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Abstract

In this paper, the parallel implementation of various selection operators in evolutionary al-

gorithms on SIMD (Single-Instruction-Multiple-Data) computers is treated. Novel parallel

versions of �tness proportionate, linear ranking, and tournament selection are presented and

compared. It is found that these algorithms can be implemented such that their expected

behaviour is identical or very close to those of the sequential algorithms from which they

originated, but with the advantage of signi�cant speed improvements associated with paral-

lelism.

Keywords: evolutionary algorithms, genetic algorithms, parallel selection

1 Introduction

Evolutionary algorithms are highly parallel by nature since they concurrently work on a popula-

tion of candidate solutions. Looking at the typical structure of a genetic algorithm (cf. Fig. 1) it

is evident that reproduction, mutation, and especially the time consuming evaluation operation

can easily be done in parallel for di�erent individuals on di�erent processors.
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Figure 1: The basic loop of a genetic algorithm
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Selection, however, requires global information to determine the relative �tnesses of the indi-

viduals. Mating1 usually involves sending and receiving individuals and thus causes a lot of

communication between processors. For evolutionary algorithms without crossover (Evolution-

ary Programming, Evolution Strategies), the mating is omitted (unary reproduction), but the

problem of parallelising selection remains.

To circumvent this problem, researchers usually restrict selection and mating to subsets of the

population when designing parallel genetic algorithms, either by

A. introducing subpopulations that work largely independent of each other, except for occa-

sional exchanges of individuals (island model, see e.g. [12]) or

B. de�ning a spatial distribution on the population and restricting selection and mating to

the individual's local neighbourhood (di�usion model, see e.g. [11]).

Approach A is well suited to MIMD-computers where each of the relatively powerful processors

can host a whole subpopulation. Approach B is especially suited to SIMD-machines where

each processor is assigned a single individual and the spatial layout is de�ned by the processor

interconnectivity.

However, these aforementioned distributed algorithms are substantially di�erent from the original

sequential algorithm [6, 9] since they renounce global information; they are not global2. We

consider a selection scheme to be global if the selection probability of each individual is based

on its �tness relative to the �tness of all other individuals in the entire population, regardless

of where they are located. In this paper, three global selection schemes for SIMD-computers are

proposed, examined, and compared.

The outline of the paper is as follows: Section 2 recalls three basic selection schemes used

for sequential algorithms. In Section 3, parallel versions of these three selection schemes are

presented. A summary and various pertinent conclusions can be found in Section 4.

1.1 Notation

The following notation is used throughout this paper: N refers to the number of individuals in

the population; fi is the �tness of individual i; pi is the probability that a particular individual

is selected in a single selection step; E(i) is the expected number of copies of individual i after

N selection steps (thus E(i) = Npi); �i refers to the pre�x sum associated with individual i;

and �i is the rank of individual i with respect to �tness, ranging from 1 (least �t) to N (most

�t).

2 Sequential Selection

Selection plays an important role in evolutionary computation since it determines which indi-

viduals are allowed to survive and to reproduce. Without selection, evolutionary algorithms

would be not much di�erent from random walk. Only selection directs the process towards more

promising regions of the search space.

1By the term mating we mean bringing together two parents for reproduction. On parallel architectures where

di�erent individuals may be located on di�erent processors, this may be expensive.
2Of course it is widely accepted that such local selection schemes may in some cases have a positive e�ect on

the algorithm since they allow individuals to develop in more or less isolated niches. This issue, however, is not
addressed in this paper.
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The literature suggests several di�erent selection schemes, the most prominent are probably

�tness proportionate selection, linear ranking selection, and tournament selection. In this section

we shall briey recall these selection schemes.

Comparisons of di�erent selection schemes by means of characteristics like selection pressure,

loss of diversity, or takeover time can be found in [1, 2, 3, 7, 8]. The main characteristics that

we use in this paper to describe and compare the algorithms is the selection probability, pi,

the expected number, E(i), of copies of an individual after the whole selection process, and the

required computational complexity.

