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ABSTRACT

In this paper, we present an overview of research in our laboratories on Multimodal
Human Computer Interfaces. The goal for such interfaces is to free human computer inter-
action from the limitations and acceptance barriers due to rigid operating commands and
keyboards as only/main I/O-device. Instead we move to involve all available human com-
munication modalities. These human modalities include Speech, Gesture and Pointing,
Eye-Gaze, Lip Motion and Facial Expression, Handwriting, Face Recognition, Face
Tracking, and Sound Localization.

1. INTRODUCTION

Recent developments in the computer and communication industries are accelerating the
pace and variety of forms in which information is delivered to users worldwide. This, in
turn, multiplies the problems associated with managing and interacting with the new
wealth of data and information. The combination of sound, images, and text is already
available on Multimedia PC’s and publishing companies are advancing their goal of deliv-
ering multimedia information to everyone as the “Information Super-Highway” unfolds.
While the multiplicity and amount of information expands, ways to access it or communi-
cate with it remain limited. Relatively primitive input devices and interfaces, such as key-
board and mouse still dominate as interface. In contrast, human-to-human communication
takes advantage of a wealth of hints and signals, explicit or implicit, that are lost in
human-computer interaction. Meeting “face-to-face”, having “eye-contact”, “reading
one’s lips”, “handwaving”, “pointing one’s finger at someone or something”, as well as
“plain talk” make human communication richer than simple text transmittal. Speech and
writing represent perhaps the most direct expressions of language, but are routinely com-
plemented by other mostly visual modalities (e.g., “body-language”). These will need to
be processed also if one hopes to achieve truly natural human-computer interaction. To
increase their effectiveness, human-computer interfaces should, therefore, include and
combine visual as well as spoken or textual language to represent the full spectrum of
human communication.

In this paper, we present our efforts toward developing richer human-computer and com-
puter mediated human-human interfaces, that attempt to embrace and take advantage of
all communication modalities. The INTERACT project involves a number of research
projects in progress at our labs at Carnegie Mellon University in Pittsburgh, USA, and
University of Karlsruhe, Germany. They are aimed at interpreting the visual and acoustic
instantiations of language as we use them to communicate day to day. The modalities of
interest in our work at both labs are: speech understanding (and translation), sound source
localization, gesture recognition, lipreading, handwriting recognition, eye- and face track-
ing. Our research involves improving recognition accuracies of the modality specific com-
ponent processors, as well as development of optimal combination of multiple input
signals to deduce user intent more reliably in cross-modal “speech”-acts. More specifi-
cally, we aim to combine visual, acoustic and textual cues, including:

• Speech recognition with lipreading for more robust recognition

• Gesture with speech for multimodal interpretation

• Speech with Handwriting for more flexible, redundant input
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• Face- and eyetracking with sound source localization for robust speech extraction in
adverse acoustic environments (the cocktail-party effect)

• Face- and eyetracking with speech recognition for focus of attention (who is the user
talking to? What is he/she referring to?)

We have begun attacking these advanced goals along a rather broad front of activity. The
present paper reviews where we currently stand in three of these subtopics: lipreading (as
a complement to speech recognition), gesture recognition (as a complement to speech) and
on-line handwriting character recognition. Wherever possible, we develop learning strate-
gies (mostly connectionist and statistical), to ensure scalability and portability to larger
and different application domains. In the following we discuss these three efforts and
report on initial results of cross-modal integration.

2. AUTOMATIC LIP-READING AND SPEECH RECOGNITION

Lip movement is a visual information source tightly and synchronously coupled to the
acoustic speech act and hence can be naturally viewed as an integral part of a speech rec-
ognition effort. This is in contrast to other communication modalities described later in
this article, such as gestures or handwriting, which may be invoked independently of
speech.

Most approaches to automated speech recognition (ASR) that consider solely acoustic
information are very sensitive to background noise or fail totally when two or more voices
are present simultaneously (cocktail-party effect), as often happens in offices, conference
rooms, outdoors, and other real-world environments. Humans deal with these distortions
by considering additional sources such as directional, contextual, and visual information,
primarily lip movements. This latter source is subconsciously involved in the recognition
process and is used extensively by hearing-impaired individuals, but also contributes sig-
nificantly to normal hearing recognition. The usefulness of lip movement stems in large
part from its rough complementariness to the acoustic signal: the former is most reliable
for distinguishing the place of articulation (ex. [15]), the latter conveys most robustly
manner and voicing information (ex. [17]).

