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Abstract 

For knowledge acquisition and engineering tasks
many logic based representations formalisms are
available nowadays. However, most of them do
not support the elicitation and representation of
domain specific knowledge. On one hand building
special systems, which supports these elicitation
and representation tasks is a costly and
cumbersome process. The direct implementation
of inference mechanisms reflecting the semantics
available in a specific domain leads to an
inflexible system: a small change in the input
language results in changes of the whole system.
On the other hand domain-specific languages
obtain more and more interest as a means to
support user in modeling tasks. In this paper we
propose to built domain-specific declarative
languages using techniques from deductive
databases and logic programming. This enables
the usage of existing efficient and elaborated
systems. The ideas are illustrated by a
reengineering and combination of two declarative
representation languages: Frame-Logic and
Linear Temporal Logic.

1   Introduction
Logic based knowledge representation and specification
has a long tradition in AI (see e.g.
[Hay77][Mac90][vHB92][Fen95a][Bri??]), so for
knowledge acquisition and engineering tasks many
representation formalisms are available. However, most of
them do not support the elicitation and representation of
domain specific knowledge. Using the syntax of First
Order Predicate Logic (FOL) for knowledge
representation tasks is comparable to using a Turing
Machine for programming tasks: it is a sufficient
formalism for studying theoretical properties, but does not
support real life tasks. Of course a turing machine is
powerful enough from a principal point of view, but not
from a practical one: the encoding is often to expensive.
The reason for this is, that the language (FOL) does not
support thinking in domain terms. Instead, the domain
terms must be translated to the terms of the representation
language (e.g. relations). So to establish a communication
between a knowledge engineer and a domain expert, the
representation must always translated back to the domain
terms. This, however is fortunately a matter of the syntax
of the representation language. Therefore, similar to the
development of high level programing languages, we
propose to use the syntax of First Order Logic as a kind of
low level language for building domain-specific
declarative languages (DSDLs) (see [DSL97]), such that
higher level representation languages can be compiled into
this language. Especially for horn logic with closed world
semantics exists a number of efficient systems (e.g.
CORAL [RSS+94], XSB [RSS+97], ADITI [VRK+94],
ConceptBase [JGJ+95], LogicBase [HLX94] among
others), which can be used as a kind of "virtual machine"
for inferences and execution, getting a formal and
operational semantics for domain-specific languages for
free. The expressive power of the logics used in the former
mentioned systems is well understood and several
semantics are defined (for an overview see e.g.
[BrD96][Llo87]). Describing this approach using
Brachmans stratification for knowledge representations
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[Bra79], the implementation level are data structures and
algorithms used in the deductive database or logic
programming system, the logic level is Horn logic with
negation, and the epistemological level realizes adequate
domain dependent representation primitives through
compilation to the lower levels. This approach is similar to
approaches in compiler construction: usually an initial
language is not compiled directly to a target language, but
through several intermediate stages and languages. This
helps bridging the conceptual gap between the initial
language and the target language (e.g. the first C++
compiler was nothing more than a preprocessor for C
programs). The direct implementation of the semantics
used in a specific domain leads to an inflexible system: a
small change in the input language results in changes of
the whole inference system. 

We show, how this idea can be exploited in knowledge
representation, leading to special purpose knowledge
acquisition, representation and inference systems, that are
easy to built, to maintain and to adjust to different tasks. 

In the following sections we illustrate the general
approach through a kind of reengineering of two special
representation languages: Frame-Logic [KLW95], that is
used to model object orientation, and Chronolog (see e.g.
[LiO96][OrM94]), that realizes Linear Temporal Logic.
Then the combination of both approaches is sketched and
some interdependencies and limitations are analyzed. 

In the forthcoming examples we use standard syntax
with the exception, that only symbols beginning with the
capital letters "X,Y,Z" or introduced by a quantifier denote
variables.

