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THE FUNDAMENTAL SOLUTIONS OF MODERATELY
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Institut fiir Mechanik, Universitit Karlsruhe, D-76128, Karlsruhe, Germany

Abstract—In this paper, the partial differential equations governing moderately thick laminated
anisotropic shallow shells are transferred into a set of ordinary differential equations by using the
method of plane wave decomposition. With the aid of the Hormander operator method, these
ordinary differential equations are reduced to a tenth order ordinary differential equation. The
fundamental solutions of moderately thick laminated anisotropic shallow shells are presented in a
definite integral form. The numerical computation of the fundamental solutions is discussed in detail.
Some computational formulations have been given.

1. INTRODUCTION

As is well known, fundamental solutions play an important role in boundary element methods
which are widely used in analysis of plates, shells and some structures. The great progress has
been made in the boundary element methods of isotropic body. However, to authors’
knowledge, there are the few research results of boundary element methods in anisotropic
plates and shells. In general, it is difficult to obtain the fundamental solutions of anisotropic
body in closed form. Thus man has to use numerical fundamental solutions in boundary
element methods. Lukasiewicz [1] has presented an approximate fundamental solution of
orthotropic thin plates by Fourier transform technique. Wang and Huang [2]} and Wang [3]
have presented the fundamental solutions of orthotropic thick plates and orthotropic thin shells
in a definite integral form by the Hormander operator method [4] and the method of plane
wave decomposition [5]. Wang and Huang [2, 6] have analyzed moderately thick orthotropic
plates with boundary element methods.

With the increasing use of fibre-reinforced composite material, the structures of laminated
plates and shells are widely used in engineering. Recent research shows that transverse shear
deformation effects are more pronounced in anisotropic plates and shells than in isotropic
plates and shells. In this paper, the fundamental solutions of laminated anisotropic shallow
shells including shear transverse deformation have been presented by the use of the
Hormander method [4] and the method of plane wave decomposition [5]. The computation of
the fundamental solutions is discussed in detail.

2. BASIC EQUATIONS

In this section, the basic equations of moderately thick laminated anisotropic shallow shells
are reviewed.
The relations between the generalized displacements and the strains are
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in which «, v and w indicate the displacements of the midplane of the shells, ¢, and ¢,
represent the rotations of the shells about x and y coordinate axes respectively. k, and k, are
principal curvatures of shallow shells in x, and x, directions respectively.

The relations between the stress resultants and the strains are

N, = A€ + Binj M; = Bye; + Djx;

N
(AUY ij> Dij) = 2 Q(k)(lv <5 ZZ) dZ (l'] = lv 2y 6) (2)
k

=1Yh_,

Q)= Cyses+ Csses Q> = Ciqey + Cuses

2 Q“"KK dz (i.j=4.5) (3)
Aot
in which A, is the vertical distance from the midplane, z =0, to the upper surface of the kth
lamina. K, and K are the shear correction factors [7.8]. O are plane stress reduced stiffness
coefficients of the kth lamina [7, 8].
The equilibrium equations of the shells are
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Substituting equations (1), (2) and (3) into (4), we obtain the following differential equations
using the generalized displacements as basic unknowns.

AJUAP=0 (i,j=1,2,3.4,5) (5)

where U, represents the displacements of the shaliow shells in the direction of x,, x, and xa,
and the rotations in the direction of x, and x,, i.e. U, indicates u, v, w, ¢, and ¢,. P, represents
the generalized loads, i.e. P, indicates q,, g,, g.. m, and m, respectively. A} is the differential
operators which can be found in Ref. [8].

3. FUNDAMENTAL SOLUTIONS

According to the definition of fundamental solutions, the fundamental solutions of
moderately thick laminated anisotropic shallow shells are a set of special solutions of equations
(5) under the action of a set of unit point load, i.e.

AFUK(L x) = —8(L. x)8y; (6)

in which 8(Z, x) is the Dirac 6 function, ¢ and x represent the coordinates of the source point
and a field point respectively, U¥({, x) represents the generalized displacements in the j
direction at the field point x of an infinite shell when a unit point load is applied at the k
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direction of the source point {. Equation (6) is a set of partial differential equations. It is
difficult to obtain its solutions directly. In this paper, we first use the method of plane wave
decomposition to transfer equation (6) into a set of ordinary differential equations. We expand
U#(¢, x) and 8(Z, x) into a plane wave.