The task of exploiting lip-reading in an automatic speech recognition system requires the
solution of two conceptually distinct but not independent problems: suitable representa-
tion and recognition of the visual signal and the integration of thus obtained visual evi-
dence with the acoustic side. Clearly, a given type of visual pre-processing will constrain
the options available for further combination of the two sources.

2.1  Related Research

The first significant attempt to supplement acoustic ASR with lip-reading was the system
built by Petajan and applied to a speaker-dependent isolated-word (vocabulary of 100
words) recognition task [21]. Four static features were extracted from each image frame
and a linear time-warping procedure was used to identify the most probable word. By
combining the output of the optical recognizer with that of a commercial ASR system the
recognition rate was improved from 65 to 78 percent. In a follow-up effort [22] simplified
optical processing was used to achieve near real-time performance. The image of the
speaker’s mouth area was captured by a camera and lighting system installed in a head-
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mounted harness, circumventing some image-processing problems. The combination of
optical and acoustic decisions was achieved via a set of 30 heuristic rules. The overall per-
formance was similar to the earlier system.

Pentland and Mase [20] chose to parameterize the oral cavity image by computing average
optical flow vectors in four regions of the picture designed to capture the movement of
particular facial muscles. The regions were selected manually by the experimenters. They
used template matching (on optical data alone) to recognize strings of three to five digits
from three speakers. Average word recognition rate was roughly 75%.

Neural networks were used by Yuhas et al. [38] with both optical and acoustic input to dis-
tinguish among 9 vowel phonemes under varying acoustic signal-to-noise ratio (SNR).
Only static images (not sequences) were used as the optical input. Furthermore, the rela-
tive contribution of visual and acoustic information was adjusted according to the SNR by
an “omniscient controller” (i.e., the value of the SNR is explicitly given). The visual input
was shown to compensate for noise-induced performance drop in purely acoustic recogni-
tion.

Stork et al. [27] measured the position of ten reflective markers placed on the lips of the
talker thus significantly simplifying the issue of optical data capture. From these measure-
ments they derived five parameters as the visual input. Separate Time Delay Neural Net-
works (TDNN) processed acoustic and optical data to render a decision on one of 10
English letters spoken in isolation. Visual and acoustic-alone recognition was 51 and 64
percent, respectively. By combining the outputs in a Bayesian framework, they achieved
overall performance of 91%.

Goldschen [8] used 13 visual features extracted from processed image frames acquired
with a head-mounted camera as in [22] to identify one out of 150 possible TIMIT sen-
tences spoken by a single talker. It appears that the sentences were treated essentially as
very long words in this setup. Vector quantization of the input allowed the use of discrete
Hidden Markov Models (HMM) in the recognition process. The system using generalized
“triseme” models achieved 25% recognition rate (visual information only).

2.2  Initial System

Our integrated acoustic/visual continuous-speech ASR system was first reported in [6]. It
was developed for a spelling task using the German alphabet. Training and test utterances
comprise spelled (without pauses) names and nonsense letter sequences of arbitrary and
unknown to the recognizer lengths. The task is thus equivalent to continuous recognition
with a small but highly confusable vocabulary.

2.2.1  System Description

We record acoustic and visual data in parallel and pre-process them as illustrated in
Figure 1. The acoustic signal is sampled at 16kHz with 12-bit resolution. A fairly standard
front-end then computes 16 Melscale Fourier coefficients on Hamming-windowed speech
segments at a 10 msec frame rate.
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Visual data was initially captured as 256x256 pixel images with 8-bit gray level resolution
per pixel. A smaller area of 144x80 pixels centered on the mouth was then manually
extracted and, after low-pass filtering, downsampled to a 24x16 pixel image. The resulting
384 gray level values were then normalized for each frame to lie between -1.0 and 1.0 and
constituted the visual evidence available to the classification algorithms.

We use a modular Multi-State Time Delay Neural Network (MS-TDNN) [13] to perform
the actual recognition. Figure 2 shows the architecture. Through the first three layers
(input-hidden-phoneme/viseme) the acoustic and visual inputs are processed separately.
The third of these layers produces activations for 65 phoneme states on the acoustic side
and 42 viseme states on the visual side. A “viseme” is the rough correlate of the phoneme,
i.e., the smallest visually distinguishable unit of speech. In general, and for our purposes,
visemes are defined by a many-to-one mapping from the set of phonemes. This reflects the

Figure 1. Bimodal Data Acquisition for Speech Recognition and Lip-reading

Figure 2. Network Architecture for the Audio/Visual ASR System

Acoustic TDNN Visual TDNN

Phoneme/Viseme
State Layer

Hidden Layer

Input Layer

Combined Layer

DTW Layer

Letter Hypotheses (26 German Letters)
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fact that many phonemes (for instance: /p/, /b/, /m/) are essentially indistinguishable from
visual information alone. In our system phoneme-to-phoneme (and thus viseme-to-
viseme) transitions were included as separate phone-(viseme-)states.

