
E�cient Maintenance

of

Materialized Mediated Views
�

James Lu

Bucknell University

lu@sol.cs.bucknell.edu

Guido Moerkotte

Lehrstuhl f�ur Informatik III

RWTH Aachen

moer@gom.informatik.rwth-aachen.de

Joachim Sch�u

Universit�at Karlsruhe

schue@ira.uka.de

V.S. Subrahmanian

University of Maryland

vs@cs.umd.edu

Abstract

Integrating data and knowledge from multiple heterogeneous sources | like databases,

knowledge bases or speci�c software packages | is often required for answering certain

queries. Recently, a powerful framework for de�ning mediated views spanning multiple

knowledge bases by a set of constrained rules (cf. work of Kanellakis et. al. [27]) was

proposed [39, 5, 26]. Within this paper, we investigate the materialization of these views

by unfolding the view de�nition and the e�cient maintenance of the resulting materialized

mediated view in case of updates. Thereby, we consider two kinds of updates: updates to

the view and updates to the underlying sources. For each of these two cases several e�cient

algorithms maintaining materialized mediated views are given. We improve on previous

algorithms like the DRed algorithm [22] and introduce a new �xpoint operator WP which

| opposed to the standard �xpoint operator TP [19] | allows us to correctly capture the

update's semantics without any recomputation of the materialized view.

1 Introduction

Integrating data and knowledge from multiple heterogeneous sources each one possibly with a

di�erent underlying data model is not only an important aspect of automated reasoning but

also of retrieval systems | in the widest sense | whose queries can span multiple such sources.

These sources can be as di�erent as relational or deductive databases, object bases, (constraint)

knowledge bases, or even (structured) �les and arbitrary program packages encapsulating speci�c

knowledge, often in a hard-wired form accessible only through function calls. Many queries can

only be answered if data and knowledge from these di�erent sources are available. (For a

�Author for Correspondence: V.S. Subrahmanian, Dept. of Computer Science, Univ. of Maryland, College

Park, MD 20742. Tel: (301) 405-2711; Fax: (301) 405-6707, Email: vs@cs.umd.edu. This research was supported

by the Army Research O�ce under grant DAAL-03-92-G-0225, by the Air Force O�ce of Scienti�c Research
under grant F49620-93-1-0065, by ARPA/Rome Labs contract Nr. F30602-93-C-0241 (Order Nr. A716), and

by an NSF Young Investigator award IRI-93-57756. James Lu was supported by the NSF under grant number

CCR9225037.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197596464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

motivating example see Sec. 2.2.) In order to answer these queries, it is necessary to de�ne a

mediator [45, 46] integrating the di�erent sources on a semantic level by providing an integrated

view spanning these sources.

Traditional research on view or schema integration, and interoperability of databases con-

centrates on integrating databases, possibly with di�erent underlying schemata or even data

models [16, 29, 33, 36]. The basic idea often is to aim for a global integrating schema or view

whose de�nition mediates between di�erent databases. Only lately, investigations started to

integrate other sources of data available. The most prominent example of such a source is the

�le. Lately, it was proposed to integrate (structured) �les and object bases by providing an

object base view on the �le and a �le view upon the object base [2, 20]. Again, though the

means by which mediators are de�ned are di�erent from the traditional ones, they form the

basis for the integration. Another also recent but quite di�erent application area for mediators

are cooperative intelligent agents [10].

Another powerful technique | based on constraint logic | for integrating multiple knowl-

edge bases is introduced in [39, 5, 26] and is based, in part, on the ideas of constrained databases

due to Kanellakis, Kuper and Revesz [27]. While this work examines a framework for express-

ing mediated views, the paper [41] describes a concrete implementation of one such mediating

system called HERMES (HEterogeneous Reasoning and MEdiator System). HERMES supports

the integration of multiple databases and reasoning paradigms on both the PC/Windows and

the SUN/Unix platforms and provides an environment which allows
exibility in adding new

databases and software packages. In HERMES, mediators are expressed in a rule-based language

containing a special predicate in used to achieve logical integration at the semantic level. It en-

ables access to data contained in external databases, and gives HERMES the ability to execute

functions in existing software { the current implementation of HERMES integrates PARADOX.

INGRES, DBASE with third-party path planning packages, numerical computation packages,

face recognition packages, and multimedia application packages.

As for traditional views, mediated views are materialized for e�ciency reasons. A material-

ized view can be a�ected by two kinds of updates:

� updates to the materialized view, and

� updates to the underlying sources.

If an update of the �rst kind occurs to a view, whether materialized or not, the problem occurs

on how to re
ect the update correctly by changing the base tables appropriately. This problem

is called the view update problem and has been discussed extensively for relational [6, 13, 15],

deductive [6, 32, 42, 43], and object-oriented [1, 14, 31, 35] databases. However, our objective

is slightly di�erent. As motivated by an example in Section 2.2, we do not necessarily assume

that an update occurring to a view has to be re
ected within some underlying source. Instead,

we assume that the view itself | or, to be more precise, its de�nition | is a�ected by the

update. This kind of update a�ecting the view's de�nition is typically not treated within the

view update literature. One exception are deductive databases, where the addition or deletion

of rules to the de�nition of an intensional predicate is discussed [42]. However, they neither

materialize nor preprocess the view for e�ciency reasons.

Within the traditional context, the second case occurs if an update to a base table occurs

which possibly a�ects a materialized view. The resulting problem | preserving the consistency

of the view | is called view maintenance and has been discussed for, e.g., for (extended) relation

2

[8, 23, 38] and deductive databases [30, 24, 21, 44, 37]. The same problem occurs also for the

materialization of functions within object bases [28]: if the values of some object's attributes

change, the materialized function value becomes invalid. However, since we do not necessarily

materialize the view upon the underlying sources of our mediated views but instead perform

materialization by unfolding the view de�nition as independent as possible from the underlying

sources, the traditional view maintenance problem occurs quite di�erently to us. Hence, the

traditional view maintenance problem and our problem do not intersect but complement each

other.

Subsequently, we treat both kinds of updates to materialized mediated views and show how

they can be handled e�ciently. More speci�cally, the primary aim is to specify how to e�ciently

maintain views of mediated systems such as those that may be constructed in HERMES when

insertion and deletion requests of both of the above two kinds are made. As in the standard

case, a materialized view in mediated systems may be thought of as a set of facts that can

be concluded from the mediator rules. However, we show that more generally, a materialized

mediated view may be regarded as a set of constraint atoms that are not necessarily ground.

Taking materialized views to be sets of constrained atoms leads to a number of advantages:

1. First of all, it allows us to perform updates to constrained databases such as those de-

scribed by Kanellakis et. al. [27]. To our knowledge, there are currently no methods to

incrementally maintain views in constrained databases.

2. We show for updates of the second kind that even in the case of unconstrained databases,

such as those considered by Gupta, Mumick and Subrahmanian [22], this approach leads to

a simpler and more e�cient deletion algorithm than the deletion algorithm, DRed presented

in [22].

3. For updates of the �rst kind, we depart from using the standard �xpoint operation TP as

de�ned by Gabrielli and Levi [19]. Instead, we introduce the �xpoint operator WP . WP is

able to capture updates of the second kind without any recomputation of the materialized

mediated view while maintaining the semantics of TP and correctly capturing the update.

