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ABSTRACT

We present recent work on improving the performance of
automated speech recognizers by using additional visual in-
formation (Lip-/Speechreading), achieving error reduction
of up to 50%. This paper focuses on di�erent methods
of combining the visual and acoustic data to improve the
recognition performance. We show this on an extension
of an existing state-of-the-art speech recognition system, a
modular MS-TDNN. We have developed adaptive combi-
nation methods at several levels of the recognition network.
Additional information such as estimated signal-to-noise ra-
tio (SNR) is used in some cases. The results of the di�er-
ent combination methods are shown for clean speech and
data with arti�cial noise (white, music, motor). The new
combination methods adapt automatically to varying noise
conditions making hand-tuned parameters unnecessary.

1. INTRODUCTION

Automated speech recognition systems still perform poorly
in real-world applications. Most approaches are very sensi-
tive to background noise or fail totally when more than one
speaker talks simultaneously (cocktail party e�ect).

It is well known that hearing-impaired listeners and those
listening in adverse acoustic environments rely heavily on
the visual input to disambiguate among acoustically con-
fusable speech elements. The usefullness of lip movement
information stems in large part from its rough complemen-
tariness to the acoustic signal [1, 2, 3].

Therefore, it is only natural to try to supplement the
acoustic data with lip movement information. Related work
on this concept was published by other researchers in [4, 5,
6, 7, 8, 9]. Our own work in this area has been previously
reported in [10, 11, 12].

In this paper we focus on combining the acoustic and vi-
sual input data to improve recognition performance. The
merging of the two information sources is very important for
the �nal results. With only visual input our recognizer ob-
tains recognition rates of up to 55%. Since the pure acous-
tic recognition accuracy on clean data is over 90% the vi-
sual part should presumably be given lower weighting under
undisturbed conditions. On the other hand the acoustic-
only recognition rate decreases when background noise is
present. Here making more use of the visual information
seems appropriate. A combination dynamically adapting
to the circumstances ought to produce optimal recognition
results.

2. SYSTEM DESCRIPTION

In the basic set-up, we record, in parallel, the acoustic
speech and the corresponding series of mouth images of the
speaker. The speaker and his lips are found and tracked
automatically.
We use speaker-dependent continuous spelling of German

letter strings (26 letter alphabet) as our task. Words in our
database are 8 letters long on average.

noise signal-to-noise ratio

clean 33 dB

white noise 16 dB and 8 dB

music 20 dB and 16 dB

motor 25 dB and 10 dB

Table 1. Acoustic environments tested (dB SNR).

A modular MS-TDNN [13, 14] is used to perform the
recognition. Combining visual and acoustic data is done on
the phonetic layer (Fig. 1) or on lower levels (Fig. 3).
As visual input we use Linear Discriminant Analysis co-

e�cients of the gray-scale pictures of the lip region. (top 32
coe�cients per image frame). For acoustic preprocessing 16
Melscale coe�cients are used.
We have trained the recognizer on 170 sequences of acous-

tic/visual data from one speaker and tested on 30 sequences
of the same person. For each combination method below we
have trained the nets on clean acoustic data. We separately
trained an acoustic TDNN on the same sequences of clean
and corrupted data with white noise at 16 dB SNR. For
testing we also added di�erent types of arti�cial noise to
the test-set of clean data (see Tab. 1). As performance
measure word accuracy is used (where a spelled letter is
considered a word):

WA = 100%(1 �
#SubError+#InsError+#DelError

#Letter
) (1)

3. COMBINATION ON PHONETIC LAYER

In the basic system (Fig. 1) an acoustic and a visual TDNN
are trained separately. The acoustic net is trained on 63
phonemes, the visual on 42 visemes1.

1viseme = visual phoneme, smallest part of lipmovement that

can be distinguished. Several phonemes are usually mapped to

each viseme.
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The combined activation (hypAV ) for a given phoneme is
expressed as a weighted summation of the phoneme layer
activations of this phoneme and the corresponding viseme
unit:

hypAV = �AhypA + �V hypV and �A + �V = 1 (2)

The weights �A and �V for this combination are depen-
dent on the quality of the acoustic data. If the quality is
high, i.e. no noise exists, the weight �A should be high. In
the case of signi�cant acoustic noise, a higher weight �V for
the visual side has been found to give better results.

acoustic TDNN visual TDNN

DTW

input layer

hidden layer

phoneme layer

combined layer

output layer

Figure 1. Combination on the phonetic layer.

