representations of the same knowledge. New KARL which
extends KARL especially on the conceptual level by integrating the concepts method and task
preserves these properties of KARL.

CML is a semi-formal language and offers a set of primitives to describe the CommonKADS
model of expertise [Schreiber et al., 1994b]. On an abstract level the structure of a CML and a
New KARL specification are very similar. But CML has no formally defined semantics and
according to the CML grammar every part of the specification besides the names, the roles, and
the decomposition is rewritten as free text. In contrast to this, New KARL pursues the idea that the
complete model has a formally defined semantics, especially the parts that are only natural lan-
guage descriptions in CML, e.g. the control flow and the competence. The same holds already for
(old) KARL but in addition New KARL considers also the notion of PSMs and tasks as well as
method and (sub-)task ontologies. [Schreiber et al., 1994b] sketches already the necessity of
ontology mappings and offers a preliminary version - with the disclaimer that this has to be
refined in the near future.

The newly introduced language primitives relate to corresponding primitives in ML2 in the fol-
lowing way. The integration of the concept of PSMs into the language New KARL allows to
describe all aspects of PSMs formally. This allows to describe PSMs precisely and unambigu-
ously and opens them for discussion and for further analysis. Up to now no corresponding primi-
tives are available in ML2. Domain layer and inference layer are related in ML2 via a classical
object-meta relationship. In contrast to that in New KARL two different languages for each layer
using different signatures are related by the mappings which transform expressions of one lan-
guage into expressions of the other language. Together with the handling of rules as objects this
allows to evaluate rules in an environment which may be dynamically configured during the prob-
lem-solving process. In ML2 domain formulae are mapped to variable-free terms at the inference
layer. Their truth may be evaluated within the domain layer using reflection rules. So the environ-
ment in which such formulae are evaluated is fixed in advance. In New KARL all elements of the
domain ontology are now accessible in formulae. This supports the reuse of both the domain layer
for another task and the PSM within another domain. In ML2 there is no possibility to access the
sorts and the orderings of the order sorted logic at the domain layer. The extended rules in L-
KARL reduce the gap between Horn logic and full first-order logic and allow to express things
more adequately. Still all parts of L-KARL may be axiomatized in Horn logic which allows to
execute the model with reasonable efficiency. The price which had to be paid for this possibility is
a compromise between executability and expressiveness: L-KARL is restricted to Horn logic in
order to provide efficient executability whereas ML2 uses full first-order logic. On the other hand
in ML2 only the Horn logic subset can be validated by the simulator. A detailed comparison
between ML2 and (old) KARL may be found in [Fensel and van Harmelen, 1994].

The conceptual method-to-task framework as introduced for New KARL is also similar to the
notion of task and methods in PROTÉGÉ-II ([Eriksson et al., 1995], [Gennari et al., 1994]). Espe-
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EVAL(fix-combination, fix-rules);
/* this evaluates the rules stored in classfix-rules in storefix-combination */

END;

By this way it is possible to collect all fix rules at the domain layer, to map them to corresponding
rules at the inference layer, to select an appropriate subset of them at the inference layer if a con-
straint violation occurs and to apply them at the inference layer to repair the constraint violation.

3.3.6 Further improvements

Besides all the mentioned extensions a number of minor extensions and improvements have been
integrated in New KARL: lists have been introduced as further data structure, the handling of sets
has been improved, the expressions in tests to control loops and alternatives have been general-
ized, and some syntactical modifications have been done as well.

3.4 Semantics of New KARL

There are three modifications of New KARL with respect to KARL which led to larger modifica-
tions of the original semantics of KARL [Fensel, 1995a]: (i) the explicit modeling of the state
transitions within inference actions, (ii) the dynamic evaluation of rule objects within inference
actions, and (iii) the extended mapping construct.

The mapping operator in New KARL performs an extended matching. Bemap(F1) |→ F2 the def-
inition of a mapping operation, whereF1 andF2 are formulae containing mapping variables for
functions, predicates, objects, attributes, and formulae. A substitutionσ of the mapping variables
in F1 with corresponding symbols and formulae to the formulaσ (F1) which matches a given fact
or rule determines the outputσ (F2) of the mapping operator.

