
Decoding Algorithm in Statistical Machine Translation

Ye-Yi Wang and Alex Waibel

Language Technology Institute

School of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213, USA

fyyw,waibelg@cs.cmu.edu

Abstract

Decoding algorithm is a crucial part in sta-
tistical machine translation. We describe
a stack decoding algorithm in this paper.
We present the hypothesis scoring method
and the heuristics used in our algorithm.
We report several techniques deployed to
improve the performance of the decoder.
We also introduce a simpli�ed model to
moderate the sparse data problem and to
speed up the decoding process. We evalu-
ate and compare these techniques/models
in our statistical machine translation sys-
tem.

1 Introduction

1.1 Statistical Machine Translation

Statistical machine translation is based on a channel
model. Given a sentence T in one language (Ger-
man) to be translated into another language (En-
glish), it considers T as the target of a communi-
cation channel, and its translation S as the source
of the channel. Hence the machine translation task
becomes to recover the source from the target. Ba-
sically every English sentence is a possible source for
a German target sentence. If we assign a probability
P (S j T) to each pair of sentences (S, T), then the
problem of translation is to �nd the source S for a
given target T, such that P (S j T) is the maximum.
According to Bayes rule,

P (S j T) =
P (S)P (T j S)

P (T)
(1)

Since the denominator is independent of S, we have

Ŝ = argmax
S

P (S)P (T j S) (2)

Therefore a statistical machine translation system
must deal with the following three problems:

� Modeling Problem: How to depict the process
of generating a sentence in a source language,
and the process used by a channel to generate

a target sentence upon receiving a source sen-
tence? The former is the problem of language
modeling, and the later is the problem of trans-
lation modeling. They provide a framework for
calculating P (S) and P (T j S) in (2).

� Learning Problem: Given a statistical language
model P (S) and a statistical translation model
P (T j S), how to estimate the parameters in
these models from a bilingual corpus of sen-
tences?

� Decoding Problem: With a fully speci�ed
(framework and parameters) language and
translation model, given a target sentence T,
how to e�ciently search for the source sentence
Ŝ that satis�es (2).

The modeling and learning issues have been dis-
cussed in (Brown et al., 1993), where ngram model
was used for language modeling, and �ve di�erent
translation models were introduced for the transla-
tion process. We briey introduce the model 2 here,
for which we built our decoder.
In model 2, upon receiving a source English sen-

tence e = e1; � � � ; el, the channel generates a German
sentence g = g1; � � � ; gm at the target end in the fol-
lowing way:

1. With a distribution P (m j e), randomly choose
the length m of the German translation g. In
model 2, the distribution is independent of m
and e:

P (m j e) = �

where � is a small, �xed number.

2. For each position i (0 < i � m) in g, �nd the
corresponding position ai in e according to an
alignment distribution P (ai j i; a

i�1
1 ;m; e). In

model 2, the distribution only depends on i, ai
and the length of the English and German sen-
tences:

P (ai j i; a
i�1
1 ;m; e) = a(ai j i;m; l)

3. Generate the word gi at the position i of the
German sentence from the English word eai at

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197596446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the aligned position ai of gi, according to a
translation distribution P (gi j am1 ; g

i�1
1 ; e) =

t(gi j eai). The distribution here only depends
on gi and eai .

Therefore, P (g j e) is the sum of the probabilities
of generating g from e over all possible alignments
A, in which the position i in the target sentence g is
aligned to the position ai in the source sentence e:

P (g j e) =

�

lX

a1=0

� � �

lX

am=0

mY

j=1

t(gj j eaj)a(aj j j; l;m) =

�

mY

j=1

lX

i=0

t(gj j ei)a(i j j; l;m) (3)

(Brown et al., 1993) also described how to use
the EM algorithm to estimate the parameters a(i j
j; l;m) and t(g j e) in the aforementioned model.

1.2 Decoding in Statistical Machine
Translation

(Brown et al., 1993) and (Vogel, Ney, and Tillman,
1996) have discussed the �rst two of the three prob-
lems in statistical machine translation. Although
the authors of (Brown et al., 1993) stated that they
would discuss the search problem in a follow-up arti-
cle, so far there have no publications devoted to the
decoding issue for statistical machine translation.
On the other side, decoding algorithm is a crucial
part in statistical machine translation. Its perfor-
mance directly a�ects the quality and e�ciency of
translation. Without a good and e�cient decoding
algorithm, a statistical machine translation system
may miss the best translation of an input sentence
even if it is perfectly predicted by the model.

