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ABSTRACT

We present the development of a modular system for flexible
human–computer interaction via speech. The speech recognition
component integrates acoustic and visual information (automatic
lip-reading) improving overall recognition, especially in noisy en-
vironments. The image of the lips, constituting the visual input,
is automatically extracted from the camera picture of the speaker’s
face by the lip locator module. Finally, the speaker’s face is au-
tomatically acquired and followed by the face tracker sub-system.
Integration of the three functions results in the first bi-modal speech
recognizer allowing the speaker reasonable freedom of movement
within a possibly noisy room while continuing to communicate
with the computer via voice. Compared to audio-alone recogni-
tion, the combined system achieves a 20 to 50 percent error rate
reduction for various signal/noise conditions.

1. INTRODUCTION

An obvious, if non-trivial, way to enhance, simplify, and popular-
ize human-computer interaction is by taking advantage of all the
modalities normally used by people in everyday interactions. De-
parture from the keyboard as the primary input modality should
encompass integration of such information sources as speech, lip
movement, handwriting, gaze direction, gesture, facial expression,
etc. A survey of multiple projects in these areas undertaken in our
labs at the University of Karlsruhe and Carnegie Mellon University
can be found in [11].

This paper focuses on the development of a speech recognition
system incorporating automatic lip-reading while allowing the user
reasonable freedom of movement within a room. Lip-reading plays
an important role in communication by the hearing-impaired and by
individuals listening in difficult acoustic environments [10]. Sev-
eral studies have demonstrated the utility of augmenting automatic
speech recognition (ASR) with visual information (eg. [6, 7, 9]).
Our own work in this area has been previously reported in [1, 3].
However, a major limitation of virtually all the systems was the
method by which visual data was acquired. This included such
invasive techniques as head-mounted cameras, reflective markers
placed on the speaker’s lips, and manual extraction of relevant face
image sections, effectively precluding practical applications. In our
system as described in [3] the process was continuous, automatic,
and without special markers but required the speaker to position
himself such that his lips appeared within a window shown on a
workstation screen.

The goal of present research is to free the user from all such
interference. A face-tracking algorithm automatically controls the
position and focus of the camera to maintain the view of a speaker’s

face. The lip-finder module locates the lips within the face im-
age and provides the coordinates of the mouth corners to the lip-
reading/speech-recognition subsystem which extracts the relevant
information from the image and combines it with the acoustic input
to recognize the utterance. In this paper we present an overview
of each of these three components, their combination within the
overall scheme, and the performance of the integrated system.

2. FACE TRACKING

The task of the face tracking system, described in detail in [5], is
to support the lip-locating/reading system with a stable image of
the speaker’s face. The face-tracker can locate faces in arbitrary
environments. While tracking a face, the position of the camera
and the zoom lens are automatically adjusted to maintain a centered
position of the face at a desired size within the camera image. The
system’s output also includes the position and size values of the
observed face, so that the lip-reading system independently can
grab the same camera image in higher resolution and faster frame
rate. The face coordinates aid the the lip-locator in isolating the
relevant part of the image.

2.1. System Structure
The system has two main modes: locating an arbitrary face and
tracking the located face. A conventional camcorder, mounted
on a computer-steerable pan/tilt unit (PTU), supplies roughly 10
images per second. Color information is extracted by the Face
Color Classifier (FCC) and movement is computed from successive
frames. These data are merged and the resulting candidate face
objects are fed into a neural network. The network considers shape
of the objects in producing the coordinates of the virtual camera,
indicating the region actually containing the face. Appropriate
commands to the PTU and zoom lens are issued if the face moves
out of a pre-defined area in the center of the physical camera.

2.2. Features for Classification
Though extremely helpful, using color for locating human faces
presents several problems. Color values of an object vary with the
camera, framegrabber, and illumination. The color composition of
human skin differs surprisingly little across individuals, but total
intensity of the reflection varies over a wide range. The color
dependencies can be largely resolved by the FCC, which groups
different hues as skin- or non-skin-color. Brightness dependencies
are eliminated by dividing each of the three color values by their
sum. This maps each pixel into a two-dimensional normalized color
space which the FCC divides into colors belonging to faces and all
others. As few as five sample images of faces with various skin
colors have been found sufficient to establish this color distribution
which is smoothed to be representive of arbitrary faces. During
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the locating phase the system finds the image regions whose color
corresponds to the skin color distribution. An example of the
resulting pixel assignment is shown in Figure 1.

