
1

A Bidirectional ILP Algorithm

Markus Wiese

Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany

e-mail: wiese@aifb.uni-karlsruhe.de

Abstract. The paper presents an approach for using a bidirectional search
strategy for inductively learning clauses in a restricted first-order language. The
learning target is to find a set of goal clauses that describes the true ground facts
of the target predicate. In our example setting we further assume that the
background knowledge is also given in the form of true (and false) ground facts
for each background predicate. By fixing the number of variables allowed in the
derived clauses we show that no explicit negative goal facts are needed in the
case of the closed-world assumption since the rules are evaluated fromthe
premiseto the headrather than binding the variables of the goal literal first. As
a consequence we get an efficient algorithm that tries to minimize the tuples of
variable substitutions stored at each step of our covering approach.

Introduction

The paper presents an approach for using a bidirectional search strategy for inductively learning
clauses in a restricted first-order language. Given goal facts and true (and false) ground facts as
background knowledge, a finite set ofprogram clauses [Llo87] is being derived that describes a
target predicate. By excluding function symbols and fixing the number of variables allowed in one
clause we restrict the hypothesis language to sets of first-order clauses that have afinite minimal
(i.e., perfect) Herbrand model [Ull88]. This representation leads to a finite search space where it is
possible to conduct a bidirectional search.
In the means of propositional logic a bidirectional search strategy is a well-known idea, originally
presented in the version space algorithm by [Mit81]. This idea was adopted by the algorithms JoJo
(cf. [Fen93a], [FeW93], [Wie93]) and Frog (cf. [Fen93b]) that integrate generalization and
specialization refinement steps into one search procedure rather than keeping two seperate sets of
most general and most specific concept descriptions. Also, JoJo and Frog perform a heuristic
search contrary to the enumerated search of the version space algorithm. Since it is generally not
possible to give preference to one of the both search directions ([Fen93a]), the bidirectional search
might be more flexible in adapting to the unknown domain-specific characteristics of a real-world
data set.
Most well-known inductive learning algorithms performing search in a first-order representation
space are either "specific-to-general" or "general-to-specific" systems. Representatives of the class
of "specific-to-general" include GOLEM (cf. [MuF90]), CLINT (cf. [Rae92]), MARVIN (cf.
[SaB86]), DUCE (cf. [Mug87]) and CIGOL (cf. [MuB88]). On the other hand, learning algorithms
like FOIL (cf. [Qui90], [Qui91], [QuC93], [CaQ93]), CLAUDIEN (cf. [RaB93]), MIS (cf.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197596661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

[Sha83]), and the MOBAL system (cf. [KiW92]) start their search with the most general
hypothesis and repeatedly specialize the hypothesis in order to discriminate from the negative
examples, but still being consistent with the positive examples.
These "general-to-specific" algorithms all perform very well and especially fast when the
induced clauses have a relative short premise. This is, for example, usually true when applying
ILP systems as programming assistants. When trying to find valuable properties of a real-world
domain it is generally not clear in what depth (that corresponds to the number of conditions in
the premise of a rule) of the hypothesis space one should look for. We believe that starting the
search with arbitrarily1 generated rules and using a bidirectional search strategy might be very
useful and efficient when dealing with huge amounts of data. By employing a very efficient
method for evaluating the generated rules that also leads to avoiding the explicit representation
of negative examples we believe that our bidirectional ILP algorithm is potentially applicable
for data mining problems.