2 Stack Decoding Algorithm

Stack decoders are widely used in speech recognition
systems. The basic algorithm can be described as
following:

1. Initialize the stack with a null hypothesis.

2. Pop the hypothesis with the highest score o�
the stack, name it as current-hypothesis.

3. if current-hypothesis is a complete sentence,
output it and terminate.

4. extend current-hypothesis by appending a
word in the lexicon to its end. Compute the
score of the new hypothesis and insert it into
the stack. Do this for all the words in the lexi-
con.

5. Go to 2.

2.1 Scoring the hypotheses

In stack search for statistical machine translation,
a hypothesis H includes (a) the length l of the
source sentence, and (b) the pre�x words in the
sentence. Thus a hypothesis can be written as
H = l : e1e2 � � �ek, which postulates a source sen-
tence of length l and its �rst k words. The score
of H, fH , consists of two parts: the pre�x score gH
for e1e2 � � � ek and the heuristic score hH for the part
ek+1ek+2 � � �el that is yet to be appended to H to
complete the sentence.

2.1.1 Pre�x score gH

(3) can be used to assess a hypothesis. Although
it was obtained from the alignment model, it would
be easier for us to describe the scoring method if
we interpret the last expression in the equation in
the following way: each word ei in the hypothesis
contributes the amount � t(gj j ei)a(i j j; l;m) to the
probability of the target sentence word gj. For each
hypothesis H = l : e1; e2; � � � ; ek, we use SH(j) to
denote the probability mass for the target word gj
contributed by the words in the hypothesis:

SH(j) = �

kX

i=0

t(gj j ei)a(i j j; l;m) (4)

Extending H with a new word will increase
SH(j); 1 � j � m.
To make the score additive, the logarithm of the

probability in (3) was used. So the pre�x score con-
tributed by the translation model is

Pm

j=0 logSH (j):

Because our objective is to maximize P (e;g), we
have to include as well the logarithm of the language
model probability of the hypothesis in the score,
therefore we have

gH =
mX

j=0

logSH (j) +

kX

i=0

logP (ei j ei�N+1 � � � ei�1):

here N is the order of the ngram language model.
The above g-score gH of a hypothesis H = l :

e1e2 � � � ek can be calculated from the g-score of its
parent hypothesis P = l : e1e2 � � �ek�1:

gH = gP + logP (ek j ek�N+1 � � �ek�1)

+
mX

j=0

log[1 +
� t(gj j ek)a(k j j; l;m)

SP (j)
]

SH (j) = SP (j) + � t(gj j ek)a(k j j; l;m) (5)

A practical problem arises here. For a many early
stage hypothesis P , SP (j) is close to 0. This causes
problems because it appears as a denominator in (5)
and the argument of the log function when calculat-
ing gP . We dealt with this by either limiting the
translation probability from the null word (Brown

et al., 1993) at the hypothetical 0-position(Brown et
al., 1993) over a threshold during the EM training,
or setting SH0

(j) to a small probability � instead of
0 for the initial null hypothesis H0. Our experiments
show that � = 10�4 gives the best result.

2.1.2 Heuristics

To guarantee an optimal search result, the heuris-
tic function must be an upper-bound of the score
for all possible extensions ek+1ek+2 � � �el(Nilsson,
1971) of a hypothesis. In other words, the bene�t
of extending a hypothesis should never be under-
estimated. Otherwise the search algorithm will con-
clude prematurely with a non-optimal hypothesis.
On the other hand, if the heuristic function over-
estimates the merit of extending a hypothesis too
much, the search algorithmwill waste a huge amount
of time after it hits a correct result to safeguard the
optimality.
To estimate the language model score hLM

H
of the

unrealized part of a hypothesis, we used the nega-
tive of the language model perplexity PPtrain on the
training data as the logarithm of the average proba-
bility of predicting a new word in the extension from
a history. So we have

hLMH = �(l � k)PPtrain+ C: (6)