Two other features are used to confirm the face location. Mo-
tion, computed as the difference between two successive frames, is
helpful in avoiding such distractions as faces in pictures hanging
on a wall. The shape of moving objects containing skin-like color
is eventually used to classify an object as a face, to eliminate arms,
hands, etc.

Figure 1. Example of the output of the Face Color Classifier.
Dark areas are classified as skin-colored.

2.3. Tracking
Tracking a known face amounts to locating a face while taking
advantage of what is already known about the subject. The virtual
camera image is searched first, since that was the last location of
the relevant face. The FCC is adjusted to the color of the face being
tracked. By repeating this adjustment the system can automatically
adapt to changing ambient and recording conditions. If detected,
motion is used to obtain additional clues about the object’s shape.
The shape of objects having the same color distribution as the
located face is considered by a neural network to determine the
current position and size of the face, so that the camera and zoom
lens can be adjusted.
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Figure 2. Neural network arrangement for face centering and
size estimation.

Two neural networks are used for finding the face coordinates.
Their structure is similar to that used in [8] and is shown schemat-

ically in Figure 2. The input retina receives data from the motion
and color analysis and determines the position of the face with the
first network. The second network uses a centered area about the
located face as input to estimate the size of the face. The seper-
ation into two networks allows the size estimation to be reduced
to centered faces. The nets were trained by backpropagation on
5000 artificially scaled and shifted example images generated with
a database containing 72 images of 24 faces of different sex, age,
hair style, skin color, etc.

Performance was evaluated on test sequences of over 2000 im-
ages of 7 persons with different skin types in front of different
backgrounds. All subjects were asked to perform arbitrary move-
ments in front of the camera. Depending on the sequence, the face
was located in 96% to 100% of all images in the sequence. The
average difference of the actual position of the face and the output
of the system were less than 10% of the size of the head.

3. LIP LOCALIZATION

The task of the lip-locator is finding the corners of the mouth in the
image grabbed from the camera as centered and zoomed by the face
tracker. Additional requirements include operation without special
lighting and with possibly cluttered background. The detection
should also function independently of the mouth shape. Images of
256� 256 pixels, at 30 frames/sec and at 8 bit grayscale resolution
were used as raw input.

Initial experiments indicated that manual design of a robust lip
feature detector was not feasible. Also, using other features such
as the outline of the face and the relative location of the eyes was
considered advantageous in pinpointing the lips. Accordingly, a
system consisting of two neural networks was designed [2]. The
first network gives a coarse estimate of the position of the mouth.
The second locates the two corners of the mouth within a window
around the position that was estimated by the first network. Con-
straining the exact search to a more confined area speeds up the
total localization process.

The network used for initial position estimation is shown in
Figure 3. The size (and thus the resolution) of the input image used
here is first reduced to 32 � 32 pixels and edges are found using
the Sobel operator. Two directional edgemaps are extracted and
normalized. They constitute the input into the three-layer locator
network.

In order to reduce the amount of computation the hidden units
have restricted "receptive fields". The input grid is divided into
16 8 � 8 nonoverlapping fields. Each field is connected with the
same number of distinct hidden units (currently 8). The output
units form a 9 � 11 grid with activation 1.0 indicating the center
of the mouth at that location (zero otherwise). During training
30 pictures of 10 different faces were presented to the network in
several positions and in 8 different sizes (face always fully visible,
scaling and shifting done artificially).

The architecture of the second network for the detection of the
corners of the mouth is similar. A window centered on the posi-
tion estimated by the first network is extracted from the image and
reduced to 60� 36 pixels. Only the horizontal edge map is com-
puted. Again, receptive fields project onto the hidden layer which
in turn connects to 874 output units arranged in a rectangular grid
covering every second row and column. Training was performed
with translated and scaled versions of a small number of examples
(50 images from 10 subjects for the network evaluated below).

For testing, 212 pictures of 10 persons whose pictures where
not used during training were processed by the two networks. The
position of the center of the mouth that was estimated by the first
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Figure 3. Neural network architecture for approximate lip
position estimation.

Error Percent of Images
(pixels) direction from corner

horizontal vertical total
0 14.9 11.4 2.5
1-2 43.3 40.8 29.3
3-4 19.9 23.4 29.8
5-10 20.5 22.0 33.9
> 10 1.4 2.4 4.5

Table 1. Error distribution for localization of the left corner of
the mouth. Average mouth width was 42 pixels.

network differed from the observed real position with a mean dis-
tance of 17.7 pixels (mean horizontal: 6.7, mean vertical: 14.7).
The typical lip width in the images was 42 pixels.