2 2

1 ~
M=~ > 5 lpI”2d6,  U¥({ x) = 5 U¥(p) do (7

in which p = w,(x, — £) + w,(x2 — 1), (@), w,) are coordinates of a point on the unit circle, i.e.
w; =cos 8, w,=5sin B, (x,, x;) and (¢, m) are coordinates of a field point and the source point
respectively. ¢(p) is a function depending only on p. Substituting equation (7) into equation

.0 d
(6), and considering differential relationship — = w, —, we have

ox, dp
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Aij Ukj(p) = Z;rz’ lpl™* &g (8)
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ax = (Ask, + Assks) o, + (Ak, + Anks)w,
a3 =(Css— k1B, —kyB2)w; +(Cys — k1 Bis — k2 Bog)
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By the use of the Hormander operator method, the solutions of equation (8) can be
represented in the following from:

Up) = Asd(p) (11)

where ¢(p) is an unknown scalar function depending only on p, and “°A* is the cofactor matrix
of A*. Thus the fundamental solutions of the generalized displacements for moderately thick
laminated anisotropic shallow shells are as follows.
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U%5(p) = bapD*®(p) + dupDd(p) + eapD*d(p) + fup Db (p)
Us(p) = — U%(p) = b.D"d(p) + duD’$(p) + €. D b (p)
0%, 5(p) = U%: palp) = 8as D (p) + hupD b (p) + 505D b (p)
U%(p) = AD*¢(p) + BD°¢(p) + CD*d(p)
U%1alp) = —U%ias(p) = fuD b (p) + ca D (p)
U% . 35+3(p) = QusD 0 (p) + rapD°d(p) + tugD b (0) (12)

d“¢(p)
dp*

in which D*¢(p) = (k=1,2,...), e, b=1,2.

by, = an(arpa; + aya; + axsas)
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e =a(Coaqtaasg+ azqop + azsayz — Cisag) + aps(@aan T a5 — a3(az — as))
+ap(azant apaz) tas(acan + a;zags)
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by = a (a0, + aro; + aysag) — ap(@na; tagar+ a,sag)
— (@305 + assars — dyzang) T ars(—dnas tazans + a3 yy)
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€1 = Q017 €3 = Q707

g1 = ass(—a0, + apag + axsans)



Fundamental solutions of shallow shells 999
gi2=axn(—apas+aya,y— A24055)
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hi = —ap(apa; + ayao + assag — aysag) + azp(aiza; + ajaa0 + assag — asag)
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~

= ay(ana; + aya ot assag — Aysag) — ap(a3ar + ajgarg + assay — aysa)
+ a13(a130; — apagg + @3sass) — ars(aag; + axag — aians)
hi = ap(—anag + ayas— ase0y; — Ar504) — Axp(—a1305 + A4a6+ azg0z0 — ascy)
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S12= —ap(@pa;s+ aa;s) +an(a o + ar05) — ax(ar g, — a;3a;s)
S22 =ay(axpa;+ aays) —ap(aoag; + araz) +a(ayar — a;za,s)
A=ay(apa; +aya, + arsaz) —ap(apa; + asae+ A23015)
+a(ana g+ axsays — a1202) — ays(@a; — aypae — Az4055)
B = —ay(ax(ax — as) + aya, + arsays) + ayy(a(ans — as) + ajgaq, + aysas)
T a14(a 2014 — anay) —a;s(anay, —apa;s)
C=ayai,
hi=an(apa; —aya, — d2509) = @12(@ 1207 — G305 — azs50t3))
+ays(apa; —aya;g— A25Q3s) — @ys(@xax — apoy — a3305s5)
L=an(anas —ayas+ ArQ9) — A1p(@1205 — Ar3 19 + A2405)
+as(anpas —aya+ Araass5) — a14(a a9 — axpasy, + a3055)
o =ap(apa, +anag) — ap(aga; +ayaz)+ aix(apay —apay)
c2=an(axa s+ aya;) = ap(apa; + anay,) + a3(anas; - appa;s)

g = as3(arsase + ajsaz — As50p9) G2z = as3(arsas + A a3 — A440029)

€5 33:6-F
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G12= G2 = A33(A4s 20 ~ A24039 — A,5Q31)

I = ass(@12024 — A1 &g — B13006) — A35(A2sQy7 + A35020 T A15Q26)