Here is the motivation behind this. We assume that
the perplexity on training data overestimates the
likelihood of the forthcoming word string on av-
erage. However, when there are only a few words
to be extended (k is close to l), the language model
probability for the words to be extended may be
much higher than the average. This is why the con-
stant term C was introduced in (6). When k � l,
�(l�k)PPtrain is the dominating term in (6), so the
heuristic language model score is close to the aver-
age. This can avoid overestimating the score too
much. As k is getting closer to l, the constant term
C plays a more important role in (6) to avoid un-
derestimating the language model score. In our ex-
periments, we used C = PPtrain+ log(Pmax), where
Pmax is the maximumngram probability in the lan-
guage model.
To estimate the translation model score, we intro-

duce a variable vil(j), the maximum contribution to
the probability of the target sentence word gj from
any possible source language words at any position
between i and l:

vil(j) = max
i�k�l;e2LE

t(gj j e)a(k j j; l;m): (7)

here LE is the English lexicon.
Since vil(j) is independent of hypotheses, it only

needs to be calculated once for a given target sen-
tence.
When k < l, the heuristic function for the hypoth-

esis H = l : e1e2 � � � ek, is

hH =
mX

j=1

maxf0; log(v(k+1)l(j)) � logSH (j)g

�(l � k)PPtrain +C (8)

where log(v(k+1)l(j)) � logSH (j)) is the maximum
increasement that a new word can bring to the like-
lihood of the j-th target word.

When k = l, since no words can be appended to
the hypothesis, it is obvious that hH = 0.

This heuristic function over-estimates the score
of the upcoming words. Because of the constraints
from language model and from the fact that a posi-
tion in a source sentence cannot be occupied by two
di�erent words, normally the placement of words in
those un�lled positions cannot maximize the likeli-
hood of all the target words simultaneously.

2.2 Pruning and aborting search

Due to physical space limitation, we cannot keep all
hypotheses alive. We set a constant M , and when-
ever the number of hypotheses exceeds M , the al-
gorithm will prune the hypotheses with the lowest
scores. In our experiments, M was set to 20,000.

There is time limitation too. It is of little practical
interest to keep a seemingly endless search alive too
long. So we set a constant T , whenever the decoder
extends more than T hypotheses, it will abort the
search and register a failure. In our experiments, T
was set to 6000, which roughly corresponded to 2
and half hours of search e�ort.

2.3 Multi-Stack Search

The above decoder has one problem: since the
heuristic function overestimates the merit of ex-
tending a hypothesis, the decoder always prefers
hypotheses of a long sentence, which have a bet-
ter chance to maximize the likelihood of the target
words. The decoder will extend the hypothesis with
large l �rst, and their children will soon occupy the
stack and push the hypotheses of a shorter source
sentence out of the stack. If the source sentence is
a short one, the decoder will never be able to �nd
it, for the hypotheses leading to it have been pruned
permanently.

This \incomparable" problem was solved with
multi-stack search(Magerman, 1994). A separate
stack was used for each hypothesized source sentence
length l. We do compare hypotheses in di�erent
stacks in the following cases. First, we compare a
complete sentence in a stack with the hypotheses in
other stacks to safeguard the optimality of search
result; Second, the top hypothesis in a stack is com-
pared with that of another stack. If the di�erence
is greater than a constant �, then the less probable
one will not be extended. This is called soft-pruning,
since whenever the scores of the hypotheses in other
stacks go down, this hypothesis may revive.

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35 40

N
um

be
r

of
 s

en
te

nc
es

Sentence Length

English

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35 40

N
um

be
r

of
 s

en
te

nc
es

Sentence Length

German

Figure 1: Sentence Length Distribution

3 Stack Search with a Simpli�ed

Model

In the IBM translation model 2, the alignment pa-
rameters depend on the source and target sentence
length l and m. While this is an accurate model, it
causes the following di�culties:

1. there are too many parameters and therefore
too few training data per parameter. This may
not be a problem when massive training data
are available. However, in our application, this
is a severe problem. Figure 1 plots the length
distribution for the English and German sen-
tences. When sentences get longer, there are
fewer training data available.

2. the search algorithm has to make multiple hy-
potheses of di�erent source sentence length. For
each source sentence length, it searches through
almost the same pre�x words and �nally set-
tles on a sentence length. This is a very time
consuming process and makes the decoder very
ine�cient.

