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Abstract.

 

 The paper describes a specification approach for knowledge-based systems (kbs)
combining semiformal and formal specification techniques. The semiformal knowledge
representation uses a hypermedia-based formalism which serves as a communication basis
between expert and knowledge engineer. This representation is also the basis for the
formalization process resulting in the formal and executable model of expertise written in
KARL. A smooth transition from the semiformal to the formal specification is enabled as both
description techniques use the same conceptual model to describe the system.

 

1 Introduction

 

Originally, expert systems or knowledge-based systems (kbs) were developed using the rapid
prototyping approach. The acquired knowledge was immediately implemented and the
running prototype was used as a guide for the further knowledge acquisition process. The
distinction of symbol level and knowledge level [New82] created the conceptual framework
for a different process models for the development of kbs. A knowledge level description of
the 

 

task

 

 solved by the system and the 

 

knowledge

 

, which is required to solve the task, is
constructed during a modelling activity. This knowledge level description is built
independently of the design and implementation activity. The separation of analysis and
design/implementation resembles a lesson learnt in software engineering. In response to the
so-called software crisis in the late sixties, methodologies, process models, methods, and tools
have been developed to maintain the software development process and its results. A
significant result was the separation of the description what a system should do from how this
can be achieved by a specific implementation, i.e. the separation of analysis or requirement
engineering at the one hand and design and implementation at the other hand. As a result,
several description techniques have been developed to describe the specification as it emerges
from the analysis step. Mainly, these specification techniques follow three lines:

•

 

Informal specification techniques

 

 like structured analysis or object-oriented analysis allow
the description at a high and informal level. These approaches broadly use graphical means
like entity-relationship diagrams, dataflow diagrams, flow charts, and state-transition
diagrams. The specifications are easy to understand and very useful as a mediating
representation for the communication between user and system developer.

•

 

Formal specification techniques

 

 like Z or VDM allow a unique and detailed specification of
the functionality of a system. In the case of Z, a software system is specified as a partial
mathematical function by applying the theory of finite sets. Specifications can be checked
via formal methods.

•

 

Executable specification techniques

 

 like PAISLey add the flavour of prototyping to the
specification process. The results can be evaluated by a running prototype. Often, this is
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nearly the only way to end up with realistic descriptions of the desired functionality of the
systems.

Several authors argue for the combination of these description techniques so as to overcome
the disadvantages when used stand-alone. Informal specifications contain ambiguity and
contradictions and lack precision. Conversely, formal descriptions and their formal semantics
are hard to understand and it is very difficult to extract an intuition about the functionality of a
system given the huge amount of details of a formal specification only. The need for the
combination becomes obvious regarding the two different purposes of specifications
[FBA+93]. First, it should serve as a 

 

mediating representation

 

 supporting the communication
between the user and the system developers. In the case of kbs, it should mediate the
communication between user and expert at the one hand and the knowledge engineer at the
other hand. Second, it should serve as an

 

 intermediate representation

 

 closing the gap between
an intuition about the functionality of a systems and its actual design and implementation.

The integrated development of semiformal and formal specification techniques as discussed in
this paper is part of the 

 

MIKE-approach

 

 (

 

Model-based and Incremental Knowledge
Engineering

 

) [AFL+93], which aims at a development method for kbs covering all steps from
initial specification (knowledge acquisition) to design and implementation. In fact, we present
the semiformal hypermedia-based formalism 

 

MEMO

 

 [Neu93], the formal and executable

 

Knowledge Acquisition and Representation Language KARL

 

 ([FAL91], [AFS94]) and their
relationships.

The contents of the paper are organized as follows. In section two, the semiformal models are
described. Then, the formal specification language KARL and the model of expertise are
discussed in sections three. Section four shows how both specification are related.

 

2 The Semiformal Models Of A Knowledge-Based System

 

Problems in directly developing a formal specification from the knowledge protocols lead in
MIKE to construct mediating representations before starting the formalization process
[HoN92]. Our mediating representations describe protocols, concepts and activities,
hierarchies of modelling primitives, data flow and control flow of activities etc. The
development of semiformal mediating representations provides different advantages. The
expert can be integrated in the knowledge engineering process of structuring the complex
knowledge so that the knowledge engineer is able to interpret and formalise it. Thus, the
cooperation between expert and knowledge engineer is improved. Moreover, the formalization
process is simplified. In addition, a mediating representation is also a basis for documentation
and the explanation facility.