The rest of the paper is organized as follows. Section 2.1 gives the preliminaries. Section 2.2

introduces the running example which also motivates the integration of multiple sources for

answering a single query as well as the two kinds of updates. Section 2.3 formally de�nes the

notion of materialized mediated view. Section 3 treats updates of the �rst kind whereas Section 4

treats updates of the second kind. Section 5 discusses related work and Section 6 concludes the

paper.

2 Preliminaries and Motivating Example

2.1 Syntax and Semantics

In this section, we will brie
y describe the basic theory behind mediated systems proposed in

[26, 39, 4, 5, 3]. Illustration is provided via the HERMES implementation.

A domain, D, is an abstraction of databases and software packages and consists of three com-

ponents: (1) a set, � whose elements may be thought of as the data-objects that are being

manipulated by the package in question, (2) a set F of functions on � { these functions take

3

objects in � as input, and return, as output, objects from their range (which needs to be

speci�ed). The functions in F may be thought of as the prede�ned functions that have been

implemented in the software package being considered, (3) a set of relations on the data-objects

in � { intuitively, these relations may be thought of as the prede�ned relations in the domain,

D.

A constraint � over D is a �rst order formula where the symbols are interpreted over D. �

is either true or false in D, in which case we say that � is solvable, or respectively unsolvable

in D, where the reference to D will be eliminated if it is clear from context. The key idea

behind a mediated system is that constraints provide the link to external sources, whether they

be databases, object bases, or other knowledge sources. This idea is developed extensively in

[26, 39, 4, 5, 3] and we do not elaborate on them here.

For example in HERMES, a domain call is a syntactic expression of the form

domainname : hdomainfunctioni(harg1; : : : ; argni)

where domainfunction is the name of the function, and harg1; : : : ; argni are the arguments it
takes. Intuitively, a domain call may be read as: in the domain called domainname, execute

the function domainfunction de�ned therein on the arguments (arg1; : : : ; argn). The result of

executing this domain call is coerced into a set of entities that have the same type as the output

type of the function domainfunction on the arguments (arg1; : : : ; argn)

A domain-call atom (DCA-atom) is of the form in(X; domainfunctioni(harg1; : : : ; argni) where
in is a constraint that is satis�ed just in case the entity X is in the set returned by the domain

call in the second argument of in(-,-). In other words, in is the polymorphic set membership

predicate.

More concretely, in(A,paradox:select eq('phonebook',"name","john smith")) is a DCA-

atom that is true just in case A is a tuple in the result of executing a selection operation (�nding

tuples where the name �eld is john smith) on a relation called phonebook maintained in a

PARADOX database system.

A mediator/constrained database is a set of rules of the form

A D1 ^ : : :^ DmjjA1; : : : ; An:

where A;A1; : : : ; An are atoms, and D1; : : : ; Dm are DCA-atoms. Note that for simplicity, we

restrict constraints to DCA-atoms of the form described above. This does not however, detract

from the generality of the techniques described in the paper { It can be shown (Example 2

presents one example of how to do this) that all the kinds of constraints considered by Kanellakis

et. al. can be captured within this framework (Lu, Nerode, Subrahmanian present further details

[26]).

2.2 Motivating Example

We introduce a running example which also motivates our approach. This example has been

addressed in the existing HERMES implementation [40].

Example 1 (Law-Enforcement Example) Consider the problem of identifying all people

P who have been recorded, by surveillance cameras, as having met with an individual X (for

4

instance, X may be a Ma�a chief like Don Corleone), who live within a hundred mile radius

of Washington DC, and who work for a suspected front company \ABC Corp." Solving this

problem may require access to a wide variety of data structures, databases, and furthermore,

require recourse to diverse reasoning paradigms as well. For instance:

� First, we need to access a background face database containing pictures (e.g. passport

pictures) of individuals. In this face database, the identity of the photographed individuals

is known.

� Second, we need access to a database containing surveillance photographs. These

photographs may have been obtained by using surveillance cameras.

� Third, we need access to face-extraction algorithms that extract the \prominent" faces

from the images generated by the surveillance camera.

� Fourth, we need methods of matching faces extracted from the surveillance data by the

face-extraction algorithm, so as to be able to �gure out who appears in which images.

� Fifth, we may need to access a relational database (e.g. a phone/address book database)

specifying the names, addresses, and phone numbers of individuals. This database may

be stored as a relation in a well known relational DBMS, say PARADOX.

� Sixth, we may need to access a spatial database/spatial reasoning package in order

to determine whether a given address lies within 100 miles of Washington DC.

� Finally, we may need to access a second relational database about the employees

of ABC Corp. Note that this relational database maybe completely di�erent from the

phone/address book relational database alluded to earlier in this example, and may be

stored as a DBASE relation.

In order to answer the above query, we must be able to integrate the above software packages at
the software level, as well as at the logical level. In this paper, we will not go into the software
integration scheme { it is described in [41], but we will go into some details about the mediator
syntax itself in order to de�ne what \soundness and completeness" of view maintenance means,
and in order to develop algorithms for view maintenance that are sound and complete. For this
example, the mediator may be expressed as three clauses:

seenwith(X; Y) in(P1; facextract : segmentface(0surveillancedata0)) ^

in(P2; facextract : segmentface(0surveillancedata0)) ^

= (P1:origin; P2:origin) ^

P1 6= P2 ^

in(P3; facedb : findface(X)) ^

in(true; facextract : matchface(P1; P3))^

in(Y; facedb : findname(P3)): (1)

swlndc(X; Y) seenwith(X; Y) ^

in(A; paradox : select eq(0phonebook0; "name"; X)) ^

in(Pt1; spatialdb : locateaddress(A:streetnum; A:streetname;A:cityname)^

A:statename; A:zipcode)) ^

in(true; spatialdb : range(0dcareamap0; Pt1:X; Pt2:X;100)): (2)

suspect(X; Y) swlndc(X; Y) ^

in(Tuple; dbase : select eq(0empl abc0; "name"; Y)): (3)

5

The seenwith predicate access a domain called faceextract which is a pattern recognition

package that uses a function called segmentface to locate the faces in a set of photographs, and

then extracts these faces (leading to \mugshots") which are then stored in �les. The extraction

procedure returns a list of pairs of the form (< resultfile; origin>) specifying which image

in the surveillance data, a given face was extracted from (the origin) and where the mugshot/face

is now stored. The faceextract domain also contains a function called matchface that takes

as face (such as those extracted by the faceextract domain) and checks if this face is identical

to another face in the mugshot library. Likewise, the seenwith predicate access a domain called

facedb containing a function called findface which determines, given a person's name, whether

his face is in a mugshot library. The facedb domain also contains a function called findname

which, given a mugshot in the mugshot library, returns the name of the person involved.

Given that a person Y has been seenwith X, swlndc (for \seen with and lives near DC"),

accesses a relational database to �nd the address of Y, and then accesses a spatial data man-

agement system to determine what (x; y) coordinates, on a map of the DC area, this address

corresponds to (using a function called locateaddress). It then determines, using a function

called range, whether this address lies within the speci�ed distance from DC.

Finally, a person Y is a suspect just in case swlndc(\Don Corleone00; Y) is true and if he is an

employee of \ABC Corp." For this, a DBASE relation called empl abc is accessed. The above

three clauses express the mediator for this example in its entirety. Figure 1 shows the logical

arrangement of the domains being integrated.

Example 2 (Constrained Databases) Kanellakis et. al. [27] have introduced the concept of

constrained databases, which can be modeled within our framework (a formal proof is contained

in [26]). For instance, if we wish to write constraints over the arithmetic domain, then we may

have functions called great(X) that returns as output, the set of all integers greater than X.

