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Abstract

Following an approach proposed by Hutchinson/Lo/Poggio[1994], Kelly[1994]

and Malliaris/Salchenberger[1993], we used neural networks to value derivatives. We

�rst examined the ability of the used neural networks to interpolate the Black & Sc-

holes formula and its derivatives. In a second step we trained neural networks on real

world data from the Deutsche Terminb�orse (DTB). We used about 500,000 trading

prices of stock index options on the Deutscher Aktienindex (DAX) to approximate

the implied pricing formulas of the market. Looking at the partial derivatives of the

implied pricing formular allows us to get deeper insights into the pricing process.

It can be shown that the implied pricing formulas di�er markable from the Black

& Scholes formula. The results suggest that the implied pricing formulas account for

the correlations between interest rates and the DAX and that increasing volatility

has a negative impact on in{the{money options. A "crash{o{phobia" phenomenon

is observed, too.
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1 Introduction

The standard approach to value derivative securities is based on the explicit speci�ca-

tion of the stochastic price process of the underlying asset. Much research has been done

within this approach, beginning with the seminal articles of Black/Scholes[1973] and Mer-

ton[1973]. However, empirical observations, such as fat{tailed return distributions, the

smile e�ect or "crash{o{phobia" can not be explained by standard option pricing models.1

Furthermore, empirical results are casting doubt on popular parametric speci�cations.2

These shortcomings have increased the interest in implied approaches to option pricing.

The fundamental idea is to use observed market prices to get information about the be-

liefes of the market participants, the implied return distributions or the implied pricing

mechanism of the market.3 Such information can be used to improve standard option pric-

ing models, to reveal arbitrage opportunities or to implement hedging strategies. The roots

of implied approaches are dating back to Latan�e/Rendleman[1976], which used market

prices of options to calculate implied volatilities. Rubinstein[1994] among others extended

this approach by using option prices to calculate implied state{price{densities.4

In our study, we followed an approach suggested by Hutchinson/Lo/Poggio[1994],

Kelly[1994] and Malliaris/Salchenberger[1993]: Estimating the implied pricing mechanism

of DAX-options traded at the Deutsche Termin B�orse (DTB) by "training" neural net-

works on trading prices.

Due to their characteristics neural networks seem to be an appropriate statistical approx-

imation method if one or more of the following conditions are met:

� The patterns looked for, are subtle or deeply hidden in the data available for the

estimation.

� The relationship to be discovered exhibit signi�cant unpredictable nonlinearity.

� The partial derivatives of the approximation function are of interest.

In our speci�c �eld of application all mentioned conditions are met. Existing evaluation

models show a highly nonlinear structure. The derivatives are necessary for the imple-

mentation of hedging strategies. Furthermore they allow to get deeper insights into the

pricing mechanism of the market and to prove the economic content of the formula.

In contrast to more traditional models, neural networks do not need restrictive assump-

tions about the function to be estimated, for example assumptions like log{normal dis-

tributed stock returns or sample path continuity. Since they do not rely on restrictive

assumptions they are very robust to speci�cations errors parametric valuation methods

often su�er from. Due to their adaptive nature they are able to handle structural changes

in the pricing process. Futhermore once "trained" they are easy to implement and easy

to handle. But they are highly data intensiv. A lot of historical data is necessary to get

su�ciently well{trained networks.

To summarize, neural networks provide a powerful nonparametric, data driven pricing

method which allows the data to determine the dynamics of the underlying asset and its

1"Crash{o{phobia" describes the fact that implied state{prices of index{options for low index levels
are higher than expected. This can be interpreted as as additional insurance premium against crashes.
For details see Rubinstein[1994].

2See for example Lo/MacKinlay[1988].
3A literatur overview is given by Mayhew[1995].
4Results for German stock index options can be found in Neumann/Schlag[1996].
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relation to the prices of the derivatives. In contrast to the main part of empirical studies

on neural networks in Finance { we do not want to predict anything and in contrast

to such studies we know that a functional relationship between the input factors of our

network and the target value | the price of the derivative | de�nitely exists, but not

its speci�c form.

First examples of successful applications of neural networks for the valuation of derivative

securities were provided by earlier studies. Tabular 1 summarizes such studies:5

Table 1:

Empirical Studies

Author Period Derivative6 Model7 Network8

Boeck et al.[1995] 1993-1994 AO SPI future option(a) BS ?

Hutchinson/Lo/Poggio[1994] 1987-1991 S&P 500 futures option(a) L,BS MLP,RBF,PPR

Kelly[1994] 1993-1994 Stock-Options(a) CRR MLP

Lajbcygier et al. [1995] 1993-1994 AO SPI future option(a) L,BS,BW MLP

Malliaris/Salchenberger[1993] 1990 S&P 100 OEX option(a) BS MLP

Qi/Maddala[1995] 1994-1995 S&P 500 options(a) BS MLP

White[1995] 1994 S&P 100 OEX option(a) BS ENT

Our study extends the existing research in some directions: First our study is founded on

time-stamped intraday data9 of all traded options, so not restricted to closing prices or to

a easy to manage part of the market. Second, we used call as well as put options to be able

to compare the formulas of both typs of options. Third, we show how well-suited neural

networks are for the interpolation of the derivatives of pricing formulas. Forth, we used the

obtained pricing formulas to get deeper insights into the implied pricing mechanism and

compared it to the B&S model. Fifth we derived the implied state{price{densities without

using any restrictive assumption | like positivity restrictions or the functional form of

the state{price{densities (SPD). So demonstrating a new approach for the derivation of

implied SPD's .

The remainder ist organized as follows. The next section provides a brief introduction to

the theoretical background of our study. Section 3 describes the methodology and the data

used, while section 4 provides the empirical results. Section 5 contains a short summary

and concluding remarks. The appendix contains the derivation of the partial derivatives

of our networks and the estimated network parameters.

5Simultaneously and independent to our study Anders/Korn/Schmitt[1996] applied neural networks
to DAX options.