+ ar5(A25Q23 — 15004 ~ A350p7) — A15(A3506 T A2s52s — 150 16) + A33C 4009

P22 = A4a(@12004 = 011006 — A13026) — A34(A24 027 T A 14026 T A34005)

T ar4(A24 003 — Q14024 — A340p7) — A14(B34 006 T Q24 Qo4 — A14016) + A33Cs5029
N2 =Foy = —A4s(@12024 — A1 1016 — A130026) T A35(B24 0007 + B340 + A14026)

— Ar5(@24003 — @ 40004 — A340027) T 1534006 + Araoy — A10016) — A33Ca5000

Q) = Q44055 — ais
as=a3Css+ acay,
Q7 = (34055 — A35Q45
a9 = a3 Caq + asass
a3 = a33C45 — a35Css
2
Q6 = d20; — A23
Qo = 14045 — A15044
= a14Cas — a15Css
Qps5 = Q14025 — A )5024
Qo5 = As5sCss — Cysliys

Q3 = d)20rs — Q15

ti = Cala a6 — @204 + a1300)
;= Css(@1a16 — Q12024 + a1302)
tiz =ty = —Cus(ay e — a12024 + a1302)
Ay = As8as — Q24455 O3 = 4045 — 25044
as=0a45Cs — 44 Ca4 g = a33Cs + axays

Qg = A35044 — 34045 Qg = Q34075 — A4435

Q) = Ap4035 — s34

@13 = a25C45 = a25C 44

a;,=Ci~CuC

17 45 44 ss

Qo) = d1s5d34 — A14d3s
_ 2

Q3= a4 — A3

Qo6 = d)12073 — dnyd )3
2

U9 = a7y — A0

Q30 = A28 14— A11024

a2 = A35Css — a34Cay
5= a33C4s — a25Css
Qg = 5045 — Q14055
az = a5C4s —a14Cyy
Qg = A20g — 423013
Qy7 = Q12013 — A11023
Q30 = 5012 — A1 Gas

Q33 = Q1024 — A14Q3).

(13)

Substituting equation (11) into equation (8), we obtain a tenth order ordinary differential
equation, which can be written in the following form.

dp*

in which

d*/d° d*
(d—;)_6+ala?+a2dp2

2

1
~+aa>¢(p)=:4nz

|P‘2A1

Ay=a, by tapb,+anugn +aisge

Ay =aydy tappdytasb, +ash) +ash;
Ay=aye; tape,+apd taus, +ass;
As=a\futapfiotase

A A, A

a, = —— a, = ay=—.
A] Al Al

(14)

(15)

Integrating equation (14) for four times, deleting the constants of integration [3, 9] and by use
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of the method of variation of arbitrary parameters, unknown function ¢(p) can be obtained,
which is of the form:

3
é(p) =22, A(p?p*In|p|+21In|p| +3)
i=1

3 © 0P P QP
+2> )\,(e””’j do - e””""f —do) (16)
i=1 p T —e O
where
Ay = 1 A= 1
' 167%A,(p% - pA(pi — PPt 2 167%A,(p3 — p2)(p3 — p3)ps

1 1 172
A= » P =(n tn —-a)
> 16724,(p% - p3)(p: - PIPS SR

1 1
P=E VIt e +iVi=&),  p=m(Vrt g —ivi— &)
1 1
r=(&+&)" &L= _5(771 +72) —gal

2=_\2_§(”’h_’72): ”h=<"%+\/l_7)m

1/3 2 1
772:(—%_\/5) » q=<§;a?“§alaz+a3)

1 1 1 1
b= 1 a3+ 5 (a3 + aias) — Ega%aé g 18285,

In order to obtain the fundamental solutions, it is necessary to calculate the function ¢(p) and
its derivatives. For simplicity, we introduce the following two functions.

. < a~Pid P ePiU
Ai(PiP)ze”"’f = do—e""”’f —do

, o e O
N e PN
Bi{p.p)= e’"”f do + e"”‘"f —do (i=1,2,3). 17)
, N
The above two functions have the following differential relations:
dAi(p.p) 2 dB,(pp
— ——=piBpip) ——, ——2=PiAi(PiP)' (18)
dp p dp

Using the expression of exponential integral [10], we have

Ay(pip) =€"PE\(p1p) — € "YE{(p1p)
Bi(p,p) =€"E\(p,p) + € "PE(p,p) for p>0

Apip)= _elp'p|E1(|P1Pl) + elp'plE1(|P1P|)
B(pp)=—e”?E\(|p.pl) —e"”'E\(|pip|]) for p<0 (19)

Axp2p) = 2(E:(p2p) = 511 = sgn p) ) = 72 = E\(~pap) + 3 (1 + sgm )

Bo(p:0) =& (E\(pap) = 3i(1 = sgn p)) + e 7#(~Ei(~pap) + 5 i(1 +sgnp)).  (20)
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Because of p,p = ps;, we have Ax(p;p) = As(p.p) and Bi(pip) = Bs(Pop). According to the
property of complex variable function, there are the following relations.