The outputs of the phoneme and viseme layers are integrated in the units of the combined
layer (this layer does not exist in the basic MS-TDNN). The activation of each combined
phone-state is the weighted sum of the activations of the corresponding phoneme-state and
viseme-state units. Some visemes will therefore influence more than one of the combined
layer units. In the final layer (which copies the activations from the combined layer) a one
stage Dynamic Time Warping algorithm [18] is applied to find the optimal path through
the phone-hypotheses that corresponds to a sequence of letter models.

Network training is done in two phases. First, the acoustic and visual sub-nets are trained
separately to fit phoneme/viseme targets. Second, the complete network is trained to fit let-
ter targets. Error backpropagation is used to find the connection weights resulting in opti-
mal recognition of the training data. The weights determining the combination of the two
sub-nets are not trained this way, rather they are computed dynamically during recognition
to reflect the apparent reliability of the sub-net outputs. Specifically, the activations of the
phoneme and viseme layers are normalized to represent probabilities and the entropy of
each sub-net’s output is computed. Low entropy signifies probability concentrated in a few
units, i.e., relative confidence in the respective sub-net’s identification. Conversely, high
entropy corresponds to near equal probability of most phonemes or visemes. Accordingly,
we symmetrically weight the acoustic and visual contributions to the combined layer in
inverse proportion to their respective entropies.

2.2.2  Results

Table 1 shows recognition performance originally achieved on a speaker-dependent task
[6]. Training data consisted of 75/200 training and 39/150 testing sequences for speaker

msm/mcb. Misclassified, omitted and inserted letters were counted as errors. In the
“noisy” experiments the acoustic data was corrupted with broadband noise until the acous-
tic-alone performance was significantly reduced.

The results show that adding visual information can significantly boost overall recognition
rate despite the relatively poor performance on visual input alone. The improvement is
naturally most evident when the acoustic speech is noisy.

Speaker Acoustic Visual Combined

msm/clean 88.8 31.6 93.2

msm/noisy 47.2 31.6 75.6

mcb/clean 97.0 46.9 97.2

mcb/noisy 59.0 46.9 69.6

Table 1. Word Accuracy of Speech/Lip System
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Further experiments were carried out on a database of 6 speakers (2 female, 4 male) to test
the performance on a multispeaker task [7]. 80 sequences per speaker were used for train-
ing and 10 for testing. Visual-alone mode achieved only 12.2% word accuracy. Nonethe-
less, by adding it to the acoustic-mode we reduced error rate by 8.6% for clean speech and
28.9% for 30 dB SNR.

2.3  Current Development Directions

At present we are seeking to improve the performance of the system on the letter spelling
task, with the view of extending it to continuous speech recognition. We have been con-
centrating on the visual side of the system since the acoustic technology is much more
mature at this point.

2.3.1  Robustness

In a practical system, manual extraction of the mouth region from the face image is not
acceptable. As a first step away from this method we have recorded new data where the
speaker is asked to position himself such that his lips are visible within a rectangle shown
on the workstation screen. The image in that frame is then used directly.

We have been experimenting with this system to understand the principal weaknesses and
sources of “fragility”. Contrary to initial suspicion, the processing appears relatively
insensitive to reasonable variation in lighting conditions. We have implemented a different
version of the gray-level normalization procedure that further protects the performance
under varying average image brightness. Severe illumination gradients would still pose a
problem and might be alleviated through adaptive histogram equalization. However, this
would significantly increase the computational load.

The shift of the lip image within the frame has been found to cause a more serious degra-
dation as shown in the following experiment. We trained the network on 180 newly
recorded sequences from one speaker. The images in the training sequences that the net-
work recognizes perfectly were then diagonally shifted within the frame by three pixels.
The direction of shift was chosen at random for each successive image (even in the same
sequence). This shift is equivalent to the speaker moving his face by only about 2 millime-
ters. Yet the word accuracy dropped to 87%. With a six-pixel shift the recognition was
66%. Even more severe losses were observed when the shift was effected in a constant
direction.