In KARL the semantics of an inference action is defined as the perfect Herbrand model of its input
facts and the rules of the inference action. The content of an output store is given by that subset of
the perfect Herbrand model which fits to the signature (class definitions and relationship defini-
tions) of the output store. In New KARL the semantics of an inference action is the perfect Her-
brand model of the same set of rules and facts plus the set of dynamic rules (rule objects). The
content of an output store is given by the subset of those facts which are annotated by the next
operator and which fit to the signature of the output store.

For the other extensions the semantics of KARL must be modified only slightly. Signature-atoms
are facts which describe the structure of classes and relationships. They contribute as normal facts
to the perfect Herbrand model of the domain layer. As already mentioned for the generalized rules
a simple axiomatization in current KARL exists. Similarly the lists and the additional possibilities
to handle sets may be axiomatized in current KARL. The pre- and postconditions and the general-
ized expressions in tests of loops and alternatives have the form of constraints in current KARL
for which also a semantics has been already defined.

So the basic ideas of the semantics of KARL may be conserved and the current semantics had to
be modified at those points mentioned above. An alternative for defining the semantics of New
KARL is the general framework set up by MLPM (Modal Logic of Predicate Modification) [Fen-
sel and Groenboom, 1996]. MLPM allows the characterization of the dynamic reasoning process
in New KARL. Within this framework, not only an efficient execution of the specification is pos-
sible, but also reasoning about the specification itself.
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the PSM Propose-and-Revise uses fix-rules, that change attribute values of objects in KARL.
Attributes have a functional dependency on their objects, i.e. there may be only one value for an
attribute. So it is not possible to change such a value in one step by a fix rule, because a fix rule
computes a new value and then both values, the old and the new one are available. Instead, a com-
plicated construction has to be used, where a first inference action evaluates the selected fixes:

newvalue(Parname,V + 2)← par(Parname, V).

and a second inference action assigns the new values to the parameters:

par(Parname, V)← newvalue(Parname, V).

For the same reasons it is not possible to specify the input/output behavior of an inference action
which deletes facts from a store. To remedy this while preserving the declarative semantics we
introduce techniques developed in linear temporal logic programming (see [Orgun and Ma, 1994]
for an overview) for New KARL.

We model the transition from one state to another state with the operatorsfirst andnext (❍). The
operatorfirst describes what is valid in the initial state andnext describes the following states. For
our purposes it is sufficient to allow only two kinds of clauses: computation clauses und output
clauses. In a computation clause all literals are (implicitly) annotated with thefirst operator. The
head of an output clause is annotated with anext operator, meaning that if the head can be derived
it is included in the output stores. The input from the input stores is implicitly annotated with a
first.

There is a simple direct transformation of linear temporal logic programs to normal logic pro-
grams: an extra argument is added to every predicate symbol. This extra argument is used as a
counter of the valid state. A 0 (zero) at this extra argument position is used instead of thefirst
operator. Thenextoperator is translated to incrementing the actual state counter. Using this trans-
formation the semantics of an inference action is the perfect Herbrand model of the contents of the
inference action and the input stores. Change may thus be modeled in a natural way:

❍ par(Parname,V + 2)← par(Parname, V).

3.3.5 Evaluation of rule objects

Rule objects which are mapped to the inference layer should be selectively evaluable at the infer-
ence layer. Every ontology at the inference layer contains the predefined typeRULE’. Every rule
object at the inference layer must be an element of a class of typeRULE’ or of a class of a subtype
of it. Rule objects which are elements of such a classc within a stores may be evaluated within an
inference action by the expression:

EVAL(s,c).

For instance the PSM Propose-and-Revise stores a set of fix-rules in the storefix-combination
which should be applied in the inference actionapply-fix-combinationto repair a violation of a
constraint:

STORE fix-combination
CLASS fix-rules: RULE’;

END;

INFERENCE ACTION apply-fix-combination
IN fix-combination, old-pairs;
OUT new-pairs;
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END;

Used in rules signature-formulae together with variables for the attributes allow the attributes and
the range restrictions of the attributes of the classes and relationships to be accessed.