2   Building DSDLs

A domain-specific declarative language should support
the elicitation and representation of knowledge of a
particular domain. So the domain to represent determines
the semantics of the language, and for compilation reasons
the domain concepts have to be translated to the usual

FOL language (see figure 1 for an illustration). This
suggests the following methodology:

• Clarification of the concepts of the specific domain.
For object oriented systems such concepts can be e.g.
classes, instances and methods or special individuals.

• Mapping these semantic concepts to the usual first 
order semantics. That means the concepts of the 
domain have to be expressed through predicates, 
functions, constants or formulae.

• The most important and most difficult step is to 
identify syntactic constructs, that support the 
elicitation and representation of knowledge in an 
appropriate way. There are several possibilities: special 
operators can be identified, such that relations from the 
domain are now expressed with operators. If these 
operators have a built-in semantics, these semantics 
can be captured with appropriate axioms. Other 
domain concepts can be captured via special function 
symbols. Some useful principles are illustrated later 
on. 

• According to the identified mapping from the domain 
semantics to the FOL semantics an appropriate 
translation from the DSDL syntax to FOL syntax can 
be defined. What was identified as a relation in the 
domain analysis is translated to a predicate. Special 
constants from the domain language are translated to 
special constants in the target language. This 
translation is needed in both directions: the set of 
formulas is initially (before reasoning takes places) 
translated from the domain syntax to the syntax of the 
deductive database or logic programming system, and 
the inference results (usually variable substitutions) 
have to be translated back to the domain syntax. 

3   Examples
We illustrate the general approach through a reengineering
of two special representation languages: Frame-Logic, that
is useful for modeling in an object oriented style, and
Chronolog, that realizes Linear Temporal Logic and
allows to model states and state changes. Although both
languages have a well defined model and proof theory and
there exists implemented inference engines, we show that
inference engines for these languages can also be obtained
via a translation approach and the usage of one of the
inference engines for standard horn logic. So the
languages can be adapted to different purposes, can be
combined, and techniques available for deductive
databases are directly applicable.

Domain First Order
(Semantics) Semantics

Special
Language

First Order
Language

Syntax

Semantics

Domain FOL

Figure 1: Relationship Between DSDL And FOL

map

translation

supports
map



09-3S. Decker

3.1  Frame-Logic

We start with analyzing parts of the semantic structure of
Frame-Logic (abbr. F-logic) (see [KLW95]). F-logic is
designed as a declarative language, that accounts in a
clean and declarative fashion for most of the structural
aspects of object-oriented and frame-based languages
([StB86][RBP+91]). F-logic has its own model and proof
theory and a specialized inference engine is available
([FHK+97]). The structure of F-logic formulae are similar
to usual FOL-formulae. The main difference are the
atomic expressions, which are called molecules in F-logic.
Therefore we give translations only for the molecular
expressions of F-Logic, everything follows directly from
this. 

It seems to be difficult to transfer results available in the
deductive database area to the inference engine for F-
logic: only recently, a semi-naive evaluation strategy for
F-logic was defined in [Sch97] and optimized evaluation
strategies such as magic sets are still missing. So using a
highly optimized standard logic programming or
deductive database systems should still be more efficient
for modeling tasks. 

In the following we analyze some of the most important
semantic concepts used in F-logic:

• subclassing: This is an important concept in object
oriented languages (see [StB86][RBP+91]). Properties
of subclassing are e.g. transitivity, reflexivity.

• class membership: This concepts allows to identity,
which element of the universe of discourse is a
member (or instance) of another element.

• methods: This concepts identifies, when a element of
the universe of discourse can be interpreted as a
method of other elements and what result is returned
on invocation of the method.

• method definition: This concept identifies, which
classes understand which methods, and what is the
class of the result. 