As(p3p) = Axp2p), Bi(pip) = Ba2(p2p) . (21)

As long as A,(p,p) and B,(p,p) are obtained, we can calculate A;(p,p) and Bs(p,p) by use of
the above equations. In what follows, we only consider the calculation of A,(p.p), Bi(p.p),
A,(p,p) and B,(p,p). Using the series expression of the exponential function and exponential
integral [10], we have

A= =2 3 By in g — Fan + 1)
B(p) = =2 3 L2y +in ol - F) 22
Adpon)= 2 5 Ly it +i(F- ) - Fan 1)
Bapin) = -2 3 LI (y v mipapi i - ) - Fam) @)
where y(=0.57721 - - - ) is the Euler constant.
a = arctan g . Fm+1)= ﬁ:j % F(1)=0. (24)

Using equations (11) and (12), we obtain ¢(p) and its derivatives as follows:

¢(p)=2 }; A(pip®Injp| + (21n|p| +3) + Alpip))
Dé(p) = 22 A(2pip In|p| + pip + p:Bi(p:p))
D*¢(p) = 22} A(2p?In |p| + 3pi + piAi(pip))
D¢(p) = 22; ApiBipip),  D'd(p)= 22},} ApiA(pip)
D*¢(p) = 22 XpiBipip), D"¢<p>=zg XPSALP:P)
D’¢(p) =2 2 Ap/Bpip),  D*¢(p)=2 é ApTA(pip)

3
D°¢(p)=2 ; AipiBi(pip) —

47[2A1p
3
DY6(p)=2 3, AplApip) + e @s)
i=1 47T2A1p2
In the procedure of obtaining equations (25), we have used the following relations:

3 3 3 1

2 Api=0,  ZApi=0, X Api= : (26)

i=1 i=1 i=1

167m%A,

The computation of ¢(p) and its derivatives is reduced to the calculation of A,(p,;p), B,(p.p),
Ax(pip) and B,(p;p). Taking a few terms of equations (22) and (23), we can obtain quite
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results for A,(p;p), etc. when |p,p| is small. Using the asymptotic representation of exponential
integral E; and E; in Refs [10-12] and combining equations (19) and (20), we can calculate
A(pip), etc. when |p,p| is large. Using the above described method, we can obtain a good
result for the calculation of A,(p.p), Bi(pip), A2(p:p) and B,(p;p). In the calculation of the
fundamental solutions, we have to deal with the following integral:
2 k
L= [ RO,

0

(*k=1,2,3,...,9). 27)

In the range between 0 and 2, the integrand has two points which make p =0. We first
determine values 6, which make p =0 and then split (0,2x] into four intervals. As the
integrand is a periodic function, the four intervals can be written in the following form:

b4 /4
(90, 90+E), <60+E, 90+ﬂ:)

3n 3n
(00 + 71', 00 + _>, (90 + — 90 + 27[).
2 2
We can calculate the integral /; on each interval with any numerical integral method. The value
6, can be determined by the following equation:

6y = arctan(— X—_E) (28)
y—n

Up to now, we have obtained the computational formulation of the fundamental solutions of

the generalized displacements. Substituting equations (7) and (12) into equation (2) and using

equations (1) and (3), we can obtain the fundamental solutions of the generalized forces for

moderately thick laminated anisotropic shallow shells.

4. CONCLUSIONS

The fundamental solutions of moderately thick laminated anisotropic shallow shells have
been presented in a definite integral form. They can be used to analyze the distribution of
stresses and displacements in the neighborhood of the singular point which a concentrated
force is applied at. They can also be taken as the kernel function of boundary integral equation
method and used to analyze the static and dynamic problems of the shells. The boundary
element analysis of moderately thick laminated anisotropic shallow shells will be given in
successive paper.
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