(Note that when implementing this, the entire | in�nite | set need not be computed all at

once | parts of may be computed and stored in a bu�er with additional computation being

performed on a need to perform basis. How to do this is not the topic of this paper, see [26] for

details). Likewise, plus(X; Y) returns the singleton set fX+ Yg.

In the rest of this paper, we will use these examples to motivate various kinds of updates that may

occur and that bear an important relationship to view maintenance in such mediated systems.

2.3 Non-Ground Materialized Mediated Views

In this section, we will de�ne the concept of a materialized mediated view. Typically, a mate-

rialized view is a set of ground atoms, corresponding to a set of relations whose �elds are �lled

in with (ground) values. In our case, a materialized view will generalize this notion, allowing

non-ground atoms to occur in it, as long as the variables in the atom satisfy certain constraints

which are de�ned as follows:

� Any DCA-atom is a constraint.

� If X is a variable symbol and T is either a variable symbol, or a constant, then X = T and

X 6= T are constraints.

� Any conjunction of constraints is a constraint.

6

Thus, for example, X = 2 ^ Y 6= X ^ in(Y; arith : greater(X)) is a constraint in the domain

arith described earlier. A more common way of writing this constraint is X = 2 ^ Y 6= X ^ Y � X

{ we will use this notation when referring to the numeric domain.

A constrained atom is an expression of the form A(~X) � where ~X denotes a tuple of variables

and � is a constraint.

Given a constrained atom A(~X) �, [A(~X) �] denotes the set of instances of X that are

solutions of �, viz. fA(~X)� j � is an solution of � g. For example, taking the same constraint

� = (X = 2 ^ Y 6= X ^ Y � X) as above, [p(X; Y) �] is the set fp(2; 3); p(2; 4);p(2;5); : : :g. If C
is a set of constrained atoms, [C] is de�ned to be

S
A(X) �2C[A(X) �].

An interpretation for a mediated system P is any set of constrained atoms. A constrained atom

A(~X) � is said to be true in an interpretation I i� [A(~X) �] � [I]. Given a constrained

database P we may de�ne an operator, TP that maps interpretations to interpretations in the

following way:

TP (I) = fA(~X) � j

There is a clause A(t0) �0jjA1(t1); : : : ; An(tn) in P

81 � i � n : 9Ai(Xi) �i 2 I;

which share no variables and the constraint

� = �0 ^ �1 ^ : : :^ �n ^ f ~X1 = ~t1g ^ : : :^ f ~Xn = ~tng ^ f ~X = ~t0g is solvableg

Note that each ~ti is assumed to be a tuple of terms of the same length as Xi. This operator was

originally de�ned by Gabbrielli and Levi [19] who used it to de�ne a non-ground representation

of the ground least Herbrand model of a constrained database/logic program. For the types of

updates that we consider in Sections 3 and 4, this non-ground set of constrained atoms consti-

tutes the materialized view of the constrained database which we are interested in maintaining.

The iteration of TP is de�ned in the usual way.

An important point to note is that TP may often yield a set containing multiple atoms of

the form A(~X) �1; : : : ;A(~X) �m where the constraints, �1; : : : ;�m are not necessarily

incompatible. This corresponds to an extension, to the case of constrained databases, of the

well-known duplicate semantics proposed by Mumick [34] in the context of ordinary deductive

databases.

3 Updating Views

In our context, view updating deals with the following problem: given a constrained database P ,

a materialized view MMV, and an update u, compute a new materialized view that accurately

re
ects this update. Note that we adapt the view and not modify the underlying sources.

Remember that a materialized view is a set of constrained atoms. An update may take one of

the following three forms:

� Atom Addition: A constrained atom (involving predicates de�ned in the mediator) is

added to the materialized view. For instance, in the Law Enforcement example, the atom

seenwith(\Don Corleone00; \Jane Doe00) may be inserted into the materialized view (even

though this fact may not be derivable using clause (1) of the paper.) This may be due to

the fact that some external reasons (e.g. a policeman saw them together and duly reported

it) may justify its truth.

7

� Atom Deletion: Suppose the atom suspect(\Don Corleone00; \John Smith00) was in the

materialized view (e.g. it may been derivable from the original constrained database), but

we may wish to delete this fact because there is external evidence that John Smith has

no connection with Don Corleone (e.g. he may have been derived as a suspect because he

was in a large crowd of people one of whom was Don Corleone).

� External Data Changes and Function Modi�cation: In a mediated system, the

mediator accesses (potentially) many di�erent databases and/or data structures. The

data contained in those databases/data structures may be updated, triggering changes

to the data in the materialized view. For instance, in the Law Enforcement Example, it

may turn out that the surveillance data has been extended (through the addition of new

photographs, say) and hence, the domain call facextract:segmentface

('surveillancedata') returns a set of objects that are di�erent from what was returned

by this function prior to the update. This change in the domain is modeled as a change

in the function which, in this example, happens to be segmentface. Changes of this kind

may trigger new changes to the materialized view (for instance, adding new pictures will,

presumably, enlarge the pool of suspects). We will show how this intuition of modeling

changes in local databases as function updates leads to simple algorithms for updating a

mediated materialized view.

Note that we do not consider the problem of adding or deleting a rule from the mediator.

3.1 Deletion of Constrained Atoms

In this section, we will present two algorithms that will compute a materialized view obtained

by deleting an existing atom from the mediated materialized view. The correctness of these

algorithms is shown and the relative areas of applicability are discussed. In particular, we

emphasize that both algorithms apply to non-recursive, as well as recursive views (Example 6

provides an example).

Declarative Semantics of Constrained-Atom Deletion: Let A(~X) � be a constrained

atom whose instances are to be deleted from the materialized view M . Let Del be the set

fA(~Y) � ^ (~X = ~Y) ^ � j where A(~Y) � is a constrained atom in the materialized view,

MMV and � = �^ (~X = ~Y)^� is satis�ableg. Del is the initial input to our deletion algorithm

below. Observe that the construction of Del ensures that only those constrained atoms that

are actually in the existing materialized view will be deleted. We now show how to construct

a new constrained database P 0 which accomplishes the deletion of these atoms as well as the

deletion of their consequences. The least model of this constrained database will be the desired

materialized view after the deletions are performed. Hence, P 0 provides the declarative semantics

of the deletion operation, and we will later show in Algorithm 1, how this declarative semantics

can be computed.

Rewrite the Constrained Database P resulting in a new constrained database P 0, as follows.

1. If A(~X) � jj B1(~X1); : : : ; Bn(~Xn) is in P and A(~Y) �0 is in Del, then

A(~X) � ^ not(�0) ^ (~X = ~Y) jj B1(~X1); : : : ; Bn(~Xn) is in P
0: (4)

2. Any clause in P with a head di�erent from A(~X) is in P 0.

8

We present two algorithms for accomplishing the above deletion. The �rst algorithm extends

the DRed algorithm of Gupta, Mumick and Subrahmanian [22] to the mediated case. It is

e�cient when the mediated view is duplicate-free, i.e. when, for all distinct constrained atoms

A(~X) �1 and A(~Y) �2 in the materialized view, [A(~X) �1] \ [A(~Y) �2] = ;.
The second algorithm shows how to completely eliminate the expensive rederivation step in this

algorithm, thus improving the DRed algorithm. Furthermore, the second algorithm uses the

least �xpoint of the Gabbrielli-Levi operator with no changes (in particular, duplicate checking

and elimination, required in Algorithm 1, are not required either).