We are investigating several approaches to counteract this effect. First, we are designing a
detector to automatically and precisely locate the lips within a picture. In addition to com-
pensating for the likely shifts, this would obviate the need for the speaker to hold his head
in a constant orientation. Initial, speaker-dependent results indicate that a neural network
detector can reliably locate the lip region under varying image size, lighting and back-
grounds.

To further increase robustness, we are training the visual TDNN on several copies of the
training images artificially shifted and scaled. The idea is to let the network learn the pat-
terns as they may occur in different locations and sizes within the frame. With 600 training
sequences (created with artificial image translation but at constant size) the system already
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shows insensitivity to image shifts, approaching the performance levels observed on orig-
inally hand-excised frames. Finally, we are investigating different parameterizations of the
input that might already exhibit shift invariance. The magnitude of the Fourier Transform
of the image is one such representation.

2.3.2  Parameterization

There is almost certainly much irrelevant and/or redundant information in the 384 gray
level values currently used as the visual input. Also, such a large parameter count
increases significantly the number of network weights that need to be estimated. A smaller
parameter set should lead to better generalization (particularly for speaker-independent
recognition) and computational load reduction. We would like to reduce the number of
visual parameters without invoking heuristics for image segmentation or feature extrac-
tion; the TDNN is expected to form its own internal representation of the relevant features.

Preliminary experiments show that we can represent the images by their first 32 principal
components, thus reducing the data by a factor of 6, without visibly undermining perfor-
mance. It should be noted that this representation (relying as it does on the correlations
among the original data points) is sensitive to image shifts, as also found in other studies
(ex. [30]). We are also investigating linear discriminant analysis, a related technique,
which might prove better for image classification (as opposed to representation).

2.3.3  Acoustic/Visual Integration

There is evidence that humans combine acoustic and visual information before classifica-
tion, i.e., without making separate decisions based on each modality [28][5]. An automatic
system should also benefit from integration at a low level, thanks to the availability of
cross-modal features (for instance, temporal relationships between events in the two
modalities). This is of course contingent on the availability of sufficient training data to
robustly train the magnified network that results from increasing the size of the input vec-
tor. Preliminary experiments [7] suggest that this approach to modality integration is, in
fact, not feasible without visual data reduction. This observation supplies more motivation
still for the work described in 2.3.2.

Low level modality integration allows us also to avoid the tricky problem of viseme spec-
ification. While it is reasonably straightforward to specify the phoneme-to-viseme map-
ping in discrete syllables, the same is not true for continuous speech, especially when
considering segmentation and coarticulation effects. However, if we are lead to maintain
integration at the phoneme/viseme level, the combination scheme will be expanded. The
units in the combined layer would likely benefit from drawing inputs from more than just
the corresponding phoneme and viseme. For instance, the identity of the “second guess”
of each sub-net should prove relevant.

3. ON-LINE CURSIVE HANDWRITING RECOGNITION

The recognition of cursive (or continuous) handwriting, as it is being written on a touch
screen or graphics tablet, has not only scientific but also significant practical value, e.g. for
note pad computers or for integration into multi-modal systems. Several different prepro-
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cessing and recognition approaches both for optical character recognition (OCR) and on-
line character recognition (OLCR) have been developed during the last decades. The main
advantage of OLCR is the temporal information of handwriting, which can be recorded
and used for recognition. In general this dynamic writing information (the coordinate
sequence) is not available in OCR, where input consists of scanned text (bitmaps). By
contrast, in OLCR systems, the spatial context and proximity of the strokes of characters
are distorted or lost, when one merely retains and uses pen coordinates as a function of
time.

We have developed an input representation for OLCR, which combines the advantages of
bitmaps used in OCR with the dynamic writing information of OLCR. In this input repre-
sentation characters and words are represented as a sequence of so calledcontext bitmaps,
which are basically low resolution descriptions of the coordinate’s neighborhood.

This input representation is used with a connectionist recognizer, which is well suited for
handling temporal sequences of patterns as provided by this kind of input representation.
This recognizer, a Multi-State Time Delay Neural Network (MS-TDNN) [11], integrates
the segmentation and recognition of words into a single network architecture. The MS-
TDNN, which was originally proposed for continuous speech recognition tasks [13][6],
combines shift invariant high accuracy pattern recognition capabilities of a TDNN [33][9]
with a non-linear time alignment procedure (dynamic time warping) [18] for aligning
strokes into character sequences.

Figure 3a shows the basic architecture of our on-line handwriting recognition system. This
recognition system is integrated into the example application, which is shown in
Figure 3b. The following sections describe the preprocessing techniques, the MS-TDNN
architecture, and present recognition results for writer-independent, single-character rec-
ognition tasks and large-vocabulary, writer-dependent, cursive handwriting recognition
tasks with vocabulary sizes from 400 up to 20000 words.