1 Description of our approach

To be able to perform a bidirectional search through the hypothesis space we have to make sure
that the search does not get lost in an infinite branch of the search space. As our language bias
we fix the number of variables that might possibly occur in our rules such that we get a finite
hypothesis space. Suppose we have a k-ary goal predicate given as G(X1,...,Xk) and a number
of background predicates Bi of different arity ni given as Bi(Y1,...,Yni) where the arguments of
the relations have possibly different typesargtypej with 1 ≤ j ≤ m and m≥ 1.
Since it is usually impossible to know the exact number of variables needed to produce a correct
and sufficient rule set we start with the minimum number depending on the arity and the
argument types of all predicates. If it is not possible to generate rules that cover enough positive
goal facts (e.g. 90%) the number of variables is incremented by 1 and the rule search will restart.
To calculate the minimum number of variables needed we determine for each (fore- and
background) predicate the number of variables for each type that is necessary such that all
argument positions have different variable names. Adding up the number of variables for each
argument type gives the total number of variables needed. Having fixed the variable number we
build all possible literals from the given predicates and the variables that are syntactically
correct and obey semantically the argument types of each predicate. Additionally, some built-
in equality literals between variables of the same type and between a variable and a theory
constant of the same type may be added to the set of possible literals. Since one goal predicate
may give rise to many literals containing the name of the goal predicate but different variable
names we denote one of them as ourgoal literal and use the other ones as literals possibly
occuring in the premises of the rules (and therefore resulting into recursive rules).
We are now able to describe our covering approach which we call JoJo-FOL since it inherits its
specialization and generalization refinement operators from its propositional predecessor JoJo
(cf. [Fen93a]). The core of JoJo-FOL consists of an outer and a inner loop that we will
summarize in the following.

The outer loop is pretty much the same as in many other covering algorithms:

1. "Arbitrarily chosen" rather counts for our window set where some n% of the whole data is taken on which a rule search is
performed as a first step. The generated rules describing the target predicate within the window set are used as starting rules for
further search.

3

• Establish the positive facts of our goal predicate as the positive training examples.
• Until a predefined percentage of covered positive examples is not yet reached do:

- Find acorrect clause in the means that it covers a minimum of positive examples and
potentially also some negative ones, but stays still within a predefined error threshold.

- Remove all positive examples that satisfy the premise of the new clause.
• Try to generalize the rules by removing literals from the premise such that the error ratio

stays within a specified threshold consideringall covered positive examples (not
just the remaining uncovered ones for the next rule finding iteration).

• Postprune the rule set by checking for logically equivalent rules and building a minimum
cover in the sense that deleting one rule would cause at least one positive example to be no
more covered by the remaining rule set.

The inner loop tries to find clauses of the following form:
G(X1,...,Xk) ← L1 ,L2 ,..., Ln where each literal is an element of our set of literals.

We do not restrict our literals to be just positive. For each predicate (including the goal predicate)
we might have been given negative examples either explicitly (e.g. in the case of an open-world
assumption) or by applying the closed-world assumption to all unknown examples. The inner loop
can now be described as follows:

• Choose a starting rule to begin the search with.
• Initalize the variable bindings of the occuring variables in thepremise.
• While "preference criterion2 can be improved"

Do
If the error ratio of covered positive and negative example exceeds a predefined threshold:

For all elements of the literal set and not yet occuring in the premise
Do

Add the literal to the premise of the rule
Calculate the new variable bindings (possibly with a new variable)
Check the number of covered positive and negative examples by the new rule
Save the best preference, literal and variable bindings
Reset the variable bindings

Enddo
If "new preference is higher than old preference"

Add best literal to the premise
Substitute old variable bindings by new variable bindings
continue while loop

Else
STOP! Discard rule and restart inner loop (with a new starting rule)!

Endif
Else

For all literals occuring in the premise of the currently regarded rule
Do

Delete the literal from the premise of the rule
Calculate the new variable bindings (possibly with fewer variables)

2. We use the accuracy (= #pos/(#pos+#neg)) of the rule as simple preference criterion. In case of equality we prefer the rule that
covers more positive examples.

4

Check the number of covered positive and negative examples by the new rule
Save the best preference, literal and variable bindings
Restore the variable bindings

Enddo
If "new preference higher than old preference"

Remove best literal from the premise
Substitute old variable bindings by new variable bindings
continue while loop

Else
STOP! Save rule in the preliminary rule set!