The following rule collects all single-valued element-attributes of the classelevatorin the value of
the set-valued attributesingle_valued_element_attributes of objecto:

o[single_valued_element_attributes:: {X}]← elevator[X: {}]s.
/* the signature atom is subscribed by ans */

3.3.3 Rules as objects

Propose-and-Revise uses domain specific fix rules to modify the parameter values if a constraint
violation occurs. A fix rule may for instance increment the value of a parameter. Fix rules may
contradict each other, for instance one fix rule increments a parameter value and another one dec-
rements the value of the same parameter. So it must be possible to apply fix rules selectively. In
KARL we solved this problem by an additional flag in the fix rule bodies which has been set by
the problem-solving process at the inference layer if the fix rule should fire. The following con-
structs in New KARL allow to handle domain rules similar to objects, i.e. they may be mapped to
the inference layer, selected by corresponding inference actions and selectively evaluated.

In order to access and handle domain rules they may be addressed by unique rule names. A named
domain rule is defined as follows:

r: H ← B, wherer is a unique rule name andH ← B is a rule.

At the domain layer a predefined classRULE without further attributes exists containing all
named rules at the domain layer as elements. The elements of this class are addressed by their rule
names. Rule objects may be treated as normal objects, they may for instance be related to another
object by a part-of relation.

In our model to configure elevators fix rules may be named byf(1), f(2),... and constraint rules
may be namedc(1), c(2),.... This allows to assign fix rules to the constraint rules they fix by facts
of the following form:

fixes(f(1), c(2)).
/* fix 1 fixes a violation of constraint 2 */

Rule objects may be accessed in other rules (for instance to select some rule objects) by their rule
name. For instance in order to select all rules namedf(X) and to put them into a subclassFixes of
classRULE the following rule may be given:

f(X) ∈ Fixes← f(X) ∈ RULE.

This allows to select all fix rules at the domain layer in order to map them to corresponding rules
at the inference layer in our model.

3.3.4 Rules and States

Up to now in KARL the state change caused by an elementary inference action is not directly rec-
ognizable. An elementary inference action computes a set of facts depending on its input facts and
the rules which describe the elementary inference action (the perfect Herbrand model). The con-
tent of every output role is determined by the subset that fits to the class and relationship defini-
tions of the role (cf. [Fensel, 1995a]). For a store which is input and output store of an inference
action this has for instance the following consequence: the content of the store before the execu-
tion of the inference action is a subset of the content of the store after the execution. For instance



- 10 -

3.3.1 Surmounting Horn logic

L-KARL is restricted to Horn logic extended by negation (normal programs) to enable an efficient
operationalization of the model of expertise. There is a tradeoff between expressibility and exe-
cutability, because on the one hand Horn logic is a subset of first order logic which may be opera-
tionalized with reasonable efficiency and on the other hand this results in some severe
deficiencies: describing inference actions or logical dependencies using Horn rules looks some-
times more like programming than like specifying.

Sometimes it is argued that a specification language, as KARL is claimed to be, must not be exe-
cutable because this restricts its expressibility too much [Hayes and Jones, 1989]. In contrast to
that we think that at the moment a promising way to validate such a specification is to test it. So a
formal model which can not be tested is difficult to validate if the model has grown to a practical
size because then the complexity is so large that the specification can not be validated purely by
reading it. Additionally mechanization procedures such as theorem provers are much too slow to
be of practical value. So from our point of view the solution to this problem can not consist of
dropping the restriction to Horn logic.

To drop partially the restriction to Horn logic (at least syntactically) New KARL-rules are
extended to the following form:

H ← B

whereH is a conjunction of atoms3 andB is an (not necessarily closed) arbitrary formulae. Varia-
bles inH and free variables inB are universally quantified at the front of the rule.

In [Lloyd and Topor, 1984] a simple Horn axiomatization is described for this extension and thus
it can be easily integrated into the constructive semantics of KARL and based on that into the
interpreter of KARL.

Let us give an example. In our class hierarchy we want to find the leaves of this hierarchy. In the
current version of KARL this must be expressed using the following rules:

not_leaf(Y)← X ≤ Y ∧ X ≠ Y.
leaf(X) ← X ≤ Y ∧ ¬ not_leaf(X).

In New KARL this may be expressed by the following (extended) rule:

leaf(X) ←∀ Y (Y ≤ X → X = Y).