To solve the �rst problem, we adjusted the count
for the parameter a(i j j; l;m) in the EM parameter
estimation by adding to it the counts for the pa-
rameters a(i j j; l0;m0), assuming (l;m) and (l0;m0)
are close enough. The closeness were measured in

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

m

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

...

r

ll’

m’

Figure 2: Each x/y position represents a di�erent
source/target sentence length. The dark dot at the
intersection (l;m) corresponds to the set of counts
for the alignment parameters a(� j �; l;m) in the
EM estimation. The adjusted counts are the sum
of the counts in the neighboring sets residing inside
the circle centered at (l;m) with radius r. We took
r = 3 in our experiment.

Euclidean distance (Figure 2). So we have

ĉ(i j j; l;m) =
X

(l�l0)2+(m�m0)2<r2;e;g

c(i j j; l0;m0; e;g) (9)

where ĉ(i j j; l;m) is the adjusted count for the pa-
rameter a(i j j; l;m), c(i j j; l;m; e;g) is the expected
count for a(i j j; l;m) from a paired sentence (e g),
and c(i j j; l;m; e;g) = 0 when jej 6= l, or jgj 6= m,
or i > l, or j > m.
Although (9) can moderate the severity of the �rst

data sparse problem, it does not ease the second
ine�ciency problem at all. We thus made a radi-
cal change to (9) by removing the precondition that
(l;m) and (l0;m0) must be close enough. This re-
sults in a simpli�ed translation model, in which the
alignment parameters are independent of the sen-
tence length l and m:

P (i j j;m; e) = P (i j j; l;m)

= a(i j j)

here i; j < Lm, and Lm is the maximum sentence
length allowed in the translation system. A slight
change to the EM algorithm was made to estimate
the parameters.
There is a problem with this model: given a sen-

tence pair g and e, when the length of e is smaller
than Lm, then the alignment parameters do not sum
to 1:

jejX

i=0

a(i j j) < 1: (10)

We deal with this problem by padding e to length
Lm with dummy words that never gives rise to any
word in the target of the channel.
Since the parameters are independent of the

source sentence length, we do not have to make an

assumption about the length in a hypothesis. When-
ever a hypothesis ends with the sentence end sym-
bol </s> and its score is the highest, the decoder
reports it as the search result. In this case, a hypoth-
esis can be expressed as H = e1; e2; � � � ; ek, and jHj
is used to denote the length of the sentence pre�x of
the hypothesis H, in this case, k.

3.1 Heuristics

Since we do not make assumption of the source sen-
tence length, the heuristics described above can no
longer be applied. Instead, we used the following
heuristic function:

hnH =
mX

j=1

maxf0; log(
v(jHj+1)(jHj+n)(j)

SH (j)
)g

�n � PPtrain +C (11)

hH =

Lm�jHjX

n=1

Pp(jHj+ n jm) � hnH (12)

here hn
H
is the heuristics for the hypothesis that ex-

tend H with n more words to complete the source
sentence (thus the �nal source sentence length is
jHj+ n.) Pp(x j y) is the Poisson distribution of the
source sentence length conditioned on the target sen-
tence length. It is used to calculate the mean of the
heuristics over all possible source sentence length. m
is the target sentence length. The parameters of the
Poisson distributions can be estimated from training
data.

4 Implementation

Due to historical reasons, stack search got its current
name. Unfortunately, the requirement for search
states organization is far beyond what a stack and
its push pop operations can handle. What we really
need is a dynamic set which supports the following
operations:

1. INSERT: to insert a new hypothesis into the
set.

2. DELETE: to delete a state in hard pruning.

3. MAXIMUM: to �nd the state with the best
score to extend.

4. MINIMUM: to �nd the state to be pruned.

We used the Red-Black tree data structure (Cor-
men, Leiserson, and Rivest, 1990) to implement the
dynamic set, which guarantees that the above oper-
ations take O(logn) time in the worst case, where n
is the number of search states in the set.

5 Performance

We tested the performance of the decoders with
the scheduling corpus(Suhm et al., 1995). Around
30,000 parallel sentences (400,000 words altogether

for both languages) were used to train the IBM
model 2 and the simpli�ed model with the EM algo-
rithm. A larger English monolingual corpus with
around 0.5 million words was used to train a bi-
gram for language modelling. The lexicon contains
2,800 English and 4,800 German words in morpho-
logically inected form. We did not do any prepro-
cessing/analysis of the data as reported in (Brown
et al., 1992).

