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Abstract. A problem-solving method describes a reasoning process
that efficiently achieves a goal by applying domain knowledge. How-
ever, a problem-solving method cannot directly be applied because of
the existence of a gap between, on the one hand, a problem-solving
method and the domain knowledge it uses, and, on the other hand, a
problem-solving method and the goal that it is supposed to achieve.
In this paper, we distinguish two types of assumptions based on an
architecture of problem-solving methods, that are able to bridge the
gap: one type of assumption is used to strengthen a problem-solving
method, and the other to weaken the goal to be achieved. We also
show how the effect of one assumption type can be substituted by the
effect of the other type, and refer to this as “the law of conservation
of assumptions”.

1 Introduction

The notion of problem-solving method (PSM) is present in many
current knowledge engineering frameworks such as Generic Tasks
[6], Role-Limiting Methods [15], KADS [19], CommonKADS [20],
the Method-to-Task approach [16], Components of Expertise [21],
GDM [24]. Libraries of PSMs are described in [1, 2, 6, 18].

Problem-solving methods can be used to efficiently achieve goals
of tasks through the application of domain knowledge [11]. There are
however two relations that need to be understood before PSMs can
actually be used: from the PSM to the goal it is supposed to achieve,
and from the PSM to the domain knowledge that it uses. Figure 1
illustrates these two relations, which can be considered as gaps to be
bridged before a PSM can be applied. The basic idea is that a PSM
is applicable to achieve a particular goal in a particular domain, only
under some assumptions. In other words, assumptions can bridge the
gaps.

GoalPSM
Domain

knowledge
Assumptions Assumptions

Figure 1. The two gaps that isolate a PSM, and that are bridged by
assumptions.

Well-known examples of assumptions in diagnosis include the
single-fault and the independence of causes assumptions, and the
availability and completeness of fault models.

A PSM describes the reasoning steps and the types of knowledge
needed to perform a task, in a domain and implementation indepen-
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dent manner. Most problems tackled with knowledge-based systems
are inherently complex and intractable, that is, their time complexity
is NP-hard [4, 3, 17]. PSMs make such hard problems practically
feasible by making assumptions about the domain knowledge and the
possible inputs, or about the precise definition of the functionality.

The aim of this paper is to show that assumptions form good
candidates to bridge the identified gaps around a PSM, and thus solve
the problem of applying a PSM to efficiently achieve a goal in a
particular domain. As we will see, the architecture of a PSM gives
rise to the identification of two types of assumptions. A main insight
of the paper is that the joint effort of the two types of assumption is
constant, and that they can compensate each other (called “The law
of conservation of assumptions”). This provides a new view on the
application of PSMs, and on knowledge-based system development
in general.

The structure of the paper is as follows. In Section 2, we present
the architecture of a PSM, and based on that, identify two types of
assumptions. In Section 3, we describe properties of the assumption
types, and suggest a view on assumptions which describes how they
relate to, and can compensate each other. Section 4 concludes the
paper by pointing out implications for Knowledge Engineering.

2 Architecture of PSMs

In this section, we first discuss the parts of a PSM and their inter-
nal relationships, and then the PSM’s relation with its environment.
These relations naturally lead to the identification of two types of
assumptions.

2.1 The different parts of a PSM

A PSM consists of three interrelated parts (see Figure 2).

Functional specification PSMfun is a declarative description of
the input-output behavior of the PSM and describes what can be
achieved by the PSM.

Requirements PSMreq describes the domain knowledge needed
by the PSM to achieve its functionality. Examples of such require-
ments in a parametric design task [10] include the availability of
heuristics that link violated constraints to possible repair actions,
the fact that a preference relation must describe a complete order-
ing, the existence of a causal relationship, etc. The requirements
describe what a PSM expects in return for the functionality it
provides.

Operational specification PSMop specifies a reasoning process
which delivers the specified functionality if the required knowledge
is provided. It represents the link between the functionality and the
knowledge requirements of a method, and consists of inferences
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Figure 2. The architecture of a PSM.

and the knowledge and control-flow between them. The inferences
specify the reasoning steps that are used to accomplish the func-
tionality of the method. They are described by their input/output
relation and can be achieved by either a method (which means that
a PSM can be hierarchically decomposed) or a primitive inference
(an atomic reasoning step which is not further decomposed). The
knowledge flow takes place through roles, which are stores that
act as input and output of inferences. Finally, the control of a PSM
describes the order of execution of the inferences.