3.3.2 Access to the domain ontology

In order to make statements about the domain ontology4 itself classes, their attributes, their inter-
relationships (generalization, part-of relation), and the relationships should be accessible within
rules. For this purpose signature-atoms, i.e. atoms which allow to access the attributes of classes
and their range restrictions (cf. [Kifer, Lausen, and Wu, 1995]), are introduced.

For instance given the following class definition:

CLASS elevator
car-capacity-range: {REAL};
speed:{REAL};
...

3.  The syntax of atoms in L-KARL differs from the syntax of atoms in predicate logic, because L-KARL is based on
F-logic [Kifer, Lausen, and Wu, 1995].
4.  At the domain layer there is no separation of structure information (types) and the extension.
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OUT outroles1,..,outrolesm.
ONTOLOGY

< type definitions >
< role definitions > /* definition of input, output roles */
< mapping definitions >

PRE < rules, constraints >
POST < rules, constraints >
DECOMPOSITION

< subtask names, names of elementary inference actions >
DATAFLOW

< role definitions > /* definition of internal roles */
< task definitions> /* definition of subtasks established by this method */
< definition of elementary inference actions >

CONTROL
< variable definitions >
< set of statements >

END;

The control part of a method describes the control flow between different subtasks and elementary
inference actions. The data flow part describes the subtasks, specifies elementary inference
actions, describes the roles, and defines the data flow between them. Thus the data flow together
with the control flow may be seen as an operational specification of the functional specification
given by the pre- and postconditions of the method. As a consequence of this structure there is no
longer a common inference and control layer of a model of expertise. Instead every method
describes its own part of the inference layer and of the control layer.

An example for a precondition of a method is given for the problem-solving method Propose-and-
Revise: the propose-rules have to be acyclic. A propose-rule determines a value for a parameter
dependent on the values of other parameters. Acyclic means that no value may depend transitively
on itself.

Using the above mentioned relationshipdepends_on (see section 3.1.2) a precondition for the
PSM Propose-and-Revise may be defined which assures that the parameter dependencies are acy-
clic (relationshipp of roler is namedr.p):

METHOD Propose-and-Revise
IN Parameters;
...
PRE

! Parameters.depends_on(A1, A2)→ ¬ Parameters.depends_on(A2, A1).
/* If A1 depends on A2 then A2 must not depend on A1
(the ! sign indicates a constraint) */

POST
...

END;

3.3 Technical Details

The language L-KARL is used to describe the knowledge at the domain layer, to specify elemen-
tary inference steps at the inference layer, it is used within the mappings between inference and
domain layer and between tasks and methods at the inference layer, and it is used to express con-
straints, pre- and postconditions and conditions within the control flow.
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Our example rule is mapped to the factdepends_on(selected_platform_model,
platform_depth). If not stated otherwise map(X) = X’ holds.*/

depends_on(X,Z)← depends_on(X,Y)∧ depends_on(Y,Z).
/* this rule models transitive dependencies */

END;

So every propose-rule at the domain layer leads to a set of instances of the binary relationship
depends_ondescribing the parameter dependencies at the inference layer.

3.2 Tasks and Methods

In order to support the method-to-task approach, tasks and methods have to be distinguished. In
New KARL primitives to describe tasks and PSMs have been introduced.

To describe the goal of a task, its assumptions, and to describe the functional specification of a
PSM New KARL provides pre- and postconditions:

• Pre- and postconditions specify the input and the output of a method and the functional rela-
tion between input and output. Thus they describe what the method achieves and what pre-
conditions are necessary.

• The retrieval of reusable methods may be supported by matching the goals of the current
task with the postconditions and the requirements which have to be met before executing the
method with the preconditions. This may in future allow to index a method semi-automati-
cally and may support the adaptation of the method to the needs at hand.

• In future pre- and postconditions may be used to verify the operational description of meth-
ods against this functional specification and to verify whether a PSM performs the given
task using the given domain knowledge.

A task is described by its assumptions (precondition) and its goals (postcondition). A task
includes an empty slot which may be filled by a method, which accomplishes the task. While sub-
tasks are expressed in the ontology of the method which establishes the subtask the top-level task
defines its own ontology. Additionally the top-level task defines its input and output roles. Map-
pings in the top-level task are necessary to map the domain ontology to the task ontology and vice
versa.