5.1 Decoder Success Rate

Table 1 shows the success rate of three mod-
els/decoders. As we mentioned before, the compari-
son between hypotheses of di�erent sentence length
made the single stack search for the IBM model 2
fail (return without a result) on a majority of the
test sentences. While the multi-stack decoder im-
proved this, the simpli�ed model/decoder produced
an output for all the 120 test sentences.

5.2 Translation Accuracy

Unlike the case in speech recognition, it is quite
arguable what \accurate translations" means. In
speech recognition an output can be compared with
the sample transcript of the test data. In machine
translation, a sentence may have several legitimate
translations. It is di�cult to compare an output
from a decoder with a designated translation. In-
stead, we used human subjects to judge the machine-
made translations. The translations are classi�ed
into three categories1.

1. Correct translations: translations that are
grammatical and convey the same meaning as
the inputs.

2. Okay translations: translations that convey the
same meaning but with small grammatical mis-
takes or translations that convey most but not
the entire meaning of the input.

3. Incorrect translations: Translations that are
ungrammatical or convey little meaningful in-
formation or the information is di�erent from
the input.

Examples of correct, okay, and incorrect transla-
tions are shown in Table 2.
Table 3 shows the statistics of the translation re-

sults. The accuracy was calculate by crediting a cor-
rect translation 1 point and an okay translation 1/2
point.
There are two di�erent kinds of errors in statis-

tical machine translation. A modeling error occurs
when the model assigns a higher score to an incor-
rect translation than a correct one. We cannot do
anything about this with the decoder. A decoding

1This is roughly the same as the classi�cation in IBM
statistical translation, except we do not have \legitimate
translation that conveys di�erent meaning from the in-
put" | we did not observed this case in our outputs.

Total Test Sentences Decoded Sentenced Failed sentences
Model 2, Single Stack 120 32 88
Model 2, Multi-Stack 120 83 37
Simpli�ed Model 120 120 0

Table 1: Decoder Success Rate

German ich habe ein Meeting von halb zehn bis um zw�olf
English (target) I have a meeting from nine thirty to twelve
English (output) I have a meeting from nine thirty to twelve

Correct
German versuchen wir sollten es vielleicht mit einem anderen Termin
English (target) we might want to try for some other time
English (output) we should try another time

German ich glaube nicht d�as ich noch irgend etwas im Januar frei habe
English (target) I do not think I have got anything open in January
English (output) I think I will not free in January

Okay
German ich glaube wir sollten ein weiteres Meeting vereinbaren
English (target) I think we have to have another meeting
English (output) I think we should �x a meeting

German schlagen Sie doch einen Termin vor
English (target) why don't you suggest a time
English (output) why you an appointment

Incorrect
German ich habe Zeit f�ur den Rest des Tages
English (target) I am free the rest of it
English (output) I have time for the rest of July

Table 2: Examples of Correct, Okay, and Incorrect Translations: for each translation, the �rst line is an
input German sentence, the second line is the human made (target) translation for that input sentence, and
the third line is the output from the decoder.

error or search error happens when the search al-
gorithm misses a correct translation with a higher
score.

When evaluating a decoding algorithm, it would
be attractive if we can tell how many errors are
caused by the decoder. Unfortunately, this is not
attainable. Suppose that we are going to translate a
German sentence g, and we know from the sample
that e is one of its possible English translations. The
decoder outputs an incorrect e0 as the translation of
g. If the score of e0 is lower than that of e, we know
that a search error has occurred. On the other hand,
if the score of e0 is higher, we cannot decide if it is a
modeling error or not, since there may still be other
legitimate translations with a score higher than e0

| we just do not know what they are.

Although we cannot distinguish a modeling error
from a search error, the comparison between the de-
coder output's score and that of a sample transla-
tion can still reveal some information about the per-
formance of the decoder. If we know that the de-
coder can �nd a sentence with a better score than
a \correct" translation, we will be more con�dent
that the decoder is less prone to cause errors. Ta-

ble 4 shows the comparison between the score of the
outputs from the decoder and the score of the sam-
ple translations when the outputs are incorrect. In
most cases, the incorrect outputs have a higher score
than the sample translations. Again, we consider a
\okay" translation a half error here.
This result hints that model de�ciencies may be a

major source of errors. The models we used here are
very simple. With a more sophisticated model, more
training data, and possibly some preprocessing, the
total error rate is expected to decrease.

