

Integration Of Semiformal And Formal Methods For
Specifying Knowledge-Based Systems

Dieter Fensel and Susanne Neubert
Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany

e-mail: {fensel

neubert} @aifb.uni-karlsruhe.de

Abstract.

 The paper describes a specification approach for knowledge-based systems (kbs)
combining semiformal and formal specification techniques. The semiformal knowledge
representation uses a hypermedia-based formalism which serves as a communication basis
between expert and knowledge engineer. This representation is also the basis for the
formalization process resulting in the formal and executable model of expertise written in
KARL. A smooth transition from the semiformal to the formal specification is enabled as both
description techniques use the same conceptual model to describe the system.

1 Introduction

Originally, expert systems or knowledge-based systems (kbs) were developed using the rapid
prototyping approach. The acquired knowledge was immediately implemented and the
running prototype was used as a guide for the further knowledge acquisition process. The
distinction of symbol level and knowledge level [New82] created the conceptual framework
for a different process models for the development of kbs. A knowledge level description of
the

task

 solved by the system and the

knowledge

, which is required to solve the task, is
constructed during a modelling activity. This knowledge level description is built
independently of the design and implementation activity. The separation of analysis and
design/implementation resembles a lesson learnt in software engineering. In response to the
so-called software crisis in the late sixties, methodologies, process models, methods, and tools
have been developed to maintain the software development process and its results. A
significant result was the separation of the description what a system should do from how this
can be achieved by a specific implementation, i.e. the separation of analysis or requirement
engineering at the one hand and design and implementation at the other hand. As a result,
several description techniques have been developed to describe the specification as it emerges
from the analysis step. Mainly, these specification techniques follow three lines:

•

Informal specification techniques

 like structured analysis or object-oriented analysis allow
the description at a high and informal level. These approaches broadly use graphical means
like entity-relationship diagrams, dataflow diagrams, flow charts, and state-transition
diagrams. The specifications are easy to understand and very useful as a mediating
representation for the communication between user and system developer.

•

Formal specification techniques

 like Z or VDM allow a unique and detailed specification of
the functionality of a system. In the case of Z, a software system is specified as a partial
mathematical function by applying the theory of finite sets. Specifications can be checked
via formal methods.

•

Executable specification techniques

 like PAISLey add the flavour of prototyping to the
specification process. The results can be evaluated by a running prototype. Often, this is

In B. Wolfinger (ed.), Innovation bei Rechen- und Kommunikationssystemen,
 Informatik Aktuell, Springer-Verlag, Berlin, 1994.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197596515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

nearly the only way to end up with realistic descriptions of the desired functionality of the
systems.

Several authors argue for the combination of these description techniques so as to overcome
the disadvantages when used stand-alone. Informal specifications contain ambiguity and
contradictions and lack precision. Conversely, formal descriptions and their formal semantics
are hard to understand and it is very difficult to extract an intuition about the functionality of a
system given the huge amount of details of a formal specification only. The need for the
combination becomes obvious regarding the two different purposes of specifications
[FBA+93]. First, it should serve as a

mediating representation

 supporting the communication
between the user and the system developers. In the case of kbs, it should mediate the
communication between user and expert at the one hand and the knowledge engineer at the
other hand. Second, it should serve as an

 intermediate representation

 closing the gap between
an intuition about the functionality of a systems and its actual design and implementation.

The integrated development of semiformal and formal specification techniques as discussed in
this paper is part of the

MIKE-approach

 (

Model-based and Incremental Knowledge
Engineering

) [AFL+93], which aims at a development method for kbs covering all steps from
initial specification (knowledge acquisition) to design and implementation. In fact, we present
the semiformal hypermedia-based formalism

MEMO

 [Neu93], the formal and executable

Knowledge Acquisition and Representation Language KARL

 ([FAL91], [AFS94]) and their
relationships.

The contents of the paper are organized as follows. In section two, the semiformal models are
described. Then, the formal specification language KARL and the model of expertise are
discussed in sections three. Section four shows how both specification are related.