The mean error distance for the second network was 6.4 pixels
for both corners of the mouth. 11 of the 212 pictures were then
identified as outliers (no valid estimation could be made). The
remaining 201 images showed mean errors of 4.8 and 5.5 pixels
for left and right corner, respectively. Table 1 gives a more detailed
breakdown of error distribution for the left corner.

The lip-locator passes the grabbed image along with the mouth
position estimate to the automatic lip-reading/speech recognition
subsystem.

4. AUTOMATIC SPEECH RECOGNITION AND
LIP-READING

Our audio-visual speech recognizer has been developed for the
German spelling task, mainly in the speaker-dependentmode. Let-
ter sequences of arbitrary length and content are spelled without

pauses. The task is thus equivalent to continuous recognition with
small but highly confusable vocabulary.

4.1. System Description
In the basic set-up, we record, in parallel, the acoustic speech and
the corresponding series of mouth images of the speaker. Conven-
tional pre-processing of the speech waveform produces 16 Melscale
Fourier coefficients at a 10 ms frame rate as the acoustic input to
the recognizer.

The visual evidence is obtained from the image already
“grabbed” by the lip-finder. We fine-tune the estimate of lip posi-
tion delivered by the lip locator by finding the maximum normalized
cross-correlation between images in temporally adjacent frames1.
This ensures the stability of the lip image sequence. Similarly,
the very first frame of a sequence, where the speaker’s lips are
assumed closed, is correlated with a stored mouth template to com-
pute a uniform scaling factor. Given the final scale and coordinates
the mouth image is centered within a 144�80 pixel frame such that
the width of closed lips occupies roughly 2/3 of the frame width.
To remove dependence on varying lighting, including illumination
gradients, we use adaptive histogram modification. Together, these
pre-processing steps normalize the lip images for location, size,
and brightness.

A data vector that is used by the recognition algorithm is then ex-
tracted. We have investigated several representations of the visual
data: 1) Direct gray-level values of low-pass filtered and downsam-
pled (to 24 � 16 pixels) images, 2) Band-pass Fourier magnitude
coefficients (averaged in rings in the frequency domain), 3) Princi-
pal Components of the downsampled image,4) Linear Discriminant
Analysis coefficients of the downsampled image. Representations
2–4 were chosen with the goal of preserving the relevant informa-
tion in the lip image while substantially decreasing the parameter
count.

input

hidden

phoneme/
viseme

combined
phoneme

DTW

output

layers:

acoustic TDNN visual TDNN

Figure 4. Basic recognition network architecture (integration
at the phoneme/viseme level).

In the basic system a modular Multi-State Time Delay Neu-
ral Network (MS-TDNN) [4] performs the recognition. Figure 4

1Since the lip locator is accurate to within a few pixels, the cross-
correlation has to be computed for only a small number of shifts of the
second image about the position indicated by the lip finder.
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Word Accuracy (%)
Acoustic Acoustic + Visual
Environment Acoustic parameters
(dB SNR) alone Gray Levels LDA

(30% alone) (53% alone)
Quiet 97.0 97.6 97.6
White Noise (16) 67.3 75.2 78.2
White Noise (8) 42.4 49.1 59.4
Motor Noise (25) 95.8 95.8 97.0
Motor Noise (16) 49.1 52.1 61.8
Radio (16) 87.3 90.3 93.9
Radio (10) 58.2 72.1 80.0

Table 2. Speaker-dependent recognition rates for purely
acoustic and combined input shown for several different
sources of background disturbance and visual representa-
tions.

is a schematic of the architecture. Through the first three layers
(input-hidden-phoneme/viseme) the acoustic and visual inputs are
processed separately. The third layer produces activations for 62
phoneme or 42 viseme2 states for acoustic and visual data, respec-
tively. Weighted sums of the phoneme and corresponding viseme
activations are entered in the combined layer and a one stage DTW
algorithm finds the optimal path through the combined states that
decodes the recognized letter sequence. The weights in the paral-
lel networks are trained by backpropagation. There are 15 hidden
units in both sub-nets. The combination weights (so called “entropy
weights”, see [1]) are computed dynamically during recognition to
reflect the estimated reliability of each modality.