3.1. Entropy Weights

One way to determine the weights for the combination (2) is
to compute the entropy of the phoneme/viseme layer. The
'entropy weights' �A for the acoustic and �V for the visual
side are given by:

�A = b+
SV � SA

�Smax�over�data

; and �V = 1� �A (3)

The entropy quantities SA and SV are computed for the
acoustic and visual activations by normalizing these to sum
to one (over all phonemes or visemes, respectively) and
treating them as probability mass functions. High entropy
is found when activations are evenly spread over the units
which indicates high ambiguity of the decision from that
particular modality. The bias b pre-skews the weights to fa-
vor one of the modalities. In the results shown here, we have
optimized this parameter by setting it by hand, depending
on the quality of the actually tested acoustic data.

3.2. SNR Weights

The quality of the speech data is generally well described by
the signal-to-noise-ratio (SNR). Higher SNR means higher
quality of the acoustic data and therefore the consideration
of the acoustic side should increase for higher and decrease
for smaller SNR-values.
We used a piecewise-linear mapping to adjust the acoustic

and visual weights as a function of the SNR (see middle of

Fig 2). The SNR itself is estimated automatically every 500
ms from the acoustic signal. Linear interpolation is used to
get an SNR value for each frame (i.e. every 10 ms). In sev-
eral experiments we obtained best results with a maximum
and a minimum weight �Amax = 0:75 and �Amin = 0:5 for
high (33dB) and low (0dB) SNR respectively and a linear
interpolation between them. Fig. 2 shows on an example
from the test set, the values of the weights as they vary
with the estimated SNR which is shown on top (for more
information about this algorithm see [15]).
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Figure 2. Determining the weights by using the SNR.

3.3. Learning the weights

Another approach is to use a neural network to compute the
combination weights at the phoneme level. This method dif-
fers form the previous in two ways. First the combination
weights are learned from training data and not calculated
during the recognition progress. Second, di�erent weights
�A and �V are computed for di�erent features, i.e. for ev-
ery phoneme/viseme, instead of a weighting common to all
phoneme/viseme pairs for a given time-frame as it is in the
entropy and SNR-weight cases. The motivation behind this
lies in the complementariness of the acoustic and the visual
signal: some phonemes which are high confusable even in
quiet have corresponding visemes that can be distinguished
reliably. So it is only natural to prefer the visual classi�ca-
tion for phonemes unclear acoustically and vice versa.

We have used a simple backprop net with two input layers
(phonemes and visems), one output layer (phonems), and
no hidden layer. Each unit of the combination layer is fully
connected with the corresponding acoustic and visual frame.

4. LOWER LEVEL COMBINATION

The combination of acoustic and visual information on the
phoneme/viseme layer o�ers several advantages. There is
independent control of two modality networks, allowing for
separate training rates and number of training epochs. It



is also easy to test uni-modal performance simply by set-
ting �A and �V to zero or one. On the other hand, this
method forces us to develop a viseme alphabet for the visual
signal, as well as a one-to-many correspondence between
the visemes and phonemes. Unlike phonemes, visemes have
proven much more di�cult to de�ne consistently exept for
a few fairly constant sets. Combination of phonemes and
visemes further prevents the recognizer from taking advan-
tage of lower level correlation between acoustic and visual
events such as inter-modal timing relationships.

phoneme layer

output layer

DTW

hidden layer

input layer

(c)

acoustic input visual input

(a)

acoustic input visual input

phoneme layer

output layer
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hidden layer
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SNR
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acoustic input

SNR
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Figure 3. Lower level combination: (a) hidden layer (b) hidden
layer and SNR (c) input layer (d) input layer and SNR.

Two alternatives are to combine visual and acoustic in-
formation on the input or on the hidden layer (see Fig 3 (a)
and (c)). In another approach, we have used the estimated
SNR of the acoustic data as an additional input to both
networks (see Fig 3 (b) and (d)).