Endif
Endif

Enddo

Choosing a good starting rule is certainly a crucial task for any heuristic bidirectional search
algorithm. We propose the following iterative procedure. For a sufficient small subset (e.g. 10%
or 1%) of the whole data set we test a fixed number of randomly generated starting rules3 each
time when entering the inner loop and choose the one with the highest preference. The rules
generated for describing the goal facts within thewindow are the starting rules for the rule
search with the complete data set.
Another very important issue concerns the evaluation of our rules. Contrarily to FOIL we begin
binding the occuring variables to constant tuples fromthe premise to the head. That is, we first
look for tuples that satisfy the right-hand side of the clause before we check if the corresponding
facts (by regarding only the goal literal variable substitutions) denote a positive or a negative
example of the goal predicate. Binding the variables of the premise first gives rise to the
following advantages:

• Since we know all literals occuring in the premise of the rule we canefficiently bind the
variables keeping the number of stored substitution tuples as small as possible For
binding the variables we first choose the literal of the premise that covers the smallest
number of ground facts (in the most cases this literal will be positive, but it can also be a
negative one). The next variables that will be bound are those from the literal that covers
the second least ground facts and so on.

• It is possible to haveindeterminated literals on the premise of the rule that introduce new
variables without exploding the size of the substitution tuples.

• Negated literals can also be included in the premise without exploding the size of the
substitution tuples. Since the negative literals cover in most cases more ground facts (by
assuming the closed world) the variables of the positive literals will be bound first (see
above). Therefore, it is very likely that all variables of the negative literals are already
bound before the first negative literal will be evaluated. As a consequence the evaluation
of negative literals restricts to just checking if the corresponding fact satisfies the
predicate or not.

• As soon as we get anempty set of substitutions "satisfying" the variables of the literals
we have checked so far, we canprune all the possible rules that contain these literals in
their premise.

• If we allow only positive literals in our premise and the closed-world assumption applies

3. A starting rule has to fulfill some "useful" requirements, e. g. its premise must at least contain one variable of the goal literal!

5

to our goal predicate and the background predicates weavoid representing explicit negative
examples.

When the variables of all literals occuring in the premise are bound and the set of substitutions is
not empty we have to distinguish between the following three cases:

- No variable of the goal literal is bound: This case is actually being checked before the variables
of the premise are bound since it represents the case of a stupid premise. Therefore, all literals
are being removed from the premise and the rule is generalized to the most general rule from
which the search will continue with a specialization step if the unit goal clause is incorrect.

- All variables of the goal literal are bound: In this case it is easy to check if the corresponding
ground fact belongs to the goal predicate or not. In the case of the closed-world assumption we
avoid explicit negative goal facts when we forbid recursive rules with a negative goal literal.

- The variables of the goal literal arepartially bound: We have to look if the goal facts match the
substitutions in the bound variables of the goal literal. In this case we are calculating the number
of all possible facts that match these bound variables and get the number of covered negative
examples by subtracting the number of positive matched goal facts from the total number.
Again, no negative examples have to be represented explicitly when making the above
mentioned assumptions.

Before we illustrate our approach on a small example we want to point out that our simply chosen
preference criterion depends only on the covered and not covered goalfacts and not on the
substitutions. Two or more substitutions may correspond to the same goal fact. This is also a
difference to the FOIL algorithm that calculates its preference (information gain) criterion from the
positive and negativesubstitution tuples instead of the corresponding positive and negative goal
facts. Though calculating the number of covered facts means an extra computational effort we
believe that we get a benefit from it for our covering approach. Since the positive facts are removed
after each rule finding iteration the whole search process may terminate faster when prefering rules
with a higher accuracy calculated from the covered facts over rules that have a lower "fact
accuracy" but may have a better accuracy calculated from the covered substitutions.

2 An example

We use the same data [QuC93] used to learn the member relationship. Given are the goal predicate
member(E,L) and one background predicatecomponents(L,E,L) that have both the two
argument types E for Element and L for List. For these argument types the following constants are
given:

E: {1,2,3} and
L: {[111], [112], [113], [11], [121], [122], [123], [12], [131], [132], [133], [13], [1], [211], [212],

[213], [21], [221], [222], [223], [22], [231], [232], [233], [23], [2], [311], [312], [313], [31],
[321], [322], [323], [32], [331], [332], [333], [33], [3], *[]4}