3.1.1 The First Deletion Algorithm

Algorithm 1 (Extended DRed Algorithm)

1. Unfold the constrained atoms to be deleted with respect to the original constrained

database P , so as to compute a set of constraint base facts, that are to be \possibly

deleted".

P OUT0 = Del

P OUTk+1 = fB(~X) � j

There is a clause B(~X) �0 jj B1(~X
0

1); : : : ; Bn(~X
0

n) in P

and for at least onej 2 f1; : : : ; ng : Bj(~Xj) �j 2 P OUTk

8i 6= j 2 f1; : : : ; ng : Bi(~Xi) �i is a constraint

atom from the materialized view M = TP " !(;);

and� = �0 ^ : : :^ �n ^ f ~X1 = ~X 01g ^ : : :^ f
~Xn = ~X 0ng

is satis�ableg

P OUT =
[

k�0

P OUTk

Note that the members of P OUT are candidates for deletion from the materialized view,

but not all of them will necessarily be deleted.

2. Compute an overestimate,M 0, of necessary deletions with [M 0] = [M]n[P OUT] as follows:

(a) For every B(X1) � in M for which there exists a B(~X2) � in P OUT ,

B(~X2) not(�) ^ � ^ (~X1 = ~X2) is in M
0 (5)

(b) For each remaining constraint fact B(~X) � in M , B(~X) � is in M 0.

3. Rederive the new view by computing TP 00 " !(M 0). Return this as output.

P 00 is obtained from P 0 by considering each clause C � A(~X) �kB1& : : :&Bn in P 0 as

follows:

(a) if A �1 is true in M 0, then delete C from P 0.

(b) Otherwise, eliminate all Bi's from the body of this clause that are true in M 0.

9

(c) If all rules involving a predicate A have been eliminated by Step 3a, then eliminate

all clauses with that predicate in the body. This process should be repeated until no

more rules can be eliminated.

The reason for the incrementality of the above algorithm is that Step 3 eliminates a large part of

the constrained database from consideration by either eliminating rules, or eliminating various

preconditions in the bodies of rules.

Theorem 1 Let X = TP 00 " !(M 0) be the output of Algorithm 1. Then: [X] = [TP 0 " !(;)], i.e.
the algorithm is correct.

Note that there are multiple ways of representing equivalent constraint atoms (e.g. p(X; Y)
X = Y + 1 and p(X; Y) Y = X � 1 are syntactically di�erent, but semantically equivalent).

The above result says that the set of solutions of the constraint atoms returned by the algorithm

coincide with the intended declarative semantics.

Example 3 Suppose the materialized mediated view associated with the Law Enforcement ex-

ample contains the atoms: seenwith(\Don Corleone00; \John00), seenwith(\Don Corleone00; \Ed00);

swlndc(\Don Corleone00; \John00); swlndc(\Don Corleone00; \Ed00). Suppose we are interested in

deleting seenwith(\Don Corleone00; \John00); this may be due to external information (e.g. that

the photograph was a forgery intended to frame John) then the materialized view will be updated

by the deletion of the two atoms

seenwith(\Don Corleone00; \John00) and ; swlndc(\Don Corleone00; \John00).

These two atoms constitute the set P OUT . In this example, all atoms in P OUT are in fact

deleted.

Example 4 Suppose we consider the constrained database containing: fA(X) X � 3;A(X)
B(X);B(X) X � 5;C(X) A(X)g; the materialized view associated with this is: fA(X)
X � 3;A(X) X � 5;B(X) X � 5;C(X) X � 3;C(X) X � 5g. Suppose we wish
to delete B(X) X = 6. Then the set Del = fB(X) X = 6g. Then P OUT contains:

fB(X) X = 3;A(X) X = 3;C(X) X = 3g (actually in this example, we are showing a

simpli�ed version of the constraints). Note that in this case, A(X) X = 3 and C(X) X = 3

should not be eliminated from the view because A(X) X = 3 has a proof independently of

the proof that depends upon B(X) X = 3. M 0, as presented in the Extended DRed algorithm

now becomes fA(X) X � 3 ^ X 6= 3;A(X) X � 5 ^ X 6= 3;B(X) X � 5 ^ X 6=
3;C(X) X � 3 ^ X 6= 3;C(X) X � 5 ^ X 6= 3; g. The constrained database P 0 used in

the de�nition of the extended DRed algorithm is identical to P except that B(X) X � 5 is

replaced by B(X) X � 5 ^ X 6= 3; P 00 is then the constrained database that contains just the

rules A(X) X � 3 and C(X) A(X). TP 00 " !(M 0) quickly evaluates to the materialized

view, A(X) X � 3;A(X) X � 5;B(X) X � 5 ^ X 6= 3;C(X) X � 3;C(X) X 6=
3 ^X � 5g, which is the correct, �nal materialized view.

3.1.2 The Second Deletion Algorithm

We now present a second algorithm to accomplish the deletion of constrained atoms from mate-

rialized mediated views in which duplicates are retained. The important advantage of the new

10

algorithm is the elimination of the rederivation step (Step 3) of the �rst algorithm. To achieve

this, we assume that each constraint atom in the materialized view is \indexed" by a sequence of

clauses representing the derivation of the constraint atom in TP . For simplicity we may assume

that clauses are numbered in the constrained database and we use Cn(C) to denote the clause

number of the clause C.

For each constraint atom A(~X) � in the materialized view TP " !(;), we associate an
\index" sequence, called the support of A(~X) � and denoted spt(A(~X) �), as follows:

1. If A(~X) � 2 TP " 0, then spt(A(~X) �) = hCn(C)i where C is the clause from which

A(~X) � is derived in TP .

2. Suppose A(~X) � 2 TP " n. By de�nition there is a clause C 2 P of the form

A(~Y) �0jjB1(~X1); :::;Bk(~Xk)

such that Bi(~Yi) �i 2 TP " (n � 1) and � = �0 ^
k
i=1 �i ^ (

~X = ~Y) ^ki=1 (
~Xi = ~Yi) is

solvable. Then spt(A(~X) �) = hCn(C); spt(B1(~Y1) �1); : : : ; spt(Bk(~Yk) �k)i.

Observe that the support of any constraint atom is always �nite. Moreover, each constraint

atom in TP " !(;) possesses a unique support.

Lemma 1 Suppose spt(F1) = spt(F2). Then F1 and F2 are the same constraint atom in

TP " !(;).

The input to the algorithm is the same set Del given to Algorithm 1. The intuitive idea behind

the algorithm is that the support of a constraint atom F is used for determining whether an

earlier deletion a�ects the deletion of F . We present the algorithm �rst followed by several

examples.

Algorithm 2 (The Straight Delete (StDel) Algorithm)

1. Let M be the materialized view given by TP " !(;) and mark each constraint atom in M .

2. For each constraint atom F = A(~X) � in M where there exists A(~Y) � 2 Del, such
that � ^ (~X = ~Y) ^ � is solvable, replace F with the new constraint atom

A(~X) � ^ (~X = ~Y) ^ not(�):

In addition, put the pair (A(~Y) � ^ (~X = ~Y) ^ �; spt(F)) into P OUT .

3. repeat

For each constraint atom F = A(~X) � in M that is marked. Suppose spt(F) =

hCn(C); s1; :::; sni for some constrained clause C having the form

A(~Y) �0kB1(~t1); :::; Bj(~tj); :::B(~t)m;

and

(a) The constraint atom (Bj(~Yj) �j ; sj), for some 1 � j � n, is in P OUT .