8american(a), european(e)
8Model used for comparison: Black/Scholes(BS)[1973], Barone-Adesi/Whaley(BW)[1987],

Cox/Ross/Rubinstein(CRR)[1979], Linear Approximation(L).
8Entropy Network(ENT), Multilayer Perceptron(MLP), Projection Pursuit Regression(PPR), Radial

Basis Functions(RBF).
9Especially we took a lot of care over the preparation of the database and the input parameters,

to avoid problems resulting from non-synchronous data or incomplete and small datasets some earlier
studies su�er from. Our database exceeds the databases of all earlier studies many times over.
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2 Theoretical Background

Object of our investigation are �nancial derivatives, more speci�c index options. Options

give the holder the right to buy (call option) or to sell (put option) the underlying asset

for a certain price (exercise price) by a certain day (expiration day). Option which can be

exercised at any time up to expiration are called American options, options which only can

be exercised on the expiration itself are called European options. An index option is an

option where the underlying is an index. For the remainder of this article only European

options are considered. Option prices are generally denoted by O whereas call prices are

denoted by C and put prices by P.

2.1 Option{Pricing

It is possible to derive upper and lower bounds for European options without any particu-
lar assumption10 about the factors a�ecting the option price. In an arbitrage{free market
the following conditions have to be met:

C(t) � S(t)

P (t) � Xe�rT

C(t) > max[S �Xe�rT ; 0]

P (t) > max[Xe�rT � S; 0]

(1)

X : exercise price,

r : riskless interest rate,

T : time to expiry expressed as a fraction of a year and

S : underlying asset.

This bounds determine a range in which options price should stay, otherwise investors are

able to make riskless pro�ts. The fundamental idea introduced by Black/Scholes[1973]

and Merton[1973] to get a explicit pricing formula was to replicate options by dynamic

hedging strategies. In an arbitrage-free environment such self-�nancing hedging strategies

have to have the same initial value as the replicated option. Although introduced in 1973

and often extended, the standard B&S formula is unquestionable one of the most relevant

pricing formula in practice.

Assuming arbitrage-free frictionless markets, continous trading, constant and same risk-

free interest rates for all maturities and a geometric Brownian motion with constant drift

and variance rate as the stochastic price process for the underlying, the following pricing

formulas can be derived11 for calls (CBS) and puts (PBS):

CBS = S(t)N(d1)�Xe�rTN(d2)

PBS = Xe�rTN(�d2)� SN(�d1)
(2)

10Except r > 0, which in reality is no very restrictive assumption at all.
11The correct derivation can be found in Merton[1973].
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where

d1 =
ln(

S(t)

X
)+(r+�2

2
)T

�
p
T

d2 = d1� �
p
T

(3)

and

N(.) : the standard cumulative normal distribution function and

� : standard deviation of the instantaneous rate of return on S.

The local arbitrage argument used by Black/Scholes[1973] was extended by Rubin-
stein/Leland[1981] to create actually options.12 The key idea was instead of building
a risk-free portfolio by dynamically hedging an option with stock, to create the option by
a dynamic strategy which involved the underlying and a risk-free asset. Essential for such
a strategy is to know how the replicated option responds to changes in the underlying
option variables. Assuming a B&S world the partial derivatives13 are as follows14:

Deltac = @C
@S

= N(d1)

Deltap = @P
@S

= N(d1)� 1

Gammac = @Deltac
@S

=
n(d1)

S�
p
T

Gammap =
@Deltap

@S
=

n(d1)

S�
p
T

Vegac = @C
@�

= Sn(d1)
p
T

Vegap = @P
@�

= Sn(d1)
p
T

Rhoc = @C
@r

= TXe�rTN(d2)

Rhop = @P
@r

= �TXe�rTN(�d2)
Thetac = @C

@T
= Sn(d1) �

2
p
T
+ rXe�rTN(d2)

Thetap = @P
@T

= Sn(d1) �

2
p
T
� rXe�rTN(�d2)

(4)

This functions show how the prices15 of calls and puts changes as one of the input pa-

rameter changes. Assuming16 furthermore the existence of state{price{densities (SPD's)

and the dynamic completeness of the market we are able to derive the implied prices

of "Arrow-Debreu" securities17, which correspond to the second derivative of the pricing

functions with respect to the strike price X evaluated at ST . This gives us the the price

for a security paying DM 1.{ if the state falls between S and S + dS. In a B&S world the

SPD corresponds to the following log-normal distribution:18

SPD = erT
@2C

@X2
= erT

@2P

@X2
=

1

ST
p
2��2T

e
�( ln(ST =St)�(r��

2=2)T)
2

2�2T : (5)

12The evolution of the approach is described in Leland/Rubinstein[1988].
13The derivation can be found for example in Stoll/Whaley[1993], p. 245�.
14n(:) denotes the density of a standard normal distribution.
15Gamma shows how the delta of the option changes.
16Note:We do not need any assumption about the price process of the underlying.
17Arrow[1964],Debreu[1959].
18Breeden/Litzenberger[1978], p. 630.
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3 Data and Methodology

3.1 Data

Our study was founded on time-stamped transaction data on the DAX option traded

at the DTB, after the S&P 100 and S&P 500 options the most liquid index option

worldwide19. All data used was provided by the Karlsruher Kapitalmarktdatenbank

(KKMDB).

The DAX option20 is an European style option on the DAX index. The DAX21 contains

the 30 biggest and most liquid German stocks, which together have a market capitalization

of over 60 percent on all German stocks listed at exchanges. Together they account for

over 75 percent of the total German stock trading volume. The option has a contract size

of DM 10 per index point of the DAX and is quoted in points with one decimal place.

Its minimum price move is 0.1 point which corresponds to DM 1. The maturity of the

contracts range up to 24 months22. At least �ve exercise prices for each contract month

are introduced initially. New option series are introduced continuously if the DAX exceeds

the average of the third- and second-highest or falls below the average of the third- and

second-lowest currently existing strike price. The DAX-option is traded daily between

9:00 a.m. and 5:00 p.m. Because the DAX23 is a dividend adjusted performance index

and the DAX option traded at the DTB is of European type, there were no dividend and

early exercise problems. Hence the DAX option has ideal contract speci�cation for the

application of the B&S formula.

To get synchronized datasets24 it was necessary to calculate simultaneous historical DAX

values for each trading day from 9:00 a.m. to 5:00 p.m.25 This was accomplished using

IBIS26 data.27 Since June 15, 1995 our index correponds with the IBIS-DAX provided by

the Deutsche B�orse AG28.

The interest rates used are Frankfurt Interbank O�er (FIBOR) rates. For intermediate

times, interest rates were interpolated linear. We used the VDAX29 as an average weighted

volatility expectation of the market.