• method inheritance: In object oriented system the
definition of methods in classes are inherited by there
instances of the class. So a method definition is usable
for all instances of a class, but it is still possible to
overwrite it. This aspect of F-logic shows some of the
limitations of our approach and will be discussed later
on.
The next step is to map these object oriented semantic

concepts to usual first order concepts: In these cases all
concepts are mapped to relations of the target semantics,
e.g. subclasses, class membership and methods are
identified through special relations of the usual first order
interpretations. There are of course several possibilities to
support these concepts syntactically in a special purpose
language. However, the developers of F-logic have
adopted notations that are similar to other languages: "C ::
D"  for subclassing, meaning that class C is a subclass of
class D. "O : C" for class membership, meaning that O is
an instance of class C. "O[M->V]"  for method invocation,
meaning that the instance O has a method M with value V,
and "C[M=>D]"  for method definition, meaning that all
instances of the class C understand the method M and the
class of the result returned is D. Furthermore, to allow a
more flexible handling, several syntactic constructs can be
combined, e.g., "O:C[M->>V:D]"  is an allowed construct.
An example F-logic specification is depicted in figure 2.

Here a part of a traffic specification is shown, defining
three classes (Sign, Traffic_Light and Color), one method
(status) of the class Traffic_Light and three instances (the
colors). Also it is of course possible to specify rules about
the objects, it is very cumbersome to specify the dynamic
behavior and change of objects without any possibilities to
express the change of states. Translation has not only to

Table 1: Translation Schema For F-logic

Object Oriented First Order

Axioms:

Reflexivity:

Transitivity I:

Transitivity II:

Acyclicity:

C::D   ⇒ sub C D,( )

O:C   ⇒ ins ce O C,( )tan

O M->>V[ ]   ⇒ method(O,M,V)

C M=>>D[ ]   ⇒ methodtype(C,M,D)

O:C M->>V:D[ ]   ⇒ ins ce O C,( )tan
method(O,M,V)
ins ce V D,( )tan

∧
∧

X∀ sub X X,( )

X Y Z, ,∀ sub X Z,( ) sub X Y,( ) sub Y Z,( )∧←

X Y Z, ,∀ ins ce X Z,( )tan  ←
ins ce X Y,( )tan sub Y Z,( )∧

X Y,∀ X Y=( ) sub X Y,( )← sub Y Z,( )∧

Sign :: Object. Color :: Object.
Traffic_Light::Sign[status=>Color].
green : Color. amber : Color. 
red : Color.

Figure 2: Part Of A F-logic Traffic Specification
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adopt the relational structure of the concepts, but also the
domain specific properties of the domain, e.g. transitivity
of the subclass relationship. Therefore we have not only to
do the syntactic translation, but we have also to introduce
the axioms, that capture the domain specific properties of
the constructs. The syntactic translation schemes and some
of the axioms are shown in table 1. The shown example
rules translate only a part of F-logic, but most of the rest
can be handled in a similar way. In figure 3 the
translation is depicted. 

3.2  Chronolog

Temporal logic has been widely used as a formalism for
several purposes, e.g. program specification and
verification. Chronolog [Org96] is a language based on
linear-time temporal logic. Semantic concepts are the
initial state and the next state. The semantic structures of
Chronolog are described as temporal Herbrand models
[LiO96], such that every element of the temporal
Herbrand model is true in exactly one moment in time.
The semantic translation is as follows: every relation from
the temporal Herbrand model is extended with an extra
argument. This argument contains a counter, that stands
for the moment in time, in which this fact is valid. The
syntactic support for specification is achieved through two
temporal operators, first and next, which refer to the initial
and the next moment in time respectively. An atom can
have a prefix of the form "first nextn", "nextn", or none
prefix at all, meaning that this is valid in all moments of
time. 