11

(b) For each 1 � i � n such that i 6= j, the constraint fact Fi = Bi(~Yi) �i with

si = spt(Fi) is in M .

(c) The constraint �0 ^ � ^ (~X = ~Y) ^ ^ni=1(
~Yi = ~ti ^ �i) is solvable.

Then replace F with

A(~X) �0 ^ � ^ (~X = ~Y) ^ ^ni=1(~Yi = ~ti) ^ �1 ^ :::^ not(�j) ^ : : :^ �n:

In addition, put the pair (A(~X) �^ (~X = ~Y)^^ni=1(
~Yi = ~ti ^�i); spt(F)) into P OUT .

Until no remaining marked elements can be replaced.

4. Remove any constraint atom from M whose constraint is not solvable.

Note that the constraints that are created in step 3 of the algorithm will often contain redun-

dancy. But as the next example illustrates, in many cases the redundancy can be removed by

simpli�cation of the constraints.

Example 5 Suppose P is the constrained database:

1. A(X) X � 3

2. A(X) B(X)

3. B(X) X � 5

4. C(X) A(X)

The materialized view of P is shown below on the left, where the corresponding support for each

constraint atom is shown to the right.

A(X) X � 3 h1i
A(X) X � 5 h2; h3ii
B(X) X � 5 h3i
C(X) X � 3 h4; h1ii
C(X) X � 5 h4; h2; h3iii

Suppose the constraint atom B(X) X = 6 is speci�ed for deletion. The declarative semantics

of this deletion is given by the least �xpoint of the constrained database P 0:

A(X) X � 3

A(X) B(X)

B(X) X � 5^X 6= 6

C(X) A(X)

The corresponding materialized view TP 0 " !(;) contains the constraint atoms:

A(X) X � 3

A(X) X � 5 ^X 6= 6

B(X) X � 5^X 6= 6

C(X) X � 3

C(X) X � 5^X 6= 6.

The StDel algorithm achieves the equivalent view working as follows. Initially, each of the

�ve constraint atoms inM is marked. In the second step, we replace B(X) X � 5 by the new

12

constraint atom B(X) X � 5; X 6= 6, and put (B(X) X � 5 ^X = 6; h3i) into P OUT

where h3i is the support of the replaced constraint atom.

Next according to step 3 of the algorithm, we search for marked constraint atoms inM whose

support contains h3i. The only constraint atom that satis�es this condition is A(X) X � 5,

whose support is h2; h3ii. We construct from constrained clause 2 the new constraint atom

A(X) (X � 5) ^ not(X � 5 ^ X = 6) that replaces A(X) X � 5. Simpli�cation of the

constraint yields A(X) X � 5 ^X 6= 6. The pair (A(X) X � 5 ^X = 6; h2; h3ii) is then
placed in P OUT .

The next iteration of the algorithm �nds that the support for the marked constraint atom

C(X) X � 5 contains the support h2; h3ii. Hence by a similar analysis as the previous

paragraph, a replacement of this constraint atom by C(X) X � 5^X = 6 is made. The pair

(C(X) X � 5 ^X = 6; h4; h2; h3iii) is put into P OUT .

The �nal iteration of step 3 does not produce any new replacement since the only remaining

marked constraint atoms are A(X) X � 3 and C(X) X � 3. Neither of which possesses a

support that contains a sub-support in P OUT . Hence the algorithm terminates. 2

Several observations are in order here. First, the supports that we use are similar to justi�ca-

tions used in truth-maintenance systems[17] in that they provide a \history" of the derivation

of constraint atoms. However, they serve di�erent purposes. The main di�erence between

truth maintenance systems (TMSs) and view maintenance systems (VMSs) is that in TMSs,

we attempt to delete an atom A by making it unprovable; in contrast, in view maintenance,

we try to determine what atoms need to be deleted based on deleting A. For instance, let

P = fa b; a c; b; c; d ag and suppose we wish to delete a from the original materialized

view fa; b; c; dg. Then view maintenance simply says that the new materialized view is fb; dg;
in contrast, TMSs would �nd three \extensions" for this problem based on di�erent ways of

eliminating the derivability of a; these extensions lead to the multiple materialized views fb; cg
obtained by eliminating the �rst two formulas in P ; fbg obtained by eliminating the �rst and

fourth formulas in P ; and fbg again obtained by eliminating the second and fourth formulas in

P . This strategy is unsuitable for databases because we would like view maintenance to lead

to a single resulting materialized view, not a possibly exponential number of materialized views

such as may be the case with TMSs.

Secondly, the algorithm di�ers from the counting algorithm of [21] since here, each constraint

atom in the materialized view corresponds to a single proof. The counting algorithm maintains a

count of the number of proofs of an atom, but does not distinguish between di�erent derivations.

In contrast, in our algorithm, given any constrained atom A(X) �, we maintain a list of

supports.

Example 6 (Recursive Views) Suppose we consider the constrained database:

1. P (X; Y) X = a ^ Y = b

2. P (X; Y) X = a ^ Y = c

3. P (X; Y) X = c ^ Y = d

4. A(X; Y) P (X; Y)

5. A(X; Y) P (X;Z); A(Z; Y)

The materialized view M is displayed below.

13

1. P (X; Y) X = a ^ Y = b h1i
2. P (X; Y) X = a ^ Y = c h2i
3. P (X; Y) X = c ^ Y = d h3i
4. A(X; Y) X = a ^ Y = b h4; h1ii
5. A(X; Y) X = a ^ Y = c h4; h2ii
6. A(X; Y) X = c ^ Y = d h4; h3ii
7. A(X; Y) X = X 0 ^ Z = Y 0 ^X 0 = a ^ Y 0 = c ^ Z = X 00^

Y = Y 00 ^X 00 = c^ Y 00 = d h4; h2i; h4; h3iii

Suppose Del = fP (X; Y) X = c ^ Y = dg. The view of the modi�ed program P 0, when

materialized, yields the set M 0

P (X; Y) X = a ^ Y = b h1i
P (X; Y) X = a ^ Y = c h2i
A(X; Y) X = a ^ Y = b h4; h1ii
A(X; Y) X = c ^ Y = d h4; h3ii

Note that constraint atoms 3, 6, and 7 are no longer derivable since the constraint part of clause

3 in the modi�ed program, X = c ^ Y = d ^ not(X = c ^ Y = d) is not solvable.

The computation of Algorithm 2 proceeds as follows. First constraint atom 3 inM is replaced

by

P (X; Y) X = c ^ Y = d ^ not(X = c^ Y = d)

and the pair (P (X; Y) X = c ^ Y = d; h3i) is placed in P OUT .

Next constraint atom 6 in M , due to the match within its support with the support h3i from
the above pair, is replaced by

A(X; Y) X = c ^ Y = d ^ not(X = c ^ Y = d)

while simultaneously, the pair (A(X; Y) X = c ^ Y = d; h4; h3ii) is added to P OUT .