Figure 3b. Example ApplicationFigure 3a. System Overview
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3.1  Preprocessing

Preprocessing of the time-ordered coordinate sequence provided by the digitizer is per-
formed in two successive steps: normalization and feature extraction.

3.1.1  Normalization

Normalization is performed to remove irrelevant variability occurring in the raw coordi-
nate sequence. To compensate for varying writing speeds of different writers and of a sin-
gle writer within a single word or character, the coordinate sequence is resampled, so that
all successive coordinates are equally spaced. Then the resampled coordinate sequence is
smoothed, using a moving average window, which mainly removes undesired sampling
noise.

After that a baseline normalization of the word is performed. In a two stage process the
word is first rotated according to the linear regression through all points, to get a rough
correction of the word’s orientation. Then, in a second fine adjustment the word is rotated
according to the linear regression with respect to all local minima only. Finally, the word
or character is linearly rescaled to a fixed height.

3.1.2  Feature Extraction

The second step of our preprocessing is the extraction of features along the pen trajectory
yielding a sequence of time-ordered feature vectors. The basic idea of our feature extrac-
tion is to refer to low level topological features of the trajectory only and leave the extrac-
tion of high level features to the connectionist recognizer.

We started with a set of strictly local features similar to those in [25][9]. Each frame con-
sisted of information on the pen position (x, y coordinates), directional features (∆x, ∆y),
curvature, speed and pen-up/pen-down indicator. But an inspection of the confusion matri-
ces of networks trained on these features revealed significant problems in discriminating
between cursive letters like “a” and “u” or “g” and “y”, which look very similar and differ
only in small regions of the characters (see Figure 4 for examples). These problems arise
due to the fact that the features are strictly local, which means that they are local both in
space and time. Therefore they are inadequate for modeling temporal long range context
dependencies occurring in the pen trajectory.

The basis for the new set of features is a bitmap representation of the digitizer input. After
normalization of the input we map the sequence of points (xt, yt) to a grey scale bitmapB
= {b (i, j)}, whereb (i, j) indicates the number of points (xt, yt) falling into pixel (i, j).

Figure 4.  Differences between cursive characters, which are hard to detect, if only local
information is used

“a” “u” “g” “y”
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In contrast to the limitations of optical character recognition, where bitmaps are the only
source of information, we also know the time sequence of the points. This leads to the fol-
lowing method of combining spatial and temporal sources: Assume (xt, yt) falls into bit-
map pixel (i, j). Consider a locald x d section of bitmapB centered around (i, j)
(Figure 5b) and derive a 3 x 3 grey scale bitmapLt by averaging this section (Figure 5c).
That means, we derive a temporal sequence of low resolution bitmapsLt centered around
(xt, yt) (Figure 5a). These bitmaps plus directional information (∆x, ∆y) and the pen-up/
pen-down feature form the new set of input features we use for recognition.

These features are still local in space but no longer local in time. Each point of the trajec-
tory is visible from each other point of the trajectory in a small neighborhood. Therefore,
we call the local bitmapsLt context bitmaps. They seem to be appropriate for modeling
temporal long range and spatial short range phenomena as observed in pen trajectories.

3.2  The Multi-State Time-Delay Neural Network Architecture

The input representation, which is described in the previous section, is used with a con-
nectionist recognizer both for single character and cursive handwriting recognition tasks.
This recognizer integrates the recognition and segmentation of words into a single net-
work architecture, the Multi-State Time Delay Neural Network (MS-TDNN). Words are
represented as a sequence of characters, where each character is modeled by one or more
states. For the results in this paper, each character is modeled by 3 states, representing the
initial, middle, and final sections of a character.

In Figure 6 the basic MS-TDNN architecture is shown. The first three layers constitute a
standard TDNN with sliding input windows of certain sizes. This TDNN computes scores
for each state and for each time frame in the states layer. In the dynamic time warping
layer (DTW layer) each word of the vocabulary is modeled by a sequence of states, the
corresponding scores are simply copied from the states layer into the word models of the
DTW layer. An optimal alignment path is found by the DTW algorithm for each word and

Figure 5. Calculation of Context Bitmaps

a)

b)

c)
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the sum of all activations along this optimal path is taken as the score for the word output
unit.

Once the network is trained on a particular vocabulary other vocabularies of varying sizes
can be used without retraining, just by replacing the word models in the DTW layer.