TASK < task name >
IN inroles1,...,inrolesn.
OUT outroles1,..,outrolesm.
ONTOLOGY

< type definitions >
< role definitions > /* definition of input, output roles in top-level tasks */
< mapping definitions >

PRE < rules, constraints >
POST < rules, constraints >
METHOD < method name > /* optional, refers to a method which performs the task */

END;

A method is defined by its functional specification and by an operational specification which
establishes subtasks, specifies elementary inference actions and describes the control flow
between those parts. Mappings are necessary to map the ontology of the task to the method (which
accomplishes the task):

METHOD < method name >
IN inroles1,...,inrolesn.
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3.1.2 Mapping Ontologies

There exist different places within the model of expertise where formulae expressed in one ontol-
ogy have to be transformed to formulae expressed in another ontology:

• Domain layer formulae expressed in terms of the domain ontology have to be transformed to
formulae expressed in one of the method ontologies at the inference layer and vice versa.

• Formulae expressed in a subtask ontology have to be transformed to formulae expressed in
the ontology of a submethod.

For these transformationsmappings are introduced. Mappings are directed, i.e. they map formulae
of their source into formulae of their destination. These mappings also substitute the views and
terminators of the current version of KARL. A mapping has three different functions:

• It determines which facts and rules of the source part are used. It combines facts of the
source part to new facts and it combines mapped facts to new facts of the destination part.

• It maps parts of the two different signatures of the two different ontologies to each other.
• It transforms formulae expressed in terms of one ontology into formulae expressed in terms

of the other ontology.

The first item is performed using intermediate classes and predicates and using KARL-rules to
select facts or to derive new facts and to select rules within a mapping.

The unary mapping operatormap performs the second and third item. The parameter ofmap may
contain variables for function symbols, predicate symbols, elements, values, classes, attributes,
rule names and entire sub-formulae which allows to transform several formulae by one mapping
expression.

For instance the PSM Propose-and-Revise uses domain specific derivation rules (propose rules)
which derive the values of parameters from the values of either input parameters or parameters
which have already been tackled. To apply these derivation rules correctly the PSM must know
which parameter depends on which other parameters. This information is implicitly available
within the derivation rules. For instance the derivation rule2:

par(selected_platform_model, "2.5B")← par(platform_depth, 60).

determines the value of the parameterselected_platform_model using the value of the parameter
platform_depth. In KARL we had to model these dependencies separately a second time using
facts of the following form:

depends_on(selected_platform_model, platform_depth).

Besides the additional huge effort this raised also consistency problems, because the same infor-
mation is modeled twice.

With our new map operator in New KARL this information may be gained directly from the deri-
vation rules:

MAPPING Map-Attributes
IN DOMAIN-LAYER;
OUT Parameters;

map(par(X,Y)← par(U,V)) |→ (depends_on(map(X), map(U))).
/* Maps all propose rules which fit to this form to a set of dependency facts.

2.  In the following examples we use the syntax of predicate logic instead of KARL’s syntax to improve readability for
those people not entirely familiar with KARL.
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the semantics of KARL which are necessary to integrate the new constructs.

KARL has been evaluated the last years in a number of case studies. One of the largest one was
the Sisyphus II project which has been used to compare different knowledge engineering
approaches. In this project an elevator configuration task has been posed [Schreiber and Birming-
ham, 1996]. For  configuring an elevator values have to be assigned to a predefined set of param-
eters. These assignments have to fulfil a number of domain-specific contraints. To accomplish this
task we used a variant of the PSM Propose-and-Revise ([Poeck et al., 1996], [Angele, 1996]).
Because we gained many insights during this project we use this model for our examples in the
following.

3.1 Ontologies

Every PSM comes with its own domain independent terminology, i.e. its method ontology [Puerta
et al., 1992]. Additionally the domain layer is expressed in its own domain specific terminology.
These different ontologies have to be distinguished within the model of expertise and transforma-
tions between them have to be defined.