4. The asterix before the empty list denotes a theory constant that can appear in the premise of the rule (see [QuC93]).

6

For predicate member the negative tuples are given explicitely whereas for predicate
components only positive facts are presented and we therefore apply the closed-world
assumption:

member+: {1,[1]; 3,[3]; 1,[11]; 1,[13]; 3,[13]; 1,[31]; 3,[31]; 3,[33]; 1,[111]; 1,[113]; 3,[113];
1,[131]; 3,[131]; 1,[133]; 3,[133]; 1,[311]; 3,[311]; 1,[313]; 3,[313]; 1,[331];
3,[331]; 3,[333]}

member-: {1,[]; 1,[3]; 1,[33]; 1,[333]; 3,[]; 3,[1]; 3,[11]; 3,[111]; 1,[2]; 1,[22]; 1,[23]; 1,[32];
1,[222]; 1,[223]; 1,[232]; 1,[233]; 1,[322]; 1,[323]; 1,[332]}

components+: {[1],1,[]; [2],2,[]; [3],3,[]; [11],1,[1]; [12],1,[2]; [13],1,[3]; [21],2,[1];
[22],2,[2]; [23],2,[3]; [31],3,[1]; [32],3,[2]; [33],3,[3]; [111],1,[11];
[112],1,[12]; [113],1,[13]; [121],1,[21]; [122],1,[22]; [123],1,[23]; [131],1,[31];
[132],1,[32]; [133],1,[33]; [211],2,[11]; [212],2,[12]; [213],2,[13]; [221],2,[21];
[222],2,[22]; [223],2,[23]; [231],2,[31]; [232],2,[32]; [233],2,[33]; [311],3,[11];
[312],3,[12]; [313],3,[13]; [321],3,[21]; [322],3,[22]; [323],3,[23]; [331],3,[31];
[332],3,[32]; [333],3,[33]}

Since member needs a least one variable for both types E and L, but components needs two
variables of type L and one of type E the minimum number of variables needed is calculated to
be three. We denote the two variables of type L with X and Y and the single variable of type E
with Z.
Therefore, we get our set S of possible literals: S={components(X,Z,Y); components(Y,Z,X);
member(Z,X); member(Z,Y)}. Arbitrarily, we choose the literalmember(Z,X) to be our goal
literal.
Suppose now that the following rule was generated randomly:

member(Z,X)← components(X,Z,Y) & member(Z,Y)
Since components contains 40 positive tuples and member just 22, we start our evaluation of
the premise with literal member(Z,Y) and get the following tuples <Z,Y>:

{<1,[1]>; <3,[3]>; <1,[11]>; <1,[13]>; <3,[13]>; <1,[31]>; <3,[31]>; <3,[33]>;
<1,[111]>; <1,[113]>; <3,[113]>; <1,[131]>; <3,[131]>; <1,[133]>; <3,[133]>;
<1,[311]>; <3,[311]>; <1,[313]>; <3,[313]>; <1,[331]>; <3,[331]>; <3,[333]>}

When binding the variables of the next literal components(X,Z,Y) we just have to check which
of the already bound <Z,Y> tuples correspond to positive facts of the predicate components.
We get the following 8 tuples given in <X,Z,Y> order:

{<[11],1,[1]>; <[33],3,[3]>; <[111],1,[1]>; <[113],1,[13]>; <[313],3,[13]>;
<[131],1,[31]>; <[331],3,[31]>; <[333],3[33]>}

Evaluating the corresponding <Z,X> facts we see that they are all different and belong to the
positive facts of predicate member. Therefore, the rule covers 8 positive examples and no
negative examples and the next step will be trying to generalize the rule.

There exist two possibilities for generalizing:

a) dropping literal components(X,Z,Y):
This leads to rule:member(Z,X)← member(Z,Y)and the same 22 <Z,Y> tuples as after
evaluating the first literal of our starting rule. But in this case, only variable Z is bound of

7

the goal literal. So, when determing the number of covered goal facts, we have to match all
positive and negative5 goal facts that have the bound <Z> tuples = {<1>; <3>} as first argument
value. As result, the rule covers 22 positive and 19 negative facts. Since the preference given
to this more general rule is less than the preference of the more special rule it is quashed.

b) dropping literal member(Z,Y):
We get rule:member(Z,X)← components(X,Z,Y). In this case we get the 40 <X,Z,Y> tuples
given as positive facts for predicate components. Checking the goal facts of predicate member
the number divides into 14 positive examples and 26 unknown cases. Therefore, this rule (14+/
0-) is of higher preference than the starting rule (8+/0-) and the generalization will be
performed.