2 The Semiformal Models Of A Knowledge-Based System

Problems in directly developing a formal specification from the knowledge protocols lead in
MIKE to construct mediating representations before starting the formalization process
[HoN92]. Our mediating representations describe protocols, concepts and activities,
hierarchies of modelling primitives, data flow and control flow of activities etc. The
development of semiformal mediating representations provides different advantages. The
expert can be integrated in the knowledge engineering process of structuring the complex
knowledge so that the knowledge engineer is able to interpret and formalise it. Thus, the
cooperation between expert and knowledge engineer is improved. Moreover, the formalization
process is simplified. In addition, a mediating representation is also a basis for documentation
and the explanation facility.

For our mediating representations we developed a semiformal, hypermedia-based formalism
([Neu93], [NeO92]). In fact, two semiformal models (the

elicitation model

 and the

structure
model

) have been developed which are sets of special node and link types. A

node

 is a
hypermedia document with a content using text, graphics, audio or video to describe an state/
process/concept. A

link

 describes a relationship between two nodes. A link is directed. Links
are defined by a source node, a destination node, a link name, a link type, and an explanation
field.

Contexts

 establishes a specific view on a set of nodes and links.

The first model, the

elicitation model

, documents the elicitation process. Thus, it includes
knowledge protocols which are stored in

protocol nodes

. Additionally,

date links

 between
protocol nodes are included to describe the elicitation ordering.

The

structure model

 which is developed on the basis of this first collection of protocols
contains a more structured description of knowledge. It is built up by the following description
elements:

• The

activity context

includes all

activity nodes

 which describe a step of the problem-solving
process. Additionally,

refinement links

 are integrated. This context enables a view on the
complete hierarchy of activity nodes and their subactivity nodes. Every activity node has to
be a refinement of another activity node except for the global activity node which
characterizes the whole problem-solving process.

• An

ordering context

 provides a view on

activity nodes

 which are related by

ordering links

.
These activity nodes lie on

one

 hierarchy level. One activity node can be the source-node or
the destination-node of different ordering links. This means that different activity nodes are
alternative options to solve the problem.

• The

concept context

encompasses all concept nodes which serve as descriptions of the static
objects. Moreover, all links between two concept nodes, so-called

is_a links

 and self-
defined

relationship links

, are included. Relationship links can be added by the user to
describe an arbitrary relationship between two concepts.

• A

structure context

is also a view on

one

 hierarchy level of

activity nodes

. Here, activity
nodes are related with concept nodes by so-called

dataflow links

. A structure context gives
the flow of data produced during the problem solving process.

An example for the two models is sketched at the left side of Figure 1. The

Sisyphus problem

1

is an assignment problem in which employees are assigned to office places with several
requirements to be met [Lin92]. The whole problem is divided into three subactivities, to
create pairs of employees and places, to prune faulty pairs and to check whether a solution has
been found (i.e., whether a placement is complete and correct).

3 The Formal Model Of A Knowledge-Based System

3.1 The KARL Model of Expertise

The conceptual model underlying KARL is derived from the KADS

model of expertise

[SWB93] and distinguishes four types of knowledge. Three of them define static knowledge,
whereas the task layer is used to define the dynamics of the problem-solving process.

Domain knowledge

consists of static knowledge about the application domain of the system.
The domain knowledge should define a conceptualization of the domain as well as a
declarative theory providing all the knowledge required to solve the given tasks. KARL
integrates frames and logic for the domain layer by providing the sublanguage

Logical-KARL
(L-KARL)

 for this purpose. Terminological knowledge can be described by a taxonomy of
concepts. For each concept, attributes can be defined and are inherited according to the
taxonomy. Further knowledge can be described with logical formulae.

Inference knowledge

 specifies the

 inferences

 that can be made using the domain knowledge,
and the

knowledge roles,

 which

model input and output of the inferences. KARL distinguishes
three types of knowledge roles. Roles which deliver domain knowledge to an inference action
are called

views

, roles which model the dataflow dependencies between inference actions are
called

stores

, and roles which are used to write final results back onto the domain layer are
called

terminators

. The inferences and roles together with their dataflow dependencies

1. Sisyphus is a project that aims at comparing different approaches of knowledge engineering.

constitute a description of the problem-solving method applied. In addition to its use at the
domain layer, L-KARL is used to specify the logical relationship defined by an inference
action at the inference layer and to specify a

task-specific terminology

 independently from the
domain-specific terminology by means of concept definitions in roles.