The example depicted in figure 4 is taken from
[OrM94]. The program specifies the simulation of a traffic
light. At the initial state the color of the traffic light is
green. The clauses then define the value of the color in the
next states. The series goes green, amber, red, green,
amber, red, green and so on. This example can be queried

for the color of the light in the n-th point of time.
The syntactic translation is done as follows: every atom

is extended with an extra argument. This extra argument is
used as a time counter and the first-next sequence is coded
into this extra argument according table 2: the first
operator is associated with a constant "0", symbolizing the
initial point of time. The unary function symbol "s" (for
successor) is used to encode the next operator, e.g. the
term "s(0)" is associated with the sequence "first next"..,

3.3  Combining F-logic And Chronolog

Taking these two translation tables as a starting point,
both approaches, F-logic and Chronolog can be combined,
allowing declarative and executable specifications about
objects changing their properties over time. As an example
see figure 5, combining the two specification about the
traffic domain (figure 2 and figure 4). This is in the same
spirit as described in [MSL97], however, we have no need
to built a special purpose inference engine. Instead, we just
make a translation to usual deductive database formalisms.
For performing this kind of translations, the different
translation tables have to be combined. This can be done

through a two step process as depicted in figure 8: in the
first step the temporal annotations are ignored and just the
translation as given in table 1 is performed. The result is
an ordinary Chronolog program, so that the second
translation table (table 2) is applicable. The result of the
final translation (without the axioms specifying the
behavior) is depicted in figure 6  

sub(Sign,Object). sub(Color,Object).
sub(Traffic_Light,Sign).
methodtype(Traffic_Light,status,Color).
instance(green,Color). instance(amber,Color). 
instance(red,Color).

Figure 3: Translation Of The F-logic Traffic Specification

first light(green).
next light(amber) <- light(green).
next light(red) <- light(amber).
next light(green) <- light(red).

Figure 4: Chronolog Example Specifying The 
Dynamics Of A Traffic Light

Table 2: Translation Schema For The Chronolog Example

Chronolog First Order Logic

first light(green). light(green,0).

next light(amber) <- 
light(green).

light(amber,s(X)) <- 
light(green,X).

next light(red) <- light(amber). light(red,s(X)) <- 
light(amber,X).

next light(green) <- light(red). light(green,s(X)) <- 
light(red,X).

Sign :: Object. Color :: Object.
Traffic_Light :: Sign[status=>Color].
green : Color. amber : Color. 
red : Color. 
tl : Traffic_Light.
first tl[status->green].
next tl[status->amber]<-tl[status->green].
next tl[status->red]<-tl[status->amber].
next tl[status->green]<-tl[status->red].

Figure 5: Combining F-logic And Chronolog
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3.4  Interdependencies

There are several interdependencies between the F-logic
part and the Chronolog part in the combined language:

• A F-logic molecule can be translated to a set of FOL-
atoms (see table 1 for an example). In this case the
temporal annotations are distributed over the atoms.

• Another dependency is the occurrence of the well
known frame problem: introducing the notion of
objects and states, one has not only to specify, which
properties of an object change over time, but also,
which properties don’t change. However, this problem
can be solved using the non-monotonic behavior oft
negation in logic programming: for every predicate "p"
occurring in the translation of F-logic (see table 1) two
new predicate symbols "direct_p" and "nondirect_p"
are introduced. In the bodies of all inference rules "p"
is substituted by "nondirect_p" and in the heads of all
inference rules "p" is substituted by "direct_p". For
every "p" additional inferences rules as given in figure
7 are added to the final result of the compilation
process. These rules handle the problem as follows: if
there is a direct specification of the arguments for "p"
in a certain moment of time, only the first rule is
applicable. If there is a value for "X" defined in a
previous moment of time, but no direct specification,
only the second rule is applicable..

3.5  Limits Of The Approach

It is well known that definite clauses with function
symbols are a turing complete representation formalism.
So every computable function can be compiled to definite
clauses in principle. This means, that we can always built
a meta-interpreter, that computes the desired semantics for
an appropriate compilation result of the domain. However,
this is usually not a good idea in practice: meta-
interpretation introduces an additional level of
inefficiency. So we favor a direct compilation, without the
introduction of meta-interpretation. So the limits of a
direct compilation of some domain specific language are
exactly defined by the semantic properties of the target
language, e.g. horn clauses with negation in our example:
the semantic properties of the domain have to be
compatible with the semantic properties of definite
clauses. In practice this means, semantic concepts of a
domain, that need the computation of e.g. multiple
fixpoints, are not directly compilable in clauses.