Trying to further generalize the rulemember(Z,X)← components(X,Z,Y) is not successful since
this would lead to the most general rule that covers all given positive (22) and negative (19) goal
facts having a lower preference than the currently found rule. At this point, the inner loop
terminates and returns the first correct rulemember(Z,X)← components(X,Z,Y).
After removing the 14 examples from the list of positive examples still 8 remain uncovered such
that the outer loop calls the inner loop again. But this time, no other correct rule can be found since
allowing just 3 variables was to restrictive. Therefore, we start our search for rules again by
allowing this time 4 variables to occur in the rules. When incrementing the variable number the
algorithm first has to decide which argument type to assign to the variable. Preference is given to
the type that least increases the hypothesis space. In our example we have to decide between type
E and type L:
a) a new variable W of type E gives rise to 4 more literals: {components(X,W,Y),

components(Y,W,X), member(W,X), member(W,Y)}
b) a new variable W of type L results into 5 new literals: {components(X,Z,W),

components(W,Z,X), components(Y,Z,W), components(W,Z,Y), member(Z,W)}
The new variable W is therefore assigned to type E. Performing the search again with 4 variables
we find the standard definition for member

member(Z,X)← components(X,Z,Y)
member(Z,X)← components(X,W,Y) & member(Z,Y)

that covers all given positive goal facts.

3 Some first evaluations of Our Approach

We compared our approach with FOIL version 6.3 using 3 small example sets from [Qui90] and
[QuC93] and the larger Finite Element Mesh Design data provided by Bojan Dolsak. All
evaluations were run on a Sparc 10 Unix workstation.

3.1 A Small Network

Characterisation:

5. If no explicit negative facts were given we would apply the closed-world assumption and calculate the number of covered
negative facts by assigning to it the difference between the maximum number and the covered positive facts. (In this case 2*40-
22=58.)

8

- argument types: Node (9 constants)
- goal predicate: can-reach(Node,Node)
- background predicates: linked-to(Node,Node)
- positive examples: 19 negative examples: closed-world (62)

Learned Rules:
FOIL: can-reach(A,B):− linked-to(A,B) and

can-reach(A,B):− linked-to(A,C), can-reach(C,B)
JOJO-FOL: The same rules when fixing the variable number to 3.

Runtime:
Both algorithms took 0.0 seconds to derive the rules.

3.2 Learning the Definition for Member

Characterisation:
- argument types: Element (3 constants)

List (40 elements)
- goal predicate: member(Element,List)
- background predicates: components(List,Element,List)
- positive examples: 22 negative examples: explicit 19

Learned Rules:
FOIL: member(A,B):− components(B,A,C) and

member(A,B):− components(B,C,D), member(A,D)
JOJO-FOL came up with the same rules when fixing the variable number to 4.

Runtime:
Both algorithms took 0.1 seconds to derive the rules.

3.3 Learning Definitions For Arches

Characterisation:
- argument types: Thing (12 constants)
- goal predicate: arch(Thing,Thing,Thing)
- background predicates: supports(Thing,Thing); left-of(Thing,Thing);

touches(Thing,Thing); brick(Thing); wedge(Thing)
parallelpiped(Thing)

- positive examples: 2 negative examples: closed-world (1726)

Learned Rules:
FOIL: arch(A,B,C)):− left-of(B,C), supports(B,A), not(touches(B,C))
JOJO-FOL: arch(X,Y,Z))<− left-of(Y,Z) & supports(Z,X) & not(touches(Y,Z))

9

Both rules are correct and only differ in the supporting thing.

Runtime:
Both algorithms took 0.4 seconds to derive the rules.