The period of observation was from January 1, 1995 to December 31, 1995. In the whole

period 514,192 trades in DAX options divided up into 266,300 trades in calls and 247,892

19DBAG[1996], p. 26.
20See DBAG[1996].
21For details see DBAG[1995b].
22Options with maturities of 18 and 24 months were introduced on March 18, 1996.
23See Deutsche B�orse AG (1995b).
24For each transaction price the corresponding DAX value is needed.
25The weighting factors necessary for this calculation were provided by the Deutsche B�orse AG.
26Integriertes B�orsenhandels- und Informationssystem (Integrated Stock Exchange Trading and Infor-

mation System), an electronic trading system.
27For a description of the datasets used, see L�udecke[1996].
28Between December 15, 1993 and June 14, 1995 the IBIS-DAX was only calculated between 8:30 a.m.

{ 10:30 a.m. and 1:45 p.m. and 5:00 p.m..
29The VDAX is a daily calculated DAX{based implied volatility index, which serves as a proxy for

the expected stock market volatility. For technical details see DBAG[1995a]. Furthermore we used some
other volatility measures | historical 30/90 day volatility and di�erent implied volatility measures based
on trading and calendar days as well as a mixed model. The results show that the di�erent volatility
measures do not a�ect the approximation results strongly. Therefore we restrict our presentation on
results obtained for the VDAX.
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trades in puts take place. Table 2 contains a short descriptive statistic30 of the initial

option data.31

Table 2:
Descriptive Statistic of the Trading Data

S X S
X

T r �i C

Mean 2141.25 2171.16 0.987 46 0.0446 0.130 36.90

Std. 98.88 114.89 0.036 50 0.0036 0.031 43.39

Calls Min 1893.08 1800.00 0.825 3 0.0368 0.005 0.10

P1 1917.53 1900.00 0.896 3 0.0386 0.060 0.60

P99 2308.17 2450.00 1.101 238 0.0522 0.199 221.10

Max 2373.18 2550.00 1.284 280 0.0540 1.640 844.40

S X S
X

T r �i P

Mean 2132.81 2097.62 1.018 47 0.0447 0.149 29.85

Std. 99.78 117.53 0.039 49 0.0037 0.047 32.74

Puts Min 1893.08 1800.00 0.838 3 0.0368 0.006 0.10

P1 1915.16 1825.00 0.927 3 0.0385 0.068 0.50

P99 2304.72 2350.00 1.136 237 0.0521 0.237 162.00

Max 2373.18 2550.00 1.284 280 0.0540 11.330 2111.50

However not all the data was used. But in contrast to other studies we do not exclude

options which were di�cult to handle, to get a truth view of the total pricing mechanism

of the market and not only of a easy to handle part of it. For example if there exists

a tendency towards trades on integer prices, which is crucial point for options with low

prices, we feel that a neural network should be able to handle it. Hence we excluded only

data which we assumed to be errorneous32: Options violating arbitrage boundaries33 and

option prices resulting from mistrades.

To get a practicable criterium we excluded all options with an implied volatility higher

than 40 percent34, which we assumed to be a indication of a mistrade.35 Only 762 trades36

were excluded due to this criterium. Furthermore 11,257 call prices and 2,092 put prices

violating their lower arbitrage boundary37 were excluded. Hence 97.3 percent of all trading

30Tt denotes the number of trading days till maturity, �i the implied volatility and P� the �-percent
percentile.

31This is important to know for the standardization of the input parameters of the networks and the
restriction of the parameters for the interpolation of the B&S formula.

32Looking at table 2, examples for such data are easy to detect. Implied volatilities higher than 300
percent and option prices higher than DM 2,000 are a obvious sign for a mistrade.

33See (1).
34In table 3 the distribution of the implied volatilities is presented. Note: The VDAX as well as the

historical 30-day and 90-day volatilities were below 35 percent in the whole period.
35Looking more closely at such trades it is obvious that they could be traced back to typos.
36375 call and 387 put prices.
37Note: Transaction costs are not taken into account.
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prices were used in our study. Looking at table 2 and table 3 it is interesting to note that

Table 3:
Implied Volatility

�i Calls Puts

[0{0.1) 21,481 12,768

[0.1{0.2) 231,041 225,611

[0.2{0.3) 1,748 6,430

[0.3{0.4) 398 604

[0.4{0.5) 187 214

[0.5{0.6) 80 90

[0.6{ ) 108 83

implied volatilities of call and puts di�er notable38. Furthermore the number of arbitrage

boundary violations di�ers strongly, whereas the number of mistrades is nearly the same

for calls and puts in the period under consideration. These numbers give �rst evidence

that the pricing formulas used by the market di�er from the B&S formula.

3.2 Methodology

We �rst interpolated the Black & Scholes formula, using simulate option prices to get

insights into the ability of the networks to approximate valuation formulas and their

partial derivatives. We wanted to know if the choosen network typ is able to interpolate

the B&S formula for realistic parameters39 precisely enough40.

Proceeding from our results we trained networks on trading prices of DAX options sep-

arately for calls and puts. The trained networks are used in out-of-sample test to prove

if the networks are overparametrized. Therefore the option data is divided up into a

trainings-sample to learn and conduct in-sample tests and a test-sample which serves for

out-of-sample tests. The networks were trained within 10,000 iterations each using the

Backpropagation algorithm.

We compared the implied pricing formulas with the B&S formulas. Examining the implied

partial derivatives and implied state{price densities we are able to get deeper insights into

the pricing mechanism and to �nd out the reasons for di�ering prices between these two

models.

38This di�erence is signi�cant at a 0.0001 level (Wilcoxon rank-sum test).
39We used randomized uniform distributed values within the relevant parameter range (see table 2).

Because such simulated data are noise-free, out-of-sample tests do not make sense. We were primarily
interested to get a feeling how adding more hidden nodes increases the accuracy of the interpolation and
how many learning steps are necessary.

40In contradiction to some ealier studies, we trained our networks directly on option prices O and not
on the function O=X which would assume a return distribution of the underlying of the option which
does not depend on the stock price level (see Merton[1973] theorem 9 and Hutchinson/Lo/Poggio[1994],
p. 862). This is a type of assumption we just wished to avoid by using nonparametric valuation methods.
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3.2.1 Neural Network

Looking from a statisticans point of view the used neural networks are analogous to

nonlinear nonparametric regression models. Due to their inductive nature they are able

to infer complex nonlinear relationships between option prices and its determinants. More

precisely, they have the ability to approximate any continuous function and its partial

derivatives to any degree of accuracy.41

The primary goal of our article was to approximate the implied pricing mechanism of the

market and to get deeper insights into the implied pricing formula. We did not want to

compare the suitability of di�erent network types42, learning algorithms or methods to

�nd the best network structure43 for our particular problem.