2.1 Sequential Fitness Proportionate Selection

This method was proposed by Holland in his pioneering work on genetic algorithms [9] and

is traditionally the most commonly used selection operator. It yields selection probabilities as

follows:

pi =
fiPN
i=1 fi

(1)

where fi is the �tness of individual i, and N is the number of individuals in the population.

It can be implemented by Algorithm 1 (usually referred to as the Roulette Wheel selection

method).

Algorithm 1 Sequential �tness proportionate selection

1. Calculate pre�x sums, �i =
Pi

j=1 fj , for each individual. O(N)

N times:
2. Generate a random number, r, between 0 and �N O(1)

3. Select the individual, k, for which �k�1 < r � �k (we de�ne �0 = 0). O(logN)

2.2 Sequential Linear Ranking Selection

Linear ranking selection involves ranking the individuals with respect to their �tness, and then

selecting parents on the basis of their rank rather than their �tness value.

Each individual is assigned a rank, �i, between 1 (worst) and N (best). No two individuals

may have the same rank, and cases where the �tnesses of individuals are equal may be resolved

arbitrarily. It is common to assign a selection probability p1 = 0 to the worst individual, pN = 2

N

to the best individual, and to interpolate linearly in between. This may also be expressed in the

following equation:

pi =
�i � 1PN

j=1(j � 1)
=

2(�i � 1)

N(N � 1)
(2)

It thus follows that the expected number of individuals after N selections is:

Erank(i) =
2(�i � 1)

N � 1
(3)

To select from a population with this probability the procedure given in Algorithm 2 may be

used.
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Algorithm 2 Sequential linear ranking selection

1. Sort individuals wrt �tness. O(N logN)

N times:
2. Generate a random integer, r, such that 0 � r < 1

2
N(N � 1) O(1)

3. Calculate the selected rank, �r =
jq

1

4
+ 2r+ 1

2

k
O(1)

4. Select the individual with a rank equal to �r. O(1)

Note that since the individuals of the population are sorted in order of increasing �tness before

selection commences, the selected rank, �s, can be used as an index into the data structure

containing the populations. Fetching the parent can therefore be done without having to search

as is required in conventional �tness proportional selection.

2.3 Sequential Tournament Selection

With tournament selection, a single individual is selected by randomly (usually with replace-

ment) choosing t (t � 1, tournament size) individuals from the population and selecting the best

individual out of this group. A common tournament size is t = 2, but a generalisation to larger

t is possible. See Algorithm 3.

Algorithm 3 Sequential tournament selection

N times:
1. Choose t individuals from the population at random with replacement. O(t)

2. Select the individual with the highest �tness in the tournament group. O(t)

For individual i to be selected in a particular selection step, it must be in the tournament group

AND all of the other individuals in the tournament group must have a rank which is less than

or equal to �i. The formulas below give the probability of this event to occur.

For tournament selection with replacement, the selection probability for individual i ist:

pi =
�ti � (�i � 1)t

N t
(4)

The expected number of copies of individual i selected in N selection steps is given by:

Etour(i) =
�ti � (�i � 1)t

N t�1
(5)

Without replacement the probability of selection becomes:

pi =

�
�i
t

�� ��i�1
t

�
�N
t

� (6)

resp.

Etour(i) = N

�
�i
t

� � ��i�1
t

�
�
N
t

� (7)

where again it is assumed that no two individuals share the same rank (cases where the �tnesses

of individuals are equal may be resolved arbitrarily).
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Note that although this selection method has a partially local character (select best individual

out of a small group of individuals), it is still global, since the tournament group is drawn anew

from the whole population for every member of the new population.

3 Parallel Selection

As was mentioned in the introduction, the selection (with associated fetching3 operation) as

well as mating are those parts of a parallel algorithm which will usually cause the most inter-

processor communication. In this section we shall describe parallel variants of each of the

selection algorithms of the previous section.