For our mediating representations we developed a semiformal, hypermedia-based formalism
([Neu93], [NeO92]). In fact, two semiformal models (the 

 

elicitation model

 

 and the 

 

structure
model

 

) have been developed which are sets of special node and link types. A 

 

node

 

 is a
hypermedia document with a content using text, graphics, audio or video to describe an state/
process/concept. A 

 

link

 

 describes a relationship between two nodes. A link is directed. Links
are defined by a source node, a destination node, a link name, a link type, and an explanation
field. 

 

Contexts

 

 establishes a specific view on a set of nodes and links. 

The first model, the 

 

elicitation model

 

, documents the elicitation process. Thus, it includes
knowledge protocols which are stored in 

 

protocol nodes

 

. Additionally, 

 

date links

 

 between
protocol nodes are included to describe the elicitation ordering.



 

The 

 

structure model

 

 which is developed on the basis of this first collection of protocols
contains a more structured description of knowledge. It is built up by the following description
elements:

• The 

 

activity context 

 

includes all 

 

activity nodes

 

 which describe a step of the problem-solving
process. Additionally, 

 

refinement links

 

 are integrated. This context enables a view on the
complete hierarchy of activity nodes and their subactivity nodes. Every activity node has to
be a refinement of another activity node except for the global activity node which
characterizes the whole problem-solving process.

• An 

 

ordering context

 

 provides a view on 

 

activity nodes

 

 which are related by 

 

ordering links

 

.
These activity nodes lie on 

 

one

 

 hierarchy level. One activity node can be the source-node or
the destination-node of different ordering links. This means that different activity nodes are
alternative options to solve the problem. 

• The 

 

concept context 

 

encompasses all concept nodes which serve as descriptions of the static
objects. Moreover, all links between two concept nodes, so-called 

 

is_a links

 

 and self-
defined 

 

relationship links

 

, are included. Relationship links can be added by the user to
describe an arbitrary relationship between two concepts.

• A 

 

structure context 

 

is also a view on 

 

one

 

 hierarchy level of 

 

activity nodes

 

. Here, activity
nodes are related with concept nodes by so-called 

 

dataflow links

 

. A structure context gives
the flow of data produced during the problem solving process.

An example for the two models is sketched at the left side of Figure 1. The 

 

Sisyphus problem

 

1

 

is an assignment problem in which employees are assigned to office places with several
requirements to be met [Lin92]. The whole problem is divided into three subactivities, to
create pairs of employees and places, to prune faulty pairs and to check whether a solution has
been found (i.e., whether a placement is complete and correct).

 

3 The Formal Model Of A Knowledge-Based System

 

3.1 The KARL Model of Expertise

 

The conceptual model underlying KARL is derived from the KADS 

 

model of expertise

 

[SWB93] and distinguishes four types of knowledge. Three of them define static knowledge,
whereas the task layer is used to define the dynamics of the problem-solving process.

 

Domain knowledge 

 

consists of static knowledge about the application domain of the system.
The domain knowledge should define a conceptualization of the domain as well as a
declarative theory providing all the knowledge required to solve the given tasks. KARL
integrates frames and logic for the domain layer by providing the sublanguage 

 

Logical-KARL
(L-KARL)

 

 for this purpose. Terminological knowledge can be described by a taxonomy of
concepts. For each concept, attributes can be defined and are inherited according to the
taxonomy. Further knowledge can be described with logical formulae.

 

Inference knowledge

 

 specifies the

 

 inferences

 

 that can be made using the domain knowledge,
and the 

 

knowledge roles,

 

 which

 

 

 

model input and output of the inferences. KARL distinguishes
three types of knowledge roles. Roles which deliver domain knowledge to an inference action
are called 

 

views

 

, roles which model the dataflow dependencies between inference actions are
called 

 

stores

 

, and roles which are used to write final results back onto the domain layer are
called 

 

terminators

 

. The inferences and roles together with their dataflow dependencies

 

1.  Sisyphus is a project that aims at comparing different approaches of knowledge engineering.



 

constitute a description of the problem-solving method applied. In addition to its use at the
domain layer, L-KARL is used to specify the logical relationship defined by an inference
action at the inference layer and to specify a 

 

task-specific terminology

 

 independently from the
domain-specific terminology by means of concept definitions in roles.

A

 

 Domain view

 

 specifies the relationship between the generic terms used at the inference layer
and the domain-specific knowledge. Again, L-KARL is used to specify the mapping between
domain and inference knowledge.

 

Dynamic control knowledge:

 

 The purpose of the task layer is to specify 

 

control

 

 over the
execution of the inferences of the inference layer. The sublanguage 

 

Procedural-KARL (P-
KARL)

 

 is used to specify this dynamic knowledge via sequences, branches, loops, and
procedure calls. Conditions for the controlflow can be specified via logical statements about
the contents of stores.