3.4 Finite Element Mesh Design

Characterisation:
- argument types: Edge (506 constants: a1,...,a55; b1,...,b42; c1,...,c28;

d1,...,d57;e1,...,e96; f1,...,f41; g1,...,g60; h1,...,h71;
i1,...i26; j1,...j30)

Number (12 constants: 1, ..., 12)
- goal predicate: mesh(Edge,Number)
- background predicates: long(E); usual(E); short(E); circuit(E); half-circuit(E);

quarter-circuit(E); short_for_hole(E); long_for_hole(E);
circuit_hole(E); half_circuit_hole(E); not_important(E);
free(E); one_side_fixed(E); two_side_fixed(E); fixed(E);
not_loaded(E); one_side_loaded(E); two_side_loaded(E);
cont_loaded(E); neighbour(E,E); opposite(E,E)

- positive examples: 629 negative examples: closed-world (5443)

Learned Rules:
FOIL:mesh(A,1) :- not_important(A), free(A).

mesh(A,1) :- not_important(A), one_side_loaded(A)
mesh(A,1) :- short(A), fixed(A), one_side_loaded(A).
mesh(A,1) :- short(A), cont_loaded(A), free(A), neighbour(A,C), usual(C).
mesh(A,1) :- short(A), not_loaded(A), neighbour(A,C), usual(C), one_side_loaded(C).
mesh(A,1) :- not_important(A), not_loaded(A), neighbour(A,C), opposite(C,D),

not_loaded(D).
mesh(A,1) :- short(A), neighbour(A,C), usual(C), one_side_fixed(C),

neighbour(A,D), opposite(D,E), fixed(D).
mesh(A,2) :- usual(A), two_side_loaded(A).
mesh(A,2) :- usual(A), fixed(A), one_side_loaded(A).
mesh(A,2) :- short(A), opposite(A,C), not_important(C).
mesh(A,2) :- usual(A), opposite(A,C), opposite(C,D), half_circuit(D).
mesh(A,2) :- short(A), not_loaded(A), neighbour(A,C), cont_loaded(C).
mesh(A,2) :- free(A), opposite(A,C), usual(C), neighbour(A,D), short(D).
mesh(A,2) :- short(A), free(A), not_loaded(A), neighbour(A,C), one_side_fixed(C).
mesh(A,2) :- neighbour(A,C), not_important(C), opposite(C,D), not_important(D),

neighbour(A,D).
mesh(A,2) :- fixed(A), short(A), cont_loaded(A), neighbour(A,C), opposite(C,D),

usual(C).
mesh(A,2) :- usual(A), one_side_fixed(A), neighbour(A,C), opposite(C,D), free(C),

not_loaded(D).
mesh(A,4) :- one_side_loaded(A), one_side_fixed(A), usual(A).
mesh(A,8) :- not_loaded(A), half_circuit(A), neighbour(A,C), opposite(C,D), long(D).
mesh(A,9) :- circuit(A), opposite(A,C).

10

mesh(A,9) :- two_side_fixed(A), quarter_circuit(A).
mesh(A,9) :- not_loaded(A), half_circuit(A), neighbour(A,C), opposite(C,D),

long(D).
mesh(A,10) :- one_side_loaded(A), long(A).
mesh(A,11) :- circuit(A), not_loaded(A), free(A), neighbour(A,C),not_important(C).
mesh(A,12) :- circuit(A), not_loaded(A), free(A), neighbour(A,C),not_important(C).

JOJO-FOL: mesh(X,1) <- not_important(X)
mesh(X,2) <- cont_loaded(X) & long_for_hole(X)
mesh(X,2) <- free(Y) & opposite(X,Y) & short(X)
mesh(X,2) <- long_for_hole(X) & one_side_fixed(X)
mesh(X,9) <- quarter_circuit(X) & two_side_fixed(X)
mesh(X,10) <- one_side_fixed(X) & quarter_circuit(X)
mesh(X,11) <- circuit(X) & one_side_loaded(X)
mesh(X,12) <- circuit(X) & one_side_loaded(X)

Runtime:
FOIL took 54.9 seconds to come up with 25 rules.
JOJO-FOL needed 43.0 seconds to produce 8 rules.