Hence the results presented were obtained using standard networks. The network of our

choice was a multilayer perceptron (MLP) with �ve inputs units, one hidden layer includ-

ing �ve up to eleven neurons and one output neuron. This has got three reasons: First of

all, the universal approximation property of MLP's for most classes of linear and nonlinear

functions44, second its proven ability to estimate simultaneously the unknown derivatives

of the output function45 which is essential to get deeper reliable insights into the pricing

process of the market. Third, the possibility to compare our results to the results of some

earlier studies. As input parameters we used:

� the price of the underlying (S),

� the strike price of the option (X),

� time to maturity (T),

� the riskless interest rate (r) and

� the expected volatility (�)

Our network is fully connected and has the structure shown in �gure 1. Such a MLP has

the following functional form:

net(~I) = f

"
JX
j=1

!2(j; 1)f

� 5X
i=1

!1(i; j)~I(i) + �1(j)

�
+ �2(1)

#
(6)

whereas

f : smooth monotonically increasing transfer function,

!1(i; j) : weight between unit i of input layer and unit j of hidden layer,

!2(j) : weight between unit j of hidden layer and the output unit,

~I(i) : parameter i of input vector ~I,

�1(j) : bias of unit j of hidden layer and

�2(k) : bias of the output unit.

41Proofs of
the universal approximation ability of MLP's are presented in Hornik/Stinchcombe/White[1989] and
Hornik/Stinchcombe/White[1990].

42Hutchinson/Lo/Poggio[1994] used three di�erent network types and could not observe any type
dominating the others.

43For example Anders/Korn/Schmitt[1996] used a model selection strategy to to get some insights into
the statistical signi�cance of the input fed into the network.

44Hornik/Stinchcombe/White[1989].
45Hornik/Stinchcombe/White[1990].
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Figure 1:

Structure of the Neural Network

Optionprice (O)

S X T r �

We used a logistic transfer function46 because there exists a rather simple relationship

between the function and its derivatives47. To simplify the notation the following functions

are introduced:


1(j) =
L1X
i=1

!1(i; j)~I(i) + �1(j) (7)


2 =
L2X
j=1

!2(j)f
h

1(j)

i
+ �2 (8)

Using (7) and (8), the �rst and second partial derivatives of our neural network with

respect to the i-th input parameter have the following form:48

@net(~I)

@~I(i)
=

@f [
2]

@
2

� L2X
j=1

!1(i; j)!2(j)
@f [
1]

@
1

�
(9)

@2net(~I)

@~I(i)
2 =

@2f [
2]

@(
2)2

� L2X
j=1

!1(i; j)!2(j)
@f [
1]

@
1

�2
(10)

+
@f [
2]

@
2

� L2X
j=1

!1(i; j)
2
!2(j)

@2f [
1]

@(
1)2

�

To learn the implied pricing function and its derivatives the networks are "trained"

on market prices. Each training set consisted of examples with �ve input parameters

46f(x) = 1
1+exp(�x)

. Friedman[1994] con�rms that this is the most popular choice and remarks that

the particular choice of the transfer function is seldom crucial.
47 @f(x)

@x
= f(x)(1 � f(x)) and @2f(x)

@x2
= @f(x)

@x
(1� 2f(x)).

48The derivation of the formulas and the adjustements necessary for standardized data are presented
in Appendix B.
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~I = (X;S; �; t; r) and the corresponding option price O { either the theoretical B&S value

or the trading price.49 We do not use any statistical inference method to test the statistical

signi�cance of the input parameters, because looking at the price bounds of options we

know that there must be a functional relationship between the used input parameters50

and the option prices.

To �nd the network parameters the following cost{function is minimized using the

Backpropagation-Algorithm51.

min
NX
i=1

(neti(~I)�Oi)2 (11)

"Training" and "learning" means nothing more then improving the estimates of the !'s

and �'s with respect to this cost{function. To increase the e�ectiveness of the learning

algorithm and minimize the e�ect of di�erent dimensions of the input parameters we

standardized the input parameters and the corresponding option price using the following

formula

g(i) =
i�min(i)

max(i)�min(i)
: (12)

All connection weights were initially randomized and during the training process deter-

mined. We trained our networks in batch mode. To implement the networks we used the

Stuttgart Neural Network Simulator (SNNS).52

3.2.2 Performance Measures

Commonly used measures53 for the approximation quality of neural networks are the mean
error (ME), the mean percentage error (MPE), the residual mean squared error (RMSE),
the mean absolute error (MAE), the mean absolute percentage error (MAPE) and R2

49Besides we trained networks on the time value of options and furthermore only on that part of the
time-value which di�ers from the corresponding B&S value. So we tried out a new stepwise approach.
The idea was to reduce the complexity of the problem by putting the linear part of the evaluation formula
out of consideration rsp. that part which is explained by the B&S formula (see Boeck et al.[1995]). But
the results for DAX options were not very encouraging (see Appendix C) The best �t was obtained for
option prices.

50This does not hold for �, but looking at the asymmetric pay-o� pattern of calls and puts it is easy
to motivate a potential inuence of the volatility of the underlying on option prices, too.

51The
algorithm is based on a simple gradient descend. For an introduction see Hertz/Krogh/Palmer[1991],
p. 115�.

52See Zell et al.[1995].
53Note: All performance measures used in our study are founded on the di�erence between the non-

standardized option prices of the network and the observed market price or the theoretical B&S price! The
e�ciency of neural networks can be increased by standardizing input and target values. It is important to
note that there is quite a di�erence between using the standardized values or the origin data to measure
the performance of the networks. Reliable information is only provided by origin data because otherwise
the error measured also depends on the method used to standardize the data. Using neural networks to
evaluate derivatives the error of interest ist the di�erence between the estimated prices and the target
prices. Using instead a function like O=X changes the error term considerable. Using O=X instead of O
leads in the case of the DAX option to ME's, MSE's and RMSE's which are about 2000 times lower than
the real error of interest.
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de�ned as:

ME = 1
T

PT
t=1(Ôt �Ot)

MPE = 1
T

PT
t=1

Ôt�Ot

Ot

MAE = 1
T

PT
t=1 jÔt � Otj

MAPE = 1
T

PT
t=1

jÔt�Otj
Ot

RMSE =
q

1
T

PT
t=1(Ôt � Ot)2

R2 =

PT

t=1
(Ôt�O)2PT

t=1
(Ot�O)2

(13)

ME, MAE and RMSE measure the absolute di�erence between the output and the target

value while MPE and MAPE standardize this error.R2 measures the closeness of variation

between the output function of network and target values. ME and the MPE are able to

detect a pricing bias whereas MAE, RMSE, MAPE measure the dispersion of the output

values around the target values.