Inference and control knowledge are domain independent, i.e. they describe the problem
solving process in a generic way. Thus, such a so-called 

 

problem-solving method 

 

can be reused
for different application problems. MIKE provides a library, where these generic problem
solving methods are stored which are described formally and informally.

The right side of Figure 1 sketches a model of expertise of the 

 

Sisyphus problem

 

. The domain
terminology and the domain knowledge required by the problem solving method is defined at
the domain layer. The inference layer contains the elementary inference steps and knowledge
roles of it. Components (employees) and slots (places) are combined by the inference action

 

create

 

. 

 

Prune

 

 eliminates illegal states, and 

 

check

 

 searches for valid solutions. The control flow
between these inferences is defined at the task layer. 

 

3.2 The Knowledge Acquisition and Representation Language (KARL)

 

2

 

Logical-KARL (L-KARL)

 

L-KARL is a customization of Frame-logic (F-logic) [KiL93]. F-logic and L-KARL enrich the
modelling primitives of first-order logic by syntactic modifications but preserve the model-
theoretical semantics of it. In this way, ideas of semantical and object-oriented data models are
integrated into a logical framework enabling the declarative description of terminological as
well as assertional knowledge. L-KARL distinguishes classes, objects, and values. It provides
classes and an is-a hierarchy with multiple attribute inheritance to describe terminological
knowledge. Intentional and factual knowledge is described by logical relationships between
classes, objects, and values. 

A 

 

class 

 

or 

 

concept definition

 

 which corresponds to a frame describes class attributes which
refer to the class as such and attributes for the objects which are elements of the class. The
attributes are described by their name, their domain, and their range. Classes are arranged in a
specialization/generalization hierarchy with multiple attribute inheritance. Attributes can be
single-valued or set-valued. Attributes can be used to describe objects as well as classes. They
have defined domain and range types.

The literals of logical expressions in L-KARL are 

 

is-element-of literals

 

 which describe that
objects are elements of classes; 

 

is-a literals

 

 which describe subset relationships between
classes; 

 

equality literals 

 

which describe equality of objects, classes, and values; and finally

 

data literals

 

 which define attribute values for objects and classes. Logical formulae are built
from these literals using logical connectors 

 

∧

 

, 

 

∨

 

, 

 

¬

 

, 

 

←

 

 and variable quantification. The

 

2.  A complete description of KARL can be found in [Fen93]. A short description of the modelling primitives of KARL
is given in [AFS94], some of the applications of KARL can be found in [AFL92b], [LFA93], and [PFL+94].



 

logical language to describe relationships between classes, objects, and values is Horn logic
with equality and function symbols extended by stratified negation [Ull88].

 

Procedural-KARL (P-KARL)

 

In KARL knowledge about controlflow is explicitly described by the logical language P-
KARL. The control flow is specified similar to procedural programming languages. For a P-
KARL program, a number of functions 

 

F = {f

 

1

 

, f

 

2

 

, ..., f

 

r

 

}

 

 and a number of variables 

 

{X

 

1

 

, ..., X

 

n

 

}

 

are available. The function symbols correspond to names of inference actions. The variables
address their stores. The actual parameters of a function are the input stores of the
corresponding inference action and the results of the function are mapped to its output stores.
A primitive program is an

 

 assignment 
(X

 

k1

 

, ..., X

 

kh

 

) := f

 

i

 

(X

 

j1

 

, ..., X

 

jl

 

)

 

.

 

 
f

 

i

 

 corresponds to an inference action and the 

 

X

 

ks

 

 denote its output stores and the 

 

X

 

js

 

 its input
stores. A composed program is defined as 

 

sequence

 

,

 

 loop

 

, or

 

 alternative 

 

of programs.

 

KARL As A Formal And Executable Specification Language

 

The KARL model of expertise contains the description of domain knowledge, inference
knowledge, and task knowledge (i.e., procedural control knowledge). The gist of the matter of
the semantics of KARL is therefore the requirement to include the specification of static and
procedural knowledge. For this purpose, two different types of logic have been integrated. The
sublanguage L-KARL, which is based on object-oriented logics, combines frames and logic to
define terminological as well as assertional knowledge. The sublanguage P-KARL, which is a
variant of dynamic logic, is used to express knowledge about the control flow of a problem-
solving method in a procedural manner. The representation of the interaction of both types of
knowledge is reached by combining both types of languages. For more details see [Fen93].
Based on this semantics an operationalization and an optimized evaluation strategy were
developed providing an interpreter and debugger for KARL.