Relations between the parts The internal relationship between
the functional and operational descriptions of the method has to be
established. One has to ensure that, assuming that the knowledge
requirements are satisfied, the operational description describes a way
to achieve the functionality (“is-realized-by” in Figure 2). Because
the description of the operational specification requires a logic over
states, we use dynamic logic [14] to formalize this obligation2:

j= PSMreq ! (< PSMop > true ^ [PSMop]PSMfun): (1)

This obligation states that, given that the requirements hold, the oper-
ational specification will terminate and its input-output behavior will
be identical to the functional specification. It means that, given the
requirements, the operational part of a PSM can be used to realize the
functional specification.

2.2 External relations of a PSM - two assumption
types

Based on the different parts of a PSM, two interfaces to its environ-
ment can be distinguished: the requirements on domain knowledge,

2 The two standard modal operators of dynamic logic are used here: the box-
operator, [�]�, defines � to hold in every terminal state of program �, and
the diamond-operator, h�i�, defines � to hold in at least one terminal state
of �.

and the functionality which relates it to the goal that the PSM can
achieve. Each interface leads to the identification of an assumption
type.

Knowledge requirements: ontological assumptions In down-
ward direction, a PSM has knowledge requirements, specifying the
needed domain knowledge (“satisfied-by” in Figure 2). We will refer
to them as ontological assumptions, because they are reminiscent of
ontological commitments [25]. The domain knowledge has to imply
the ontological assumptions:

j= domain knowledge! ontological assumptions (2)

Functionality: teleological assumptions In upward direction, the
relation between the PSM functionality and the goal to be achieved
has to be established (“matches” in Figure 2).

Ideally, one would like that the goal is implied by the PSM func-
tionality:

j= PSMfun ! goal (3)

However, for intractable problems such as design, planning or di-
agnosis, this is not realistic, so sub-optimal solutions have to be
accepted. Sub-optimal solutions are solutions for weakened versions
of the original goal. This means that a goal is implied by the PSM
functionality only under some assumptions, which we will refer to as
teleological assumptions.

j= PSMfun ! (teleological assumptions! goal) (4)

Such assumptions describe a translation of the original goal into a
weaker one with a smaller complexity, or which can be solved more
efficiently for typical cases.

3 Assumptions of PSMs

In this section, we first present some examples of assumptions as
they appear in the literature (Section 3.1). Then, we discuss some
interesting properties of assumption types (Section 3.2) and show
how they relate to each other (Section 3.3).

3.1 Assumptions in the literature

Assumptions of reasoning methods play an important role in AI-
research. Table 1 shows some examples taken from the literature on
PSMs, along with a short explanation.

3.2 Strengthening of PSMs and weakening of goals

Ontological assumptions embody a strengtheningof the functionality
of a PSM, in the sense that, the more domain knowledge is available,
the stronger the PSM can be (see Figure 4). Ontological assumptions
reduce the complexity of the part of the problem that is solved by
the PSM. In terms of complexity analysis, the domain knowledge or
the user of the system is used as an “oracle” that provides a solution
for complex parts of the problem. For example, the availability of
good “propose” knowledge for elevator design, enables better initial
designs, and thus the “revise” step can be simplified [10].

Teleological assumptions embody a weakeningof the goal that can
be achieved, by introducing assumptions about the precise problem
type. The desired functionality of the system is thus reduced and
therefore also the complexity. For example, in diagnosis a particular
PSM might only be able to find single faults. If the original task goal
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assumption name explanation

Independence of
hypotheses

An individual hypothesis explains a set of observations regardless of the other hypothesis [1].

Non intermittency Observations do not change during diagnostic reasoning [1].
Fault models complete All possible faults are represented in fault models, which allows to derive that a component is correct if

none of its fault models holds (GDE+ [23]).
Rule out knowledge Knowledge that reduces the number of individual hypotheses. [4] shows that an abduction problem becomes

tractable if this number is reduced from n to log n.
Unique effects A causal relation uniquely describes its effects (i.e. “X causes Y1 or Y2” is not allowed) (hierarchical

abduction [7]).
Ordered monotonic ab-
duction problem

A composite hypothesis explains at least as much as its elements, each individual hypothesis has a different
plausibility and there is a total ordering among plausibilities. This assumptions makes abduction tractable [4].

Belief in observations Observations can be trusted [22].
Design is correct The original design of the system to be diagnosed is correct [8].
Fixes do not interact The results of applying fixes do not cancel each other, so they can be applied in any order [10].
Untangled concept
hierarchy

A concept should not be a subconcept of more than one superconcept and the hierarchy must be more or
less balanced (hierarchical activation [13]).

Table 1. Some examples of assumptions taken from the literature on PSMs.

is to find any kind of fault (including multiple faults), then the PSM
can achieve this goal under the single-fault assumption. Thus in fact
the PSM achieves a weaker goal.