4 Empirical Results

4.1 Learning the Black & Scholes Formular

We trained the networks on theoretical B&S values on an uniform distributed parame-

ter region separately for calls and puts. Table 4 summarizes the interpolation results of

networks with �ve and eleven nodes.

Table 4:

Results B&S Interpolation

Option-Prices

Nodes Calls Puts

ME MAE RMSE R2 ME MAE RMSE R2

5 0.458 3.484 4.93 0.998 -0.012 2.469 3.66 0.999

11 -0.051 1.340 2.02 0.999 -0.028 1.051 1.62 0.999

The average mean error of a MLP with eleven nodes is DM -0.051 for Calls and DM

-0.028 for Puts. The MAE is about DM 1.00 for both options and reveals that no bias

is observable. Increasing the number of nodes from 5 to 11 more than halves the RMSE.

This is also visible in �gure 2. It is interesting to note that the pricing error is already

the same for the whole parameter range and puts are better interpolated.

The improved results for networks with 11 nodes are also reected by the partial deriva-

tives. Looking at table 5 we can observe similar results for put and call options. For

networks with 11 nodes the error terms are clearly lower. For all �rst derivatives the

mean error of such networks is only about 1 percent of its average value. Looking at

rho the results visualized in �gure 3 are even more impressive.54 Comparable results are

54The results presented are obtained for options with a strike price of 2100 furthermore assuming a
volatility of 0.125 and interest rates of 4.5 percent.
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Table 5:

Results B&S Interpolation

Partial Derivatives

Derivative Nodes Calls Puts

ME MAE RMSE R2 ME MAE RMSE R2

Delta 5 -0.00067 0.042 0.065 0.963 0.00370 0.027 0.048 0.980

11 -0.00151 0.018 0.031 0.992 0.00107 0.013 0.026 0.994

Vega 5 15.29 56.37 80.47 0.854 4.36 43.18 62.40 0.906

11 3.16 29.31 44.69 0.954 0.81 22.91 34.98 0.971

Theta 5 0.0212 0.079 0.154 0.617 -0.0019 0.061 0.140 0.669

11 0.0072 0.043 0.118 0.763 0.0020 0.035 0.110 0.794

Rho 5 10.12 85.45 124.06 0.820 5.05 75.56 114.51 0.874

11 5.50 30.69 44.98 0.975 -4.18 35.16 35.16 0.988

Gamma 5 -0.00002 0.0012 0.0016 0.566 0.00012 0.0012 0.0021 0.581

11 -0.00043 0.0008 0.0012 0.894 -0.00022 0.0009 0.0013 0.885

SPD 5 -0.00042 0.0016 0.0020 0.243 -0.00039 0.0014 0.0026 0.252

11 -0.00084 0.0011 0.0015 0.492 -0.00074 0.0011 0.0015 0.531

observed for the other derivatives, too. Especially in a parameter region for S/X between

0.9 and 1.1 the derivatives are interpolated very well by MLP's with 11 nodes.
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Figure 2:

B&S Interpolation-Error

Calls

5 Nodes 11 Nodes

Puts

5 Nodes 11 Nodes
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Figure 3:

B&S Interpolation Rho-Error
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4.2 The Market Formulars

4.2.1 The Implied Valuation Formulars

Assuming a market pricing formula with a complexity similar to the B&S model the used

networks should be able to approximate the pricing formula and its derivatives su�cienly

well. Looking at the error terms this can be con�rmed (see table 6).

Table 6 compares the ability to "explain" market prices between our ANN's and the Black

& Scholes formula. Before training the network we divided up the trading prices into two

equal subsamples. The �rst subsample (denoted as in) we used to train our networks, the

second (denoted as out) served for testing the pricing formular.

The table shows that the networks are able to explain the market prices far better than

the Black & Scholes model.55 This applies for in{sample tests as well as out{of{sample

tests. The results of the out{of{sample tests are sometimes even slightly better than the

in{sample results. This shows that there are no signs of over�tting even for networks with

eleven nodes.56

The average error of a network with eleven nodes is about 15 Pfennige for calls compared

to nearly 3.00 DEM for the Black & Scholes formula and about 4 Pfennige for puts

compared to 66 Pfennige in the case of the Black & Scholes formula. It is interesting to

note that the networks as well as the Black & Scholes formula are better in explaining

put prices than call prices.

The implied pricing function of calls (�gure 4) is an increasing function of moneyness

and time to expiration but shows higher prices57 compared to the B&S model on nearly

the whole parameter range. Only prices of in-the-money calls are below the B&S prices.

Strongest deviations are observable for out-of the money option with a long time to

maturity. This may be explained by the crash{o{phobia phenomenon shifting the state{

price{densities of states near the money to out{of{the{money states. We will come back

to this point later.

The price deviation is a monotonous decreasing function of time to maturity (T) and

an increasing function of moneyness (S/X). The same is valid for the percentage price

di�erence (�gure 4). The strong increase for short term out-of the money options may be

explained by the very low theoretical B&S prices and due to the fact that the networks

are able to learn the minimum tick size which

55Restricting our out-of-sample tests to options meeting the following often used conditions:

� 0:85 � O
X
� 1:15.

� Maturities > 10 days.

� O > DM 10.

improves the results furthermore. For example for 11 nodes for calls the ME reduces to -0.015, the MAPE
to 0.080 and the MPE to -0.001, whereas for puts the ME reduces to 0.116, the MAPE to 0.059 and the
MPE to 0.003. This is interesting to note for the interpretation of the implied pricing functions.

56The di�erent results compared to the study of Anders/Korn/Schmitt[1996] can be explained by three
factors. First by the larger data samples, Ssecond by the inclusion of options with short time to maturity
as well as deep-in and deep-out-of-the-money options which are di�cult to handle and third by the
di�erent target values.