A

 Domain view

 specifies the relationship between the generic terms used at the inference layer
and the domain-specific knowledge. Again, L-KARL is used to specify the mapping between
domain and inference knowledge.

Dynamic control knowledge:

 The purpose of the task layer is to specify

control

 over the
execution of the inferences of the inference layer. The sublanguage

Procedural-KARL (P-
KARL)

 is used to specify this dynamic knowledge via sequences, branches, loops, and
procedure calls. Conditions for the controlflow can be specified via logical statements about
the contents of stores.

Inference and control knowledge are domain independent, i.e. they describe the problem
solving process in a generic way. Thus, such a so-called

problem-solving method

can be reused
for different application problems. MIKE provides a library, where these generic problem
solving methods are stored which are described formally and informally.

The right side of Figure 1 sketches a model of expertise of the

Sisyphus problem

. The domain
terminology and the domain knowledge required by the problem solving method is defined at
the domain layer. The inference layer contains the elementary inference steps and knowledge
roles of it. Components (employees) and slots (places) are combined by the inference action

create

.

Prune

 eliminates illegal states, and

check

 searches for valid solutions. The control flow
between these inferences is defined at the task layer.

3.2 The Knowledge Acquisition and Representation Language (KARL)

2

Logical-KARL (L-KARL)

L-KARL is a customization of Frame-logic (F-logic) [KiL93]. F-logic and L-KARL enrich the
modelling primitives of first-order logic by syntactic modifications but preserve the model-
theoretical semantics of it. In this way, ideas of semantical and object-oriented data models are
integrated into a logical framework enabling the declarative description of terminological as
well as assertional knowledge. L-KARL distinguishes classes, objects, and values. It provides
classes and an is-a hierarchy with multiple attribute inheritance to describe terminological
knowledge. Intentional and factual knowledge is described by logical relationships between
classes, objects, and values.

A

class

or

concept definition

 which corresponds to a frame describes class attributes which
refer to the class as such and attributes for the objects which are elements of the class. The
attributes are described by their name, their domain, and their range. Classes are arranged in a
specialization/generalization hierarchy with multiple attribute inheritance. Attributes can be
single-valued or set-valued. Attributes can be used to describe objects as well as classes. They
have defined domain and range types.

The literals of logical expressions in L-KARL are

is-element-of literals

 which describe that
objects are elements of classes;

is-a literals

 which describe subset relationships between
classes;

equality literals

which describe equality of objects, classes, and values; and finally

data literals

 which define attribute values for objects and classes. Logical formulae are built
from these literals using logical connectors

∧

,

∨

,

¬

,

←

 and variable quantification. The

2. A complete description of KARL can be found in [Fen93]. A short description of the modelling primitives of KARL
is given in [AFS94], some of the applications of KARL can be found in [AFL92b], [LFA93], and [PFL+94].

logical language to describe relationships between classes, objects, and values is Horn logic
with equality and function symbols extended by stratified negation [Ull88].

Procedural-KARL (P-KARL)

In KARL knowledge about controlflow is explicitly described by the logical language P-
KARL. The control flow is specified similar to procedural programming languages. For a P-
KARL program, a number of functions

F = {f

1

, f

2

, ..., f

r

}

 and a number of variables

{X

1

, ..., X

n

}

are available. The function symbols correspond to names of inference actions. The variables
address their stores. The actual parameters of a function are the input stores of the
corresponding inference action and the results of the function are mapped to its output stores.
A primitive program is an

 assignment
(X

k1

, ..., X

kh

) := f

i

(X

j1

, ..., X

jl

)

.

f

i

 corresponds to an inference action and the

X

ks

 denote its output stores and the

X

js

 its input
stores. A composed program is defined as

sequence

,

 loop

, or

 alternative

of programs.