In this paper, we deal with modal formulae such as

�! [�] (5)

where �; are first-order formula, “!” denotes implication, and
� state-transitions. We require a modal extension of first-order logic
to formalize the operational description of a problem-solving method.
Such an operational specificationdefines transitions from initial states
into successor states. �[�] can be read as: whenever � starts from
an initial state satisfying �, it must terminate (if it terminates) in a
state satisfying . Formally, the semantics of this formula is the set of
all initial states that either do not fulfill �, or lead to successor states
of � that fulfill  .

If we instantiate this formula with our expressions of Formula 1
and 4 we get:

j= ontological assumptions!

[PSMop] (teleological assumptions! goal) (6)

Both types of assumptions weaken the demands on [PSMop]. The on-
tological assumptions limit the set of initial states for which we define
restrictions on the behavior ofPSMop . The teleological assumptions
weaken the formula that defines restrictions for the terminal states of
PSMop . Only terminal states that fulfill these assumptions must ful-
fill the goal.

Formally, a formula � is weakened to a formula �0 if each model
of � is also a model of �0, i.e. � j= �0. A formula � is strengthened
to a formula �0 if each model of �0 is also a model of �, i.e. �0 j= �.

Formula 6 can therefore be weakened by strengthening the ontolog-
ical assumptions or by strengthening the teleological assumptions. In
the first case, the requirements on domain knowledge increase. In the
second case, we increase the teleological assumptions under which
the goal must be achieved. That is, we restrict the set of problems
that must be solved by the method. Strengthening of Formula 6 can
be analogically defined in the reverse way. Figure 3 illustrates an

example for the necessity to weaken the definition of an operational
specification of a PSM. The state transition (w1:2; w2:2) violates the
formula �! [�] . We can remedy this problem either by strength-
ening the teleological assumptions and therefore weaken the formula
“teleological assumptions! goal”, or by strengthening the ontolog-
ical assumptions.

As a consequence, weakening (respectively strengthening) of one
type of assumptions can be compensated by strengthening (respec-
tively weakening) of the other type of assumptions. This effect is
what we call later the conservation law of assumptions.

In the following, we use a rather informal but intuitive notion of
“+” and “�” to denote respectively strengthening and weakening of
formulae. When necessary, the formal semantics can always be given
in the terms of this subsection.
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Figure 3. Illustrating the weakening of �! [�] .
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3.3 The law of conservation of assumptions

The main insight of our theory of assumptionscan be seen in Figure 4,
namely that the required net effect of strengthening and weakening is
constant with respect to the goal to be achieved. This is apparent from
the fact that both PSMs are applied to the same goal (the ellipses), but
the first PSM makes more ontological assumptions, less teleological
ones, and is thus stronger than the second PSM. In the following,
we will show that the joint effort of ontological and teleological
assumptions is constant.

Using our notation we can rephrase Formula 4 to:

goal � teleological assumptions = PSMfun (7)

Similarly, Formula 1 can be rephrased to:

PSMfun = PSMop + ontological assumptions (8)

Substituting Formula 8 in 7 yields the formula:

goal � teleological assumptions =

PSMop + ontological assumptions (9)

Formula 9 states that the goal minus the teleological assumptions is
equal to the PSM plus its ontological assumptions. This formula is
valid in the framework of tasks, PSMs and assumptions and opens
interesting possibilities in Knowledge Engineering. In the following,
we will focus on one of them and in Section 4, we will briefly suggest
other possibilities.

goal

PSM

PSM

goal
teleological

assumptions

ontological
assumptions
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t
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assumptions’
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Figure 4. The law of conservation of assumptions.

We reformulate 9 to:

goal � PSMop =

teleological assumptions+ ontological assumptions (10)

In the knowledge engineering situation which we are interested in,
we have a goal to be achieved and a particular PSM (selected from
a library with reusable PSMs) that might achieve the goal. In other
words, goal andPSMop are constants. Consequently, their difference
is also constant, which we will call ∆:

goal � PSMop = ∆ (11)

Substituting 11 in 10, we get

ontologialassumptions+teleologicalassumptions = ∆ (12)

Thus, the sum of ontological and teleological assumptions is constant
for a fixed goal and PSMop. That is, we can replace an assump-
tion of one type by an assumptions of the other type, requiring that

they deliver both the same strength. We refer to this as “the law of
conservation of assumptions”.