57Recognizable by negative di�erences in the of �gure 4.
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Results Market Price Approximation

Option Prices 1995

N
o
d
es

S
a
m
p
le

C
a
ll
s

P
u
ts

M
E

M
A
E

M
A
P
E

M
P
E

R
M
S
E

R
2

M
E

M
A
E

M
A
P
E

M
P
E

R
M
S
E

R
2

5

in

-0
.4
0
3

2
.5
8

0
.2
2
0

0
.0
4
9

3
.6
4

0
.9
9
1

0
.0
4
9

1
.7
0

0
.2
1
0

0
.0
5
2

2
.3
7

0
.9
9
4

o
u
t

-0
.4
0
7

2
.5
8

0
.2
1
9

0
.0
4
8

3
.6
4

0
.9
9
1

0
.0
5
3

1
.7
0

0
.2
1
0

0
.0
5
2

2
.3
7

0
.9
9
4

6

in

-0
.6
3
6

2
.6
3

0
.2
1
4

0
.0
2
6

3
.7
4

0
.9
9
1

0
.2
9
1

1
.8
4

0
.2
1
9

0
.0
6
1

2
.5
2

0
.9
9
3

o
u
t

-0
.6
4
0

2
.6
3

0
.2
1
3

0
.0
2
5

3
.7
3

0
.9
9
1

0
.2
9
5

1
.8
4

0
.2
1
9

0
.0
6
1

2
.5
4

0
.9
9
3

8

in

-0
.2
2
6

2
.4
7

0
.2
1
0

0
.0
3
8

3
.4
7

0
.9
9
2

0
.0
2
8

1
.7
5

0
.2
0
4

0
.0
4
5

2
.4
2

0
.9
9
4

o
u
t

-0
.2
2
8

2
.4
7

0
.2
0
9

0
.0
3
7

3
.4
7

0
.9
9
2

0
.0
3
0

1
.7
4

0
.2
0
4

0
.0
4
7

2
.4
3

0
.9
9
4

1
1

in

-0
.1
5
2

2
.3
2

0
.1
9
7

0
.0
3
6

3
.3
1

0
.9
9
2

-0
.0
3
5

1
.7
2

0
.2
0
5

0
.0
4
4

2
.3
9

0
.9
9
4

o
u
t

-0
.1
5
0

2
.3
2

0
.1
9
6

0
.0
3
6

3
.2
9

0
.9
9
2

-0
.0
3
1

1
.7
1

0
.2
0
5

0
.0
4
5

2
.3
9

0
.9
9
4

B
&
S

a
ll

2
.9
4
4

3
.5
0

0
.3
3
0

0
.3
1
7

4
.1
3

0
.9
9
5

-0
.6
5
5

2
.8
5

0
.2
6
4

0
.0
2
9

3
.9
6

0
.9
8
4

17



Figure 4:

Call-Options

Implied Pricing-Function
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Figure 5:

Put-Options

Implied Pricing-Function

Di�erence to B&S

Percentage Di�erence to B&S
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results in a very high percentage price di�erence. The same e�ect is observable for out-of

the money put options (lower graph on the right-hand side of �gure 5).

The implied pricing function of puts (�gure 5) is an increasing function of moneyness

but not always an increasing function of time to expiration. In-the-money puts show a

slightly negative relationship58. On the whole parameter range the implied pricing function

provides higher prices. Short term in-the money options account for the highest deviation.

The percentage error is an increasing function of moneyness and seems to be independent

to time to maturity59.

4.3 The Implied Partial Derivatives

Looking at the partial derivatives of the pricing formulas we are able to obtain insights

into the pricing process and to search for the reasons of di�ering option prices. The results

are presented for average parameter values60.

Deltas of call options show a similar structure but are lower compared to the B&S deltas.

This yields for gamma which is lower with the exception of short-term out-of-the money

options, too.

Vega also has a similar shape but shows negative values for short term in-the-money

options. The shape of theta is also very similar but seems to have a weaker impact on

in-the-money options whereas the impact on out-of-the money options is stronger. Rho

instead di�ers strongly from the B&S model. Only for short term in the money options

their seems to be an impact at all. Within this region the impact is strongly negative.

The delta of puts has also the same shape as B&S delta but is also lower on the whole

parameter range. Strongest deviations are observable for short-term in-the-money options.

This is reected by gamma, too. Gamma only shows for short-term in-the money markable

deviations from the B&S gamma.

Vega also has a similar shape compared to the corresponding function of the B&S model

but shows negative values for short term in-the-money options. The same is valid for

theta. The market rho seems to have a weaker impact on put prices. The di�erence is a

decreasing function of time to maturity and a decreasing function of moneyness.

To sum up, for both kinds of options delta has nearly the same shape as the correspond-

ing function of the B&S model but is lower on nearly the whole parameter range. Vega

is negative for in-the-money calls and in-the-money puts. Hence the market values an

expected volatility increase negative for in-the money options. For in-the money options

with a short time to maturity strong positiv deviations from the B&S model are observ-

able. This yields also for market theta. The most interesting results are obtained for rho.

The implied partial derivative for both types of options di�er strongly from the B&S

model. Rho is markable lower for calls (for short-term in-the-money options even nega-

tive) whereas rho for puts is less negative (except for short term in-the-money puts). On

58In this context it is interesting to mention that the payo� of a put option is bounded whereas the
payo� of a call is unbounded.

59The increase for out-of-the-money options is due to the ability of the networks to learn the minimum
ticksize.

60We used average parameter values for X, � and r to ensure that the �t of the network is best.
Visualized are the derivatives of calls and puts with a strike price of 2100. The volatility is assumed to be
0.125 (which corresponds to the annualized daily return volatility of the DAX in 1995) and the interest
rate 4.5 percent (average interest rate in 1995 see table 2).
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possible explanation of this e�ect is that the implied pricing formula takes into account

the negative correlation between interest rates and the DAX .
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Figure 6:
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Figure 7:
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Figure 8:
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Figure 9:
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Figure 10:
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Figure 11:

Delta | Put Options

Implied Delta

B&S Delta

Di�erence

27



Figure 12:
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Figure 13:

Rho | Put Options
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Figure 14:

Theta | Put Options
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Figure 15:

Gamma | Put Options
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B&S Gamma

Di�erence

31



4.4 Implied State Price Density

Assuming the existence of a SPD and the dynamic completeness of the markets we are

able to derive the implied prices of "Arrow-Debreu" securities. It is important to note

that:

� We did not put any restriction, like positivity restrictions or the parametric form of

the SPD, on our network.

� Puts only contain information on states below their strike price and calls only on

states exceeding their strike price. Hence the networks trained on puts can not

contain any information about states above the highest strike price and networks

trained on calls about states below the lowest strike price.61.