An example is the multiple inheritance part in F-logic,
this requires the computation of multiple fixpoints (see
[Kan97] for further details). Nonmultiple inheritance,
however, can be handled with rules similar to the rules
depicted in figure 7.. 

4   Conclusions And Future Work
Of course also other authors have noticed, that their logical
systems are often easy translatable to First Order Logic.
E.g. Kifer, Lausen, and Wu argue in [KLW95] in favor of a
direct semantics for F-logic: "The syntax of a
programming language is of paramount importance, as it
shapes the way programmers approach and solve
problems. However, syntax without semantics is not
conducive to programming. Third, a direct semantics for a
logic suggests ways of defining proof theories tailored to
that logic. Such proof theories are likely to be a better
basis for implementation that the general-purpose
classical proof theory." As much as we agree with the first
argument, as much we disagree with the second and third:
if using a modeling language requires the understanding of
its formal semantics, then the language is not particular
useful. How many Cobol, C, C++, Java or even Prolog
programmers understand a formal semantics of the
language they use? In spite of this they are doing many
useful things with the languages. Furthermore, building a
specialized inference engine for a special semantics
requires an extraordinary effort. It might be true, that when
optimizing this special inference engine, the performance
of if might be better than using an inference engine for the
general proof theory. However, usual no one spends the
effort, whereas the general inference engines are already
highly optimized. The late development of even one of the
basic optimization techniques known in the area of

sub(Sign,Object,X). 
sub(Color,Object,X).
sub(Traffic_Light,Sign,X).
methodtype(Traffic_Light,status,Color,X).
instance(green,Color,X). 
instance(amber,Color,X). 
instance(red,Color,X).
instance(tl, Traffic_Light,X).
method(tl,status,green,0).
method(tl,status,amber,s(X))<- method(tl,status,green,X).
method(tl,status,red,s(X))<- method(tl,status,amber,X).
method(tl,status,green,s(X))<- method(tl,status,red,X).

Figure 6: Translation Of The Combined Specification

Figure 7: Rules For Dealing With The Frame-
Problem

X T,∀ nondirect_p X s T( ),( ) nondirect_p X T,( ) direct_p X s T( ),( )¬∧←

X T,∀ nondirect_p X T,( ) direct_p X T,( )←
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deductive databases to be usable for F-logic supports this
claim [Sch97]. 

Domain specific languages support the thinking in
domain terms, instead of thinking in terms of the
representation language: when modeling in an object
oriented style, an object oriented language supports
thinking in terms of classes, objects, and methods instead
of relations and functions. Although the given examples
are applicable in many domains (and by this not really
domain depended) they show how to built more specific
languages. We sketched a methodology for defining
domain-specific declarative language and „reengineered“
two existing knowledge representation languages. We
showed how these languages can be combined to obtain a
richer one. This approach is similar to approaches used in
programming languages design: to bridge the conceptual
gap between the start language and the target language
several intermediate languages are used. Also we have
chosen logic programming and deductive databases as a
target platform for knowledge representation, there are of
course other possible ones, e.g.:

• Description Logics, which are usually focused on
modeling hierarchies and attributes, using a decidable
calculus. It seems to be an issue of further research, if
this fragment of FOL can be used as a target platform
for domain specific languages, but it obviously could
handle hierarchy reasoning in such a language and is
probably a part of a more sophisticated system.

• Full First Order Logic, which from a system point of
view would mean to use a full fledged theorem prover.
Although research on ATP has made remarkable
progress over the last years, it is still an open question,
if using a full fledged theorem prover for knowledge
representation and inference tasks is feasible. However,
if theorem provers are used for knowledge
representation, the ideas in this paper are certainly
applicable.
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