All network parameters such as the number of states per character, the size of the input
windows, or the number of hidden units are optimized manually for the results presented
in this paper, but can also be optimized automatically by the Automatic Structure Optimi-
zation (ASO) algorithm that we have proposed elsewhere [3][4]. By using the ASO algo-
rithm, no time-consuming manual tuning of these network parameters for particular
handwriting tasks and training set sizes is necessary while achieving optimal recognition
performance.
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3.3  Experiments and Results

We have tested the input representation together with the MS-TDNN architecture both on
single character recognition tasks and cursive (continuous) handwriting recognition tasks.
The handwriting databases used for training and testing of the MS-TDNN were collected
at the University of Karlsruhe. All data is recorded on a pressure sensitive graphics tablet
with a cordless stylus, which produces a sequence of time ordered 3-dimensional vectors
(at a maximum report rate of 205 dots per second) consisting of the x-y-coordinates and a
pressure value for each dot. All subjects had to write a set of single words from a 400 word
vocabulary, covering all lower case letters, and at least one set of isolated lower case let-
ters, upper case letters, and digits. For the continuous handwriting results presented in this
paper only the data of one of the authors was used. All data is preprocessed as described
before.

Table 2 shows results for different writer independent, single character recognition tasks
(isolated characters). Writer dependent recognition results for cursive handwriting (iso-
lated words) can be found in Table 3. The network used for the results in Table 3 is trained
with aprox. 2000 training patterns from a 400 word vocabulary (msm_400_a) and tested
without any retraining on different vocabularies with sizes from 400 up to 20000 words.
Vocabularies msm_400_b, msm_1000, msm_10000, and msm_20000 are completely dif-
ferent from the vocabulary on which the network was trained and were selected randomly
from a 100000 word vocabulary (Wall Street Journal Vocabulary). First experiments on
writer independent, cursive handwriting databases have shown recognition rates of more
than 76% on a 400 word vocabulary.

These results show that the proposed input representation and MS-TDNN architecture can
be used both for single character recognition and cursive handwriting recognition tasks

Task Training Patterns Test Patterns Recognition Rate

0_9 1600 200 (20 writers) 99.5%

A_Z 2000 520 (20 writers) 95.3%

a_z 2000 520 (20 writers) 93.1%

Table 2. Single character recognition results (writer independent)

Task Vocabulary Size (words) Test Patterns Recognition Rate

msm_400_a 400 800 97.9%

msm_400_b 400 800 96.7%

msm_1000 1000 2000 94.8%

msm_10000 10000 2000 86.6%

msm_20000 20000 2000 83.0%

Table 3. Results for different writer dependent cursive handwriting tasks.
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with high recognition performance. The MS-TDNN performs well not only on the vocab-
ulary it was trained for (see taskmsm_400_a), but also for other vocabularies it has never
seen before (see taskmsm_400_b), even on much larger vocabularies (see tasks
msm_1000, msm_10000, andmsm_20000).

4. GESTURE RECOGNITION

We have been investigating pen-based gestures drawn using a stylus on a digitizing tablet.
This kind of gesture is simpler to handle than hand gestures captured with a camera but
still allows for rich and powerful expressions, as any editor who has to mark up manu-
scripts knows. Pen-based gestures are becoming popular on hand-held computers, but the
focus of our research is mainly on how gestures can be effectively combined with other
input modalities, because using gestures as the sole input channel seems to be a still
clumsy way of issuing commands to computers. In order to pursue this direction of inves-
tigation, we developed a multimodal text editor capable of recognizing speech and gesture
commands [31].

The initial multimodal editor we developed currently uses 8 editing gestures (see Table 4).
Some of these were inspired by standard mark-up symbols used by human editors. Others,
such as the “delete” symbols, are what most people would automatically use when correct-
ing written text with normal pencil and paper.

4.1  Input Representation and Preprocessing

We use a temporal representation of gestures. A gesture is captured as a sequence of coor-
dinates tracking the stylus as it moves over the tablet’s surface, as opposed to a static bit-
mapped representation of the shape of the gesture. This dynamic representation was
motivated by its successful use in handwritten character recognition (Section 3 & [9]).
Results of experiments described in [9] suggest that the time-sequential signal contains
more information relevant to classification than the static image, leading to better recogni-
tion performance.

In our current implementation, the stream of data from the digitizing tablet goes through a
preprocessing phase [9]. The coordinates are normalized and resampled at regular inter-
vals to eliminate differences in size and drawing speed; from these resampled coordinates
we extract local geometric information at each point, such as the direction of pen move-
ment and the curvature of the trajectory. These features are believed to hold discriminatory
information that could help in the recognition process and thus can give the neural net-
work recognizer appropriate information to find temporal regularities in the input stream.