For the discussion of these algorithms we will assume a population of N individuals on N

processors connected as a
p
N�pN mesh-connected array. In our statements on complexity we

assume that standard mesh algorithms are used for sorting, routing, pre�x computation etc. (cf.

[10]). Since many SIMD computers (like e.g. MasPar) are additionally equipped with a global

routing network, we also make some comments on how that network might be used.

For the algorithms below, it is furthermore assumed that the o�spring completely replaces

the parent generation, as is common in the area of genetic algorithms (see [6]), and that two

parent individuals produce two o�springs. However, it is relatively easy to modify the presented

algorithms such that e.g. the N processors host 2N individuals, that the o�spring competes

with its parents for survival, or that two parents produce only one child.

3.1 Parallel Fitness Proportionate Selection

The algorithm we propose here performs four basic steps: �rstly, the roulette wheel is built, i.e.

each processor gets to know which part of the roulette wheel it represents. Then, each proces-

sor selects a parent individual by drawing a random number. Thirdly, the random numbers are

matched with the roulette wheel segments and the addresses of the processors of the correspond-

ing roulette wheel segment are determined. Finally, the individuals are sent to the processors

that requested it. For mating, it is su�cient to just have the processors exchange copies of their

parent individuals with their right or left neighbour since these are random mating partners.

The algorithm is detailed in Algorithm 4.

The total complexity of this operation is O(
p
N). Given a computer platform where a fetch-

operation is available that uses a global routing network (like e.g. on a MasPar), it may be

advantageous to stop after step 4, have each processor send �j to processor j and then have

each processor fetch its individual from processor �j . Doing so might result in a worse worst

case complexity (e.g. if all processors request the same individual), but in a better average case

complexity (since the gobal routing network should be faster).

3.2 Parallel Linear Ranking Selection

For Linear Ranking Selection, the rank of each individual can be easily obtained by a parallel

sorting operation (cf. step 1 in Algorithm 5). Determining the rank of a selected individual is

easy as well, since the probabilities for selection do only indirectly depend on the �tness values.

Fetching the desired individuals (steps 3 to 9 in Algorithm 5) is not as straightforward, if special

cases (e.g. all processors request the same individual) should still be handeled in O(
p
N) time.

3The term fetching is used to describe the process of retrieving a selected individual from the processor on

which it is located.
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Algorithm 4 Parallel �tness proportionate selection

1. Calculate pre�x sums �i with respect to the �tness values and broadcast �N
(the total �tness) to all processors.

O(
p
N)

2. In each processor, j, draw a random number rj between zero and �N . O(1)

The following steps 3 and 4 serve to determine the address �j of the selected parent, i.e. if

�i�1 < rj � �i, then �j = i.

3. Merge the two sequences (�1; :::; �N) and (r1; :::; rN) into snakelike order such

that each processor receives two numbersa.

O(
p
N)

4. Count the number of �i's smaller than an rj by another parallel pre�x com-

putation (leading to pre�x sums c1; :::; c2N). If rj is the k'th r-element of the

sorted sequence (step 3), then ck + 1 is the address of the processor storing

the parent selected by processor j, i.e. �j = ck + 1.

O(
p
N)

By the following steps 5 to 9, the selected parents are sent to their destination processors.

5. Sort all pairs (�j ; j) into snakelike order (wrt the �rst components). This

results in the sequence (�j1 ; j1); (�j2; j2); :::; (�jN ; jN).

O(
p
N)

6. If �jk�1
6= �jk then processor k sends its address (k) to processor �jk . O(

p
N)

7. If processor i received an address k in step 6, it sends its individual, xi, to

processor k.

O(
p
N)

8. If processor k received an individual x in step 7, it broadcasts (using multicast)

x to all the processors k0 for which �jk = �jk0 . After this step, every processor

contains an individual x and a pair (�j; j), x having been originally requested

by processor j.