Both algorithms only produced rules of 80% accuracy or higher. This might be the reason why
both algorithms could not find rules for every number of finite elements. In the case of JOJO-
FOL the additional requirement was made that each rule must cover at least 3 positive
examples. So even no useful rules were found for 4 and 8 finite elements. Also, we allowed
JOJO-FOL to use 5 variables (3 of type Edge and 2 of type Number6), but actually only three
are occuring in the rule set (the variable of type Number has been replaced by the constant it is
assigned to). Negative literals were excluded from the rule premises. Comparing the two
generated rule sets it is surprising that JOJO-FOL produces in many cases more general rules
than FOIL though it performs a bidirectional search and not a general-to-specific one like FOIL.
The reason for that result can be assumed to come from the hill-climbing strategy of FOIL that
always prefers the literal with the highest information gain (except determinate literals) to be
added to the premise. Since the resulting rules (in this case) are always correct no other
alternative literals are being checked in a backtracking procedure that might lead to shorter but
also correct rules. Except of the first rule, JOJO-FOL also generated only rules that are correct
in the sense that they do not cover any negative example! The first rule has been accepted by
JOJO-FOL because it covers 54 positive facts and just 3 negative ones achieving an accuracy
of 94.7%. The reason for the comparable small number of rules produced by JOJO-FOL may
also be another stop-criterion we implemented in our system. The outer loop terminates if in a
number of consecutive tries no acceptable rule has been found. (This parameter is set to 10 by
default, but may be changed by the user.) We know that we have to judge this first result on the
mesh design data very carefully since we have spend no effort so far on trying to optimize the
parameter settings neither of FOIL nor of JOJO-FOL. We just used the default settings except
excluding the negative literals from the premises. But it was our intention to show that JOJO-
FOL can handle larger data sets and is capable to generate useful rules with its bidirectional
search strategy. Further evaluation on the MESH data as well as on other domains like the
protein secondary structure, drug design or mutagenicity is necessary to allow a more

6. Of course, only one variable of type Number is needed, but our approach adds first a variable of type Number before it adds
another variable of type Edge. A third variable of type Edge was thought to be important for deriving useful rules.

11

significant predication on the comparison between both approaches.

4 Conclusion and Future Work

We presented an algorithm that learns single predicate definitions by using a bidirectional search
strategy. To be able to conduct a bidirectional search through a first-order hypothesis space we
restrict the space to be finite by excluding function symbols and fixing the number of variables to
syntactically limit the set of possible literals. Evaluating the rules from the premise to the head
allows a very efficient way to bind variables to constant tuples keeping the number of stored
substitutions as small as possible. Further on, if we do not allow negative goal literals in our
premise no explicit negative examples are needed under the closed-world assumption. Avoiding
negative examples gives our approach the possibility to handle larger amount of data more
efficiently. Some first small evaluations of our approach seem to support our intention to have build
an ILP algorithm that is potentially useful for data mining because of its efficient rule evaluation
and its sparingly used storage space by avoiding the explicit representation of negative examples.

Future work mainly concentrates on a thorough and extensive evaluation of our approach, but there
are still some other directions that need to be mentioned. Most urgent, we have to adopt some
methods to prevent infinite recursive clauses. In some test runs when allowing equality build-in
predicates we got such useless clauses as mesh(X,Y) <- mesh (X,Z) & =(Y,Z). We are considering
methods similar to the ordering of recursive literals by [CaQ93]. Another challenging task will be
to find better heuristics for estimating the number of variables needed and how they distribute to
possibly more than one type. The system should automate the process of inventing a new variable
of the most promising type when it sees no more chance to derive useful rules with the given set
of literals. Of interest is also to extend and/or improve the refinement operators of our bidirectional
heuristic search strategy since it is very myopia to consider always just one literal to be added or
deleted. A simulated annealing strategy like already employed to Frog [Fen93b] may also be of use
to overcome unimportant local optima. Finally, we can imagine to extend the window method to
an iterative "data mining method". After dividing the huge amount of real-world data into some n
disjunctive data sets we start with one of these sets to produce the first clauses. In a second iteration
we use another data segment together with the rules found in the first iteration to start a new search
with. This iterative process continues until all data has been input to the system.

Acknowledgements
I want to thank Dieter Fensel, Robert Engels and Guido Lindner for giving me valuable input for
the ideas presented in this paper and Bojan Dolsak from the Mechanical Engineering Department
of the Faculty of Technical Sciences in Maribor, Slovenia, for providing the Finite Element Mesh
Design data.