KARL As A Formal And Executable Specification Language

The KARL model of expertise contains the description of domain knowledge, inference
knowledge, and task knowledge (i.e., procedural control knowledge). The gist of the matter of
the semantics of KARL is therefore the requirement to include the specification of static and
procedural knowledge. For this purpose, two different types of logic have been integrated. The
sublanguage L-KARL, which is based on object-oriented logics, combines frames and logic to
define terminological as well as assertional knowledge. The sublanguage P-KARL, which is a
variant of dynamic logic, is used to express knowledge about the control flow of a problem-
solving method in a procedural manner. The representation of the interaction of both types of
knowledge is reached by combining both types of languages. For more details see [Fen93].
Based on this semantics an operationalization and an optimized evaluation strategy were
developed providing an interpreter and debugger for KARL.

KARL As A Graphical Modelling Language

KARL provides graphical representations of most modelling primitives to improve their
intelligibility: A variant of

Enhanced-Entity-Relationship (EER) diagrams

 describes the
domain layer, a variant of

levelled dataflow diagrams

 is provided for the inference layer, and a
variant of

programflow diagrams

 describes the task layer. All three graphical representations
include

hierarchical refinement

 to allow to represent the system on different levels of
refinement. Figure 1 shows the graphical representation a model of expertise of a solution of
the so-called

Sisyphus problem

.

4 Integration Of Semiformal And Formal Specification

The integration of semiformal and formal specification techniques can be discussed in two
dimensions. First, we will sketch their integration during the specification

process

. Then, we
will sketch their integration in the specification

product

.

4.1 Integration During the Process of Model Development

The knowledge acquisition process consists of three activities: eliciting knowledge,
interpreting knowledge, and formalizing knowledge. These activities are done in a cyclic
manner. The process starts with selecting a partially specified structure model from a library of
predefined models. These models (socalled problem-solving methods) are developed for
specific problem types like classification, diagnosis, assignment, configuration, planning etc.

(see [Neu94] for more details). Then, the selected structure model guides the elicitation
process, i.e. it is used as a guide for asking and observing the expert. It defines a network of
activities and knowledge items which are used as a form for the elicitation process. The
resulting knowledge protocols are stored in the node-content of protocol nodes of the
elicitation model. The structures described in the knowledge protocols are represented by
contexts of the structure model. The semiformal structure model is a first result of specification
which clarifies complex knowledge structures. At the one side, it guides the elicitation process.
At the other side, it becomes modified and refined as a result of the elicitation process.
Moreover, the structure model is the foundation for the formalization process where the model
of expertise is developed. The formalization is achieved in a refinement step which

task layer

inference layer

domain layer

smoke

employee
placement

place

CheckStates Solution

Comp SlotsCreate

Prune

Create

Prune

Check

∅ (Solution)

yes

no

Fig. 1. Parts of an elicitation model and a structure model at the left (nodes have informal content) and of a
model of expertise at the right (nodes with formal content).

ordering

structure

concept

empl

place

checkpairs

sitting

empl placecreate

prune

context

context

pairs

pairs

pairs

checkpairs

prune
pairs

create
pairs

sitting

pairs

context

checkpairsprune
pairs

create
pairs

activity
context

sisy-
phus

structure model model of expertise

elicitation model

An assigment of
employees to places
is done by

The pruning of pairs
is done by ...

left right

ordering

conncetion of models

dataflow
refinement

is_a
part_of

activity
concept

inference step
store
view
terminator

controlflow
inference
domain view
relationship

elicitation formalization

protocol

supplements informal descriptions of elementary activities and knowledge entities by formal
definitions. Again, this can lead to revision of the whole structure of the model of expertise and
can stimulate new elicitation tasks. The main features of our approach are therefore the
integration of bottom-up and top-down modelling by applying reusable components (problem-
solving methods) and the smooth transition from informal to semiformal to formal
specification techniques. A large amount of the formal specification can be done graphically
using the same modelling primitives as in the semiformal model. The underlying conceptual
model of the system (i.e., the model of expertise) relates both description techniques.