Finally, standardizing variables apart, constraint atom 7 in M is replaced by

A(X; Y) X = X 0 ^ Z = Y 0 ^X 0 = a ^ Y 0 = c ^ Z = X 00 ^ Y = Y 00 ^X 00 = c ^ Y 00 = d^
Z = X 000 ^ Y = Y 000 ^ not(X 000 = c ^ Y 000 = d):

Though a new pair is added to the set P OUT , no more replacement is made to M and

hence the �nal view is:

1. P (X; Y) X = a ^ Y = b h1i
2. P (X; Y) X = a ^ Y = c h2i
3. P (X; Y) X = c ^ Y = d ^ not(X = c ^ Y = d) h3i
4. A(X; Y) X = a ^ Y = b h4; h1ii
5. A(X; Y) X = a ^ Y = c h4; h2ii
6. A(X; Y) X = c ^ Y = d ^ not(X = c ^ Y = d) h4; h3ii
7. A(X; Y) X = X 0 ^ Z = Y 0 ^X 0 = a ^ Y 0 = c ^ Z = X 00 ^ Y = Y 00 ^X 00 = c ^ Y 00 = d^

Z = X 000 ^ Y = Y 000 ^ not(X 000 = c^ Y 000 = d) h4; h2i; h4; h3iii

The constraints of each of constraint atoms 3, 6, and 7 are not solvable. Hence these atoms may

be removed. This produces the same materialized view as M 0.

14

Theorem 2 The Straight Deletion Algorithm is correct, i.e. the output M of the algorithm

satis�es [M] = [TP 0 " !(;)].

3.2 Insertion of Constrained Atoms

To insert the constrained atomA(~X) � into the mediated materialized view, we �rst construct

the input Add, which is the set fA(~X) not(�)^� such thatA(X) � is inM and not(�)^�
is solvable g. The set Add consists of all constrained atoms whose solutions correspond to the

instances to be inserted into the materialized view.

Declarative Semantics: We now specify the meaning of an insertion of A(~X) � into a

mediated materialized view, M , w.r.t. constrained database P { this meaning is the meaning

of a constrained database P [constructed as follows.

Rewrite the Constrained Database P into a new constrained database P [as follows:

P [= P [Add

[fA(~X) not(�)^� jj B1(~t1); : : : ; Bn(~tn) j

A(~X) � jjB1(~t1); : : : ; Bn(~tn) 2 P; n > 0;

A(~X) � 2Mg

Note that in the third component of the above union, for every constrained atom A(X) � in

M , and for every clause C in P with A in the head, we are replacing C's constraint part (which

may have been, say, �) by the constraint not(�)^�.

The least model of the above constrained database P [speci�es the desired semantics after the

insertion is accomplished. The reader may speci�cally note that even though negation occurs in

the body of clauses in P [, this negation occurs in the constraint part of the clause, and hence,

the resulting constrained database still has a least �xpoint [25]. We now present an algorithm

that incrementally inserts a constrained atom into a materialized view.

Algorithm 3 (Constrained Atom Insertion)

1. Unfold the constraint base fact to be inserted with respect to the original constrained

database P .

P ADD0 = Add

P ADDk+1 = P ADDk [fB(~X) � j

There is a clause B(~X) �0 jj B1(~t1); : : : ; Bn(~t
0

n) in P

where for at least one j 2 f1; : : : ; ng; Bj(~Xj) �j 2 P ADDk;

and for each i 2 f1; : : : ; ng where Bi(~Xi) �i 62 P ADDk

Bi(~Xi) �i is a constraint atom

in the materialized viewM = TP " !(;); and

� = �0 ^ : : :^ �n ^ (~X1 = ~t1)^ : : :^ (~Xn = ~tn)

is satis�ableg

P ADD = P ADD!

15

2. Set M 0 =M [P ADD, which is then the new view.

Observe that an important di�erence between the deletion and the insertion algorithms is

that in the condition de�ning P Addk+1, the number of body literals Bi that are contained in

P ADDk is one or more. Recall that in the construction of P OUTk+1, we require that the

number of body literals contained in P OUTk is exactly one.

The next theorem establishes the correctness of this algorithm, i.e. the incrementally com-

puted view, M 0, is the same as the least �xpoint of TP [where P [is the rewritten constraint

database.

Theorem 3 The insertion algorithm is correct. i.e. [TP [" !(;)] = [M 0].

4 Maintaining Views when External Changes Occur

Suppose we consider a mediator that integrates information in domains �1; : : : ;�n. For instance,

these domains may be relational database systems like PARADOX or DBASE, or non-traditional

systems like the facedb and spatialdb domains speci�ed in the law enforcement example.

When an update occurs within one or more of the domains being integrated (e.g. a PARADOX

table gets updated), this could be viewed as a modi�cation of the behavior of the functions that

access these domains. For instance, the select function in the PARADOX domain may return a

new set of tuples (after the update of the PARADOX tables). Another possibility is that the code

implementing functions may also have been updated (e.g. to remove bugs in older versions of

the software package). In this section, we analyze how updates to the integrated domains may

a�ect the materialized mediated view and how they can be handled e�ciently. For this, it is

important to always remember that we do not materialize the functions occurring within the in

predicate but instead materialize the mediated view by unfolding its de�ning rules.

As the behavior of functions is changing over time, we will use d : ft to denote the behavior

of the function f of domain d at time t. In order to capture the behavioral di�erence of f

between two successive time points, we de�ne

�f+t;t+1(< args >) = ft+1(< args >)� ft(< args >) (6)

�f�t;t+1(< args >) = ft(< args >)� ft+1(< args >) (7)

Thus, �f+t;t+1(< args >) is the set of values returned by executing function f at time t+1 that

were not returned when f was executed at time t. Likewise, �f�t;t+1(< args >) is the set of

objects returned by executing function f at time t that are not returned when f is executed at

time t+1. Note that the e�cient computation of the di�erence between two successive database

states has been extensively studied [8, 28, 30, 23, 38]. However, as we will see, we do not need

the di�erence explicitly for our view maintenance mechanism. We only use it to investigate the

e�ects of an update to an external function onto a materialized mediated view if TP is used.

For a constraint atom to be introduced into the materialized mediated view de�ned by TP ,

we require that the constrain be be satis�able; hence, we should not be surprised that the

materialized mediated view changes if the functions invoked within in change. In order to

investigate the implied changes in a little more detail, let REM = fin(a; d : f(b)) j a 2 �f�
t;t+1g

and ADD = fin(a; d : f(b)) j a 2 �f+
t;t+1g. Then, intuitively, we may regard the problem of

16

function updates as being equivalent to the insertion and the deletion of the ground instance

that correspond to the DCA-atoms in the sets ADD and REM , respectively. However, as we

are working with non-ground constrained atoms, the situation is less straightforward.

The set ADD does not introduce any technical complications. In contrast, the set REM

needs to be treated with care. The following example provides an illustration.

Example 7 Suppose we have a constrained database that contains the single clause

B(X) in(X; d : g(b)):

The function g is a call in the domain d. Assuming the initial set of values returned by g for

the argument b is the singleton fag, then according to the de�nition of TP , we would have the

constraint atom B(X) in(X; d : g(b)) in the original materialized view. Now suppose at

time t + 1, the result a is removed from the output of g. So g(b) = ;. According to TP , the

materialized view at t + 1 would be empty since the constraint in(X; d : g(b)) is unsolvable.

This example illustrates that the set REM may cause subsequent modi�cations in the material-

ized view. However, the requirement that changes in functions of constraint domains be re
ected

in the materialized view appears to only incur computational overhead with little theoretical

bene�ts. A better approach is to regard the materialized view as a syntactic construct where

each constraint atom A(X) � de�nes an access into the set of solutions represented by �. In

particular, if f occurs in the constraint �, then at time t f will be interpreted as if it denotes

the function ft; at time (t + 1) it will denote the function ft+1. Then, we may eliminate, from

the de�nition of TP , the condition that constraints be satis�able, and instead, may defer the

satis�ability test to query-evaluation time. As we demonstrate shortly, the elimination of the

requirement that the constraint � is satis�able will simplify immensely the updating process.