3.1.1 Method ontology

In the current version of KARL the concepts and relationships defining the PSM ontology are
spread over the different roles, i.e. stores, views, terminators, and inference actions at the infer-
ence layer. These concepts and relationships are represented in KARL using classes and predi-
cates. Classes and predicates represent the structure of the objects and relationships (via
attributes) as well as the extension, i.e. the set of class elements and the set of relations. In order to
improve readability and to avoid redundant definitions this method ontology is centralized for a
PSM in New KARL. Furthermore in New KARL the representation of the structure information
(types) is separated from the extensions. The types are defined at one place within a PSM. Within
roles and inference actions extensions (sets of objects or sets of relations) of the different types
may be defined. This allows to define several independent sets of objects and relations of the same
structure.

For instance within the revise step of Propose-and-Revise two different sets of parameter-value
pairs must be handled: the current set of pairs and a set of pairs to whom a fix combination has
been applied. The method ontology defines the type as follows:

TYPE parameter-value-pairs
par-name: {};
par-value: {};

END;

The two stores which contain different sets of parameter-value pairs each defines its own set of
parameter-value pairs by referring to the structure information within the method ontology. One
store defines the set of old parameter-value pairs:

CLASS old-pairs: parameter-value-pairs.

Another store contains the set of new parameter-value pairs (after the application of the fix combi-
nation):

CLASS new-pairs: parameter-value-pairs.

This means that the classsold-pairs andnew-pairs have the structure defined by the typeparame-
ter-value-pairs, i.e. the same attributes and attribute restrictions asparameter-value-pairs, but
their extensions are independent from each other.
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includes all concepts and relationships which are used for specifying the functionality of the PSM
(see figure 3). In addition, constraints can be specified for further restricting the defined terminol-
ogy. It should be clear that the method ontology defines exactly the ontological assumptions that
must be met for applying the PSM.

Assuming that a PSM is decomposed into subtasks the problem arises of how to make the method
ontology independent of the selection of more elementary methods for solving the subtasks of the
PSM. In order to get rid of that problem the notion of asubtask ontology is introduced [Studer et
al., 1996]. The subtask ontology defines all the concepts and relationships which are used for
specifying the functional behaviour of the subtask. In essence, the method ontology is then
derived from the various subtask ontologies by combining them and by introducing additional
concepts and constraints. As a consequence, the subtask ontologies provide a context for mapping
the (global) method ontology to the ontologies of the submethods which are used for solving the
subtasks.

Of course, in general there are some differences between a subtask ontology and the ontology of
the method used to accomplish the subtask. Therefore, one has to define mappings between these
ontologies (compare e.g. [Gennari et al., 1994]) in order to transform the structure of the subtask
ontology into the structure of the method ontology and vice versa.

It is obvious that these mappings can be specified in the same way as the mappings which are used
to map the generic PSM terminology to the domain specific terminology as defined by the domain
layer of the model of expertise. I.e. within our framework of tasks and methods we use the same
kind of mappings for handling ontology transformations within a method as well as between the
generic method ontology and the domain ontology.

3 REPRESENTING PSM‘S IN NEW KARL

In the following section we show how KARL has been extended to New KARL in order to specify
the conceptual model of PSMs and to support the way PSMs are configured from more elemen-
tary components. In section 3.1 and section 3.2 we discuss the conceptual extensions of KARL
which support the concepts introduced in section 2. In section 3.3 we present some of the exten-
sions we have introduced on the language level of KARL. Section 3.4 then sketches the changes at

Figure 3. Ontologies within the method-to-task paradigm
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To date, KARL focuses on capturing the description of the operational specification, but it lacks
the capability to describe the functional specification of a PSM. The extension of the language
KARL aims at specifying the operational part of a PSM exactly as it is shown in figure 2, that is
only partially covered in the current version of KARL. New KARL provides primitives to distin-
guish clearly between the decomposition, the inference structure, the control flow, and the method
ontology of a PSM. By this, there is no explicit representation of a single task and a single infer-
ence layer as in current KARL. But it is easy to derive this task or inference layer view from the
method-to-task decomposition tree of figure 1 by extracting views solely on the odd rsp. the even
levels.

Other newly introduced primitives aim at specifying the pre-/postconditions for reusable compo-
nents. These conditions can then be matched against the assumptions and goals the tasks have set
up and are used this way to index and to retrieve the reusable components. A further improvement
would be the possibility to measure the mismatch to support the decision for the tradeoff between
reuse (plus adapting) or further decomposition by hand.