5.3 Decoding Speed

Another important issue is the e�ciency of the de-
coder. Figure 3 plots the average number of states
being extended by the decoders. It is grouped ac-
cording to the input sentence length, and evaluated
on those sentences on which the decoder succeeded.
The average number of states being extended in

the model 2 single stack search is not available for
long sentences, since the decoder failed on most of
the long sentences.
The �gure shows that the simpli�ed model/decoder

works much more e�ciently than the other mod-

Total Correct Okay Incorrect Accuracy
Model 2, Multi-Stack 83 39 12 32 54.2%
Simpli�ed Model 120 64 15 41 59.6%

Table 3: Translation Accuracy

Total Errors Scoree � Scoree0 Scoree < Scoree0

Model 2, Multi-Stack 38 3.5 (7.9%) 34.5 (92.1%)
Simpli�ed Model 48.5 4.5 (9.3%) 44 (90.7%)

Table 4: Sample Translations versus Machine-Made Translations

0

1000

2000

3000

4000

5000

6000

1-4 5-8 9-12 13-16 17-20

A
ve

ra
ge

 N
um

be
r

of
 E

xp
an

de
d

S
ta

te
s

Target Sentence Length

"Model2-Single-Stack"
"Model2-Multi-Stack"

"Simplified-Model"

Figure 3: Extended States versus Target Sentence
Length

els/decoders.

6 Conclusions

We have reported a stack decoding algorithm for the
IBM statistical translation model 2 and a simpli-
�ed model. Because the simpli�ed model has fewer
parameters and does not have to posit hypotheses
with the same pre�xes but di�erent length, it out-
performed the IBM model 2 with regard to both
accuracy and e�ciency, especially in our application
that lacks a massive amount of training data. In
most cases, the erroneous outputs from the decoder
have a higher score than the human made transla-
tions. Therefore it is less likely that the decoder is
a major contributor of translation errors.

7 Acknowledgements

We would like to thank John La�erty for enlight-
ening discussions on this work. We would also like
to thank the anonymous ACL reviewers for valuable
comments. This research was partly supported by
ATR and the Verbmobil Project. The views and
conclusions in this document are those of the au-
thors.

References

Brown, P. F., S. A. Della-Pietra, V. J Della-Pietra,
and R. L. Mercer. 1993. The Mathematics of Sta-
tistical Machine Translation: Parameter Estima-
tion. Computational Linguistics, 19(2):263{311.

Brown, P. F., S. A. Della Pietra, V. J. Della Pietra,
J. D. La�erty, and R. L. Mercer. 1992. Analy-
sis, Statistical Transfer, and Synthesis in Machine
Translation. In Proceedings of the fourth Interna-
tional Conference on Theoretical and Methodolog-
ical Issues in Machine Translation, pages 83{100.

Cormen, Thomas H., Charles E. Leiserson, and
Ronald L. Rivest. 1990. Introduction to Al-
gorithms. The MIT Press, Cambridge, Mas-
sachusetts.

Magerman, D. 1994. Natural Language Parsing
as Statistical Pattern Recognition. Ph.D. thesis,
Stanford University.

Nilsson, N. 1971. Problem-Solving Methods in Arti-
�cial Intelligence. McGraw Hill, New York, New
York.

Suhm, B., P.Geutner, T. Kemp, A. Lavie, L. May-
�eld, A. McNair, I. Rogina, T. Schultz, T. Slo-
boda, W. Ward, M. Woszczyna, and A. Waibel.
1995. JANUS: Towards multilingual spoken lan-
guage translation. In Proceedings of the ARPA
Speech Spoken Language Technology Workshop,
Austin, TX, 1995.

Vogel, S., H. Ney, and C. Tillman. 1996. HMM-
Based Word Alignment in Statistical Transla-
tion. In Proceedings of the Seventeenth Interna-
tional Conference on Computational Linguistics:
COLING-96, pages 836{841, Copenhagen, Den-
mark.