Indeed, maintaining a materialized view requires no action whatsoever when this point of view is

adopted, even if external changes occur. We �rst adapt the operator TP to the following simpler

version, called WP .

WP (I) = fA(~X) � j

There is a clause A(t0) �0jjA1(t1); : : : ; An(tn) in P

81 � i � n : 9Ai(Xi) �i 2 I;

which share no variables and the constraint � is

�0 ^ �1 ^ : : :^ �n ^ f ~X1 = ~t1g ^ : : :^ f ~Xn = ~tng ^ f ~X = ~t0gg

Observe that the only di�erence between WP and TP is that the constraint � is not required to

be solvable. The materialized view of a constrained database is de�ned to be WP " !(;). Given
now that the materialized view is only a syntactic construction where constraints that appear

in constraint atoms are not necessarily solvable, it is clear to see that no changes to the solution

sets of functions in any constraint domain will a�ect the syntactic form of the materialized view,

as proved in the next theorem.

Theorem 4 Suppose Mt is the materialized view of the constrained database P at time point

t. Then Mt+1, the materialized view of the constrained database P at time point t + 1, is

syntactically identical to Mt.

The reason for this is that when we construct our materialized mediated views, we are storing

atoms in the form A � where � may contain some external function calls (let's say f is one

17

such external call). At time t, the syntactic symbol f occurring in � denotes the function ft,

i.e. it denotes the behavior of function f at time t. At time t + 1, the syntactically identical

constraint � is evaluated with the syntactic entity f interpreted as the function ft+1. The reason

this approach works with WP and not with TP is that TP determines solvability of constraints

at time t, which means that the meaning, ft of functions at time t may be used to \eliminate"

constrained atoms from the materialized view. In contrast, when no such eliminations are

performed, as in the case of WP , we can use the same syntactic form because evaluation of

solvability of constraints is done using the \current meaning" of f , i.e. the meaning of f at time

t + 1.

Hence no action is required in view maintenance as the result of changes to domain functions.

More important than the fact that the syntactic form of the materialized view remains static is

that semantically, the instances represented by this single view accurately re
ects the instances

that should be true for the given constrained database at any time point. More speci�cally, the

instances of the view that is constructed using WP will coincide with the instances of the view

constructed using TP .

Corollary 1 Let M = WP " !(;). Suppose Mt represents the materialized view of the con-

strained database constructed using TP and where the function calls to domains are evaluated

at time point t, for any t. Then [M] = [Mt].

Example 8 Let P contain the single rule A(X) in(X;�1 : f(X)) jj B(X; Y) and the two

facts fB(a; b); B(b; b)g. Suppose the function f evaluated at time t behaves as ft(b) = fbg and
ft(X) = ; for X 6= b. The materialized view M constructed under WP is

f B(a; b); B(b; b);
A(X) in(X;�1 : f(X))^X = a ^ Y = b

A(X) in(X;�1 : f(X))^X = b ^ Y = bg

and its instances [M] is the set fB(a; b); B(b; b); A(b)g. Using TP , Mt is identical to M with

the exception that it does not contain the third constraint atom as listed above for M . Clearly,

[M] = [Mt].

Now suppose the behavior of f at time t + 1 is ft+1(a) = a and ft+1(X) = ; for X 6= a.

M remains unchanged while the new materialized view according to TP will be M � fA(X)
in(X;�1 : f(X)) ^ X = b ^ Y = bg. Again, we have [M] = [Mt+1] which is now the set

fB(a; b); B(b; b);A(a)g.

5 Discussion

Materialization of mediated views is performed by unfolding the rules de�ning the view. An

update of kind one, that is an update to the view, invalidates the materialized mediated view

but | in our case | is not propagated to the integrated domains as incorporated by the

in predicate. This makes our approach di�erent from work on view updates on relational,

deductive and object-oriented databases as partially cited and discussed in the introduction of

this paper. Note, that none of this work is based on a language as powerful as constrained logic.

However, considering the orthogonality of the approaches, it might be worthwhile to investigate

an integration of this work with our approach. To some extent, this has already been done in

18

this paper { for instance, the DRed algorithm presented in [22] has been extended to handle

deletions in constrained and mediated databases. The relationship between the DRed algorithm

and algorithms in [11, 12, 44, 30] has been discussed in detail in [22] { however, none of these

algorithms deal with constraints, and they all assume that a materialized view contains only

ground, fully instantiated tuples { assumptions that are removed in this paper.

As we have seen, an update of the second kind | a change to one of the integrated domains

| a�ects the materialized mediated view if the TP �xpoint operator is used. By replacing if

by WP , we could eliminate the implied recomputation. Again, this di�ers from the traditional

approach to view maintenance, since only the unfolding process of the rules which is independent

on the actual evaluation of the in predicate might be a�ected. But even this e�ect, forcing

the recomputation for TP is eliminated by using WP while preserving the semantics of TP .

However, the work on view maintenance which was partially cited in the introduction of this

paper becomes relevant as soon as we want to guarantee an e�cient evaluation of the in predicate

by materializing the external function calls. Especially for the integration of software packages,

the methods presented in [28] become relevant.

6 Conclusion and future work

It is generally well accepted that constrained databases are very important, increasing the expres-

sive power of Datalog considerably. In this paper, we have developed techniques to incrementally

update views in constrained databases. The HERMES system at the University of Maryland

is based on the intuition that constraints can be used to integrate multiple databases, multiple

data structures, and multiple reasoning paradigms. In its current form, HERMES integrates

INGRES, PARADOX, path planning packages developed by the US Army, Face Recognition

packages used in Federal Law Enforcement, spatial data structures, a text database, and a pic-

torial database. Descriptions of the theory of HERMES may be found in [40, 4, 5, 39, 40, 41]

{ in particular, [26] shows that HERMES generalizes constrained databases as proposed by

Kanellakis et. al. [27].

In this paper, we have dealt with the problem of e�ciently maintaining materialized mediated

views such as those that may occur when any constrained database system is updated. To our

knowledge, this is the �rst paper that addresses the view maintenance problem for constrained

databases and/or for heterogeneous, mediated systems. The main contributions we have made

are the following:

� We have shown how the DRed deletion algorithm of Gupta et. al. [22] may be extended

to handle constraints.

� We have developed a unique straight delete algorithm for deletion that uses supports to

accomplish deletions of constrained atoms; this algorithm is brand new, and, even when

constraints are absent, it improves upon the counting method (that can lead to in�nite

counts) [21] and also improves upon the re-derivation algorithm (as it requires no re-

derivations. In addition, as shown in the paper, it also applies to databases with constraints

in it, including mediated systems.

� We have developed algorithms for inserting constrained atoms into an existing materialized

view.

19

� We have shown that when we eliminate the constraint-satis�ability check from the Gabbrielli-

Levi operator, then the problem of maintaining views in mediated systems (when changes

occur in di�erent programs/databases participating in the mediated framework) can be

handled very easily indeed { no change to the mediated view, whatsoever, is needed,

when the notion of mediated view de�ned by WP is adopted ! This makes our approach

eminently suitable for mediated systems.

References

[1] S. Abiteboul and A. Bonner. Objects and view. In Proc. of the ACM SIGMOD Conf. on

Management of Data, pages 238{247, 1991.

[2] S. Abiteboul, S. Cluet, and T. Milo. Querying and updating the �le. In Proc. Int. Conf.

on Very Large Data Bases (VLDB), pages 73{84, 1993.