O(
p
N)

9. Each processor sends "its" individual x to processor j. O(
p
N)

After this step, every processor has received the individual corresponding to the random number

chosen in step 2.

Mating:

10. Each processor: fetch second parent chromosome from neighbouring processor.

Odd processors fetch from the left and evens fetch from the right.

O(1)

11. Perform crossover on parent chromosomes to form o�spring. O(1)

aActually it is necessary to use pairs (rj ; j) instead of just rj because the index j (address of selecting processor)
is needed later on.
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The passing of pointers to the processors where particular chromosomes reside, rather than the

passing of the actual chromosomes, is done in order to reduce interprocessor communication.

If a global routing network is available, one might instead have each processor s fetch from

processor �s the pointer p�s and then fetch its individual from processor p�s .

Mating, again, is easy since the local neighbours can function as random mating partners.

Algorithm 5 Parallel linear ranking selection

Selection:
1. Let fi be the �tness of the individual on processor i. Sort pairs (fi; i) wrt.

their �rst components. As a result, each processor j contains a pair (fi; i)

such that individual i has rank j, i.e. processor j has a pointer, pj = i, to the

processor on which the individual with rank j is located

O(
p
N)

2. Each processor: generate a random number, rs, between 0 and 1

2
N(N � 1)� 1

(inclusive), and calculate the selected rank, �s =
jq

1

4
+ 2rs +

1

2

k
.

O(1)

3. Sort the selected ranks �s into snakelike order. This results in a sequence

(�s1 ; �s2; :::; �sN)

O(
p
N)

4. If �jk�1
6= �jk then processor k sends its address (k) to processor �jk . O(

p
N)

5. If processor l received an address k in step 4, it sends its pointer pl back to

processor k.

O(
p
N)

6. If processor k received a pointer pl in step 5, it sends its address (k) to processor

pl.

O(
p
N)

7. If processor i received an address k in step 6, it sends its individual, xi, to

processor k.

O(
p
N)

8. If processor k received an individual x in step 7, it broadcasts (using multicast)

x to all the processors k0 for which �jk = �jk0 . After this step, every processor

contains an individual x and a pair (�j; j), x having been originally requested

by processor j.

O(
p
N)

9. Each processor sends "its" individual x to processor j. O(
p
N)

Mating:

10. Each processor: fetch second parent chromosome from neighbouring processor.

Odd processors fetch from the left and evens fetch from the right.

O(1)

11. Perform crossover on parent chromosomes to form o�spring. O(1)

3.3 Parallel Spatial Tournament Selection

In this section, we propose a parallel variant of the tournament selection method where the

tournaments are laid out spatially, i.e. tournaments are held in the local neighbourhood of

each processor. We therefore call this method Spatial-Tournament (ST) Selection. As we will

show, it exhibits very similar expected behaviour to the linear ranking or sequential tournament

methods, but is much easier to parallelise. The selection method is global since it combines local

tournament selection with mixing the whole population spatially.

The exact procedure is given in Algorithm 6.

The local neighbourhood is de�ned by the processor connectivity and usually will encompass

n = 2; 3 or 4 other processors. Note that the mixing operation for mating (step 3) may be

unnecessary. It is not possible, as in the other proposed algorithms, to just mate with one's

right or left neighbour, since this neighbourhood has already inuenced the selection process
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Algorithm 6 Parallel spatial tournament selection

Selection:

1. mix individuals

- each processor: choose random number O(1)

- sort individuals by random number O(
p
N)

2. each processor: select best individual in neighbourhood O(n)

Mating:

(3). mix individuals

- each processor: choose random number O(1)

- sort individuals by random number O(
p
N)

4. Each processor: fetch second parent chromosome from neighbouring processor.

Processors in odd rows fetch from the north and processors in even rows fetch

from the south.