The graphs in �gure 16 show implied state{price{densities with respect to time to maturity

and the future state measured as the future index level divided by the current index level.

The value 1 describes the state that will occur if the index level at expiration corresponds

to the current index level. The graphs show at least two things:

� First | within the trained parameter region all state prices were positive | not

revealing any obvious arbitrage opportunity.

� Second | It is visible how the uncertainty about future states decreases with de-

creasing time to maturity. This is reected in the increasing state{prices or in other

words the more concentrated density.

That seems to demonstrate the rationality of the pricing mechanismof the market. Further

interesting results can be obtained by comparing the implied state{price{density with the

theoretical Black & Scholes values. To get a more clearly presentation in �gure 18 the

SPD's for di�erent maturities are plotted separately. The dashed line corresponds to the

theoretical Black & Scholes state prices. Figure 20 the shows the di�erence to the B&S

state prices.

Looking at the used trading data we see that 99 percent of the call options have a mon-

eyness above 0.90 and 99 percent of the puts a moneyness below 1.14.62 This is clearly

reected by the state prices. Only state prices outside this region show negative values,

which results | like mentioned before | out of the fact that the available put and call

prices do not contain any information about this states.

The implied state price densities di�er markable from the state{price{density of the B&S

world (dashed graphs). Furthermore implied distributions of calls and puts di�er for short-

term options. Whereas the distribution of calls has a symmetric shape for short- and

medium-term options (up to 90 days) the implied distributions of puts are shifted to the

right. For long{term options the implied distributions of calls are also shifted to the right.

What means that the implied function shows lower prices for states around the current

index level and higher prices for states with high index levels.

Furthermore in the state prices of puts we observe a phenomenon Rubinstein[1994] calls

"crash{o{phobia" which could be explained as a additional insurance premium against

strong negative price movements. This premium is observable for medium-term options

and seems to increase with increasing time to maturity63.

61A European put option only has a pay o� if the price of the underlying at the expiration day is below
its strike price and a European call option only if the price is above its strike price.

62For short-term options the trained parameter region is even smaller.
63Look at the implied distributions of puts with 90 and 180 days to expiration in �gure 20.
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Figure 17:
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Figure 19:
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Figure 20:
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5 Conclusions

We demonstrated how to extract implied pricing formulas from market data by applying

ANN. So getting deeper insights into the pricing mechanism used by the market partici-

pants. Looking at the empirical results we see that:

� The used ANN's are able to interpolate the Black & Scholes formula and its partial

derivatives very well.

� ANN's are able to explain market prices far better than the Black & Scholes model.

� The implied pricing formula di�ers signi�cantly from the Black & Scholes formula

| even in the case of the DAX options which meet ideal requirements for the

application of the Black & Scholes formula.

� Especially the partial derivatives | Rho and Vega | di�er signi�cantly from the

corresponding derivatives of the Black & Scholes model. This di�erences may be

explained by correlations between the input parameters, which the Black & Scholes

model does not account for. Increasing volatility seems to have a negative impact

on in{the{money options.

� The other partial derivatives have a similar shape compared to the corresponding

B&S derivatives but di�er through the strength of their impact.

� The DAX options traded at the DTB exhibit a "crash{o{phobia" phenomenon.

The most interesting question for ongoing research is if we can learn something from the

market or looking from a somewhat other point of view if the implied market formulas

are really better then the B&S model. Looking at the resulting hedging strategies of well{

trained neural networks should give insights if the market prices are fair and the markets

e�cient.

Once trained, such networks are a very fast and easily handled valuation tool. Hence

ongoing research is going to focus on the valuation of derivatives which are hardly, for

example only with time-costly methods, valuable. Another interesting �eld of application

are derivatives for which no closed{form valuation formula is available.

The application and the comparison of di�erent network types as well as "learning" algo-

rithms should allow to improve our results. Furthermore in the training process additional

input factors could be incorporated to account for example for market mikro structure

issues or liquidity. All these tasks will be left for further research.
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A Network Derivatives

In this chapter the partial derivatives of a MLP with one hidden layer and k output units

is derived. To simplify the notation the following functions64 are introduced:


1(j) =
L1X
i=1

!1(i; j)~I(i) + �1(j) (14)


2(k) =
L2X
j=1

!2(j; k)f
h

1(j)

i
+ �2(k) (15)

whereas

L1 : number of input units,

L2 : number of hidden units,

!1(i; j) : weight between unit i of input layer

and unit j of hidden layer,

!2(j; k) : weight between unit j of hidden layer

and output unit k,
~I(i) : parameter i of input vector ~I,

�1(j) : bias of unit j of hidden layer and

�2(k) : bias of unit k of output layer.

The output function of the output unit k of a MLP network with one hidden layer looks

using (14) and (15) as follows:

netk(~I) = f
h

2(k)

i
(16)

The partial derivatives of the output unit k with regard to input parameter i is:

@netk(~I)

@~I(i)
=

@f [
2(k)]

@
2(k)

� L2X
j=1

!1(i; j)!2(j; k)
@f [
1(j)]

@
1(j)

�
(17)

@2net(~I)

@~I(i)@~I(h)
=

@
�
@f(
2)

@
2

�
@~I(h)

� L2X
j=1

!1(i; j)!2(j; k)
@f(
1)

@
1

�

+
@f(
2)

@
2

� L2X
j=1

!1(i; j)!2(j; k)
@
�
@f(
1)

@
1

�
@~I(h)

�

(18)

Using a sigmoid or logistic transfer function65 f which

@f [x]

@x
= f(x)(1� f(x)) (19)

yields

@netk(~I)

@~I(i)
= f [
2(k)](1 � f [
2(k)])

� L2X
j=1

!1(i; j)!2(j; k)f [
1(j)](1� f [
1(j)]
�

(20)

64The function can be interpreted as input of the di�erent units.
65Using instead the tangens hyperbolicus function @f [x]

@x
= 1� f(x)2.
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and

@2net(~I)

@~I(i)@~I(h)
=

@2f(
2)

@2
2

� L2X
j=1

!1(i; j)!2(j; k)
@f(
1)

@
1

�

�

� L2X
j=1

!1(h; j)!2(j; k)
@f(
1)

@
1

�
(21)

+
@f(
2)

@
2

� L2X
j=1

!1(i; j)!1(h; j)!2(j; k)
@2f(
1)

@2
1

�
:

To take the standardization of the input data and the output data into account we have

to modify the formula to get the correct derivatives. The output function of a network

with standardized input and target values is given by

~I(i) = g(~I(i)�) (22)

net�k(~I) = g�1(netk(~I)) (23)

whereas

g : function used for standardization,
~I(i)� : non-standardized input parameter i,
~I(i) : standardized input parameter i,

net�k(~I) : non-standardized network output and

netk(~I) : standardized network output.