We have also investigated alternative methods of combining the
audio and visual information at the input and hidden layer levels of
the network. Initial results suggesting an advantage of hidden layer
combination can be found in [3]. This approach is possibly more
reflective of the way humans integrate audio-visual input [10] but
complicates somewhat the training process. We are also currently
experimenting with guiding the combination by an explicit estimate
of the acoustic signal-to-noise ratio (SNR).

4.2. Results
In experiments with an earlier version of the automatic lip-reader [3]
we established that the gray-level and LDA image representations
deliver generally best results. Therefore, we have concentrated on
these parameters for the movement-invariant system.

We have trained the recognizer on visual/acoustic data from
200/1500 letter sequences from a single speaker and tested on
30 sequences. Table 2 gives results in terms of word accuracies
(reflecting substitutions, deletions, and insertions) for the two tested
visual representations. As indicated at the top, the accuracy when
visual input alone was used was 30 and 53 percent for gray levels
and LDA respectively. Combined recognitions scores are further
shown for a variety of audio conditions: in quiet and for different
noise sources and intensities.

The results indicate a substantial improvement in recognition
when acoustic input is augmented with automatic lip-reading. The
LDA representation of the visual information is again seen as uni-
formly superior to the direct gray level values. In addition, LDA
allows a factor of 12 reduction in data rate, requiring only 32 pa-
rameters per frame vs. 384 gray levels. For LDA the error rate

2A viseme, the rough visual correlate of a phoneme, is the smallest
visually distinguishable unit of speech.

reduction over audio-alone scores ranges from 20 to over 50 per-
cent, all achieved with completely automatic acquisition of the
visual data. This magnitude of improvement is comparable to that
achieved by the earlier system which required a highly cooperative
speaker.

5. CONCLUSION

We have presented the components of a lip-reading/speech recog-
nition system that non-invasively and automatically captures the
required visual information. The system which comprises them
performs automatic lip-reading in realistic situations where lip mo-
tion information enhancesspeech recognition under both favorable
and acoustically noisy conditions. Simultaneously, the speaker is
allowed a reasonable freedom of movement within a room, with
no need to position himself in any particular location. We are pro-
ceeding to investigate the system for speaker-independenttasks and
plan to adapt it to large-vocabulary continuous speech recognition
tasks. Eventually it will also be integrated with other components
of a complete multimodal interface.
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many (LandesschwerpunktNeuroinformatik) and by the Advanced
Research Projects Agency (USA). The views and conclusions stated
in this paper are those of the authors.

REFERENCES

[1] C. Bregler, H. Hild, S. Manke, and A. Waibel. Improving Con-
nected Letter Recognition by Lipreading. Proc. ICASSP’93.

[2] D. Büsching. Automatische Lokalisierung der Lippenregion
in Videobildern von Gesichtern. Masters Thesis, Fakultät für
Informatik, Universität Karlsruhe, 1994.

[3] P. Duchnowski, U. Meier, and A. Waibel. See Me, Hear Me:
Integrating Automatic Speech Recognition and Lipreading. to
appear in Proc. ICSLP 94.

[4] H. Hild and A. Waibel. Connected Letter Recognition with a
Multi-State Time Delay Neural Network. Neural Information
Processing Systems (NIPS-5), 1993.

[5] H.M. Hunke. Locating and Tracking of Human Faces with Neu-
ral Networks. Technical Report CMU–CS–94–155, Carnegie
Mellon Univ., 1994.

[6] K. Mase and A. Pentland. Automatic Lipreading by Optical-
Flow Analysis. Systems and Computers in Japan, 22(6), 1991,
pp. 67–76.

[7] E.D. Petajan. Automatic lipreading to enhance speech recogni-
tion. in Proc. IEEE Communications Society Global Telecom.
Conf., Atlanta GA, Nov. 1984.

[8] D.A. Pomerleau. Neural Network Perception for Mobile Robot
Guidance. Technical Report CMU–CS–92–115,Carnegie Mel-
lon Univ., 1992.

[9] D.G. Stork, G. Wolff, and E. Levine. Neural network lipreading
system for improved speech recognition. in Proc. IJCNN’92.

[10] Q. Summerfield. Audio-visual Speech Perception, Lipread-
ing, and Artificial Stimulation. in Hearing Science and Hear-
ing Disorders,M.E. Lutman and M.P. Haggard eds., New York:
Academic Press, 1983.

[11] A. Waibel, M.T. Vo, P. Duchnowski, and S. Manke. Multi-
modal Interfaces. to appear in Artificial Intelligence Review
Journal, special issue, 1994.

4