References
[CaQ93] R. M. Cameron-Jones and J. R. Quinlan: When Learning Recursive Theories. InProceedings of the 14th

International Joint Conference on Artificial Intelligence,Morgan Kaufmann, 1993.
[Fen93a] D. Fensel: JoJo: Integration of Generalization and Specialization. InProceedings of the Workshop

Knowledge and Data Engineering, Atelier d´Ingenierie des Connaissances et des Donees, A.I.C.D.,
Strasbourg, France, January 25-27, 1993.

[Fen93b] D. Fensel: RELAX, JoJo, and Frog: Step by Step Generalization of Search Strategies in Applied Machine
Learning. In research report, no 279, Institut AIFB, University of Karlsruhe, 1993.

[FeW93] D. Fensel und M. Wiese: Incremental Refinement of Rule Sets with JoJo. InProceedings of the European
Conference on Machine Learing ECML-93, Vienna, Austria, April 5-8, 1993, Lecture Notes in Artificial
Intelligence, no 667, Springer-Verlag, Berlin, 1993.

12

[KiW92] J.-U. Kietz and S. Wrobel: Controlling the Complexity of Learning in Logic Through Syntactic and
Task-Oriented Models. InS. Muggelton (ed.), Inductive Logic Programming, Academic Press, 1992.

[Llo87] J. W. Lloyd:Foundations of Logic Programming, Springer-Verlag, 2nd edition, Berlin, 1987.
[Mit81] T.M. Mitchell: Generalization as Search, B. Webber et al. (eds). InReadings in Artificial Intelligence,

Tioga Publishinh Co., Palo Alto, 1981.
[MuB88] S. Muggleton and W. Buntine: Machine Invention of First-Order Predicate by Inverting Resolution.

In Proceedings of the 5th International Conference on Machine Learning (ICML´88), 1988.
[MuF90] S. Muggleton and C. Feng: Efficient Induction of Logic Programs. InProceedings of the Workshop

on Algorithmic Learning Theory (ALT´90), Tokyo, October 8-10, 1990.
[Mug87] S. Muggelton: Duce, An Oracle Based Approach to Constructive Induction. InProceedings of the

10th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 1987, pp. 287 -
292.

[QuC93] J. R. Quinlan and R. M. Cameron-Jones: FOIL: A Midterm Report. InProceedings of the European
Conference on Machine Learning, Machine Learning: ECML-93, Vienna, Austria, April 5-7, 1993,
P. B. Brazdil (ed.), Springer-Verlag, Lecture Notes in Artificial Intelligence, no 667, 1993.

[Qui91] J. R. Quinlan: Determinate Literals in Inductive Logic Programming. InProceedings of the 12th
International Joint Conference on Artificial Intelligence, Sydney, 1991, pp. 746 - 750.

[Qui90] J. R. Quinlan: Learning Logical Definitions from Relations. InMachine Learning, vol 5, no 3, 1990,
pp. 239-266.

[RaB93] L. De Raedt and M. Bruynooghe: A Theory of Clausal Discovery. InProceedings of the 13th
International Joint Conference on Aritificial Intelligence (IJCAI´93), Chambery, France, 28 August
- 3 September, 1993.

[Rae92] L. De Raedt:Interactive Theory Revision: An Inductive Logic Programming Approach, Academic
Press, 1992.

[SaB86] C. Sammut and R. B. Banerji: Learning Concepts by Asking Questions. InMachine Learning: An
Artificial Approach, vol 2, Morgan Kaufmann, Los Altos, 1986, pp. 167 - 192.

[Sha83] E. Y. Shapiro:Algorithmic Program Debugging, MIT Press, 1983.
[Ull88] J.D. Ullman:Database and Knowledge-Base Systems, vol. 1, Computer Science Press, New York,

1988.
[Wie93] M. Wiese: JoJo:Integration von Generalisierung und Spezialisierung in ein heuristisches Verfahren

zum maschinellen Lernen von Regeln aus Beispielen, master thesis, Institut AIFB, University of
Karlsruhe, 1993.