For the derivatives follows:

@net�k(~I)
@~I(i)�

=
@net�k(~I)
@netk(~I)

@netk(~I)

@~I(i)

@~I(i)

@~I(i)�
(24)

=
@g�1O (netk(~I))

@netk(~I)

@netk(~I)

@~I(i)

@gi(~I(i)
�)

@~I(i)�
(25)

and

@2net�k(~I)
@~I(i)�@~I(h)�

=
@g�1O (netk(~I))

@netk(~I)@~I(h)�
@netk(~I)

@~I(i)

@gi(~I(i)
�)

@~I(i)�
(26)

+
@g�1O (netk(~I))

@netk(~I)

� @2netk(~I)

@~I(i)@~I(h)�
@gi(~I(i)

�)
@~I(i)�

+
@netk(~I)

@~I(i)

@2gi(~I(i)
�)

@~I(i)�@~I(h)�

�

whereas

gi : function used to standardize input parameter i and

gO : function used to standardize the target value.

More precisely, using g (see (12)) for standardizing the input as well as the target parameters

leads to:

@net�k(~I; g)
@~I(i)�

=
max(O)�min(O)

max(~I(i)�)�min(~I(i)�)
� @netk(~I)

@~I(i)
(27)

and

@2net�k(~I; g)
@~I(i)�@~I(h)�

=
max(O)�min(O)

(max(~I(i)�)�min(~I(i)�))(max(~I(h)�)�min(~I(h)�))

� @2netk(~I)

@~I(i)@~I(h)
: (28)

42



B Network Parameters

Bias (Calls 11 Nodes)

�1(1) -0.58840

�1(2) 0.37417

�1(3) -0.57864

�1(4) -0.17316

�1(5) 1.85720

�1(6) -1.02409

�1(7) 0.65206

�1(8) -0.97508

�1(9) -0.61033

�1(10) -0.56625

�1(11) -2.01742

�2(1) 0.22074

Network Weights (Calls 11 Nodes)

i: Weight

!1(i; 1) 1: 0.57201, 2:-0.27432, 3: 0.24589, 4: 0.23492, 5: -1.12052

!1(i; 2) 1: -3.54813, 2: 0.41835, 3:-0.67894, 4: -1.34480, 5: 0.53523

!1(i; 3) 1: 3.05922, 2:-0.31798, 3:-0.28761, 4: 0.59460, 5: -3.04590

!1(i; 4) 1: -6.53084, 2:-2.32410, 3: 1.25593, 4: 3.58300, 5: -4.49372

!1(i; 5) 1:-16.00039, 2:-4.05903, 3:-1.31691, 4: -3.96295, 5: 5.29610

!1(i; 6) 1: -3.60152, 2:-3.68240, 3: 0.62852, 4: -7.11775, 5: 8.73238

!1(i; 7) 1: -1.16820, 2:-0.11216, 3:-0.13322, 4: -0.72364, 5: 1.30841

!1(i; 8) 1: 1.86945, 2: 0.21300, 3:-0.01270, 4: -3.42379, 5: 3.30959

!1(i; 9) 1: -0.34539, 2:-0.03479, 3:-0.10101, 4: 0.15602, 5: 0.38350

!1(i; 10) 1: -6.75212, 2:-0.27145, 3:-1.22901, 4: 0.68794, 5: 1.50068

!1(i; 11) 1:-20.44959, 2:-1.27682, 3:-0.51192, 4:-15.64235, 5: 20.11668

j: Weight

!2(j; 1) 1: 0.96314, 2:-3.30625, 3: 2.35614, 4: 2.25166, 5: 5.40473,

6: -7.92366, 7:-1.40035, 8:-4.27809, 9: -0.09130, 10: -3.74646

11: -19.82512
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Bias (Puts 11 Nodes)

�1(1) -0.45779

�1(2) 1.19295

�1(3) 3.08627

�1(4) 0.20418

�1(5) -0.74546

�1(6) 0.59314

�1(7) 0.45674

�1(8) 0.29647

�1(9) -0.82837

�1(10) 0.63285

�1(11) 0.23007

�2(1) 2.47536

Network Weights (Puts 11 Nodes)

i: Weight

!1(i; 1) 1: 0.63880, 2:-0.85715, 3:-0.66344, 4: 0.89275, 5: -2.91488

!1(i; 2) 1: -0.89603, 2:-3.10441, 3:-0.86908, 4: 3.18183, 5: -4.94099

!1(i; 3) 1:-17.40225, 2:-7.42688, 3:-0.05951, 4: 2.80797, 5: -4.55926

!1(i; 4) 1: -0.17517, 2:-0.41435, 3:-0.67073, 4: -0.00452, 5: -0.94608

!1(i; 5) 1: 6.00794, 2: 2.50173, 3:-0.34262, 4: 6.17425, 5: -7.24374

!1(i; 6) 1: -2.15197, 2: 0.95174, 3: 0.93012, 4: 0.67700, 5: -1.14964

!1(i; 7) 1: 2.52420, 2:-1.12030, 3:-0.99898, 4: 3.76600, 5: -4.76535

!1(i; 8) 1: 2.89889, 2:-1.17473, 3: 0.32146, 4: -0.45313, 5: -1.15220

!1(i; 9) 1: -0.28404, 2:-0.52024, 3:-0.78772, 4: 1.25748, 5: -2.11221

!1(i; 10) 1:-18.31992, 2:-3.88896, 3:-0.15585, 4:11.90996, 5: -15.27501

!1(i; 11) 1: -5.82130, 2:-2.08686, 3: 0.04722, 4: 3.18518, 5: -3.86175

j: Weight

!2(j; 1) 1: -2.55937, 2:-5.60405, 3: 5.94110, 4: -0.26057, 5: -2.12908,

6: -2.35366, 7:-3.44292, 8: 2.43090, 9: -1.90645, 10:-23.76661,

11: -5.29603

C Some more Results
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Table 7:
Results Market Price Approximation 1995
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Table 8:
Results Market Price Approximation 1995

Price Di�erence to B&S
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