We illustrate the law with the single-fault assumption, which can
be regarded as a typical example of a teleological assumption in di-
agnosis [12]. Some diagnostic problem-solving methods only work
for problems with at most one fault. By employing this assumption
they can reason more efficiently than methods which deal with mul-
tiple faults [9]. The single-fault assumption can also be viewed as a
requirement on domain knowledge [8]. If each possible set of faults is
represented as a single fault, a method which finds only single faults
is still able to solve each diagnostic problem in the given application
domain. For example, the malfunction of a single chip with four gates
can appear as a set of four faults (one for each gate), or as a single
fault if the chip itself is the represented entity. Thus, it depends on
our assumptions about the domain knowledge whether we have to
weaken the goal in order to guarantee its achievement with a PSM
based on single faults.

Another illustration is the assumption “fault models complete”
(see Table 1). As an ontological assumption, this states that we can
diagnose all possible faults since they all are represented in fault
models. As a teleological assumption, it states that the PSM will
work for cases where only the faults mentioned in the fault models
occur, which could be enough to cover routine diagnosis.

A final illustration of the law is the assumption “fixes do not
interact”. As an ontological assumption it means that fixes can be
applied in any order. As a teleological assumptions it states that we
accept that some possible solutions cannot be found.

In our knowledge engineering situation where we want to achieve
a goal by a PSM (which is selected from a library) in a particular
domain, the conservation law is relevant because we can, within the
boundaries of PSMop , weaken or strengthen a reusable PSM. This
can be done according to (a) the available domain knowledge, (b) the
effort required to model further domain knowledge, (c) how much we
are willing to weaken the original goal. Teleological assumptions have
to be made if the ontological assumptions cannot be satisfied to the
extent that the operational PSM description enables the achievement
of the original goal.

4 Conclusion and future work

In this paper, we proposed a solution to the problem of how to bridge
the gap between a problem-solving method and, on the one hand, the
goal to be achieved, and, on the other hand, the particular domain
that it uses. The solution consists of the identification of two types
of assumptions of PSMs: ontological and teleological assumptions.
The gap can be bridged by strengthening the PSM (i.e. adding more
ontological assumptions), or by weakening the goal it has to achieve
(adding teleological assumptions). We have shown how assumptions
can be moved around from teleological to ontological according to
the law of conservation of assumptions, while the PSM remains ap-
plicable to the same goal.

Making explicit the assumptions of a PSM about the domain
knowledge is a way to deal with the interaction problem. The in-
teraction problem [5] states that domain knowledge cannot be repre-
sented independently of how it will be used in reasoning. Vice versa,
a PSM and its specific variants cannot be constructed independently
of assumptions about the available domain knowledge.

Besides bridging the identified gaps, our view on assumptions has
other interesting implications for the knowledge engineering practice
which set out interesting lines for future research.
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Methodology The first implication relates to a methodology for
the construction of KBSs. A KBS can be seen as a configuration of
several cooperating PSMs, where each PSM has to achieve a particular
goal. The ontological assumptions of a PSM indicate the requirements
on (domain) knowledge, and thus define goals for the knowledge
acquisition process. According to the methodology first the needed
domain knowledge has to be acquired (thus fulfilling the ontological
assumptions), and only if this cannot be done, then some ontological
assumptions are moved towards the goal and become teleological
assumptions, that weaken the goal. This strategy guarantees that the
strongest possible PSMs are built given a particular domain and goal.

Reuse Another implication relates to reuse. By distinguishing
ontological and teleological assumptions, we enhance the reusability
of PSMs. Ontological assumptions explicit the relations between a
PSM and domain knowledge in domain-independent terms. That is,
they speak about meta-characteristics of domain knowledge, and not
about the domain knowledge itself. Teleological assumptions enable
a PSM to achieve a variety of (stronger and weaker) goals, and thus a
PSM can be used to achieve more than one particular goal. Moreover,
the two types of assumptions are interchangeable, allowing for even
more flexibility.

In the context of a PSM library, a method can only be chosen if
its ontological assumptions are fulfilled by domain knowledge. On-
tological assumptions can be viewed as indices to access the library,
and we can view the assumptions as proof obligations for the domain
knowledge. Moreover, if a PSM is not applicable due to unsatisfi-
able ontological assumptions, another PSM can be selected from the
library.

PSM construction Formula 10 can also be used in the construc-
tion of PSMop for a given goal. For instance in [11], we propose
a process of method construction that starts with a weak problem-
solving method (e.g. generate & test) and transforms this until an
acceptable problem solver is constructed. Some of these transforma-
tion steps do not change the functionality, while others introduce new
assumptions. The formula we presented here can be used as an invari-
ant for this process: it should hold in each state of the construction
process. In this way it also defines which combinations of assump-
tions and changes in PSMop are allowed. Because we introduced
the formula into this process, we are able to perform steps which
do not preserve the functionality (i.e. introduce assumptions) of the
PSMop and still reason about them. This kind of construction steps
are essential in constructing PSMs and are missing from comparable
frameworks in software engineering.
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