Select Begin selection

Delete End selection

Delete Transpose

Paste Split line

Table 4. Text-Editing Gestures
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4.2  Gesture Classification Using Neural Networks

We use a TDNN [33] (see Figure 7) to classify each preprocessed time-sequential signal
as a gesture among the predefined set of 8 gestures. Each gesture in the set is represented
by an output unit. Each data point in the input stream is represented by 8 input units corre-
sponding to the 8 features extracted during the preprocessing phase; these include pen
coordinates and pressure as well as local geometric information as mentioned above. The
network is trained on a set of manually classified gestures using a modified backpropaga-
tion algorithm [33].

During training, the 10 units in the first hidden layer essentially become “feature detec-
tors” that extract low-level patterns from the input, and the 8 hidden units in the next layer
learn to spot those features that contribute to the recognition of each of the 8 gestures.
Each output unit integrates over time the evidence from the corresponding unit in the sec-
ond hidden layer. The output unit with the highest activation level determines the recog-
nized gesture.

The data samples used to train and evaluate the gesture recognizer were collected from a
single “gesturer.” Among the collected samples, 640 samples (80 per gesture) form the
training set, and 160 samples (20 per gesture) form an independent test set which was
never seen by the network during training. Our gesture recognizer achieves 98.9% recog-
nition rate on the training data set and 98.8% on the test set.

4.3  Learning in Gesture/Handwriting Recognition

The usefulness of gesture and handwriting recognition depends largely on the ability to
adapt to new users because of the great range of variability in the way individuals write or
make gestures. No matter how many tokens we put in the training database to cover differ-
ent gestures that mean “delete text”, for example, there may always be totally different
gestures that are not yet part of the gesture vocabulary. This is particularly troublesome for
neural-network-based systems because usually the network has to be retrained using all
the old training data mixed with a large number of new examples, in order to be able to
recognize new patterns without catastrophically forgetting previously learned patterns.
Because of the large number of examples needed and the long retraining time, this clearly
cannot be done on-line in a way that would enable the user to continue to work produc-
tively. A good system should be able to query the user for correction and remember the
particular input pattern that caused the error in order to make intelligent guesses when

8
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50

Output layer
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Figure 7. : TDNN Architecture for Gesture Recognition
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similar inputs occur. Such a fallback method would offer a reasonable level of perfor-
mance until the network can be retrained off-line.

We have developed a method to accomplish this using an Incremental TDNN (ITDNN)
architecture [32]. We start by training a regular TDNN using all the available data to
obtain a base network. When a recognition error occurs during use, the system queries the
user for the correct output and creates template-matching hidden units that influence the
output units via excitatory or inhibitory connections (see Figure 8). Template matching is
accomplished by making the weight matrix of the extra unit proportional to the activation
matrix of the first hidden layer; this was deemed better than matching the input layer
directly because during training by backpropagation the units of the first hidden layer have
learned to spot input features relevant to classification.

In order to retain the time-shift invariant property that makes the TDNN such a powerful
classifier of time-sequential patterns, we assemble the extra units out of subunits, each one
having weights matching a different section of the activation template, that is, the activa-
tion matrix of the first hidden layer. Thus the extra “units” can in fact be thought of as
extra hidden layers. The purpose of this is to enable these subunits to slide along the time
dimension just like the regular TDNN units. Since consecutive subunits (within the same
extra unit) will tend to have high activations in consecutive time slices, we employ a time-
warping technique to compute match scores (see Figure 9). If a subsequent input pattern is
similar to the template used to create an extra unit, the extra unit is turned on and thus able
to influence the corresponding output unit. We use extra units to fix recognition errors by
lowering outputs that are incorrectly high via inhibitory (negative weight) connections,
and by boosting outputs that are incorrectly low via excitatory (positive weight) connec-
tions.

Extra unit

Excitatory connection
(weight > 0)

Figure 8. : The Incremental TDNN Architecture

Figure 9. : Activation trace of an extra unit composed of four subunits

Time

Score = averageMatch

Time
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We tested the incremental learning capability of the ITDNN in a series of experiments
involving simple handwritten digit recognition [32]. This task was chosen because it is
simple enough so that we can easily eliminate the influence of factors extraneous to what
we want to measure: what is the degradation in performance on old input patterns when
the ITDNN is trained on new input patterns. Although the development of the ITDNN was
motivated by our gesture recognition research, handwriting recognition is very similar and
poses the same problems as gesture recognition, hence the results of the experiments
described here are still relevant.