 

KARL As A Graphical Modelling Language

 

KARL provides graphical representations of most modelling primitives to improve their
intelligibility: A variant of 

 

Enhanced-Entity-Relationship (EER) diagrams

 

 describes the
domain layer, a variant of 

 

levelled dataflow diagrams

 

 is provided for the inference layer, and a
variant of 

 

programflow diagrams

 

 describes the task layer. All three graphical representations
include 

 

hierarchical refinement

 

 to allow to represent the system on different levels of
refinement. Figure 1 shows the graphical representation a model of expertise of a solution of
the so-called 

 

Sisyphus problem

 

.

 

4 Integration Of Semiformal And Formal Specification

 

The integration of semiformal and formal specification techniques can be discussed in two
dimensions. First, we will sketch their integration during the specification 

 

process

 

. Then, we
will sketch their integration in the specification 

 

product

 

.

 

4.1 Integration During the Process of Model Development

 

The knowledge acquisition process consists of three activities: eliciting knowledge,
interpreting knowledge, and formalizing knowledge. These activities are done in a cyclic
manner. The process starts with selecting a partially specified structure model from a library of
predefined models. These models (socalled problem-solving methods) are developed for
specific problem types like classification, diagnosis, assignment, configuration, planning etc.



 

(see [Neu94] for more details). Then, the selected structure model guides the elicitation
process, i.e. it is used as a guide for asking and observing the expert. It defines a network of
activities and knowledge items which are used as a form for the elicitation process. The
resulting knowledge protocols are stored in the node-content of protocol nodes of the
elicitation model. The structures described in the knowledge protocols are represented by
contexts of the structure model. The semiformal structure model is a first result of specification
which clarifies complex knowledge structures. At the one side, it guides the elicitation process.
At the other side, it becomes modified and refined as a result of the elicitation process.
Moreover, the structure model is the foundation for the formalization process where the model
of expertise is developed. The formalization is achieved in a refinement step which
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model of expertise at the right (nodes with formal content).
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supplements informal descriptions of elementary activities and knowledge entities by formal
definitions. Again, this can lead to revision of the whole structure of the model of expertise and
can stimulate new elicitation tasks. The main features of our approach are therefore the
integration of bottom-up and top-down modelling by applying reusable components (problem-
solving methods) and the smooth transition from informal to semiformal to formal
specification techniques. A large amount of the formal specification can be done graphically
using the same modelling primitives as in the semiformal model. The underlying conceptual
model of the system (i.e., the model of expertise) relates both description techniques.

 

4.2 Model connection

 

A further central point of MIKE is to relate the three models with each other. First, the
elicitation model is related with the structure model. More precisely: the activity and concept
nodes are related with the protocol nodes in which they have been described during elicitation.
So, a connection is existing to the originally given information from the expert. A so-called

 

elicitation link

 

 exists to describe these interrelation. During structuring, these links can be
easily integrated. Second, the structure model is related with the model of expertise

 

3

 

. Socalled

 

formalization links

 

 relate a formally described node of the model of expertise with an
informally described node of the structure model. Corresponding nodes, including on the one
hand an informal description and on the other hand a formalization, are linked during the
formalization/operationalization process.

The model connection has different advantages: First, the informal information integrated in
the elicitation or structure model function as a documentation of a formal description. Large
parts of documentation can be directly done during knowledge acquisition. The explanation
facility can use the informal models during the usage of the system which are also helpful for
the maintenance of the system. Figure 1 shows some links relating the elicitation and the
structure model or the structure model and the model of expertise.

 

5 Conclusion

 

MIKE is an approach integrating semiformal and formal specification techniques used during
an incremental development process. The semiformal specification is not only used to simplify
the formalization process but is also seen as an important result itself. It structures the complex
problem solving process and with its informal descriptions of facts it can be used for
documentation. The formal specification in the early specification phase describes precisely
the functionality of the system without implementation details. Our formal specification is also
operational representing a first prototype of the system. For developing our models and the
relationships between models during the specification phase we provide a tool called MeMo-
Kit (see [NeM93] and [Neu94]) providing a graphical editor environment. For evaluating the
model of expertise an interpreter exists (see [Ang94]). Part of the current work of MIKE is the
enhancement of the model of expertise to a design model which also considers non-functional
requirements ([LaS94]). A comparison of MIKE work done in information system
development and software engineering can be found in [AFL92a] and [FAL93].
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