[3] S. Adal� and R. Emery. (1994) A Uniform Framework for Integrating Knowledge in Het-

erogeneous Knowledge Systems, to appear in Proceedings of ICDE.

[4] S. Adal� and V.S. Subrahmanian. (1993) Amalgamating Knowledge Bases, II: Algorithms,

Data Structures and Query Processing, submitted for journal publication.

[5] S. Adal� and V.S. Subrahmanian. (1994) Amalgamating Knowledge Bases, III: Distributed

Mediators, to appear in Journal of Cooperative Information Systems, Dec. 1994.

[6] F. Bancilhon and N. Spyratos. Update semantics and relational views. ACM Trans. on

Database Systems, 6(4):557{575, 1981.

[7] M. Baudinet, M. Niezette, P. Wolper. (1991) On the Representation of In�nite Temporal

Data and Queries, in Proceedings of the Tenth ACM Symposium on Principles of Database

Systems, Denver, Colorado, May 1991, pp.280-290

[8] J. Blakeley, N. Coburn, and P.-A. Larson. Updating derived relations: Detecting irrelevant

and autonomously computable updates. ACM Trans. on Database Systems, 14(3):369{400,

1989.

[9] J. Chomicki. (1990) Polynomial Time Query Processing in Temporal Deductive Databases,

in Proceedings of the Ninth ACM Symposium on Principles of Database Systems,

Nashville, Tennessee, April 1990, pp. 379-391

[10] Communications of the ACM 37 (7). Intelligent agents (Special Issue), July 1994.

[11] Stefano Ceri and Jennifer Widom. Deriving Production Rules for Incremental View Main-

tenance. In 17th VLDB, 1991.

[12] Stefano Ceri and Jennifer Widom. Deriving Incremental Production Rules for Deductive

Data. IBM RJ 9071, IBM Almaden, 1992.

[13] C.C. Cosmadakis and C.H. Papadmitriou. Updates of relational views. Journal of the

ACM, 31(4):742{760, 1984.

[14] U. Dayal. Queries and views in a object-oriented databases. In Int. Workshop on Database

Programming Languages, 1989.

20

[15] U. Dayal and P. Bernstein. On the correct translation of update operations on relational

views. ACM Trans. on Database Systems, 7(3), 1982.

[16] U. Dayal and H. Hwang. View de�nition and generalization for database integration in a

multi-database system. IEEE Trans. Software Eng., SE-10(6):628{644, 1984.

[17] J. Doyle. A Truth Maintenance System. Arti�cial Intelligence, vol. 12, 1979.

[18] M. Falaschi, G. Levi, M. Martelli, C. Palamidessi (1991) A New Declarative Semantics for

Logic Programs, ICLP, 1991

[19] M. Gabbrielli, G. Levi. (1991)Modelling answer constraints in Constraint Logic Programs,

ICLP, 1991, pp.238-251,

[20] N. Gehani, H. Jagadish, and W. Roome. OdeFS: A �le system interface to an object-

oriented database. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 249{260,

1994.

[21] Ashish Gupta, Dinesh Katiyar, and Inderpal Singh Mumick. Counting Solutions to the

View Maintenance Problem. In Workshop on Deductive Databases, JICSLP, 1992.

[22] A. Gupta, I.S. Mumick and V.S. Subrahmanian. Maintaining Views Incrementally, Proc.

1993 ACM SIGMOD Conf. on Management of Data, Washington, DC.

[23] E. Hanson. A performance analysis of view materialization strategies. In Proc. of the

ACM SIGMOD Conf. on Management of Data, pages 440{453, 1987.

[24] John V. Harrison and Suzanne Dietrich. Maintenance of Materialized Views in a Deductive

Database: An Update Propagation Approach. In Workshop on Deductive Databases,

JICSLP, 1992.

[25] J. Ja�ar, J.-L. Lassez. Constraint Logic Programming In. Proceedings of Fourteenth An-

nual ACM Symposium on Principles of Programming Languages, pp. 111-119. ACM, New

York, USA, 1987

[26] J. Lu, A. Nerode and V.S. Subrahmanian. Hybrid Knowledge Bases, to appear in IEEE

Transactions on Data and Knowledge Engineering.

[27] P. Kanellakis, G. Kuper and P. Revesz. (1990) Constraint Query Languages, Proc. 9th

ACM Symp. on Principles of Database Systems, pps 299-313.

[28] A. Kemper, C. Kilger, G. Moerkotte. Function Materialization in Object Bases: Design,

Realization, and Evaluation IEEE Transactions on Knowledge and Data Engineering,

Vol.6, No.4, August 1994

[29] R. Krishnamurthy, W. Litwin, and W. Kent. Language features for interoperability of

databases with schematic discrepancies. In Proc. of the ACM SIGMOD Conf. on Man-

agement of Data, pages 40{49, 1991.

[30] V. K�uchenho�. On the e�cient computation of the di�erence between consecutive database

states. In Proc. Int. Conf. on Deductive and Object-Oriented Databases (DOOD), pages

478{502, 1991.

[31] C. Medeiros and J.-C. Mamou. Interactive manipulation of object-oriented views. In Proc.

IEEE Conference on Data Engineering, 1991.

21

[32] G. Moerkotte and P.C. Lockemann. Reactive consistency control in deductive databases.

ACM Trans. on Database Systems, 16(4):670{702, 1991.

[33] A. Motro. Superviews: Virtual integration of multiple databases. IEEE Trans. Software

Eng., 13(7):785{798, 1987.

[34] I. S. Mumick. Query Optimization in Deductive and Relational Databases. Ph.D. Thesis,

Stanford University, CA 94305, 1991.

[35] M. Scholl, C. Laasch, and M. Tresch. Updatable views in object-oriented databases. In

Proc. Int. Conf. on Deductive and Object-Oriented Databases (DOOD), 1991.

[36] A. Sheth and J. Larson. Federated database systems for managing distributed, heteroge-

neous and autonomous databases. ACM Computing Surveys, 22(3):183{236, 1990.

[37] Oded Shmueli and Alon Itai. Maintenance of Views. In Sigmod Record, 14(2):240-255,

1984.

[38] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedures, caching

and views in data base systems. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, pages 281{290, 1990.

[39] V.S. Subrahmanian. Amalgamating Knowledge Bases, ACM Trans. on Database Systems,

19, 2, pps 291{331, 1994.

[40] V.S. Subrahmanian. Hybrid Knowledge Bases for Integrating Symbolic, Numeric and Im-

age Data, Proc. 1994 Intl. Workshop on Applied Imagery and Pattern Recognition, Wash-

ington DC, Oct. 1994, SPIE Press.

[41] V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, A. Rajput, T.J. Rogers, R. Ross,

and C. ward. (1994) HERMES: A Heterogeneous Reasoning and Mediator System, draft

manuscript.

[42] E. Teniente. Updating knowledge bases while maintaining their consistency. VLDB Jour-

nal, 1994. to appear.

[43] A. Tomasic. View update translation via deduction and annotation. In ICDT, pages

338{352, 1988.

[44] Toni Urpi and Antoni Olive. A Method for Change Computation in Deductive Databases.

In 18th VLDB, pages 225{237, 1992.

[45] G. Wiederhold. (1993) Intelligent Integration of Information, Proc. 1993 ACM SIGMOD

Conf. on Management of Data, pps 434{437.

[46] G Wiederhold, S. Jajodia, and W. Litwin. Integrating temporal data in a heterogeneous

environment. In Temporal Databases. Benjamin/Cummings, Jan 1993.

22