We trained a base network with examples of handwritten digits, each written in a consis-
tent way. We then tested the network on a different variation of one digit (namely the digit
6 written in a clockwise direction rather than counterclockwise as in the training set). The
base TDNN was unable to recognize any of the new examples. When a single extra unit
was added, the resulting ITDNN was able to correctly classify 99% of the new examples
while “forgetting” only 0.6% of the old training examples.

These experiments show that the ITDNN is capable of quickly adding coverage for a new
input variation without forgetting previously learned information and thus is a good candi-
date for systems requiring on-line, immediate recognition improvements during use, such
as gesture and handwriting recognizers for pen-based computers. Systems capable of
incremental learning will be able to adapt quickly to a new user at a reasonable level of
performance while allowing productive work to continue. During subsequent work ses-
sions new data can be unobtrusively collected for off-line training of a full network with
regular architecture. This presumably superior network can then replace the patched one.

4.4  The Language of Speech and Gesture

Figure 10 shows a block diagram of the multimodal interpreter module in our speech- and
gesture-based text editor.

The TDNN-based gesture recognizer was described in 4.2. For the speech component we
use many alternative speech recognition strategies; these include a keyword spotter devel-
oped by Zeppenfeld [39][40] as well as full-scale continuous speech recognition modules
such as Sphinx [14] and Janus [37]. The speech recognition module is coupled with an
RTN-parser [35] using a semantic grammar developed for the editing task. For the key-
word-spotting version, the word spotter was trained to spot 11 keywords representing edit-
ing commands such asmove, delete,... and textual units such ascharacter, word,... The
effect is to let the user speak naturally without having to worry about grammar and vocab-
ulary, as long as the utterance contains the relevant keywords. For example, an utterance
such as “Please delete this word for me” is equivalent to “Delete word”. In the case of con-

Gesture
recognizer

Word spotter
& Parser

Frame
merger

Command
interpreter

gesture

speech
frame

frame
unified
frame

Figure 10. : Joint Interpretation of Gesture and Speech
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tinuous speech recognition, the semantic-fragment parser achieves essentially the same
effect by matching fragments of the recognized speech against predefined templates to
find semantically meaningful parts of the text. It then creates a frame consisting of slots
representing various components of a plausible semantic interpretation, and fills in any
slot it can using semantic fragments found in the hypothesized sentence.

The interpretation of multimodal inputs was based on semantic frames and slots represent-
ing parts of an interpretation of user intent. The speech and gesture recognizers produce
partial hypotheses in the form of partially filled frames. The output of the interpreter is
obtained by unifying the information contained in the partial frames.

In the system each frame has slots namedaction andscope (what to operate on.) Within
scope there are subslots namedtype and textual-unit. The possible scope types include
“point” and “box”; the textual units include “character,” “word,” “line”...

Consider an example in which a user draws a circle and says “Please delete this word”.
The gesture-processing subsystem recognizes the circle and fills in the coordinates of the
“box” scope in the gesture frame as specified by the position and size of the circle. The
word spotter produces “delete word”, from which the parser fills in theaction andtextual
unit slot in the speech frame. The frame merger then outputs a unified frame in which
action=delete,scope.type=box, andscope.textual-unit=word. From this the command
interpreter constructs an editing command to delete the word circled by the user.

One important advantage of this frame-based approach is its flexibility, which will facili-
tate the integration of more than two modalities, and across acoustic, visual, and linguistic
ones. All we have to do is define a general frame for interpretation and specify the ways in
which slots can be filled by each input modality.

5. CONCLUSIONS

In this paper, we have presented research that is aimed at producing more natural, more
robust (redundant) and more efficient human-computer interfaces, by exploring the com-
bination of several different human communication modalities. Such combinations natu-
rally involve acoustic but also visual and gestural expressions of human intent and form a
multimodal “language” we seek to decode. We have shown that more robust recognition
can indeed be achieved by combining speech with lipreading, i.e., visual and acoustic
modalities. We have also shown an on-line handwritten character recognizer, that could be
combined with speech and gesture. Finally, we have demonstrated that speech and gesture
can be joined to provide more natural, robust interpretation of user intent, as speech and
gesture both deliver complementary cues to complete the semantics of a multimodal
“speech” act. Further research currently in progress includes exploring eye- and face-
tracking and sound source localization, to deliver multimodal cues more accurately, even
when a person is moving about the room, and to determine focus of attention and refer-
ence of human interaction.
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