O(1)

5. Perform crossover on parent chromosomes to form o�spring. O(1)

and it would no longer be a random mating. However, it would be su�cient to ensure that the

mating partners' neighbourhoods do not overlap. For example, for neighbourhood size of two

(one's right neighbour) it would be acceptable if all individuals in even rows would mate with

their southern neighbours, all individuals in odd rows with their neighbours to the north. This

speeds up the algorithm by a factor of two, approximately.

Theorem 1 The expected number of instances of an individual with rank �i after ST-Selection

with neighbourhood-size 2 is

EST;n=2(i) =
2(�i � 1)

N � 1
: (8)

Proof: W.l.o.g. we can assume that individual i is located on processor x as shown in Figure

2. Then there are 2 ways in which it can be selected: (1) by processor x itself if it's �tness is

greater than that of the individual's right-hand neighbour, or (2) by the processor to it's left if

the �tness of the individual on that processor is lower.

The probability of each of these is �i�1
N�1

, and so the total probability of individual i being selected

is 2�i�1
N�1

.

Theorem 2 Given a neighbourhood-size of n, the expected number of instances of an individual

of rank �i after ST-selection is

EST (i) = n

n�1Y
�=1

�i � �

N � �
(9)

.

Proof: Again, w.l.o.g. one can assume that the individual with rank �i has been placed on pro-

cessor x. With neighbourhood size n, individual i belongs to the neighbourhood of n processors.

From each of these n processors it is selected if the processor's (n� 1) other neighbours all have
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Figure 2: 2-neighbourhoods encompassing processor x.
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Figure 3: The expected value of of an individual's copies after ST-selection with neighbourhood

n = 2, 3 and 4.

rank less than �i. There are exactly (�i� 1) individuals with lower rank and the probability for

all n � 1 neighbours of one processor having a lower rank is

��i�1
n�1

�
�
N�1

n�1

� =
n�1Y
�=1

�i � �

N � �
:

Some example graphs of E(i) for neighbourhood sizes n = 2; 3 and 4 are displayed in Figure 3.

Theorem 3 The expected number of copies of an individual after ranking selection, tournament

selection with t = 2 and no replacement, and ST-selection with n = 2 are identical, i.e.

Erank(i) = Etour;t=2(i) = EST;n=2(i); i = 1; 2; : : :N (10)

Proof: Equations 3 and 8 are identical for n = t = 2. Substituting t = 2 into equation 7 and

breaking up the a-choose-b expressions yields again the same equation as equation 8.

But while having the same reproduction rates certainly makes these three schemes very similar,

they are not equal:
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� another extension would be to use �tness proportionate or ranking selection instead of

tournament selection in the local neighbourhoods.

4 Conclusions

When parallelising evolutionary algorithms, the selection and mating operations are the major

bottleneck.

In this paper, we presented three fast implementations of global selection algorithms for mas-

sively parallel SIMD (Single Instruction Multiple Data) computer architectures.

The �rst two parallel selection schemes were just e�cient parallel versions of standard �tness

proportionate selection resp. linear ranking selection.

The third algorithm presented, called Spatial Tournament (ST)-Selection combines the partially

local character of tournament selection with a global random assignment of individuals to tour-

nament groups. As such, it es extremely simple and easy to implement, but exhibits the same

expected behaviour as linear ranking selection or tournament selection without replacement.

The selection variance, however, is smaller, and since the best individual is chosen exactly twice,

it implicitly is an elitist selection strategy.

All the presented algorithms have running time of O(
p
N), compared to O(N logN) resp. O(N)

in the sequential case.

So, while nowadays most evolutionary algorithms on massively parallel SIMD machines are

variants of the di�usion model, the algorithms presented in this paper may encourage to alter-

natively implement parallel versions of the ordinary global evolutionary algorithm or the island

model (as has been done by [5]) on the SIMD computer platform.

Future research in this area will include empirical evaluations on the proposed algorithms, the

design of more hardware-customized selection schemes like ST-selection and a closer investigation

of the inuence of selection variance on the run of the evolutionary algorithm.
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