We assume that the space of all PSMs is structured according to family resemblances. Every PSM
has annotated a description of the functionality in form of pre- and postconditions, e.g. a precondi-
tion of the PSM Propose-and-Revise is the existence or availability of knowledge about propose
rules, constraints, and fix rules (cf. [Fensel, 1995b]). This relation can be exploited in two direc-
tions: The applicability of Propose-and-Revise follows from the existence of the knowledge; or
the other way around, the suggestion of Propose-and-Revise as a possible reuse candidate may
trigger and guide a further elicitation process of this specific type of knowledge.

2.2 The Notion of Method and Task Ontologies

A PSM comes with amethod ontology defining the generic concepts and relationships the prob-
lem-solving behaviour of the PSM is based on [Gennari et al., 1994]. This method ontology

Figure 2.  (Parts of the) Description of a PSM
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A PSM decomposes a task into new subtasks. According to the divide-and-conquer principle this
is done repeatedly downto a level of subtasks for which the solution is obvious and can be written
down in a straightforward manner as an elementary inference action. In addition to the decompo-
sition the PSM has to specify the control flow of the subtasks, i.e. the ordering in which the sub-
tasks can be accomplished. Or, to put it the other way around, as long as one is interested in
specifying the control flow one has to decompose the task further.

Although the decomposition eases the effort to find (partial) solutions it introduces the new prob-
lem of building the solution of the overall task from the partial solutions, especially the problem
of integrating the concepts which are specified in different subtask ontologies into one global data
flow (cf. section 2.2).

As an alternative to specify the same or a similar method (decomposition and control flow) or an
elementary inference action for several times a promising approach is reuse. While the odd levels
in the hierarchy (figure 1) are responsible for setting up the goals, the even levels offer solutions
of how to reach the goals. Every node on an even level is a possible candidate for reuse, but one
has to find the right level of granularity for reasonable reuse. The lower levels promise a high
probability that an adequate matching reusable component exists but the gain is very small. The
greatest benefit would be achieved if one can reuse a big component, i.e. a node on a very high
level, but the probability of finding a matching one is very small. So, to meet the adequate tradeoff
of reducing the effort of adapting on the one hand, and of repeating work that has already been
done on the other hand, one has to consider all nodes in between as possible candidates for reuse.

A KARL specification of a PSM corresponds to one instance of the task-method-hierarchy, i.e.
during configuration one of the alternatives has been selected. In principle, a KARL specification
contains all the fragments which correlate to the nodes in the hierarchy and are possible candi-
dates for reuse. These fragments are to be specified in a way that they really can be handled as
components.

In order to support reuse one has to provide means to describe the functionality of the components
from a competence point of view, i.e. a description of the functionality not regarding internal
aspects of the component (of how this functionality is realized) (compare e.g. [Fensel, 1995b]). It
would be necessary to describe the interface to the environment (the input/output), the conditions
which are assumed to be held before executing the component, and the conditions which describe
the changes affected by executing the component. This issue is captured by pre-/postcondition
specifications as they are well-known from software engineering.

1.  besides efficiency to a certain extent (cf. [Fensel and Straatman, 1996]).

Figure 1. Embedding the notion of PSM into the method-to-task paradigm
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The notion of problem-solving method (PSM) has gained a lot of interest during the last years
within the knowledge-engineering community, see e.g. CommonKADS [Schreiber et al., 1994a],
[Breuker and van de Velde, 1994] or PROTÉGÉ-II [Puerta et al., 1992]. PSMs constitute generic
inference patters which describe the dynamic behaviour of such systems on an abstract level, the
so called “knowledge level“ [Newell, 1982], which abstracts from details concerned with the
implementation of the system. PSMs are independent of the domain they are applied in, but spe-
cific for the task which has to be accomplished by them.

It is now two years ago that the current version of KARL has been defined. In the meantime sev-
eral models of expertise have been specified in KARL. Using KARL it has been started to build
up a library of formally specified problem-solving methods: Hill Climbing, Chronological Back-
tracking, Beam Search, Cover-and-Differentiate, Board-Game Method, Propose-and-Exchange,
and Propose-and-Revise.

