w metadat<u>a,</u> citation and similar рь агро **е 🚡 Св О**г **F**

unseen test text was determined through cross validation on all available text data. As a desirable baseline, word accuracy was also tested on a closed-vocabulary scenario yielding a performance of 66.9%.

Figure 4. Mapping of Acoustic and Language Modeling Dictionaries during Recognition Process

5.1. Morphem-based Decorpoition

Pure morphem based recognition (as described in MORPH2) measured on word basis slightly outperforms the result achieved with word bigram models by 0.7% (table 6). As the vocabulary size of the acoustic dictionary used within the recognition process is much smaller than on word basis, recognition speed is accelerated by one third.

52. Rot Fom Dorpsition

Using root forms only reduces the original language model

dictionary from 3821 words to 3205 root forms. This means
a 16% reduction in the vocabulary used as basis for language modeling. The relatively small decrease results
10% perplexity improvement and thus a slightly
gramlanguage model. However, root for
as acoustic dictionary for the re
all inflections also ha

and Morphem Perplexity

Utteranes

n the morphems iny, as it can be seen
rage of morphems almost aprage found in the English language
man word coverage of 88% by 3% based on
ning data.
ng the number of tokens in table 4, we see that
the average one word becomes 1.25 tokens within the

morphem based framework. All available 225 training dia-

logues were used for building two overall language models:

One based on words, the other on their morphem decom

positions. Smoothing was done by absolute discounting [2] in both cases.

As to be expected the reduction in vocabulary growth

leads to a significant perplexity reduction when comparing

morphem based language models with word models. Taking into account that only every fourth word has been decomposed the perplexity results are surprising: Morphem

bigramperplexity is 48% lower than word bigram, for trigrams there is a 51% reduction (see table 5).

4.1 Mydenbsed Decapsition

Even though perplexity reduction (and also the restriction of dictionary growth) is highest when using a linguistic-based decomposition of words, (see table 6) are degrading convergence recognition process. The second recognition process is the second recognition process.

² Hydens are used for darification purposes as decumpation.

markers only and do not appear in the actual Gennen spelling. Table 4. Comparing Word and Morphem Vocabulary

al ready known to the dictionary.

USING MORPHOLOGY TOWARDS BETTER LARGE-VOCABULARY SPEECH RECOGNI TI ON SYSTEMS

P. Geut ner

Interactive Systems Laboratories
Department of Computer Science,
University of Karlsruhe,
76128 Karlsruhe, Germany

ASTRAT

To guarantee unrestricted natural language processing,
state-of-the-art speech recognition systems require huge dictionaries that increase search space and result in performance degradations. This is especially true for languages
where there do exist a large number of inflections and com
pound words such as German, Spanish, etc. One way to
keep up decent recognition results with increasing
lary is the use of other base units than sin
paper different decomposition me

morphological decomposi be compared. Not vocabulary g data,