4.2 Model connection

A further central point of MIKE is to relate the three models with each other. First, the
elicitation model is related with the structure model. More precisely: the activity and concept
nodes are related with the protocol nodes in which they have been described during elicitation.
So, a connection is existing to the originally given information from the expert. A so-called

elicitation link

 exists to describe these interrelation. During structuring, these links can be
easily integrated. Second, the structure model is related with the model of expertise

3

. Socalled

formalization links

 relate a formally described node of the model of expertise with an
informally described node of the structure model. Corresponding nodes, including on the one
hand an informal description and on the other hand a formalization, are linked during the
formalization/operationalization process.

The model connection has different advantages: First, the informal information integrated in
the elicitation or structure model function as a documentation of a formal description. Large
parts of documentation can be directly done during knowledge acquisition. The explanation
facility can use the informal models during the usage of the system which are also helpful for
the maintenance of the system. Figure 1 shows some links relating the elicitation and the
structure model or the structure model and the model of expertise.

5 Conclusion

MIKE is an approach integrating semiformal and formal specification techniques used during
an incremental development process. The semiformal specification is not only used to simplify
the formalization process but is also seen as an important result itself. It structures the complex
problem solving process and with its informal descriptions of facts it can be used for
documentation. The formal specification in the early specification phase describes precisely
the functionality of the system without implementation details. Our formal specification is also
operational representing a first prototype of the system. For developing our models and the
relationships between models during the specification phase we provide a tool called MeMo-
Kit (see [NeM93] and [Neu94]) providing a graphical editor environment. For evaluating the
model of expertise an interpreter exists (see [Ang94]). Part of the current work of MIKE is the
enhancement of the model of expertise to a design model which also considers non-functional
requirements ([LaS94]). A comparison of MIKE work done in information system
development and software engineering can be found in [AFL92a] and [FAL93].

Acknowledgements

We thank Rudi Studer who encouraged us in integrating semiformal and formal specification
techniques.

3. How the model of expertise is described in the hypermedia environment as a network of nodes with formal contents
and links is not described here. See [Neu94] for more details.

Bibliography

[AFL92a] J. Angele, D. Fensel, and D. Landes: Two Languages to Do the Same? In

Proceedings of the 2nd
Workshop Informationssysteme und Künstliche Intelligenz

, February 24-26, 1992, Ulm, R. Studer
(ed.), Informatik- Fachberichte, no 303, Springer

[AFL92b] J. Angele, D. Fensel und D. Landes: An executable model at the knowledge level for the office-
assignment task. In M. Linster (ed.): Sisyphus ´92: Models of Problem Solving, Arbeitspapiere der
GMD, no 663, July 1992.

[AFL+93] J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer: Model-Based and Incremental Knowledge
Engineering: The MIKE Approach. In J. Cuena (ed.),

Knowledge

Oriented Software Design, IFIP
Transactions A-27

, North Holland, Amsterdam, 1993.
[AFS94] J. Angele, D. Fensel, and R. Studer: The Model of Expertise in KARL. In

Proceedings of the 2nd World
Congress on Expert Systems

, Lisbon/Estoril, Portugal, January 10-14, 1994.
[Ang94] J. Angele: Operationalisierung des Modells der Expertise mit KARL, Infix, St. Augustin, 1993 (in

German).
[FAL91] D. Fensel, J. Angele, and D. Landes: KARL: A Knowledge Acquisition and Representation Language.

In

Proceedings of Expert Systems and their Applications, 11th International Workshop, Conference
"Tools, Techniques & Methods"

, May 27-31, Avignon, 1991, pp. 513-528.
[FAL93] D. Fensel, J. Angele, D. Landes, and R. Studer: Giving Structured Analysis Techniques a Formal and

Operational Semantics with KARL,

Proceedings of Requirements Engineering ´93 - Prototyping -,

Bonn, April 25 - 27, 1993, Teubner Verlag, Stuttgart, to appear 1993.
[FBA+93] K. M. Ford, J. M. Bradshaw, J. R. Adams-Webber, and N. M. Agnew: Knowledge Acquisition as a

Constructive Modeling Activity. In

International Journal of Intelligent Systems

,

Special Issue
Knowledge Acqisition as Modeling,

 part I, no 1, vol 8, 1993.
[Fen93] D. Fensel:

The Knowledge Acquisition and Representation Language KARL

, Ph.D. thesis, University
of Karlsruhe, 1993.