5. RESULTS

Figure 4 shows the results for the three combination meth-
ods on the phonetic layer and on the input and hidden
layer in comparison to the acoustic recognition rate in dif-
ferent noise environments. All the nets were trained on
clean acoustic data. The recognition rate on the visual data
(without acoustic information) was 55%. The architectures
in Fig. 3 (b) and (d) were not trained with the clean dataset
because the additional information (SNR) does not appear
in this training set (i.e. the SNR is approximately constant
for all the words in this database). So recognition improve-
ments from this kind of architecture could not be expected
in this case of training data.
With all combination methods we get an improvement

compared to the single acoustic recognition, especially in
the case of high background noise. We obtain the best re-
sults using the combination on the phonetic layer. Using
the entropy weights yields good recognition results but has
a great disadvantage: a bias b which is necessary to preskew
the weights is needed and has to be optimized by hand. In
contrast, the SNR weights were determined automatically.
They result in roughly the same performance without hav-
ing to 'hand-optimize' any parameters during the recogni-
tion progress. We have also tested a combination of this two

methods, i.e. computing the bias b of the entropy weight
from the SNR instead of setting it by hand. The results
were approximately the same as with hand-optimized en-
tropy weights.

Both combination methods have the disadvantage that
they do not take into consideration the inherent confusabil-
ity of some phonemes and visemes, but use a single weight
in each acoustic/visual time frame depending only on the
quality of the acoustic data. The approach which uses a
neural network for combination relies on the fact that some
phonemes are easier to recognize acoustically while some
can be more reliably distinguished from the visual input,
by using di�erent weights for each phoneme/viseme pair.
As expected, this method delivers the best results exept in
the case of high background noise (i.e. motor 10 dB and
white noise 8 dB).

Similarly, the hidden- and input-combination recognition
performance su�ers more in these cases. However, when
evaluating the di�erent approaches one has to remember
that the neural net combination, just as the hidden- and
input-combination, has no explicit information about the
quality of the acoustic input data which can be used during
the recognition progress as it is done by the combination at
the phonetic level with the entropy- and the SNR-weights.
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Figure 4. Combination on input, hidden, and phone layer;
trained with clean data.

Motivated by this we have trained the net on a set of clean
and noisy data, i.e. the 170 sequences used before and with
the same sequences with 16 dB white noise. The results are
presented in Fig. 5. Here we also trained the architectures
from Fig. 3 (b) and (d), i.e. hidden and input combination
with additional input of the SNR. In some cases we get small
improvements with that kind of combination.

On the slightly noisy data we get improvements in com-
parison to the results achieved with the clean training data
set. The improvements in the case of white noise are pre-
dictable since the training data contains utterances contam-
inated with 16 dB SNR white noise. The improvements ob-
tained with the motor 10 dB SNR test set are most remark-
able. Here an error reduction of about 50% was found in
the case of phonetic combination with entropy- and SNR-
weights compared to the results obtained with the exclu-
sively clean training data set. Unfortunately the combina-
tion with a neural network did not lead to such a good error



Figure 5. Combination on input, hidden, and phone layer;
trained with clean data and arti�cial noise.

6. CONCLUSION

In this paper we have presented di�erent types of sensor
fusion for automatic speech recognition and Lip-/Speech-
reading. We get an error reduction of up to 50% in compar-
ison to the acoustic-only recognition results. The adaption
to di�erent noise environments is done automatically. The
investigated methods di�er in the combination level (high
or lower layer of the TDNN) at which they are invoked and
in the method of computing the combination weights (frame
and feature dependent). Another di�erence is the fact that
some combination methods (entropy- and SNR-weights on
phonetic-level-combination) make use of automatically ex-
tracted information about the quality of the acoustic data
during the recognition process.

Good results were obtained with the combination via neu-
ral network on the phoneme level. This kind of high level
combination with di�erent weights for di�erent features (i.e.
phonemes/visemes) yields good results although it does not
use information about the quality of the acoustic data dur-
ing the recognition process.
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