In this paper we describe a conceptual structure of PSMs. It distinguishes the functional specifica-
tion consisting of input-output roles and pre- and postconditions, and the operational specifica-
tion. We describe how the language KARL has been modified and extended to New KARL which
relies on this conceptual structure. One of the main goals of this extension was to preserve the
properties of KARL to be (i) a conceptual, (ii) a formal, and (iii) an executable language. In future
the properties of such formally represented PSMs may be exploited for the retrieval of PSMs out
of a library and for supporting the configuration and adaptation process of PSMs. Additionally,
such formally represented PSMs are open for further analysis, like verification of correctness or
analysis of their efficiency under different conditions.

The paper is structured as follows. Section 2 describes the conceptual structure of a PSM and the
needs which have to be met for configuring components of PSMs. In section 3 new language
primitives are introduced for KARL which allow to represent a PSM of this conceptual structure.
Related work is discussed in section 4. Finally we give a conclusion.

2 THE CONCEPTUAL MODEL OF A PSM

The development of a KBS begins with analyzing the organizational circumstances. If it seems
reasonable to integrate a KBS in the (business) process the next step is to figure out what part of
the process might be performed by a KBS [Decker, Erdmann, and Studer, 1996]. From the knowl-
edge engineering point of view this part is called atask and it can be described by thegoals it is
intended to achieve.

This section presents the notion of a PSM in the context of the method-to-task paradigm that
emerged from Components of Expertise [Steels, 1990], Task Structure Analysis [Chandrasekaran,
Johnson, and Smith, 1992], PROTÉGÉ-II [Puerta et al., 1992], and CommonKADS [Schreiber et
al., 1994a]. We do not want to go into details about the distinction of generic (problem solving)
and domain specific (ontology) knowledge. We do neither mention explicitly the mappings
between these two different kinds of knowledge since these can be treated as a special case of any
mapping of a PSM to its environment.

2.1 Representing PSMs

Given a task that a system should accomplish a PSM is the specification of the functionality of the
problem solving behaviour of the system to be built. It is a description of how the functionality
can be achieved and how the requirements can be met without taking non-functional require-
ments1 and implementation aspects into account. In MIKE, the latter features are handled in a sep-
arate design and a separate implementation phase (cf. [Landes and Studer, 1995]).
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Abstract

New KARL (Knowledge Acquisition and Representation Language) allows to specify
all parts of a problem-solving method (PSM). It is a formal language with a well-
defined semantics and thus allows to represent PSMs precisely and unambiguously
yet abstracting from implementation detail. In this paper it is shown how the language
KARL has been modified and extended to New KARL to better meet the needs for the
representation of PSMs. Based on a conceptual structure of PSMs new language prim-
itives are introduced for KARL to specify such a conceptual structure and to support
the configuration of methods. An important goal for this extension was to preserve
three important properties of KARL: to be (i) a conceptual, (ii) a formal, and (iii) an
executable language.

1 INTRODUCTION

The specification language KARL ([Fensel, 1995a], [Fensel, Angele, and Studer 1997]) is part of
the MIKE-approach (Model-based and Incremental Knowledge Engineering) [Angele, Fensel,
and Studer, 1996]. The overall goal of the MIKE project is the definition of a development
method for knowledge-based systems (KBS) covering all steps from initial knowledge acquisition
to design and implementation. The central model within the development process in MIKE is the
KARL model of expertise which resembles the KADS model of expertise [Schreiber, Wielinga,
and Breuker, 1993]. This model describes all functional requirements for the knowledge-based
system under development. The language KARL has been developed for building and represent-
ing this model of expertise:

• KARL is a conceptual specification language. KARL provides modeling primitives on a
high level of abstraction independent of realization aspects. KARL distinguishes several
types of knowledge and defines different language primitives for them.

• KARL is a formal specification language. Thus the language primitives get a defined mean-
ing which allows a precise and unequivocal description. The semantics of KARL has been
defined based on the semantics of predicate logic and dynamic logic which have been com-
bined to define a declarative semantics for the entire language.

• KARL is anoperational knowledge specification language. Based on a constructive seman-
tics which corresponds to the declarative semantics an interpreter has been implemented
which allows to build the model of expertise using a prototyping approach.