[Fen94] D. Fensel: Graphical And Formal Knowledge Specification With KARL. In

Proceedings of the
International Conference on Expert Systems for Development

, Bangkok, Thailand, March 29-31,
1994.

[HoN92] U. Hoppe and S. Neubert: Using Hypermedia for Integrating Mediating Representations in the Model-
based Knowledge Engineering. In Proceedings of the AAAI’92 Workshop Knowledge Representation
Aspects of Knowledge Acquisition, San José, California, July, pp. 55-62, 1992.

[KiL93] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented and Frame-Based
Languages, technical report 93/06, Department of Computer Science, SUNY at Stony Brook, NY,
April 1993. To appear in

Journal of the ACM

.
[Koz90] D. Kozen: Logics of Programs. In J. v. Leeuwen (ed.),

Handbook of Theoretical Computer Science

,
Elsevier Science Publ., B. V., Amsterdam, 1990.

[LaS94] D. Landes and R. Studer: The Design Process in MIKE. In

Proceedings of the 8th Knowledge
Acquisition for Knowledge-Based Systems Workshop KAW´94

, Banff, Canada, Jan. 30 - Feb. 5, 1994.
[LFA93] D. Landes, D. Fensel, and J. Angele: Formalizing and Operationalizing a Design Task with KARL. In

J. Treur and Th. Wetter (eds.),

Formal Specification of Complex Reasoning Systems

, Ellis Horwood,
New York, 1993.

[Lin92] M. Linster (ed.): Sisyphus ´92: Models of Problem Solving, Arbeitspapiere der GMD, no 663, July
1992.

[Llo87] J.W. Lloyd:

Foundations of Logic Programming, 2nd Editon

, Springer-Verlag, Berlin, 1987.
[NeM93] S. Neubert and F. Maurer: A Tool for Model Based Knowledge Engineering. In Proceedings of the

13th International Conference AI, Expert Systems, Natural Language (Avignon´93), 24-28 Mai,
Avignon, 1993.

[NeO92] S. Neubert and A. Oberweis: Einsatzmöglichkeiten von Hypertext beim Software Engineering und
Knowledge Engineering. In Proceedings Hypertext & Hypermedia ‘92, München, September 1992

[Neu93] S. Neubert: Model Construction in MIKE (Model Based and Incremental Knowledge Engineering) In:

Current Trends in Knowledge Acquisition - EKAW’93, 7th European Knowledge Acquisition
Workshop

, Toulouse, France, September 6th - 10th, 1993, Lecture Notes in Artificial Intelligence,
Springer Verlag, Berlin, Heidelberg

[Neu94] S. Neubert: Modellkonstruktion in MIKE (Modellbasiertes und Inkrementelles Knowledge
Engineering) - Methoden und Werkzeuge. PhD thesis, Universität Karlsruhe, 1994 (in German).

[New82] A. Newell: The Knowledge Level,

Artificial Intelligence

, vol 18, 1982.
[PFL+94] K. Poeck, D. Fensel, D. Landes, and J. Angele: Combining KARL and Configurable Role Limiting

Methods for Configuring Elevator Systems. In

Proceedings of the 8th Banff Knowledge Acquisition
for Knowledge-Based System Workshop (KAW´94)

, Banff, Canada, Januar 30th - February 4th, 1994.
[SWB93] G. Schreiber, B. Wielinga, and J. Breuker (eds.):

KADS. A Principled Approach to Knowledge-Based
System Development

, Knowledge-Based Systems, vol 11, Academic Press, London, 1993.
[Ull88] J. D. Ullman:

Principles of Database and Knowledge-Base Systems, vol I

, Computer Sciences Press,
Rockville, Maryland, 1988.

